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1. Gaussian elimination (continued)

1.1. Solving systems that are in RREF

Recall the definition of RREF:

Definition 1.1.1. (repeated from last time, but slightly restated:)
Let A be a matrix. We say that A is in reduced row-echelon form (RREF) if

the following conditions hold:

• RREF0: Any zero row is below any nonzero row.

(“Zero row” means “row filled with zeroes”, but “nonzero row” means a
row with at least one nonzero entry. So the row (0, 1, 0) is nonzero.)

• RREF1: In any nonzero row, the first nonzero entry is equal to 1. This entry
is called the pivot of the row.

• RREF2: The pivot of any nonzero row must be further to the right than the
pivot of the previous nonzero row.

(Slogan: The pivots move right as you walk down the matrix.)

• RREF3: If a column contains a pivot, then all other entries in the column
are zero.

(Slogan: Pivots clear their columns.)

Definition 1.1.2. A system of linear equations is said to be in RREF if the aug-
mented matrix that corresponds to it is in RREF.
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Definition 1.1.3. Henceforth, “system” means “system of linear equations”.

Now, we claim the following theorem ([Strickland, Method 5.4]):

Theorem 1.1.4. There is an easy way to solve any system that is in RREF. Namely,
let A be the augmented matrix corresponding to the system:

(a) Any zero row of A can be discarded.
(b) If A has a pivot in the last column, then the system has no solution. (This is

because the row with that pivot corresponds to the equation 0 = 1 in the system.)
(c) Now, assume that A has no pivot in the last column, but there is a pivot in

each of the other columns. Then, the system has a unique solution, and it can be
read off from the last column: Each variable equals the corresponding entry of
the last column of A.

(d) Consider the general situation, assuming that A has no pivot in the last
column. Each row of A corresponds to an equation, and each column of A corre-
sponds to an unknown (=variable). We shall refer to the variables corresponding
to the pivot columns (= columns containing pivots) as dependent variables, and
to the other variables as free variables (aka independent variables). The free
variables will be unconstrained; any choice of values for the free variables will
give exactly 1 solution to the system. Once the values of the free variables have
been chosen, we can find unique values for the dependent variables by solving
each equation of our system for the corresponding dependent variable.

Example 1.1.5. Let

A =


1 0 0 1 0
0 1 1 0 0
0 0 0 0 1
0 0 0 0 0

 .

The corresponding system is 
x1 + x4 = 0
x2 + x3 = 0

0 = 1
0 = 0

,

so it has no solution. This is an instance of part (b) of the theorem.

Example 1.1.6. Let

A =


1 0 0 0 10
0 1 0 0 11
0 0 1 0 12
0 0 0 1 13

 .
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This corresponds to the system 
x1 = 10
x2 = 11
x3 = 12
x4 = 13

,

which is already its solution. This is an example of part (c).

Example 1.1.7. Let A be the matrix(
1 2 0 3 10
0 0 1 4 20

)
.

This corresponds to the system{
x1 + 2x2 + 3x4 = 10

x3 + 4x4 = 20 .

The pivot columns are 1 and 3. Thus, the dependent variables are x1 and x3,
whereas the free variables are x2 and x4. So part (d) of the above theorem tells
us that we can choose any values for x2 and x4 and get a unique set of matching
values for x1 and x3 by solving the equations (specifically: solving x1 + 2x2 +
3x4 = 10 for x1 and solving x3 + 4x4 = 20 for x3). So the general solution is{

x1 = 10− 2x2 − 3x4
x3 = 20− 4x4

.

1.2. Row operations

This section follows [Strickland, §6].

Definition 1.2.1. The following operations on a matrix A are called elementary
row operations (for short EROs, or just row operations):

• ERO1: Exchange two rows.

• ERO2: Scale a row by a nonzero constant.

• ERO3: Add a multiple of one row to another row. (That is, add λ rowi A to
rowj A for some λ ∈ R and i 6= j.)
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Example 1.2.2. Let us transform the 3× 3-matrix

 1 2 3
4 5 6
7 8 9

 using a sequence

of row operations: 1 2 3
4 5 6
7 8 9

 ERO1−→
exchange rows 2 and 3

 1 2 3
7 8 9
4 5 6


ERO2−→

scale row 1 by 2

 2 4 6
7 8 9
4 5 6


ERO3−→

add 2·row 3 to row 1

 2 + 2 · 4 4 + 2 · 5 6 + 2 · 6
7 8 9
4 5 6

 =

 10 14 18
7 8 9
4 5 6

 .

