Math 222: Enumerative Combinatorics, Fall 2019: Midterm 2

Darij Grinberg

December 16, 2019

due date: Wednesday, 2019-11-13 at the beginning of class, or before that through Blackboard.

Please solve **4 of the 6 exercises**! This is a midterm, so **collaboration is not allowed**!

1 EXERCISE 1

1.1 PROBLEM

Let $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Prove that

$$\sum_{i=0}^{n} \binom{2i-u}{i} \binom{2(n-i)+u}{n-i} = 4^{n}.$$
(1)

1.2 Remark

For u = 0, this simplifies to

$$\sum_{i=0}^{n} \binom{2i}{i} \binom{2(n-i)}{n-i} = 4^{n},$$
(2)

a famous identity which is probably easiest to prove by applying the Chu–Vandermonde identity to x = -1/2 and y = -1/2 (see [18f-hw3s, solution to Exercise 3 (b)] or [Grinbe15, solution to Exercise 3.23 (a)] for details). But to my knowledge, the more general equality (1)

resists this clever trick. Instead, proceed as follows: Rewrite $\binom{2i-u}{i}$ using upper negation, and rewrite $\binom{2(n-i)+u}{n-i}$ as $\sum_{k=0}^{n-i} \binom{2n+1}{k} \binom{u-1-2i}{n-i-k}$ using Chu–Vandermonde. Then use trinomial revision to turn $\binom{u-i-1}{i} \binom{u-1-2i}{n-i-k}$ into $\binom{u-i-1}{n-k} \binom{n-k}{i}$. Does the result remind you of anything?

1.3 Solution

[...]

2 EXERCISE 2

2.1 Problem

Let S be a finite set. Let X and Y be two **distinct** subsets of S. Prove that

$$\sum_{I \subseteq S} (-1)^{|X \cap I| + |Y \cap I|} = 0.$$

2.2 Solution

[...]

3 EXERCISE 3

3.1 PROBLEM

A map $f : A \to B$ between two sets A and B will be called a 2-surjection if each $b \in B$ satisfies (# of $a \in A$ satisfying f(a) = b) ≥ 2 . (That is, if each element of B is taken as a value by f at least twice.)

Let $m, n \in \mathbb{N}$. Find a formula (similar to [Math222, Theorem 2.4.17]) for the # of 2-surjections from [m] to [n].

3.2 Solution

[...]

4 EXERCISE 4

4.1 Problem

Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$ be such that $n \ge k$.

Let S_n denote the set of all permutations of [n]. For each permutation $w \in S_n$, let Fix w denote the set of all fixed points of w (that is, the set $\{i \in [n] \mid w(i) = i\}$).

Prove that

$$\sum_{w \in S_n} \binom{|\operatorname{Fix} w|}{k} = (n-k)! \binom{n}{k} = \frac{n!}{k!}.$$

4.2 Remark

The k = 1 case of this is saying that $\sum_{w \in S_n} |Fixw| = n!$ (or, equivalently: a permutation of [n] has exactly 1 fixed point on average). This was proved in [17f-hw7s, §0.2, Exercise 2]. That argument may be helpful.

4.3 Solution

[...]

5 EXERCISE 5

5.1 PROBLEM

Let $n \in \mathbb{N}$. A permutation w of [n] will be called *domino-free* if there exists no $i \in [n-1]$ satisfying

w(i) = i + 1 and w(i + 1) = i.

Find a formula for the # of domino-free permutations of [n].

5.2 Solution

[...]

6 EXERCISE 6

6.1 PROBLEM

Recall that a *composition* means a finite list of positive integers. (For example, (2, 3, 2) is a composition, but (1, 0, 4) is not.)

If $n \in \mathbb{N}$, then a composition of n means a composition (i_1, i_2, \ldots, i_k) satisfying $i_1 + i_2 + \cdots + i_k = n$.

- (a) A composition (i_1, i_2, \ldots, i_k) is said to be *even* if all its entries i_1, i_2, \ldots, i_k are even. Find a formula for the # of even compositions of a given $n \in \mathbb{N}$.
- (b) A composition (i_1, i_2, \ldots, i_k) is said to be *odd* if all its entries i_1, i_2, \ldots, i_k are odd. Find a formula for the # of odd compositions of a given $n \in \mathbb{N}$.

6.2 Solution

[...]

References

- [17f-hw7s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set #7 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
- [18f-hw3s] Darij Grinberg, UMN Fall 2018 Math 5705 homework set #3 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18f/hw3s.pdf
- [Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019. http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the

The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.

[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf