Math 222: Enumerative Combinatorics, Fall 2019: Midterm 3

Darij Grinberg

December 16, 2019

due date: Wednesday, 2019-12-04 at the beginning of class, or before that through Blackboard.

Please solve **3 of the 5 exercises**! This is a midterm, so **collaboration is not allowed**!

NOTATIONS

Here is a list of notations that are used in this homework:

- We shall use the notation [n] for the set $\{1, 2, \ldots, n\}$ (when $n \in \mathbb{Z}$).
- If $n \in \mathbb{N}$, then S_n denotes the set of all permutations of [n].
- If $n \in \mathbb{N}$ and $\sigma \in S_n$, then:
 - the one-line notation OLN σ of σ is defined as the *n*-tuple ($\sigma(1), \sigma(2), \ldots, \sigma(n)$).
 - the *inversions* of σ are defined to be the pairs (i, j) of integers satisfying $1 \le i < j \le n$ and $\sigma(i) > \sigma(j)$.
 - the *length* $\ell(\sigma)$ of σ is defined to be the # of inversions of σ .
 - the sign $(-1)^{\sigma}$ of σ is defined to be $(-1)^{\ell(\sigma)}$.
 - we say that σ is even if $(-1)^{\sigma} = 1$ (that is, if $\ell(\sigma)$ is even).
 - we say that σ is *odd* if $(-1)^{\sigma} = -1$ (that is, if $\ell(\sigma)$ is odd).
 - we let Fix σ denote the set of all fixed points of σ ; in other words,

 $\operatorname{Fix} \sigma = \{i \in [n] \mid \sigma(i) = i\}.$

1 EXERCISE 1

1.1 PROBLEM

Let n be an integer such that $n \ge 2$. If $w \in S_n$ is a permutation, then the *peaks* of w are defined to be the elements $i \in \{2, 3, ..., n-1\}$ satisfying w(i-1) < w(i) > w(i+1). (For example, if n = 7 and if OLN w = (4, 1, 2, 5, 3, 7, 6), then the peaks of w are 4 and 6. The name "peak" is explained by a look at the plot of w.)

An *n*-peak set shall mean a subset P of $\{2, 3, ..., n-1\}$ such that there exists a $w \in S_n$ satisfying {peaks of w} = P. (For example, the example we just gave shows that $\{4, 6\}$ is a 7-peak set.)

Find the # of all *n*-peak sets (for our given *n*).

1.2 Solution

[...]

2 EXERCISE 2

2.1 Problem

Let n be an integer such that $n \geq 3$. For each $k \in \mathbb{Z}$, set

 $m_k = (\# \text{ of permutations } \sigma \in S_n \text{ such that } \ell(\sigma) \equiv k \mod 3).$

(*Example:* If n = 3, then m_0 counts the two permutations with one-line notations (1, 2, 3) and (3, 2, 1), while m_1 counts the two permutations with one-line notations (1, 3, 2) and (2, 1, 3), and while m_2 counts the two permutations with one-line notations (2, 3, 1) and (3, 1, 2).)

Prove that $m_0 = m_1 = m_2 = n!/3$.

[Hint: The Lehmer code (see [Grinbe15, §5.8] or [17f-hw8s, §0.4]) may be of use.]

2.2 Solution

[...]

3 Exercise 3

3.1 PROBLEM

Let n be an integer such that $n \ge 3$. Find

$$\sum_{w \in S_n \text{ is even}} |\operatorname{Fix} w| \,.$$

[Hint: For each $i \in [n]$, compare

(# of even $w \in S_n$ such that w(i) = i) with (# of odd $w \in S_n$ such that w(i) = i).

]

3.2 SOLUTION

[...]

4 EXERCISE 4

4.1 PROBLEM

An *n*-tuple $(i_1, i_2, \ldots, i_n) \in \{0, 1\}^n$ (where $n \in \mathbb{N}$) will be called *upsided* if it satisfies $i_1 + i_2 + \cdots + i_p \ge p/2$ for each $p \in [n]$.

(*Example:* The 3-tuple (1, 0, 1) is upsided (since $1 \ge 1/2$ and $1+0 \ge 2/2$ and $1+0+1 \ge 3/2$), and so is the 3-tuple (1, 1, 0) (for similar reasons), but the 3-tuples (1, 0, 0) and (0, 1, 1) are not (indeed, (1, 0, 0) is not upsided because 1+0+0 < 3/2, whereas (0, 1, 1) is not upsided because 0 < 1/2). The 0-tuple () is upsided (for vacuous reasons).)

For given $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, let U(n, k) denote the # of upsided *n*-tuples $(i_1, i_2, \ldots, i_n) \in \{0, 1\}^n$ satisfying $i_1 + i_2 + \cdots + i_n = k$.

(a) Prove that if $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ satisfy k < n/2, then U(n, k) = 0.

(b) Prove that if $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ satisfy $k \ge (n-1)/2$, then

$$U(n,k) = \binom{n}{k} - \binom{n}{k+1}.$$

(c) Prove that $\binom{n}{0} < \binom{n}{1} < \cdots < \binom{n}{\lfloor n/2 \rfloor}$ for each $n \in \mathbb{N}$.

[Hint: Induction can be helpful. There are many ways to solve part (c), but the one using part (b) is perhaps the nicest.]

4.2 Solution

[...]

5 EXERCISE 5

5.1 Problem

Let $n \in \mathbb{N}$. Recall that a *composition of* n means a tuple (a_1, a_2, \ldots, a_k) of positive integers satisfying $a_1 + a_2 + \cdots + a_k = n$. Such a composition (a_1, a_2, \ldots, a_k) is called *odd* if all of a_1, a_2, \ldots, a_k are odd.

Let us also say that a composition (a_1, a_2, \ldots, a_k) is *odd-but-one* if a_i is even for exactly one $i \in [k]$. (For example, the composition (3, 5, 5) of 13 is odd; the composition (3, 4, 1, 5) of 13 is odd-but-one; the composition (6, 6, 1) of 13 is neither.)

Prove that

$$\sum_{\substack{(a_1,a_2,\dots,a_k) \text{ is an} \\ \text{odd composition of } n}} k$$

= (# of odd-but-one compositions of $n + 1$)
= $\frac{(n+4) f_n + 2n f_{n-1}}{5}$,

where $(f_0, f_1, f_2, ...)$ is the Fibonacci sequence (defined in [Math222, Definition 1.1.10]).

$$5.2$$
 Solution

[...]

References

- [17f-hw8s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set #8 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/17f/ hw8os.pdf
- [Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019. http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/ primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/ detnotes/releases/tag/2019-01-10.
- [Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf