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1 Exercise 1

1.1 Problem

Let n ∈ N. Prove that
n∑
k=0

(
2n+ 1

k

)
= 4n.

1.2 First solution

Forget that we fixed n. Recall the following fact ([Math222, Corollary 1.3.27]):

Corollary 1.1. Let n ∈ N. Then,
n∑
k=0

(
n

k

)
= 2n.

Also, recall the symmetry property of the binomial coefficients ([Math222, Theorem
1.3.11]):

Theorem 1.2 (Symmetry of the binomial coefficients). Let n ∈ N and k ∈ R. Then,(
n

k

)
=

(
n

n− k

)
.
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Now, let n ∈ N. Then, 0 ≤ n ≤ 2n + 1. Hence, we can split the sum
2n+1∑
k=0

(
2n+ 1

k

)
at

k = n. We thus obtain

2n+1∑
k=0

(
2n+ 1

k

)
=

n∑
k=0

(
2n+ 1

k

)
+

2n+1∑
k=n+1

(
2n+ 1

k

)
︸ ︷︷ ︸

=

(
2n+ 1

2n+ 1− k

)
(by Theorem 1.2,

applied to 2n+1 instead of n)

=
n∑
k=0

(
2n+ 1

k

)
+

2n+1∑
k=n+1

(
2n+ 1

2n+ 1− k

)

=
n∑
k=0

(
2n+ 1

k

)
+

n∑
k=0

(
2n+ 1

k

)
(here, we have substituted k for 2n+ 1− k in the second sum)

= 2 ·
n∑
k=0

(
2n+ 1

k

)
.

Comparing this with

2n+1∑
k=0

(
2n+ 1

k

)
= 22n+1 (by Corollary 1.1, applied to 2n+ 1 instead of n) ,

we obtain

2 ·
n∑
k=0

(
2n+ 1

k

)
= 22n+1.

Dividing both sides of this equality by 2, we find

n∑
k=0

(
2n+ 1

k

)
= 22n+1/2 = 22n =

(
22︸︷︷︸
=4

)n

= 4n.

This solves the exercise.

1.3 Second solution

Forget that we fixed n. Recall the recurrence of the binomial coefficients ([Math222, Theorem
1.3.8]):

Theorem 1.3 (Recurrence of the binomial coefficients). Let n ∈ R and k ∈ R. Then,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.
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Now, let n ∈ N. Then,
n∑
k=0

(
2n+ 1

k

)
︸ ︷︷ ︸

=

(
(2n+ 1)− 1

k − 1

)
+

(
(2n+ 1)− 1

k

)
(by Theorem 1.3, applied to 2n+1 instead of n)

=
n∑
k=0

((
(2n+ 1)− 1

k − 1

)
+

(
(2n+ 1)− 1

k

))
=

n∑
k=0

((
2n

k − 1

)
+

(
2n

k

))
(since (2n+ 1)− 1 = 2n)

=
n∑
k=0

(
2n

k − 1

)
+

n∑
k=0

(
2n

k

)
. (1)

But each k ∈ R satisfies(
2n

k − 1

)
=

(
2n

2n− (k − 1)

)
(by Theorem 1.2, applied to 2n and k − 1 instead of n and k)

=

(
2n

2n+ 1− k

)
(2)

(since 2n− (k − 1) = 2n+ 1− k). Now, we can split off the addend for k = 0 from the sum
n∑
k=0

(
2n

k − 1

)
; we thus find

n∑
k=0

(
2n

k − 1

)
=

(
2n

0− 1

)
︸ ︷︷ ︸

=0
(by the definition of
binomial coefficients,
since 0−1=−1/∈N)

+
n∑
k=1

(
2n

k − 1

)
=

n∑
k=1

(
2n

k − 1

)
︸ ︷︷ ︸

=

(
2n

2n+ 1− k

)
(by (2))

=
n∑
k=1

(
2n

2n+ 1− k

)
=

2n+1−1∑
k=2n+1−n

(
2n

k

)
(here, we have substituted k for 2n+ 1− k in the sum)

=
2n∑

k=n+1

(
2n

k

)
(3)
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(since 2n+ 1− n = n+ 1 and 2n+ 1− 1 = 2n). Hence, (1) becomes

n∑
k=0

(
2n+ 1

k

)
=

n∑
k=0

(
2n

k − 1

)
︸ ︷︷ ︸
=

2n∑
k=n+1

(
2n

k

)
(by (3))

+
n∑
k=0

(
2n

k

)
=

2n∑
k=n+1

(
2n

k

)
+

n∑
k=0

(
2n

k

)

=
n∑
k=0

(
2n

k

)
+

2n∑
k=n+1

(
2n

k

)
=

2n∑
k=0

(
2n

k

)
= 22n (by Corollary 1.1, applied to 2n instead of n)

=

(
22︸︷︷︸
=4

)n

= 4n.

Thus, the exercise is solved again.

2 Exercise 2

2.1 Problem

Let n ∈ N. Compute the number of 4-tuples (A,B,C,D) of subsets of [n] satisfying

A ∩B = C ∪D.

2.2 Solution sketch

The exercise is an analogue of [hw2s, Exercise 2], and the following solution imitates the
solution of the latter exercise (except that we are omitting the formal proof, because it
should be clear how to construct it if necessary).

We shall say that a 4-tuple (A,B,C,D) of subsets of [n] is good if and only if it satisfies
A ∩B = C ∪D.

We claim the following:

Claim 1: The # of good 4-tuples is 6n.

Let us first give an informal (but perfectly clear to the experienced reader) proof of this
claim:

Informal proof of Claim 1. A 4-tuple (A,B,C,D) of subsets of [n] is good if and only if it
satisfies the following property: Each i ∈ [n] belongs to

• either all four sets A, B, C and D,

• or the sets A and B and C but not D;

• or the sets A and B and D but not C;

• or the set A but none of the other three sets,
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• or the set B but none of the other three sets,

• or none of the four sets A, B, C and D.

1 We shall refer to these 6 possibilities as “Option 1”, “Option 2” and so on.
Thus, the following simple algorithm constructs every good 4-tuple (A,B,C,D): For

each i ∈ [n], we decide which of the 6 options listed above the element i should satisfy (i.e.,
whether it satisfies Option 1 or Option 2 etc.). There are 6 choices for it, since these 6
options are mutually exclusive. Thus, in total, there are 6n good 4-tuples (because we are
making this decision once for each of the n elements i of [n]). This completes our informal
proof of Claim 1.

3 Exercise 3

3.1 Problem

Let m and n be two nonnegative integers such that m ≤ n. Let fm, fm+1, . . . , fn be any
n−m+ 1 numbers. Let gm, gm+1, . . . , gn+1 be any n−m+ 2 numbers. Prove that

n∑
k=m

fk (gk+1 − gk) +
n∑

k=m+1

gk (fk − fk−1) = fngn+1 − fmgm. (4)

3.2 Remark

This is a discrete version of the “integration by parts” formula∫ n

m

fg′ +

∫ n

m

gf ′ = (fg) (n)− (fg) (m)

from calculus.

3.3 Solution

We have
n∑

k=m

fk (gk+1 − gk)︸ ︷︷ ︸
=fkgk+1−fkgk

=
n∑

k=m

(fkgk+1 − fkgk) =
n∑

k=m

fkgk+1︸ ︷︷ ︸
=fngn+1+

n−1∑
k=m

fkgk+1

(here, we have split off the
addend for k=n from the sum)

−
n∑

k=m

fkgk︸ ︷︷ ︸
=fmgm+

n∑
k=m+1

fkgk

(here, we have split off the
addend for k=m from the sum)

=

(
fngn+1 +

n−1∑
k=m

fkgk+1

)
−

(
fmgm +

n∑
k=m+1

fkgk

)
1This is proved similarly as the analogous claim in the solution to [hw2s, Exercise 2].
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and
n∑

k=m+1

gk (fk − fk−1)︸ ︷︷ ︸
=gkfk−gkfk−1

=
n∑

k=m+1

(gkfk − gkfk−1) =
n∑

k=m+1

gkfk︸︷︷︸
=fkgk

−
n∑

k=m+1

gkfk−1︸ ︷︷ ︸
=fk−1gk

=
n∑

k=m+1

fkgk −
n∑

k=m+1

fk−1gk =
n∑

k=m+1

fkgk −
n−1∑
k=m

f(k+1)−1︸ ︷︷ ︸
=fk

gk+1

(here, we have substituted k + 1 for k in the second sum)

=
n∑

k=m+1

fkgk −
n−1∑
k=m

fkgk+1.

Adding together these two equalities, we obtain
n∑

k=m

fk (gk+1 − gk) +
n∑

k=m+1

gk (fk − fk−1)

=

(
fngn+1 +

n−1∑
k=m

fkgk+1

)
−

(
fmgm +

n∑
k=m+1

fkgk

)
+

n∑
k=m+1

fkgk −
n−1∑
k=m

fkgk+1

= fngn+1 − fmgm.

This solves the exercise.

4 Exercise 4

4.1 Problem

Let n ∈ N. Let T1, T2, . . . , Tn be n finite sets of integers. For each i ∈ [n], we let ai be the #
of even elements of Ti, and we let bi be the # of odd elements of Ti. Furthermore, for each
i ∈ [n], we set si = ai + bi = |Ti| and di = ai − bi.

An n-tuple (i1, i2, . . . , in) ∈ T1×T2×· · ·×Tn is said to be even if the sum i1+i2+ · · ·+in
is even. (For example, the 4-tuple (1, 0, 4, 1) is even, whereas (1, 0, 3, 1) is not.)

Prove that the # of even n-tuples (i1, i2, . . . , in) ∈ T1 × T2 × · · · × Tn equals

s1s2 · · · sn + d1d2 · · · dn
2

.

4.2 Remark

This generalizes [hw1s, Exercise 6].

4.3 First solution sketch

This first solution is essentially a generalization of [hw1s, solution to Exercise 6]. (Note how
the generality makes our life easier, because we have fewer cases to worry about!)
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We extend our definition of “even n-tuples” to arbitrary m-tuples of integers (where m ∈
N is arbitrary). We do this in the most natural way: We say that an m-tuple (i1, i2, . . . , im)
of integers (for some m ∈ N) is even if the sum i1+i2+· · ·+im is even. Likewise, we say that
an m-tuple (i1, i2, . . . , im) of integers (for some m ∈ N) is odd if the sum i1 + i2 + · · ·+ im is
odd. Clearly, any m-tuple of integers is either even or odd (but not both at the same time).

We now state the following:

Claim 1: For each m ∈ {0, 1, . . . , n}, we have

(# of even m-tuples (i1, i2, . . . , im) ∈ T1 × T2 × · · · × Tm) =
s1s2 · · · sm + d1d2 · · · dm

2
.

[Proof of Claim 1: We shall prove Claim 1 by induction on m:
Induction base: There is only one 0-tuple (i1, i2, . . . , i0) ∈ T1×T2×· · ·×T0, namely the

empty list (). This 0-tuple is even (since the sum of its entries is (empty sum) = 0). Thus,
there is exactly one even 0-tuple (i1, i2, . . . , i0) ∈ T1 × T2 × · · · × T0. In other words,

(# of even 0-tuples (i1, i2, . . . , i0) ∈ T1 × T2 × · · · × T0) = 1.

Comparing this with

s1s2 · · · s0 + d1d2 · · · d0
2

=
1 + 1

2
(since s1s2 · · · s0 = (empty product) = 1 and d1d2 · · · d0 = (empty product) = 1)

= 1,

we obtain

(# of even 0-tuples (i1, i2, . . . , i0) ∈ T1 × T2 × · · · × T0) =
s1s2 · · · s0 + d1d2 · · · d0

2
.

In other words, Claim 1 holds for m = 0. This completes the induction base.
Induction step: LetM be a positive integer. Assume that Claim 1 holds for m =M−1.

We must prove that Claim 1 holds for m =M .
In the following, the word “M -tuple” shall always mean “M -tuple in T1×T2×· · ·×TM ”.

Likewise, the word “(M − 1)-tuple” shall always mean “(M − 1)-tuple in T1×T2×· · ·×TM−1”.
Thus,

(# of all (M − 1) -tuples) = |T1| · |T2| · · · · · |TM−1| =
M−1∏
i=1

|Ti|︸︷︷︸
=si

(since si=|Ti|)

=
M−1∏
i=1

si

= s1s2 · · · sM−1.

We have assumed that Claim 1 holds for m =M − 1. In other words,

(# of even (M − 1) -tuples (i1, i2, . . . , iM−1) ∈ T1 × T2 × · · · × TM−1)

=
s1s2 · · · sM−1 + d1d2 · · · dM−1

2
.

Since we have decided to refer to (M − 1)-tuples (i1, i2, . . . , iM−1) ∈ T1 × T2 × · · · × TM−1
simply as “(M − 1)-tuples”, we can rewrite this as follows:

(# of even (M − 1) -tuples) =
s1s2 · · · sM−1 + d1d2 · · · dM−1

2
.
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But each (M − 1)-tuple is either even or odd, but not both at the same time. Hence,

(# of all (M − 1)-tuples) = (# of even (M − 1) -tuples) + (# of odd (M − 1) -tuples) .

Thus,

(# of odd (M − 1) -tuples) = (# of all (M − 1)-tuples)︸ ︷︷ ︸
=s1s2···sM−1

− (# of even (M − 1) -tuples)︸ ︷︷ ︸
=
s1s2 · · · sM−1 + d1d2 · · · dM−1

2

= s1s2 · · · sM−1 −
s1s2 · · · sM−1 + d1d2 · · · dM−1

2

=
s1s2 · · · sM−1 − d1d2 · · · dM−1

2
.

Now, we want to count the even M -tuples (i1, i2, . . . , iM) ∈ T1 × T2 × · · · × TM . Each
M -tuple (i1, i2, . . . , iM) ∈ T1×T2×· · ·×TM has a well-defined last entry iM (since M > 0).
Now, for each j ∈ TM , we can count the even M -tuples whose last entry is j:

• Let j ∈ TM be even. Then, for any (M − 1)-tuple (i1, i2, . . . , iM−1), we have the
following chain of logical equivalences:

(the (M − 1)-tuple (i1, i2, . . . , iM−1) is even)
⇐⇒ (i1 + i2 + · · ·+ iM−1 is even) (by the definition of “even” for tuples)
⇐⇒ (i1 + i2 + · · ·+ iM−1 + j is even) (since j is even)
⇐⇒ (the M -tuple (i1, i2, . . . , iM−1, j) is even)

(by the definition of “even” for tuples) .

Hence, there is a bijection

{even (M − 1)-tuples} → {even M -tuples (i1, i2, . . . , iM) with iM = j} ,
(i1, i2, . . . , iM−1) 7→ (i1, i2, . . . , iM−1, j) .

2 Hence, the bijection principle shows that

(# of even (M − 1)-tuples) = (# of even M -tuples (i1, i2, . . . , iM) with iM = j) .

Hence,

(# of even M -tuples (i1, i2, . . . , iM) with iM = j)

= (# of even (M − 1)-tuples) =
s1s2 · · · sM−1 + d1d2 · · · dM−1

2
. (5)

Forget that we fixed j. We thus have proven (5) for each even j ∈ TM .

• Let j ∈ TM be odd. Then, for any (M − 1)-tuple (i1, i2, . . . , iM−1), we have the
following chain of logical equivalences:

(the (M − 1)-tuple (i1, i2, . . . , iM−1) is odd)
⇐⇒ (i1 + i2 + · · ·+ iM−1 is odd) (by the definition of “odd” for tuples)
⇐⇒ (i1 + i2 + · · ·+ iM−1 + j is even) (since j is odd)
⇐⇒ (the M -tuple (i1, i2, . . . , iM−1, j) is even)

(by the definition of “even” for tuples) .

2We leave it to the reader to verify that this map is well-defined and is actually a bijection.
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Hence, there is a bijection

{odd (M − 1)-tuples} → {even M -tuples (i1, i2, . . . , iM) with iM = j} ,
(i1, i2, . . . , iM−1) 7→ (i1, i2, . . . , iM−1, j) .

3 Hence, the bijection principle shows that

(# of odd (M − 1)-tuples) = (# of even M -tuples (i1, i2, . . . , iM) with iM = j) .

Hence,

(# of even M -tuples (i1, i2, . . . , iM) with iM = j)

= (# of odd (M − 1)-tuples) =
s1s2 · · · sM−1 − d1d2 · · · dM−1

2
. (6)

Forget that we fixed j. We thus have proven (6) for each odd j ∈ TM .

The definition of sM yields sM = aM + bM . The definition of dM yields dM = aM − bM .
Now, for each even M -tuple (i1, i2, . . . , iM), there exists a unique j ∈ TM satisfying

3We leave it to the reader to verify that this map is well-defined and is actually a bijection.

Darij Grinberg 9 darij.grinberg@drexel.edu



Solutions to midterm #1 page 10 of 19

iM = j. Hence, the sum rule yields

(# of even M -tuples (i1, i2, . . . , iM) ∈ T1 × T2 × · · · × TM)

=
∑
j∈TM

(# of even M -tuples (i1, i2, . . . , iM) with iM = j)

=
∑
j∈TM ;
j is odd

(# of even M -tuples (i1, i2, . . . , iM) with iM = j)︸ ︷︷ ︸
=
s1s2 · · · sM−1 − d1d2 · · · dM−1

2
(by (6))

+
∑
j∈TM ;
j is even

(# of even M -tuples (i1, i2, . . . , iM) with iM = j)︸ ︷︷ ︸
=
s1s2 · · · sM−1 + d1d2 · · · dM−1

2
(by (5))

(since each j ∈ TM is either odd or even (but not both))

=
∑
j∈TM ;
j is odd

s1s2 · · · sM−1 − d1d2 · · · dM−1
2︸ ︷︷ ︸

=(# of all odd j∈TM )·
s1s2 · · · sM−1 − d1d2 · · · dM−1

2

+
∑
j∈TM ;
j is even

s1s2 · · · sM−1 + d1d2 · · · dM−1
2︸ ︷︷ ︸

=(# of all even j∈TM )·
s1s2 · · · sM−1 + d1d2 · · · dM−1

2

= (# of all odd j ∈ TM)︸ ︷︷ ︸
=(# of all odd elements of TM )

=bM
(since bM was defined as the # of all odd elements of TM )

·s1s2 · · · sM−1 − d1d2 · · · dM−1
2

+ (# of all even j ∈ TM)︸ ︷︷ ︸
=(# of all even elements of TM )

=aM
(since aM was defined as the # of all even elements of TM )

·s1s2 · · · sM−1 + d1d2 · · · dM−1
2

= bM ·
s1s2 · · · sM−1 − d1d2 · · · dM−1

2
+ aM ·

s1s2 · · · sM−1 + d1d2 · · · dM−1
2

=
1

2
(s1s2 · · · sM−1) (aM + bM)︸ ︷︷ ︸

=sM
(since sM=aM+bM )

+
1

2
(d1d2 · · · dM−1) (aM − bM)︸ ︷︷ ︸

=dM
(since dM=aM−bM )

=
1

2
(s1s2 · · · sM−1) sM︸ ︷︷ ︸

=s1s2···sM

+
1

2
(d1d2 · · · dM−1) dM︸ ︷︷ ︸

=d1d2···dM

=
1

2
s1s2 · · · sM +

1

2
d1d2 · · · dM =

s1s2 · · · sM + d1d2 · · · dM
2

.

In other words, Claim 1 holds for m =M . This completes the induction step. Hence, Claim
1 is proven.]

Applying Claim 1 to m = n, we conclude that

(# of even n-tuples (i1, i2, . . . , in) ∈ T1 × T2 × · · · × Tn) =
s1s2 · · · sn + d1d2 · · · dn

2
.
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This solves the exercise.

4.4 Second solution

Here is a solution by “destructive interference”. We shall see more of this kind of reasoning
later in the class; until then, you are well forgiven for considering it magic (unless you have
seen the discrete Fourier transform, in which case you should be at least vaguely familiar
with this kind of magic).

We will use the following fact about finite sums and products:

Lemma 4.1 (The product rule). Let n ∈ N. For every i ∈ {1, 2, . . . , n}, let Zi be a finite
set. For every i ∈ {1, 2, . . . , n} and every k ∈ Zi, let pi,k be a number. Then,

n∏
i=1

∑
k∈Zi

pi,k =
∑

(k1,k2,...,kn)∈Z1×Z2×···×Zn

n∏
i=1

pi,ki .

This lemma is a straightforward generalization of identities like

(a+ b) (c+ d) = ac+ ad+ bc+ bd and
(a+ b+ c) (d+ e+ f) = ad+ ae+ af + bd+ be+ bf + cd+ ce+ cf and
(a+ b) (c+ d) (e+ f) = ace+ acf + ade+ adf + bce+ bcf + bde+ bdf and

(a+ b) (c+ d+ e) = ac+ ad+ ae+ bc+ bd+ be

to a product of arbitrarily many sums with arbitrarily many addends. It is proven rigorously
in [Grinbe16, Lemma 7.160]; here we restrict ourselves to making it plausible on an example:

Example 4.2. Let n = 3, Z1 = {1, 2}, Z2 = {1, 2, 3} and Z3 = {1, 2}. Then, Lemma 4.1
says that

(p1,1 + p1,2) (p2,1 + p2,2 + p2,3) (p3,1 + p3,2) =
∑

(k1,k2,k3)∈{1,2}×{1,2,3}×{1,2}

p1,k1p2,k2p3,k3 .

This equality is exactly what you get if you expand the left hand side into a huge sum (using
the distributivity law for finite sums). The huge sum consists of all possible products consist-
ing of one addend from the (p1,1 + p1,2) parenthesis, one addend from the (p2,1 + p2,2 + p2,3)
parenthesis, and one addend from the (p3,1 + p3,2) parenthesis. The right hand side is sim-
ply a compact way of expressing this huge sum. (The summation index (k1, k2, k3) encodes
which addends we are picking from which parenthesis: namely, we pick the k1-th addend
from the (p1,1 + p1,2) parenthesis, the k2-th addend from the (p2,1 + p2,2 + p2,3) parenthesis,
and the k3-th addend from the (p3,1 + p3,2) parenthesis.)

It is not hard to prove Lemma 4.1 by induction. (First prove the n = 2 case by induction
on |Z2|; then prove the general case by induction on n.)
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Let us now solve the problem. Lemma 4.1 (applied to Zi = Ti and pi,k = (−1)k) yields
n∏
i=1

∑
k∈Ti

(−1)k

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn

n∏
i=1

(−1)ki︸ ︷︷ ︸
=(−1)k1 (−1)k2 ···(−1)kn

=(−1)k1+k2+···+kn

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn

(−1)k1+k2+···+kn

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is even

(−1)k1+k2+···+kn︸ ︷︷ ︸
=1

(since k1+k2+···+kn is even)

+
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

(−1)k1+k2+···+kn︸ ︷︷ ︸
=−1

(since k1+k2+···+kn is odd)(
because for each (k1, k2, . . . , kn) ∈ T1 × T2 × · · · × Tn,

the integer k1 + k2 + · · ·+ kn is either even or odd (but not both)

)
=

∑
(k1,k2,...,kn)∈T1×T2×···×Tn;

k1+k2+···+kn is even

1 +
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

(−1)

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is even

1−
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1. (7)

But each i ∈ [n] satisfies∑
k∈Ti

(−1)k =
∑
k∈Ti;

k is even

(−1)k︸ ︷︷ ︸
=1

(since k is even)

+
∑
k∈Ti;
k is odd

(−1)k︸ ︷︷ ︸
=−1

(since k is odd)

=
∑
k∈Ti;

k is even

1

︸ ︷︷ ︸
=(# of all even k∈Ti)·1
=(# of all even k∈Ti)

+
∑
k∈Ti;
k is odd

(−1)

︸ ︷︷ ︸
=(# of all odd k∈Ti)·(−1)
=−(# of all odd k∈Ti)

= (# of all even k ∈ Ti)︸ ︷︷ ︸
=(# of even elements of Ti)

=ai
(by the definition of ai)

− (# of all odd k ∈ Ti)︸ ︷︷ ︸
=(# of odd elements of Ti)

=bi
(by the definition of bi)

= ai − bi = di (since di was defined as ai − bi) .

Hence, (7) rewrites as
n∏
i=1

di =
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is even

1−
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1. (8)

On the other hand, Lemma 4.1 (applied to Zi = Ti and pi,k = 1) yields
n∏
i=1

∑
k∈Ti

1 =
∑

(k1,k2,...,kn)∈T1×T2×···×Tn

n∏
i=1

1︸︷︷︸
=1

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn

1

=
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is even

1 +
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1

(
because for each (k1, k2, . . . , kn) ∈ T1 × T2 × · · · × Tn,

the integer k1 + k2 + · · ·+ kn is either even or odd (but not both)

)
.
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Comparing this with
n∏
i=1

∑
k∈Ti

1︸ ︷︷ ︸
=|Ti|=si

(since si=|Ti|)

=
n∏
i=1

si,

we obtain
n∏
i=1

si =
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is even

1 +
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1.

Adding (8) to this equality, we obtain

n∏
i=1

si +
n∏
i=1

di =

 ∑
(k1,k2,...,kn)∈T1×T2×···×Tn;

k1+k2+···+kn is even

1 +
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1



+

 ∑
(k1,k2,...,kn)∈T1×T2×···×Tn;

k1+k2+···+kn is even

1−
∑

(k1,k2,...,kn)∈T1×T2×···×Tn;
k1+k2+···+kn is odd

1


= 2 ·

∑
(k1,k2,...,kn)∈T1×T2×···×Tn;

k1+k2+···+kn is even

1

︸ ︷︷ ︸
=(# of all (k1,k2,...,kn)∈T1×T2×···×Tn such that k1+k2+···+kn is even)
=(# of all (i1,i2,...,in)∈T1×T2×···×Tn such that i1+i2+···+in is even)

=(# of all even n-tuples (i1,i2,...,in)∈T1×T2×···×Tn)
(by the definition of “even” for n-tuples)

= 2 · (# of all even n-tuples (i1, i2, . . . , in) ∈ T1 × T2 × · · · × Tn) .

Solving this equation for (# of all even n-tuples (i1, i2, . . . , in) ∈ T1 × T2 × · · · × Tn), we find

(# of all even n-tuples (i1, i2, . . . , in) ∈ T1 × T2 × · · · × Tn)

=
1

2
·


n∏
i=1

si︸ ︷︷ ︸
=s1s2···sn

+
n∏
i=1

di︸ ︷︷ ︸
=d1d2···dn

 =
1

2
(s1s2 · · · sn + d1d2 · · · dn) =

s1s2 · · · sn + d1d2 · · · dn
2

.

This solves the exercise.

5 Exercise 5

5.1 Problem

Let A and B be two finite sets. Let n = |A| and m = |B|. Prove the following:

(a) For each b ∈ B, we have

(# of maps f : A→ B such that b ∈ f (A)) = mn − (m− 1)n .
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(b) We have ∑
f :A→B

|f (A)| = m (mn − (m− 1)n) .

5.2 Remark

If f : A→ B is a map, then f (A) denotes the image of f (that is, the subset {f (a) | a ∈ A}
of B). More generally, if f : A→ B is a map and S is any subset of A, then f (S) denotes
the subset {f (a) | a ∈ S} of B.

The sum in part (b) of this exercise is a sum over all maps f from A to B. It can also
be written as

∑
f∈BA

|f (A)|. See [Math222, Example 1.2.4 (b)] for an example.

5.3 Solution sketch

(a) Let b ∈ B. Thus, |B \ {b}| = |B|︸︷︷︸
=m

−1 = m− 1.

Each map f : A → B satisfies either b ∈ f (A) or b /∈ f (A) (but not both at the same
time). Thus, the sum rule yields

(# of maps f : A→ B) = (# of maps f : A→ B such that b ∈ f (A))
+ (# of maps f : A→ B such that b /∈ f (A)) .

Hence,

(# of maps f : A→ B such that b ∈ f (A))
= (# of maps f : A→ B)− (# of maps f : A→ B such that b /∈ f (A)) . (9)

Now, let us compute (# of maps f : A→ B such that b /∈ f (A)). Indeed, if f : A→ B
is a map such that b /∈ f (A), then all values of f belong to the set B \ {b} (since b /∈ f (A)),
and thus f can be regarded as a map from A to B \ {b}. More pedantically: If f : A→ B

is a map such that b /∈ f (A), then we can define a map f̃ : A→ B \ {b} by setting

f̃ (a) = f (a) for all a ∈ A.

(This map f̃ has the exact same values as f , but it has a different target set, so rigor
demands us to distinguish it from f . But you should think of it as just being f wearing a
tighter cloak.)

Thus, whenever f : A→ B is a map such that b /∈ f (A), we have defined a new map f̃
from A to B \ {b}. Thus, we obtain a map

T : {maps f : A→ B such that b /∈ f (A)} → {maps from A to B \ {b}} ,
f 7→ f̃

(yes, this is a map between sets of maps). This map T is bijective4. Hence, the bijection
principle yields

(# of maps f : A→ B such that b /∈ f (A))

= (# of maps from A to B \ {b}) = |{maps A→ B \ {b}}| =
∣∣∣(B \ {b})A∣∣∣

= |B \ {b}||A| = (m− 1)n (since |B \ {b}| = m− 1 and |A| = n) .

4Indeed, T is injective, because f is clearly uniquely determined by its image T (f) = f̃ (just recall that
f (a) = f̃ (a) for all a ∈ A). And furthermore, T is surjective, because if g : A → B \ {b} is any map,
then there is a map f : A→ B such that b /∈ f (A) and f̃ = g (indeed, this map f is defined simply by
setting f (a) = g (a) for all a ∈ A).
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Hence, (9) becomes

(# of maps f : A→ B such that b ∈ f (A))
= (# of maps f : A→ B)︸ ︷︷ ︸

=(# of maps from A to B)
=|{maps from A to B}|
=|BA|=|B||A|=mn

(since |B|=m and |A|=n)

− (# of maps f : A→ B such that b /∈ f (A))︸ ︷︷ ︸
=(m−1)n

= mn − (m− 1)n .

This solves part (a) of the exercise.

(b) Recall the following fact ([Math222, Proposition 1.6.3]):

Proposition 5.1 (“Counting by roll call”). Let S be a finite set.
(a) If T is a subset of S, then

|T | =
∑
s∈S

[s ∈ T ] .

(b) For each s ∈ S, let A (s) be a logical statement (which can be either true or false
depending on s; for example, A (s) could be “s is even” if S is a set of integers, or “s is
empty” if S is a set of sets). Then,

(# of s ∈ S that satisfy A (s)) =
∑
s∈S

[A (s)] .

Now, if f : A → B is any map, then f (A) is a subset of B, and thus Proposition 5.1
(a) (applied to S = B and T = f (A)) yields

|f (A)| =
∑
s∈B

[s ∈ f (A)] =
∑
b∈B

[b ∈ f (A)]

(here, we have renamed the summation index s as b). Thus,∑
f :A→B

|f (A)|︸ ︷︷ ︸
=

∑
b∈B

[b∈f(A)]

=
∑

f :A→B

∑
b∈B

[b ∈ f (A)] =
∑
b∈B

∑
f :A→B

[b ∈ f (A)] (10)

(here, we have interchanged the summation signs, due to the Fubini principle).
Now, let b ∈ B. Then, Proposition 5.1 (b) (applied to S = BA andA (s) = (“b ∈ s (A) ”))

yields (
# of s ∈ BA that satisfy b ∈ s (A)

)
=
∑
s∈BA

[b ∈ s (A)] =
∑
s:A→B

[b ∈ s (A)]

(since the s ∈ BA are precisely the maps s : A→ B). Renaming the index s as f everywhere
in this equality, we obtain(

# of f ∈ BA that satisfy b ∈ f (A)
)
=
∑

f :A→B

[b ∈ f (A)] .

Hence,∑
f :A→B

[b ∈ f (A)] =
(
# of f ∈ BA that satisfy b ∈ f (A)

)
= (# of maps f : A→ B such that b ∈ f (A))(

since the f ∈ BA are precisely the maps f : A→ B
)

= mn − (m− 1)n (by part (a) of this exercise) . (11)
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Now, forget that we fixed b. We thus have proved (11) for each b ∈ B. Now, (10)
becomes∑

f :A→B

|f (A)| =
∑
b∈B

∑
f :A→B

[b ∈ f (A)]︸ ︷︷ ︸
=mn−(m−1)n

(by (11))

=
∑
b∈B

(mn − (m− 1)n) = |B|︸︷︷︸
=m

· (mn − (m− 1)n)

= m (mn − (m− 1)n) .

This solves part (b) of the exercise.

6 Exercise 6

6.1 Problem

Recall the Fibonacci sequence (f0, f1, f2, . . .). Prove that

n∑
i=0

(
n

i

)
fi+j = f2n+j (12)

for each n ∈ N and j ∈ N.

6.2 First solution

Recall the following fact ([Math222, Theorem 1.1.12]):

Theorem 6.1 (Binet’s formula). For each n ∈ N, we have

fn =
1√
5
(ϕn − ψn) , (13)

where

ϕ =
1 +
√
5

2
≈ 1.618 . . . and ψ =

1−
√
5

2
≈ −0.618 . . . .

Now, let n ∈ N and j ∈ N. Let ϕ =
1 +
√
5

2
and ψ =

1−
√
5

2
. Straightforward

computations reveal that ϕ2 = ϕ + 1 and ψ2 = ψ + 1. (Actually, ϕ and ψ are the two
solutions of the quadratic equation x2 = x+ 1.)

On the other hand, for each x ∈ R, we have

n∑
i=0

(
n

i

)
xi = (x+ 1)n (14)

(because the binomial formula yields (x+ 1)n =
n∑
i=0

(
n

i

)
xi 1n−i︸︷︷︸

=1

=
n∑
i=0

(
n

i

)
xi).
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Now,
n∑
i=0

(
n

i

)
fi+j︸︷︷︸

=
1√
5
(ϕi+j−ψi+j)

(by (13), applied to i+j
instead of n)

=
n∑
i=0

(
n

i

)
· 1√

5

(
ϕi+j − ψi+j

)
︸ ︷︷ ︸

=
1√
5

(
n

i

)
ϕi+j−

1√
5

(
n

i

)
ψi+j

=
n∑
i=0

(
1√
5

(
n

i

)
ϕi+j − 1√

5

(
n

i

)
ψi+j

)
=

n∑
i=0

1√
5

(
n

i

)
ϕi+j︸︷︷︸
=ϕiϕj

−
n∑
i=0

1√
5

(
n

i

)
ψi+j︸︷︷︸
=ψiψj

=
n∑
i=0

1√
5

(
n

i

)
ϕiϕj −

n∑
i=0

1√
5

(
n

i

)
ψiψj

=
1√
5
ϕj

n∑
i=0

(
n

i

)
ϕi︸ ︷︷ ︸

=(ϕ+1)n

(by (14), applied to x=ϕ)

− 1√
5
ψj

n∑
i=0

(
n

i

)
ψi︸ ︷︷ ︸

=(ψ+1)n

(by (14), applied to x=ψ)

=
1√
5
ϕj

ϕ+ 1︸ ︷︷ ︸
=ϕ2

n

− 1√
5
ψj

ψ + 1︸ ︷︷ ︸
=ψ2

n

=
1√
5

ϕj
(
ϕ2
)n︸ ︷︷ ︸

=ϕjϕ2n=ϕ2nϕj=ϕ2n+j

− 1√
5

ψj
(
ψ2
)n︸ ︷︷ ︸

=ψjψ2n=ψ2nψj=ψ2n+j

=
1√
5
ϕ2n+j − 1√

5
ψ2n+j =

1√
5

(
ϕ2n+j − ψ2n+j

)
.

Comparing this with

f2n+j =
1√
5

(
ϕ2n+j − ψ2n+j

)
(by (13), applied to 2n+ j instead of n) ,

we obtain
n∑
i=0

(
n

i

)
fi+j = f2n+j. This solves the exercise.

6.3 Second solution

Recall the definition of the Fibonacci sequence. This definition entails that

fn = fn−1 + fn−2 for all integers n ≥ 2. (15)

Now, let us solve the exercise by induction on n:

Induction base: It is easy to see that
0∑
i=0

(
0

i

)
fi+j = f2·0+j for each j ∈ N 5. In other

words, the claim of the exercise holds for n = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that the claim of the exercise holds for n = m. We

must prove that the claim of the exercise holds for n = m+ 1.
We have assumed that the claim of the exercise holds for n = m. In other words, we

have
m∑
i=0

(
m

i

)
fi+j = f2m+j for each j ∈ N. (16)

5Proof. Let j ∈ N. Then,
0∑

i=0

(
0

i

)
fi+j =

(
0

0

)
︸︷︷︸
=1

f0+j = f0+j = fj . Comparing this with f2·0+j = f0+j = fj ,

we obtain
0∑

i=0

(
0

i

)
fi+j = f2·0+j . Qed.
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Theorem 1.2 (applied to n = m and k = m+1) yields
(

m

m+ 1

)
=

(
m

m− (m+ 1)

)
= 0

(by the definition of binomial coefficients, because m− (m+ 1) = −1 /∈ N).
Now, let j ∈ N. Then,

m+1∑
i=0

(
m+ 1

i

)
︸ ︷︷ ︸

=

(
(m+ 1)− 1

i− 1

)
+

(
(m+ 1)− 1

i

)
(by Theorem 1.3, applied to n=m+1 and k=i)

fi+j

=
m+1∑
i=0

((
(m+ 1)− 1

i− 1

)
+

(
(m+ 1)− 1

i

))
fi+j

=
m+1∑
i=0

((
m

i− 1

)
+

(
m

i

))
fi+j (since (m+ 1)− 1 = m)

=
m+1∑
i=0

(
m

i− 1

)
fi+j︸ ︷︷ ︸

=

(
m

0− 1

)
f0+j+

m+1∑
i=1

(
m

i− 1

)
fi+j

(here, we have split off the addend for i=0 from the sum)

+
m+1∑
i=0

(
m

i

)
fi+j︸ ︷︷ ︸

=

(
m

m+ 1

)
f(m+1)+j+

m∑
i=0

(
m

i

)
fi+j

(here, we have split off the addend for i=m+1 from the sum)

=

(
m

0− 1

)
︸ ︷︷ ︸

=0
(by the definition of
binomial coefficients,
since 0−1=−1/∈N)

f0+j +
m+1∑
i=1

(
m

i− 1

)
fi+j︸ ︷︷ ︸

=
m∑
i=0

(
m

(i+ 1)− 1

)
f(i+1)+j

(here, we have substituted i+1
for i in the sum)

+

(
m

m+ 1

)
︸ ︷︷ ︸

=0

f(m+1)+j +
m∑
i=0

(
m

i

)
fi+j

=
m∑
i=0

(
m

(i+ 1)− 1

)
︸ ︷︷ ︸

=

(
m

i

) f(i+1)+j︸ ︷︷ ︸
=fi+(j+1)

(since (i+1)+j=i+(j+1))

+
m∑
i=0

(
m

i

)
fi+j

=
m∑
i=0

(
m

i

)
fi+(j+1)︸ ︷︷ ︸

=f2m+(j+1)

(by (16),
applied to j+1 instead of j)

+
m∑
i=0

(
m

i

)
fi+j︸ ︷︷ ︸

=f2m+j

(by (16))

= f2m+(j+1) + f2m+j.

Comparing this with

f2(m+1)+j = f2m+j+2 (since 2 (m+ 1) + j = 2m+ j + 2)

= f2m+j+2−1 + f2m+j+2−2 (by (15), applied to n = 2m+ j + 2)

= f2m+(j+1) + f2m+j

(since 2m+ j + 2− 1 = 2m+ (j + 1) and 2m+ j + 2− 2 = 2m+ j) ,

we obtain
m+1∑
i=0

(
m+ 1

i

)
fi+j = f2(m+1)+j.
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Now, forget that we fixed j. We thus have proved that

m+1∑
i=0

(
m+ 1

i

)
fi+j = f2(m+1)+j for each j ∈ N.

In other words, the claim of the exercise holds for n = m+1. This completes the induction
step. Thus, the exercise is solved by induction.

6.4 Remark

1. The above two solutions are not as different as they look. The first uses the binomial
formula; the second imitates the proof of the binomial formula.

2. The second solution shows that the exercise holds for any sequence (f0, f1, f2, . . .)
of numbers that satisfies the recurrence relation (15) (not just for the Fibonacci sequence).
(The first solution can also be adapted to prove this, once you show a more general version
of Binet’s formula.)
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