Remark 1.2.3. We already discussed row operations previously, back when we
were looking at systems. We did it slightly differently, since instead of ERO3 we
had the following operation:

• ERO3’: Subtract a row from another row.

This operation ERO3’ is, of course, a particular case of ERO3, since “subtract
a row” = “add the (−1)-multiple of this row”.

However, conversely, ERO3 can be “simulated” by applying ERO2 and ERO3’.
Indeed, if you want to add λ rowi A to rowj A using only the operations ERO2
and ERO3’, then you can proceed as follows:

• If λ 6= 0, then you first scale the i-th row by −λ, then subtract it from the
j-th row, and then scale the i-th row by −1/λ again (so that the i-th row
returns to its original state).

• If λ = 0, then you can just sit back and relax (indeed, adding λ rowi A does
not change rowj A in this case, so there is nothing to do).

Thus, the operation ERO3 does not add any more power compared to ERO3’; we
just use it for convenience.

Proposition 1.2.4. Let A be a matrix, and let A′ be a matrix obtained from A by
a sequence of EROs. Then, the systems corresponding to A and to A′ have the
same set of solutions.
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Example 1.2.5.

A =

 1 2 3
4 5 6
7 8 9

 and A′ =

 10 14 18
7 8 9
4 5 6

 .

Then, the corresponding systems are
x + 2y = 3

4x + 5y = 6
7x + 8y = 9

and


10x + 14y = 18

7x + 8y = 9
4x + 5y = 6

.

Proof. We need to check that none of the three operations ERO1, ERO2, ERO3
changes the set of solutions.

In terms of the system, these three operations correspond to

1. exchanging two equations;

2. scaling an equation by a nonzero constant;

3. adding a multiple of one equation to another.

Clearly, the first two of these do not change the set of solutions. As for the third
one, we have to prove that the solution set of a system does not change if we add
a multiple of one equation to another. So we have to prove that if we start with a
system 

A (x1, x2, . . . , xn) = 0
B (x1, x2, . . . , xn) = 0

...

and replace it by 
A (x1, x2, . . . , xn) + λB (x1, x2, . . . , xn) = 0

B (x1, x2, . . . , xn) = 0
...

,

then the set of solutions does not change. But this is easy: Either system contains
the equation B (x1, x2, . . . , xn) = 0, and therefore the equations

A (x1, x2, . . . , xn) = 0 and A (x1, x2, . . . , xn) + λB (x1, x2, . . . , xn) = 0

are equivalent.

1.3. Gaussian elimination: transforming a matrix into RREF

The following is [Strickland, Method 6.3], one of the main ideas in this course:
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Theorem 1.3.1. Let A be a matrix. Then, we can transform A into RREF by a
sequence of EROs as follows:

(a) If all rows of A are zero, then we are done (A is in RREF already).
(b) Otherwise, we find a nonzero entry that is as far left as possible. (This

entry is going to become a pivot.)
(c) By exchanging rows, we move this entry into row 1.
(d) By scaling row 1, we turn this entry into 1.
(e) By adding multiples of row 1 to the other rows, we ensure that all other

entries in its column are 0.
(f) We now forget about row 1 and apply the same algorithm to the matrix

consisting of all other rows, bringing that matrix into RREF.
(g) We end up with a matrix whose row 1 has a pivot, and whose remaining

rows are in RREF, with all their pivots being further right than the pivot in row
1. It remains to ensure that the entries in row 1 above the pivots are 0s. To do so,
we subtract appropriate multiples of the pivot rows from row 1.

This is a recursive algorithm, because in step (f), it calls itself again. But it calls
itself for a smaller matrix, so it will not get into an infinite loop.

Example 1.3.2. Let us use this algorithm to transform

A =

 0 0 −2 −1 −13
−1 −2 −1 1 −2
−1 −2 0 −1 −8


into RREF. (We shall put the entries that we choose in step (b) of the above
algorithm into boxes.) 0 0 −2 −1 −13

−1 −2 −1 1 −2
−1 −2 0 −1 −8


exchange rows−→

 −1 −2 −1 1 −2
0 0 −2 −1 −13
−1 −2 0 −1 −8


scale row 1 by −1−→

 1 2 1 −1 2
0 0 −2 −1 −13
−1 −2 0 −1 −8


add 1·row 1 to row 3−→

 1 2 1 −1 2
0 0 −2 −1 −13
0 0 1 −2 −6


Now, forget about row 1 and look at the remaining rows:(

0 0 −2 −1 −13
0 0 1 −2 −6

)
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exchange rows 1 and 2−→
(

0 0 1 −2 −6
0 0 −2 −1 −13

)
add 2·row 1 to row 2−→

(
0 0 1 −2 −6
0 0 0 −5 −25

)
.

Now, forget about row 1 and look at the remaining row:(
0 0 0 −5 −25

)
scale row 1 by −1/5−→

(
0 0 0 1 5

)
.

Now, forget about row 1 and look at the remaining rows, of which there are none
(i.e., they form a 0× 5-matrix). Since there are none, they are already in RREF.

Now, this empty matrix is in RREF, so we add the previously removed row
back in again, getting (

0 0 0 1 5
)

.

This is in RREF as well, so we add the previously removed row back in again,
getting (

0 0 1 −2 −6
0 0 0 1 5

)
.

This is almost in RREF, except that the fourth column is a pivot column with a
nonzero non-pivot entry. We fix this by adding 2·row 2 to row 1:(

0 0 1 −2 −6
0 0 0 1 5

)
−→

(
0 0 1 0 4
0 0 0 1 5

)
.

Now, our matrix is in RREF, so we again add the previously removed row back
in:  1 2 1 −1 2

0 0 1 0 4
0 0 0 1 5

 .

This is almost in RREF, except that two of the pivots still need to clear out the
first entries of their columns. Again, we achieve this by adding multiples of
rows:  1 2 1 −1 2

0 0 1 0 4
0 0 0 1 5

 add −1·row 2 to row 1−→

 1 2 0 −1 −2
0 0 1 0 4
0 0 0 1 5


add 1·row 3 to row 1−→

 1 2 0 0 3
0 0 1 0 4
0 0 0 1 5

 .
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This is in RREF, so we have brought A to an RREF by EROs.

In practice, when applying this algorithm, it is easiest not to remove the top row
in step (f) and add it back in step (g), but simply keep it around remembering
that it is “frozen” for the time being. It becomes “unfrozen” later when the rows
below it have already been put into RREF. As long as a row is frozen, it is ignored
by all operations (in particular, it does not get counted, it does not get exchanged
or scaled or added, and it does not get taken into account when we check if our
matrix is in RREF).

Example 1.3.3. Let us bring the matrix


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 into RREF:


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



exchange rows 1 and 2−→


1 0 1 0 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



add −1·row 1 to row 2−→
(frozen rows are not counted)


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
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freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



exchange rows 1 and 2−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 0 1 0



freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 0 1 0



add −1·row 1 to row 2−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0



freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 0 1
0 0 0 0 1 0



exchange rows 1 and 2−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 1 0
0 0 0 0 0 1



freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 1 0 ← frozen
0 0 0 0 0 1
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freeze row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 1 0 ← frozen
0 0 0 0 0 1 ← frozen


The unfrozen part is RREF

(since it is empty).

unfreeze last frozen row−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 1 0 ← frozen
0 0 0 0 0 1



unfreeze last frozen row−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0 ← frozen
0 0 0 0 1 0
0 0 0 0 0 1



unfreeze last frozen row−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0 ← frozen
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



unfreeze last frozen row−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 not an RREF!

add −1·row 3 to row 1−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0 ← frozen
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 RREF again

unfreeze last frozen row−→


1 0 1 0 0 0 ← frozen
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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unfreeze last frozen row−→


1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 not an RREF

add −1·row 3 to row 1−→


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 RREF, done!

Note that we got an identity matrix.

If we instead start with


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

, then we don’t get the identity

matrix, but instead get a matrix with only 4 pivots.

This has consequences for the system
x2 = 0

x1 + x3 = 0
x2 + x4 = 0

x3 = 1
x4 = 0

.

Proposition 1.3.4. Let A be a matrix, and let A′ be a matrix obtained from A by
a sequence of EROs.

Let B and B′ be obtained from A and A′ by removing some columns (the same
for B as for B′).

Then, B′ is obtained from B by the same sequence of EROs as A′ from A.

Note, however, that if A′ is RREF, then B′ may or may not be a RREF.
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