Math 222: Enumerative Combinatorics, Fall 2019: Midterm 3

Darij Grinberg

December 16, 2019
due date: Wednesday, 2019-12-04 at the beginning of class, or before that through Blackboard.

Please solve 3 of the 5 exercises! This is a midterm, so collaboration is not allowed!

Notations

Here is a list of notations that are used in this homework:

- We shall use the notation $[n]$ for the set $\{1,2, \ldots, n\}$ (when $n \in \mathbb{Z}$).
- If $n \in \mathbb{N}$, then S_{n} denotes the set of all permutations of $[n]$.
- If $n \in \mathbb{N}$ and $\sigma \in S_{n}$, then:
- the one-line notation OLN σ of σ is defined as the n-tuple ($\sigma(1), \sigma(2), \ldots, \sigma(n))$.
- the inversions of σ are defined to be the pairs (i, j) of integers satisfying $1 \leq i<$ $j \leq n$ and $\sigma(i)>\sigma(j)$.
- the length $\ell(\sigma)$ of σ is defined to be the $\#$ of inversions of σ.
- the $\operatorname{sign}(-1)^{\sigma}$ of σ is defined to be $(-1)^{\ell(\sigma)}$.
- we say that σ is even if $(-1)^{\sigma}=1$ (that is, if $\ell(\sigma)$ is even).
- we say that σ is odd if $(-1)^{\sigma}=-1$ (that is, if $\ell(\sigma)$ is odd).
- we let Fix σ denote the set of all fixed points of σ; in other words,

$$
\operatorname{Fix} \sigma=\{i \in[n] \mid \sigma(i)=i\} .
$$

1 ExERCISE 1

1.1 PROBLEM

Let n be an integer such that $n \geq 2$. If $w \in S_{n}$ is a permutation, then the peaks of w are defined to be the elements $i \in\{2,3, \ldots, n-1\}$ satisfying $w(i-1)<w(i)>w(i+1)$. (For example, if $n=7$ and if OLN $w=(4,1,2,5,3,7,6)$, then the peaks of w are 4 and 6 . The name "peak" is explained by a look at the plot of w.)

An n-peak set shall mean a subset P of $\{2,3, \ldots, n-1\}$ such that there exists a $w \in S_{n}$ satisfying \{peaks of $w\}=P$. (For example, the example we just gave shows that $\{4,6\}$ is a 7-peak set.)

Find the \# of all n-peak sets (for our given n).

1.2 Solution

[...]

2 ExERCISE 2

2.1 Problem

Let n be an integer such that $n \geq 3$. For each $k \in \mathbb{Z}$, set

$$
m_{k}=\left(\# \text { of permutations } \sigma \in S_{n} \text { such that } \ell(\sigma) \equiv k \bmod 3\right)
$$

(Example: If $n=3$, then m_{0} counts the two permutations with one-line notations $(1,2,3)$ and $(3,2,1)$, while m_{1} counts the two permutations with one-line notations $(1,3,2)$ and $(2,1,3)$, and while m_{2} counts the two permutations with one-line notations ($2,3,1$) and $(3,1,2)$.)

Prove that $m_{0}=m_{1}=m_{2}=n!/ 3$.
[Hint: The Lehmer code (see Grinbe15, §5.8] or [17f-hw8s, §0.4]) may be of use.]

2.2 Solution

[...]

3 ExERCISE 3

3.1 Problem

Let n be an integer such that $n \geq 3$. Find

$$
\sum_{w \in S_{n} \text { is even }} \mid \text { Fix } w \mid
$$

[Hint: For each $i \in[n]$, compare
(\# of even $w \in S_{n}$ such that $w(i)=i$) with (\# of odd $w \in S_{n}$ such that $\left.w(i)=i\right)$.
]

3.2 Solution

[...]

4 ExERCISE 4

4.1 PROBLEM

An n-tuple $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1\}^{n}$ (where $n \in \mathbb{N}$) will be called upsided if it satisfies $i_{1}+i_{2}+\cdots+i_{p} \geq p / 2$ for each $p \in[n]$.
(Example: The 3 -tuple ($1,0,1$) is upsided (since $1 \geq 1 / 2$ and $1+0 \geq 2 / 2$ and $1+0+1 \geq$ $3 / 2)$, and so is the 3 -tuple ($1,1,0$) (for similar reasons), but the 3 -tuples $(1,0,0)$ and $(0,1,1)$ are not (indeed, $(1,0,0)$ is not upsided because $1+0+0<3 / 2$, whereas $(0,1,1)$ is not upsided because $0<1 / 2$). The 0 -tuple () is upsided (for vacuous reasons).)

For given $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, let $U(n, k)$ denote the $\#$ of upsided n-tuples $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in$ $\{0,1\}^{n}$ satisfying $i_{1}+i_{2}+\cdots+i_{n}=k$.
(a) Prove that if $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ satisfy $k<n / 2$, then $U(n, k)=0$.
(b) Prove that if $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ satisfy $k \geq(n-1) / 2$, then

$$
U(n, k)=\binom{n}{k}-\binom{n}{k+1}
$$

(c) Prove that $\binom{n}{0}<\binom{n}{1}<\cdots<\binom{n}{\lfloor n / 2\rfloor}$ for each $n \in \mathbb{N}$.
[Hint: Induction can be helpful. There are many ways to solve part (c), but the one using part (b) is perhaps the nicest.]

4.2 Solution

[...]

5 Exercise 5

5.1 PROBLEM

Let $n \in \mathbb{N}$. Recall that a composition of n means a tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of positive integers satisfying $a_{1}+a_{2}+\cdots+a_{k}=n$. Such a composition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is called odd if all of $a_{1}, a_{2}, \ldots, a_{k}$ are odd.

Let us also say that a composition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is odd-but-one if a_{i} is even for exactly one $i \in[k]$. (For example, the composition $(3,5,5)$ of 13 is odd; the composition $(3,4,1,5)$ of 13 is odd-but-one; the composition $(6,6,1)$ of 13 is neither.)

Prove that

$$
\begin{aligned}
& \quad \sum_{\begin{array}{c}
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \text { is an } \\
\text { odd composition of } n
\end{array}} k \\
& =(\# \text { of odd-but-one compositions of } n+1) \\
& =\frac{(n+4) f_{n}+2 n f_{n-1}}{5}
\end{aligned}
$$

where $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$ is the Fibonacci sequence (defined in Math222, Definition 1.1.10]).

5.2 SOLUTION

[...]

References

[17f-hw8s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set \#8 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os.pdf
Also available on the mirror server http://darijgrinberg.gitlab.io/t/17f/ hw8os.pdf
[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
Also available on the mirror server http://darijgrinberg.gitlab.io/ primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/ detnotes/releases/tag/2019-01-10.
[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf
Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf

