Math 222: Enumerative Combinatorics, Fall 2019: Homework 3

Darij Grinberg

December 11, 2020

1 EXERCISE 1

1.1 PROBLEM

Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} \binom{2n+1}{k}^2 = \binom{4n+1}{2n}.$$

1.2 Remark

This exercise is similar to [mt1s, Exercise 1]; our two solutions below imitate the two solutions of the latter exercise.

1.3 FIRST SOLUTION

Forget that we fixed n. Recall the following fact ([Math222, Corollary 2.6.4]):

Corollary 1.1. Let $n \in \mathbb{N}$. Then, $\sum_{k=0}^{n} {\binom{n}{k}}^2 = {\binom{2n}{n}}$.

Also, recall the symmetry property of the binomial coefficients ([Math222, Theorem 1.3.11]):

Theorem 1.2 (Symmetry of the binomial coefficients). Let $n \in \mathbb{N}$ and $k \in \mathbb{R}$. Then,

$$\binom{n}{k} = \binom{n}{n-k}.$$

We also recall the following simple fact ([Math222, Proposition 1.3.36]):

Proposition 1.3 (Absorption formula I). Let $n \in \{1, 2, 3, ...\}$ and $m \in \mathbb{R}$. Then,

$$\binom{m}{n} = \frac{m}{n} \binom{m-1}{n-1}.$$

Now, let $n \in \mathbb{N}$. Then, 2n+1 is a positive integer. In other words, $2n+1 \in \{1, 2, 3, \ldots\}$. Thus, Proposition 1.3 (applied to 2(2n+1) and 2n+1 instead of m and n) yields

$$\binom{2(2n+1)}{2n+1} = \underbrace{\frac{2(2n+1)}{2n+1}}_{=2} \binom{2(2n+1)-1}{2n+1-1} = 2\binom{2(2n+1)-1}{2n+1-1} = 2\binom{4n+1-1}{2n}$$
(1)

(since 2(2n+1) - 1 = 4n + 1 and 2n + 1 - 1 = 2n). Each $k \in \mathbb{R}$ satisfies

$$\binom{2n+1}{k} = \binom{2n+1}{2n+1-k}$$

(by Theorem 1.2, applied to 2n + 1 instead of n) and thus

$$\binom{2n+1}{k}^2 = \binom{2n+1}{2n+1-k}^2.$$
(2)

From $n \in \mathbb{N}$, we obtain $0 \le n \le 2n+1$. Hence, we can split the sum $\sum_{k=0}^{2n+1} \binom{2n+1}{k}^2$ at k = n. We thus obtain

$$\sum_{k=0}^{2n+1} {\binom{2n+1}{k}}^2 = \sum_{k=0}^n {\binom{2n+1}{k}}^2 + \sum_{k=n+1}^{2n+1} \underbrace{\binom{2n+1}{k}}^2_{=\binom{2n+1}{2n+1-k}}^2_{(by (2))}^2$$
$$= \sum_{k=0}^n {\binom{2n+1}{k}}^2 + \sum_{k=n+1}^{2n+1} {\binom{2n+1}{2n+1-k}}^2_{=\binom{2n+1}{k$$

(here, we have substituted k for 2n + 1 - k in the second sum)

$$= 2 \cdot \sum_{k=0}^{n} \binom{2n+1}{k}^2.$$

Comparing this with

$$\sum_{k=0}^{2n+1} \binom{2n+1}{k}^2 = \binom{2(2n+1)}{2n+1}$$
 (by Corollary 1.1, applied to $2n+1$ instead of n),

we obtain

$$2 \cdot \sum_{k=0}^{n} {\binom{2n+1}{k}}^2 = {\binom{2(2n+1)}{2n+1}} = 2{\binom{4n+1}{2n}}$$

(by (1)). Dividing both sides of this equality by 2, we find

$$\sum_{k=0}^{n} \binom{2n+1}{k}^2 = \binom{4n+1}{2n}.$$

This solves the exercise.

1.4 Second Solution

Forget that we fixed n. Recall the recurrence of the binomial coefficients ([Math222, Theorem 1.3.8]):

Theorem 1.4 (Recurrence of the binomial coefficients). Let $n \in \mathbb{R}$ and $k \in \mathbb{R}$. Then,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

We also recall the following identity ([Math222, Corollary 2.6.3]):

Corollary 1.5. Let $x \in \mathbb{R}$ and $y \in \mathbb{N}$. Then,

$$\sum_{k=0}^{y} \binom{x}{k} \binom{y}{k} = \binom{x+y}{y}.$$

Now, let $n \in \mathbb{N}$. Then,

But each $k \in \mathbb{R}$ satisfies

$$\binom{2n}{k-1} = \binom{2n}{2n-(k-1)}$$
 (by Theorem 1.2, applied to $2n$ and $k-1$ instead of n and k)
$$= \binom{2n}{2n+1-k}$$
 (4)

(since 2n - (k - 1) = 2n + 1 - k) and

$$\binom{2n+1}{k} = \binom{2n+1}{2n+1-k}$$
(5)
(by Theorem 1.2, applied to $2n+1$ instead of n)

Theorem 1.2, applied to 2n + 1 instead of n). (Dy

Now, we can split off the addend for k = 0 from the sum $\sum_{k=0}^{n} {\binom{2n+1}{k} \binom{2n}{k-1}}$; we thus find find

$$\sum_{k=0}^{n} \binom{2n+1}{k} \binom{2n}{k-1} = \binom{2n+1}{0} \underbrace{\binom{2n}{0-1}}_{\substack{=0\\ (by \text{ the definition of binomial coefficients, since 0-1=-1\notin\mathbb{N})}}_{(by \text{ the definition of binomial coefficients, since 0-1=-1}\notin\mathbb{N})} + \sum_{k=1}^{n} \binom{2n+1}{k} \binom{2n}{k-1}$$

$$= \sum_{k=1}^{n} \underbrace{\binom{2n+1}{k}}_{\substack{=(2n+1)\\ (2n+1-k)}} \underbrace{\binom{2n}{k-1}}_{\substack{=(2n+1)\\ (by (5))}}} \underbrace{\binom{2n}{k-1}}_{\substack{=(2n+1-k)\\ (by (4))}}$$

$$= \sum_{k=1}^{n} \binom{2n+1}{(2n+1-k)} \binom{2n}{(2n+1-k)} = \sum_{k=2n+1-n}^{2n+1-1} \binom{2n+1}{k} \binom{2n}{k}$$
(here, we have substituted k for $2n+1-k$ in the sum)

$$=\sum_{k=n+1}^{2n} \binom{2n+1}{k} \binom{2n}{k} \tag{6}$$

(since 2n + 1 - n = n + 1 and 2n + 1 - 1 = 2n). Hence, (3) becomes

Thus, the exercise is solved again.

2 EXERCISE 2

2.1 Problem

Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$. Prove that

$$\sum_{k=1}^{n} \frac{x^{k} y^{n-k}}{k} \binom{n}{k} = \sum_{i=1}^{n} \frac{\left((x+y)^{i} - y^{i} \right) y^{n-i}}{i}.$$

2.2 Remark

This is easily seen to be a generalization of [Math222, Exercise 1.6.4] (indeed, the latter exercise is obtained by setting x = -1 and y = 1). Can you generalize the solution?

2.3 Solution

Forget that we fixed n, x and y. We recall a few facts. First of all, we recall one version of the Triangular Fubini's principle ([Math222, Corollary 1.6.9]):

Corollary 2.1 (Triangular Fubini's principle II). Let $n \in \mathbb{N}$. For each pair $(x, y) \in [n] \times [n]$ with $x \leq y$, let $a_{(x,y)}$ be a number. Then,

$$\sum_{x=1}^{n} \sum_{y=x}^{n} a_{(x,y)} = \sum_{\substack{(x,y) \in [n] \times [n]; \\ x \le y}} a_{(x,y)} = \sum_{y=1}^{n} \sum_{x=1}^{y} a_{(x,y)}.$$

Let us rewrite Corollary 2.1 by renaming the indices x and y as k and i throughout it (in order to adapt it to how we shall use it in the following solution):

Corollary 2.2 (Triangular Fubini's principle II). Let $n \in \mathbb{N}$. For each pair $(k, i) \in [n] \times [n]$ with $k \leq i$, let $a_{(k,i)}$ be a number. Then,

$$\sum_{k=1}^{n} \sum_{i=k}^{n} a_{(k,i)} = \sum_{\substack{(k,i) \in [n] \times [n]; \\ k \le i}} a_{(k,i)} = \sum_{i=1}^{n} \sum_{k=1}^{i} a_{(k,i)}.$$

Next, we recall the binomial formula ([Math222, Theorem 1.3.24]):

Theorem 2.3 (the binomial formula). Let $x, y \in \mathbb{R}$. Let $n \in \mathbb{N}$. Then,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Next, we recall the hockey-stick identity in its first form ([Math222, Theorem 1.3.29]): **Theorem 2.4** ("Hockey-stick identity"). Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Then,

$$\binom{0}{k} + \binom{1}{k} + \binom{2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

Now, fix $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$.

Let $k \in [n]$. Then, $1 \leq k \leq n$, so that $k \geq 1$ and thus $k - 1 \in \mathbb{N}$. Note that $k \geq 1$ also entails $k \in \{1, 2, 3, \ldots\}$. Furthermore, $n \geq 1$ (since $1 \leq n$) and thus $n - 1 \in \mathbb{N}$. Hence, Theorem 2.4 (applied to n - 1 and k - 1 instead of n and k) yields

$$\binom{k-1}{k-1} + \binom{(k-1)+1}{k-1} + \binom{(k-1)+2}{k-1} + \dots + \binom{n-1}{k-1} = \binom{(n-1)+1}{(k-1)+1} = \binom{n}{k}$$

(since (n-1) + 1 = n and (k-1) + 1 = k). Hence,

$$\binom{n}{k} = \binom{k-1}{k-1} + \binom{(k-1)+1}{k-1} + \binom{(k-1)+2}{k-1} + \dots + \binom{n-1}{k-1} \\ = \binom{k-1}{k-1} + \binom{k}{k-1} + \binom{k+1}{k-1} + \dots + \binom{n-1}{k-1} = \sum_{i=k}^{n} \binom{i-1}{k-1}.$$

Multiplying both sides of this equality by $\frac{x^k y^{n-k}}{k}$, we obtain

$$\frac{x^{k}y^{n-k}}{k}\binom{n}{k} = \frac{x^{k}y^{n-k}}{k}\sum_{i=k}^{n}\binom{i-1}{k-1} = \sum_{i=k}^{n} \underbrace{\frac{x^{k}y^{n-k}}{k}}_{(\text{since } i\neq 0 \text{ (because } i\geq k\geq 1>0))} \binom{i-1}{k-1}$$

$$= \sum_{i=k}^{n} \frac{x^{k}y^{n-k}}{i} \cdot \underbrace{\frac{i}{k}\binom{i-1}{k-1}}_{(\text{since Proposition 1.3})} \underbrace{\frac{i}{k}\binom{i-1}{k-1}}_{(\text{since Proposition 1.3})}$$

$$= \sum_{i=k}^{n} \frac{x^{k}y^{n-k}}{i} \binom{i}{k}.$$

$$= \sum_{i=k}^{n} \frac{x^{k}y^{n-k}}{i} \binom{i}{k}.$$
(7)

Now forget that we fixed k. We thus have proved (7) for each $k \in [n]$. Hence,

$$\sum_{k=1}^{n} \underbrace{\frac{x^{k}y^{n-k}}{k} \binom{n}{k}}_{(by (7))} = \sum_{k=1}^{n} \sum_{i=k}^{n} \frac{x^{k}y^{n-k}}{i} \binom{i}{k} = \sum_{i=1}^{n} \frac{x^{k}y^{n-k}}{(by (7))} \binom{i}{k} = \sum_{i=1}^{n} \sum_{k=1}^{i} \frac{x^{k}y^{n-k}}{i} \binom{i}{k}.$$
(8)

Here, the last equality sign has been obtained by applying Corollary 2.2 to $a_{(k,i)} = \frac{x^k y^{n-k}}{i} {i \choose k}$. Now, fix $i \in [n]$. Thus, $1 \le i \le n$, so that $n - i \ge 0$ and thus $n - i \in \mathbb{N}$. Hence, y^{n-i} is well-defined. But Theorem 2.3 (applied to *i* instead of *n*) yields

$$(x+y)^{i} = \sum_{k=0}^{i} \binom{i}{k} x^{k} y^{i-k} = \underbrace{\binom{i}{0}}_{=1} \underbrace{x^{0}}_{=0} \underbrace{y^{i-0}}_{=y^{i}} + \sum_{k=1}^{i} \binom{i}{k} x^{k} y^{i-k}$$

(here, we have split off the addend for k = 0 from the sum)

$$= y^{i} + \sum_{k=1}^{i} \binom{i}{k} x^{k} y^{i-k}$$

Subtracting y^i from both sides of this equality, we find

$$(x+y)^{i} - y^{i} = \sum_{k=1}^{i} {i \choose k} x^{k} y^{i-k}$$

Multiplying both sides of this equality by y^{n-i} , we obtain

$$\left((x+y)^{i} - y^{i} \right) y^{n-i} = \left(\sum_{k=1}^{i} \binom{i}{k} x^{k} y^{i-k} \right) y^{n-i} = \sum_{k=1}^{i} \binom{i}{k} x^{k} \underbrace{y^{i-k} y^{n-i}}_{\substack{=y^{(i-k)+(n-i)} = y^{n-k} \\ (\text{since } (i-k)+(n-i)=n-k)}}_{=\sum_{k=1}^{i} \binom{i}{k} x^{k} y^{n-k}.$$

$$(9)$$

Now, forget that we fixed i. We thus have proven (9) for each $i \in [n]$. Thus, (8) becomes

$$\sum_{k=1}^{n} \frac{x^{k} y^{n-k}}{k} \binom{n}{k} = \sum_{i=1}^{n} \sum_{k=1}^{i} \frac{x^{k} y^{n-k}}{i} \binom{i}{k} = \sum_{i=1}^{n} \sum_{k=1}^{i} \frac{1}{i} \binom{i}{k} x^{k} y^{n-k} = \sum_{i=1}^{n} \frac{1}{i} \sum_{k=1}^{i} \binom{i}{k} x^{k} y^{n-k}$$
$$= \frac{1}{i} \frac{1}{i} \binom{i}{k} x^{k} y^{n-k} = \sum_{i=1}^{n} \frac{1}{i} \sum_{k=1}^{i} \binom{i}{k} x^{k} y^{n-k}$$
$$= \sum_{i=1}^{n} \frac{1}{i} \cdot \left((x+y)^{i} - y^{i} \right) y^{n-i}}{\frac{i}{i}} = \sum_{i=1}^{n} \frac{\left((x+y)^{i} - y^{i} \right) y^{n-i}}{i}.$$

This solves the exercise.

2.4 Remark

Applying the exercise to x = 1 and y = 1, we obtain

$$\sum_{k=1}^{n} \frac{1^{k} 1^{n-k}}{k} \binom{n}{k} = \sum_{i=1}^{n} \frac{\left((1+1)^{i} - 1^{i}\right) 1^{n-i}}{i}.$$

This rewrites as

$$\sum_{k=1}^{n} \frac{1}{k} \binom{n}{k} = \sum_{i=1}^{n} \frac{\left((1+1)^{i} - 1^{i} \right) 1^{n-i}}{i}$$

(because each $k \in [n]$ satisfies $\underbrace{1^k}_{=1} \underbrace{1^{n-k}}_{=1} = 1$). This, in turn, rewrites as

$$\sum_{k=1}^{n} \frac{1}{k} \binom{n}{k} = \sum_{i=1}^{n} \frac{2^{i} - 1}{i}$$

(since each $i \in [n]$ satisfies $\left((1+1)^i - 1^i \right) \underbrace{1^{n-i}}_{=1} = \left(\underbrace{1+1}_{=2} \right)^i - \underbrace{1^i}_{=1} = 2^i - 1$).

3 EXERCISE 3

3.1 PROBLEM

Let $m \in \mathbb{N}$. Prove that

$$\sum_{i=0}^{m} (-1)^{i} \operatorname{sur}(m, i) = (-1)^{m}.$$

3.2 Solution

Forget that we fixed m. Let us recall two facts from [Math222]. The first of these facts is a simple property of binomial coefficients:

Lemma 3.1. For any $k \in \mathbb{N}$, we have $\binom{-1}{k} = (-1)^k$.

Lemma 3.1 is proven in [Math222, Example 1.3.4 (f)].

The second fact relates binomial coefficients to the numbers sur (m, n):

Theorem 3.2. Let $k \in \mathbb{R}$ and $m \in \mathbb{N}$. Then,

$$k^m = \sum_{i=0}^m \operatorname{sur}\left(m,i\right) \cdot \binom{k}{i}.$$

This theorem appears in [Math222, §2.6.4]. More precisely: The particular case of Theorem 3.2 when $k \in \mathbb{N}$ is precisely [Math222, Theorem 2.5.1]. In [Math222, §2.6.4], it is shown that the claim of Theorem 3.2 holds not only for $k \in \mathbb{N}$, but more generally for all $k \in \mathbb{R}$.

Now, fix $m \in \mathbb{N}$. Then, Theorem 3.2 (applied to k = -1) yields

$$(-1)^m = \sum_{i=0}^m \operatorname{sur}(m,i) \cdot \underbrace{\begin{pmatrix} -1\\ i \end{pmatrix}}_{\substack{=(-1)^i\\ \text{(by Lemma 3.1, applied to } i\\ \text{instead of } k)}} = \sum_{i=0}^m \operatorname{sur}(m,i) \cdot (-1)^i = \sum_{i=0}^m (-1)^i \operatorname{sur}(m,i).$$

This solves the exercise.

3.3 Remark

An equivalent version of this exercise also appears in [Sagan19, Theorem 2.2.2]. (What we call sur (m, i) here corresponds to $i! \cdot S(m, i)$ in the notations of [Sagan19], since S(m, i) stands for the Stirling number ${m \\ i} = sur(m, i)/i!$.) The solution given in [Sagan19, Theorem 2.2.2] is combinatorial.

4 EXERCISE 4

4.1 PROBLEM

Let $n \in \mathbb{N}$.

(a) Prove that

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c < d < e) = \binom{n}{5}.$$

(b) Find

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a \le b < c \le d < e).$$

4.2 Solution sketch

(a) Here is the idea: The 5-tuples $(a, b, c, d, e) \in [n]^5$ satisfying a < b < c < d < e are in bijection with the 5-element subsets of [n] (because any such 5-tuple can be seen as a way of listing the elements of a 5-element subset of [n] in increasing order); thus, there are $\binom{n}{5}$ many of them.

Translated into a more rigorous language, this proof reads as follows:

Each 5-element subset of [n] can be uniquely written in the form $\{a, b, c, d, e\}$ with $a, b, c, d, e \in [n]$ satisfying a < b < c < d < e. (This follows easily from [Math222, Proposition 1.4.11].) Thus, the map

$$\left\{ (a, b, c, d, e) \in [n]^5 \mid a < b < c < d < e \right\} \rightarrow \left\{ \text{5-element subsets of } [n] \right\},$$
$$(a, b, c, d, e) \mapsto \left\{ a, b, c, d, e \right\}$$

is a bijection. Hence, the bijection principle yields

$$|\{(a, b, c, d, e) \in [n]^5 \mid a < b < c < d < e\}| = |\{5\text{-element subsets of } [n]\}|.$$

In other words,

(# of 5-tuples
$$(a, b, c, d, e) \in [n]^5$$
 satisfying $a < b < c < d < e$)
= (# of 5-element subsets of $[n]$) = $\binom{n}{5}$

(by the combinatorial interpretation of binomial coefficients, because [n] is an *n*-element set). This solves part (a) of the exercise.

(b) Clearly, the 5-tuples $(a, b, c, d, e) \in [n]^5$ satisfying $a \leq b < c \leq d < e$ are precisely the 5-tuples $(a, b, c, d, e) \in \mathbb{Z}^5$ satisfying $1 \leq a \leq b < c \leq d < e \leq n$. Hence,

(# of 5-tuples
$$(a, b, c, d, e) \in [n]^5$$
 satisfying $a \le b < c \le d < e$)
= (# of 5-tuples $(a, b, c, d, e) \in \mathbb{Z}^5$ satisfying $1 \le a \le b < c \le d < e \le n$).

But if a, b, c, d, e are five integers, then we have the equivalences

 $\begin{array}{l} (a \leq b) \Longleftrightarrow \left(a < b + 1\right);\\ (b < c) \Longleftrightarrow \left(b + 1 < c + 1\right);\\ (c \leq d) \Longleftrightarrow \left(c + 1 < d + 2\right);\\ (d < e) \Longleftrightarrow \left(d + 2 < e + 2\right);\\ (e \leq n) \Longleftrightarrow \left(e + 2 \leq n + 2\right). \end{array}$

Hence, if a, b, c, d, e are five integers, then the chain of inequalities $1 \le a \le b < c \le d < e \le n$ is equivalent to the chain $1 \le a < b + 1 < c + 1 < d + 2 < e + 2 \le n + 2$. Thus,

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \le a \le b < c \le d < e \le n)$$
$$= (\# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \le a < b + 1 < c + 1 < d + 2 < e + 2 \le n + 2).$$

But there is a bijection

$$\left\{ (a, b, c, d, e) \in \mathbb{Z}^5 \mid 1 \le a < b + 1 < c + 1 < d + 2 < e + 2 \le n + 2 \right\}$$

 $\rightarrow \left\{ (a, b, c, d, e) \in \mathbb{Z}^5 \mid 1 \le a < b < c < d < e \le n + 2 \right\},$

which sends each 5-tuple (a, b, c, d, e) to (a, b + 1, c + 1, d + 2, e + 2). Hence, the bijection principle yields

 $(\# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \le a < b+1 < c+1 < d+2 < e+2 \le n+2)$ $= (\# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \le a < b < c < d < e \le n+2).$

Now, combining our above computations, we obtain

 $\begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a \leq b < c \leq d < e \end{pmatrix}$ $= \begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \leq a \leq b < c \leq d < e \leq n \end{pmatrix}$ $= \begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \leq a < b + 1 < c + 1 < d + 2 < e + 2 \leq n + 2 \end{pmatrix}$ $= \begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in \mathbb{Z}^5 \text{ satisfying } 1 \leq a < b < c < d < e \leq n + 2 \end{pmatrix}$ $= \begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in [n + 2]^5 \text{ satisfying } a < b < c < d < e \leq n + 2 \end{pmatrix}$ $= \begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in [n + 2]^5 \text{ satisfying } a < b < c < d < e \\ e \\ are \text{ precisely the 5-tuples } (a, b, c, d, e) \in [n + 2]^5 \text{ satisfying } 1 \leq a < b < c < d < e \leq n + 2 \\ are \text{ precisely the 5-tuples } (a, b, c, d, e) \in [n + 2]^5 \text{ satisfying } a < b < c < d < e \\ e \\ = \begin{pmatrix} n + 2 \\ 5 \end{pmatrix}$ $\qquad \text{(by part (a) of this exercise, applied to } n + 2 \text{ instead of } n \text{)}.$

This solves part (b) of the exercise.

4.3 Remark

Part (b) can also be solved in a different way: A 5-tuple $(a, b, c, d, e) \in [n]^5$ satisfies the chain of inequalities $a \leq b < c \leq d < e$ if and only if it satisfies one of the four chains

Moreover, these four chains are mutually exclusive. Hence, the sum rule yields

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a \le b < c \le d < e)$$

$$= (\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c < d < e)$$

$$+ (\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c < d < e)$$

$$+ (\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c = d < e)$$

$$+ (\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c = d < e)$$

$$+ (\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c = d < e)$$

Now, it remains to compute the four addends on the right hand side of this equality. The first one is easy: By part (a) of this exercise, we know that

(# of 5-tuples
$$(a, b, c, d, e) \in [n]^5$$
 satisfying $a < b < c < d < e$) = $\binom{n}{5}$.

As for the second addend, it helps to notice the following: There is a bijection

$$\left\{ (a, b, c, d, e) \in [n]^5 \mid a = b < c < d < e \right\} \to \left\{ (a, b, c, d) \in [n]^4 \mid a < b < c < d \right\},$$
$$(a, b, c, d, e) \mapsto (a, c, d, e)$$

(whose inverse map sends each (a, b, c, d) to (a, a, b, c, d)). Thus, the bijection principle yields

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c < d < e)$$
$$= (\# \text{ of 4-tuples } (a, b, c, d) \in [n]^4 \text{ satisfying } a < b < c < d) = \binom{n}{4}$$

(by the analogue of part (a) of this exercise for 4-tuples instead of 5-tuples). Similarly,

(# of 5-tuples
$$(a, b, c, d, e) \in [n]^5$$
 satisfying $a < b < c = d < e$) = $\binom{n}{4}$

and

$$(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c = d < e) = \binom{n}{3}.$$

Thus, altogether, our above computation becomes

$$\begin{pmatrix} \# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a \le b < c \le d < e \\ = \underbrace{(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c < d < e)}_{=\binom{n}{5}} \\ + \underbrace{(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c < d < e)}_{=\binom{n}{4}} \\ + \underbrace{(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c = d < e)}_{=\binom{n}{4}} \\ + \underbrace{(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a < b < c = d < e)}_{=\binom{n}{4}} \\ + \underbrace{(\# \text{ of 5-tuples } (a, b, c, d, e) \in [n]^5 \text{ satisfying } a = b < c = d < e)}_{=\binom{n}{4}} \\ = \underbrace{\binom{n}{5} + \binom{n}{4}}_{=\binom{n+1}{5}}_{=\binom{n+1}{4}} + \underbrace{\binom{n}{4} + \binom{n}{3}}_{=\binom{n+1}{4}}_{(by \text{ the recurrence of the binomial coefficients})} \\ = \binom{n+1}{5} + \binom{n+1}{4} = \binom{n+2}{5}$$
 (by the recurrence of the binomial coefficients).

This, again, solves part (b) of the exercise.

5 EXERCISE 5

5.1 Problem

A finite set S of integers is said to be *self-centered* if its size |S| is odd and equals its (|S|+1)/2-th smallest element (i.e., its median in the statistical sense).

For example, the sets $\{1,3,5\}$ and $\{2,3,5,6,10\}$ are self-centered, while $\{2,4,6\}$ and $\{2\}$ are not.

- (a) Given $n \in \mathbb{N}$ and an odd $k \in \mathbb{N}$, find the # of self-centered k-element subsets of [n]. (The result will be a simple explicit formula in terms of binomial coefficients.)
- (b) For each $n \in \mathbb{N}$, let a_n be the # of all self-centered subsets of [n]. Find the sequence (a_0, a_1, a_2, \ldots) or the sequence (a_1, a_2, a_3, \ldots) in the OEIS. (No explicit sum-less formula is known.)

5.2 Solution sketch

(a) Let $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be odd. Thus, we can write k in the form k = 2u + 1 for some $u \in \mathbb{N}$. Consider this u.

Now, I claim:

Claim 1: Assume that $k \in [n]$. Then, the # of self-centered k-element subsets of [n] is $\binom{k-1}{u}\binom{n-k}{u}$.

[*Proof of Claim 1:* We will only give an informal proof, since the idea of this argument has already been flogged to death (cf. [Math222, solution to Exercise 1.4.3], [Math222, §2.3, Fourth proof of Theorem 1.3.29] and [Math222, §2.6.5, Second proof of Proposition 2.6.13]).

Let S be a self-centered k-element subset of [n]. Then, its size |S| is odd and equals its (|S|+1)/2-th smallest element (by the definition of "self-centered"). Since |S| = k (because S is a k-element set), we can rewrite this as follows: The integer k is odd and equals the (k+1)/2-th smallest element of S. In other words, the integer k is odd and equals the

(u+1)-th smallest element of S (since $\left(\underbrace{k}_{=2u+1}+1\right)/2 = ((2u+1)+1)/2 = u+1$). In total, the set S has 2u+1 elements (since |S| = k = 2u+1), and thus can be split into the u smallest elements, the u largest elements and the (u+1)-th smallest element. As we know, the latter is k; thus,

- the *u* smallest elements of *S* are smaller than *k*, and thus belong to $\{1, 2, \ldots, k-1\}$;
- the *u* largest elements of *S* are larger than *k*, and thus belong to $\{k + 1, k + 2, ..., n\}$.

Thus, S has the form

$$S = \{k\} \cup (\text{some } u\text{-element subset of } \{1, 2, \dots, k-1\}) \cup (\text{some } u\text{-element subset of } \{k+1, k+2, \dots, n\}).$$
(10)

Forget that we fixed S. We thus have proved that every self-centered k-element subset of [n] can be represented in the form (10). It is moreover clear that this representation is unique (i.e., the two *u*-element subsets on the right hand side of (10) are uniquely determined by S), and that conversely, every set S of the form (10) is a self-centered k-element subset of [n]. Thus, in order to choose a self-centered k-element subset of [n], we only need to choose the following two things (independently):

- some *u*-element subset of $\{1, 2, \ldots, k-1\};$
- some *u*-element subset of $\{k+1, k+2, \ldots, n\}$.

The first of these two things can be chosen in $\binom{k-1}{u}$ many ways¹, whereas the second can be chosen in $\binom{n-k}{u}$ many ways². Hence, in total, the # of self-centered k-element subsets of [n] is $\binom{k-1}{u}\binom{n-k}{u}$. This proves Claim 1.]

¹by the combinatorial interpretation of the binomial coefficients, because $\{1, 2, \ldots, k-1\}$ is a (k-1)element set

² by the combinatorial interpretation of the binomial coefficients, because $\{k + 1, k + 2, ..., n\}$ is an (n - k)-element set

Can you spot the place where this proof would go wrong if we did not assume that $k \in [n]$? It is well-hidden, but it exists (since Claim 1 would be false for k > n).

We have k - 1 = 2u (since k = 2u + 1) and $n - \underbrace{k}_{=2u+1} = n - (2u + 1) = n - 2u - 1$.

Hence, we can restate Claim 1 as follows:

Claim 2: Assume that $k \in [n]$. Then, the # of self-centered k-element subsets of [n] is $\binom{2u}{u}\binom{n-2u-1}{u}$.

On the other hand, we have u = (k-1)/2 (since k-1 = 2u). Hence, we can restate Claim 1 as follows:

Claim 3: Assume that
$$k \in [n]$$
. Then, the $\#$ of self-centered k-element subsets of $[n]$ is $\binom{k-1}{(k-1)/2} \binom{n-k}{(k-1)/2}$.

In order to get a complete picture, we need to see what happens if $k \notin [n]$. However, this case is very simple: The size of any self-centered subset S of [n] is an element of S (by the definition of "self-centered") and thus an element of [n] (since S is a subset of [n]); thus, a self-centered k-element subset cannot exist unless $k \in [n]$. In other words, if $k \notin [n]$, then the # of self-centered k-element subsets of [n] is 0. Combining this with Claim 1, we obtain the following:

Claim 4: The # of self-centered k-element subsets of [n] is

$$\begin{cases} \binom{k-1}{u} \binom{n-k}{u}, & \text{if } k \in [n]; \\ 0, & \text{if } k \notin [n] \end{cases}$$

(b) The sequence (a_1, a_2, a_3, \ldots) is OEIS sequence A217615.

Proof. Let $n \in \mathbb{N}$. The size of any self-centered subset S of [n] is an element of S (by the definition of "self-centered") and thus an element of [n] (since S is a subset of [n]); furthermore, it must be odd (since self-centered sets always have odd size³). Hence, the size of any self-centered subset S of [n] is an odd element of [n]. Thus, the sum rule yields

$$(\# \text{ of self-centered subsets of } [n])$$

$$= \sum_{\substack{k \in [n];\\k \text{ is odd}}} \underbrace{(\# \text{ of self-centered subsets of } [n] \text{ having size } k)}_{=(\# \text{ of self-centered } k \text{ element subsets of } [n])}_{=\binom{k-1}{(k-1)/2}\binom{n-k}{(k-1)/2}}$$

$$= \sum_{\substack{k \in [n];\\k \text{ is odd}}} \binom{k-1}{(k-1)/2} \binom{n-k}{(k-1)/2} = \sum_{u=0}^{\lfloor (n-1)/2 \rfloor} \binom{2u}{u} \binom{n-2u-1}{u}$$

(here, we have substituted 2u + 1 for k in the sum). Now, the definition of a_n yields

$$a_n = (\# \text{ of self-centered subsets of } [n]) = \sum_{u=0}^{\lfloor (n-1)/2 \rfloor} {2u \choose u} {n-2u-1 \choose u}.$$

³by the definition of "self-centered"

This makes it easy to compute $a_0, a_1, a_2, a_3, \ldots$ To wit, we obtain

$$a_0 = 0,$$
 $a_1 = 1,$ $a_2 = 1,$ $a_3 = 1,$ $a_4 = 3,$ $a_5 = 5,$
 $a_6 = 7,$ $a_7 = 15,$ $a_8 = 29,$ $a_9 = 49,$ $a_{10} = 95.$

Entering these values into OEIS, we find nothing. But if we suppress a_0 , then we obtain the first entries of OEIS sequence A217615, and one of the comments ("a(n) is the number of (2k-1)-element subsets of {1, 2, ..., n+1} whose k-th smallest (i.e., k-th largest) element equals 2k-1. - Darij Grinberg, Oct 09 2019") convinces us that it is really our sequence $(a_1, a_2, a_3, ...)$ (because it describes precisely the # of self-centered subsets of [n + 1]).

6 EXERCISE 6

6.1 PROBLEM

Let $p \in \mathbb{N}$ and $q \in \mathbb{N}$. Prove that

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q} = \binom{x-p}{q-p} \quad \text{for all } x \in \mathbb{R}.$$
 (11)

6.2 FIRST SOLUTION

We shall prove (11) by induction on p:

Induction base: It is straightforward to see that (11) holds for $p = 0^{-4}$. This completes the induction base.

Induction step: Let m be a positive integer. Assume that (11) holds for p = m - 1. We must prove that (11) holds for p = m.

We have assumed that (11) holds for p = m - 1. In other words, we have

$$\sum_{i=0}^{m-1} \left(-1\right)^{i} \binom{m-1}{i} \binom{x-i}{q} = \binom{x-(m-1)}{q-(m-1)} \quad \text{for all } x \in \mathbb{R}.$$
(12)

Now, let $x \in \mathbb{R}$. For each $i \in \mathbb{R}$, we have

$$\binom{m}{i} = \binom{m-1}{i-1} + \binom{m-1}{i}$$
(13)

⁴*Proof.* For each $x \in \mathbb{R}$, we have

$$\sum_{i=0}^{0} (-1)^{i} {\binom{0}{i}} {\binom{x-i}{q}} = \underbrace{(-1)^{0}}_{=1} \underbrace{\binom{0}{0}}_{=1} \binom{x-0}{q} = \binom{x-0}{q-0}$$

(since q = q - 0). In other words, (11) holds for p = 0.

(by Theorem 1.4 (applied to m and i instead of n and k)). Hence,

$$\sum_{i=0}^{m} (-1)^{i} \underbrace{\binom{m}{i}}_{i=0} \binom{x-i}{q} = \binom{m-1}{i-1} + \binom{m-1}{i}$$

$$= \sum_{i=0}^{m} \underbrace{(-1)^{i} \left(\binom{m-1}{i-1} + \binom{m-1}{i}\right) \binom{x-i}{q}}_{=(-1)^{i} \binom{m-1}{i-1} \binom{x-i}{q} + (-1)^{i} \binom{m-1}{i} \binom{x-i}{q}}_{=(-1)^{i} \binom{m-1}{i-1} \binom{x-i}{q} + (-1)^{i} \binom{m-1}{i} \binom{x-i}{q}}_{=(-1)^{i} \binom{m-1}{i-1} \binom{x-i}{q} + (-1)^{i} \binom{m-1}{i} \binom{x-i}{q}}_{=(-1)^{i} \binom{m-1}{i-1} \binom{m-1}{i$$

We shall now take a closer look at the two sums on the right hand side of this equality.

The definition of binomial coefficients yields $\binom{m-1}{0-1} = 0$ (since $0-1 = -1 \notin \mathbb{N}$). Also, $m-1 \in \mathbb{N}$ (since *m* is a positive integer). Thus, Theorem 1.2 (applied to n = m-1 and k = m) yields

$$\binom{m-1}{m} = \binom{m-1}{(m-1)-m} = \binom{m-1}{0-1} \quad (\text{since } (m-1)-m = 0-1) = 0.$$

Now,

$$\sum_{i=0}^{m} (-1)^{i} {\binom{m-1}{i-1}} {\binom{x-i}{q}} = (-1)^{0} \underbrace{\binom{m-1}{0-1}}_{=0} {\binom{x-0}{q}} + \sum_{i=1}^{m} (-1)^{i} \binom{m-1}{i-1} {\binom{x-i}{q}}$$

(here, we have split off the addend for i = 0 from the sum)

$$=\sum_{i=1}^{m} (-1)^{i} \binom{m-1}{i-1} \binom{x-i}{q} = \sum_{i=0}^{m-1} \underbrace{(-1)^{i+1}}_{=-(-1)^{i}} \underbrace{\binom{m-1}{(i+1)-1}}_{=\binom{m-1}{i}} \underbrace{\binom{x-(i+1)}{q}}_{=\binom{(x-1)-i}{(i-1)}}$$

(here, we have substituted i + 1 for i in the sum)

$$=\sum_{i=0}^{m-1} \left(-(-1)^{i}\right) \binom{m-1}{i} \binom{(x-1)-i}{q} = -\sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} \binom{(x-1)-i}{q} = \begin{pmatrix} (x-1)-(m-1)\\ q-(m-1) \end{pmatrix}_{\text{(by (12), applied to } x-1 \text{ instead of } x)} = -\binom{(x-1)-(m-1)}{q-(m-1)} = -\binom{x-m}{q-(m-1)}$$
(15)

(since (x - 1) - (m - 1) = x - m). Also,

$$\begin{split} \sum_{i=0}^{m} (-1)^{i} \binom{m-1}{i} \binom{x-i}{q} \\ &= (-1)^{m} \underbrace{\binom{m-1}{m}}_{=0} \binom{x-m}{q} + \sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} \binom{x-i}{q} \\ &= \sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} \binom{x-i}{q} = \binom{x-(m-1)}{q-(m-1)} \quad \text{(by (12))} \\ &= \binom{x-(m-1)-1}{q-(m-1)-1} + \binom{x-(m-1)-1}{q-(m-1)} \\ &\quad \text{(by Theorem 1.4, applied to } n = x - (m-1) \text{ and } k = q - (m-1)) \\ &= \binom{x-m}{q-m} + \binom{x-m}{q-(m-1)} \end{split}$$
(16)

(since x - (m-1) - 1 = x - m and q - (m-1) - 1 = q - m). Hence, (14) becomes

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} \binom{x-i}{q}$$

$$= \sum_{i=0}^{m} (-1)^{i} \binom{m-1}{i-1} \binom{x-i}{q} + \sum_{i=0}^{m} (-1)^{i} \binom{m-1}{i} \binom{x-i}{q}$$

$$= -\binom{x-m}{\binom{q-(m-1)}{(by\ (15))}} + \binom{x-m}{q-m} + \binom{x-m}{\binom{q-(m-1)}{(by\ (16))}}$$

$$= -\binom{x-m}{q-(m-1)} + \binom{x-m}{q-m} + \binom{x-m}{q-(m-1)} = \binom{x-m}{q-m}.$$

Now, forget that we fixed x. We thus have proved that

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} \binom{x-i}{q} = \binom{x-m}{q-m} \quad \text{for all } x \in \mathbb{R}.$$

In other words, (11) holds for p = m. This completes the induction step. Thus, (11) is proved by induction.

This solves the exercise.

6.3 Second Solution

The following solution was posted by user "robjohn" in his answer at https://math.stackexchange.com/questions/2424156/.

We shall use the Vandermonde convolution formula ([Math222, Theorem 2.6.1]):

Theorem 6.1 (The Vandermonde convolution, or the Chu–Vandermonde identity). Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$. Then,

$$\binom{x+y}{n} = \sum_{k=0}^{n} \binom{x}{k} \binom{y}{n-k}$$
(17)

$$=\sum_{k} \binom{x}{k} \binom{y}{n-k}.$$
(18)

Here, the summation sign " \sum_{k} " on the right hand side of (18) means a sum over all $k \in \mathbb{Z}$. (We are thus implicitly claiming that this sum over all $k \in \mathbb{Z}$ is well-defined, i.e., that it has only finitely many nonzero addends.)

We will furthermore use the trinomial revision formula ([Math222, Proposition 1.3.35]): **Proposition 6.2** (Trinomial revision formula). Let $n, a, b \in \mathbb{R}$. Then,

$$\binom{n}{a}\binom{a}{b} = \binom{n}{b}\binom{n-b}{a-b}$$

One last tool we will need is the following fact ([Math222, Proposition 1.3.28]):

Proposition 6.3. Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = [n=0].$$
(19)

(Here, we are using the Iverson bracket notation.) Now, let us return to the exercise. Let $x \in \mathbb{R}$. Then,

$$\sum_{i=0}^{p} (-1)^{i} \underbrace{\binom{p}{i}}_{\substack{(by \text{ Theorem 1.2,} \\ \text{applied to } n=p \text{ and } k=i)}} \underbrace{\binom{x-i}{q}}_{\substack{(\text{since } x-i=(p-i)+(x-p))}}_{\substack{(\text{since } x-i=(p-i)+(x-p))}}$$

$$= \sum_{i=0}^{p} (-1)^{i} \binom{p}{p-i} \underbrace{\binom{(p-i)+(x-p)}{q}}_{\substack{=\frac{q}{k=0}} \binom{p-i}{k} \binom{x-p}{q-k}}_{\substack{(by (17), \text{ applied to } p-i, x-p \text{ and } q)}}$$

$$= \sum_{i=0}^{p} (-1)^{i} \binom{p}{p-i} \sum_{k=0}^{q} \binom{p-i}{k} \binom{x-p}{q-k}$$

$$= \sum_{i=0}^{p} \sum_{i=0}^{q} (-1)^{i} \underbrace{\binom{p}{p-i} \binom{p-i}{k}}_{\substack{(p-i)-k}} \binom{x-p}{q-k}}_{\substack{(by (17), applied to p-i, x-p \text{ and } q)}}$$

$$= \sum_{i=0}^{p} \sum_{i=0}^{q} (-1)^{i} \underbrace{\binom{p}{p-i} \binom{p-i}{k}}_{\substack{(p-i)-k}} \binom{x-p}{q-k}}_{\substack{(by (17), applied to p-i, x-p \text{ and } q)}}$$

$$= \sum_{i=0}^{p} \sum_{i=0}^{q} (-1)^{i} \underbrace{\binom{p}{p-i} \binom{p-i}{k}}_{\substack{(p-i)-k}} \binom{x-p}{q-k}}_{\substack{(by Proposition 6.2, a)}}$$

$$= \sum_{k=0}^{q} \sum_{i=0}^{p} (-1)^{i} \binom{p}{k} \binom{p-k}{(p-i)-k} \binom{x-p}{q-k}}_{\substack{(p-i)-k}}$$

$$= \sum_{k=0}^{q} \binom{p}{k} \binom{x-p}{q-k} \sum_{i=0}^{p} (-1)^{i} \binom{p-k}{(p-i)-k}.$$
(20)

Now, we claim that

$$\sum_{i=0}^{p} (-1)^{i} {p-k \choose (p-i)-k} = [p=k]$$
(21)

for each $k \in \mathbb{N}$.

[*Proof of* (21): Let $k \in \mathbb{N}$. We must prove the equality (21). We are in one of the following two cases:

Case 1: We have p < k.

Case 2: We have $p \ge k$.

Let us first consider Case 1. In this case, we have p < k. Hence, p - k < 0. Thus, each $i \in \{0, 1, \dots, p\}$ satisfies $(p - i) - k \notin \mathbb{N}$ (since $(p - i) - k = p - k - \underbrace{i}_{\geq 0} \leq p - k < 0$) and

therefore

$$\binom{p-k}{(p-i)-k} = 0 \tag{22}$$

(by the definition of binomial coefficients). Hence,

$$\sum_{i=0}^{p} (-1)^{i} \underbrace{\binom{p-k}{(p-i)-k}}_{\substack{=0\\(\text{by (22)})}} = \sum_{i=0}^{p} (-1)^{i} 0 = 0.$$

Comparing this with

$$[p = k] = 0$$
 (since $p \neq k$ (because $p < k$)),

we obtain

$$\sum_{i=0}^{p} (-1)^{i} \binom{p-k}{(p-i)-k} = [p=k].$$

Hence, (21) is proved in Case 1.

Let us next consider Case 2. In this case, we have $p \ge k$. Hence, $p - k \ge 0$, so that $p - k \in \mathbb{N}$. Also, $p - k \le p$ (since $k \in \mathbb{N}$). Now,

$$\sum_{i=0}^{p} (-1)^{i} \underbrace{\binom{p-k}{(p-i)-k}}_{=\binom{p-k-i}{(p-k-i)}}_{(since (p-i)-k=p-k-i)}$$

$$= \sum_{i=0}^{p} (-1)^{i} \binom{p-k}{p-k-i}$$

$$= \sum_{i=0}^{p-k} (-1)^{i} \underbrace{\binom{p-k}{p-k-i}}_{=\binom{p-k-i}{(p-k-i)}}_{=\binom{p-k-i}{(p-k-i)}} + \sum_{i=p-k+1}^{p} (-1)^{i} \underbrace{\binom{p-k}{p-k-i}}_{(by the definition of binomial coefficients, since p-k-i\notin\mathbb{N} \atop (because i\geq p-k+1>p-k \atop (and thus p-k-i<0))}}_{(by Theorem 1.2, applied to p-k and p-k-i instead of n and k)}$$

(here, we have split the sum at
$$i = p - k$$
, since $0 \le p - k \le p$)
= $\sum_{i=0}^{p-k} (-1)^i \underbrace{\binom{p-k}{(p-k)-(p-k-i)}}_{(p-k)} + \underbrace{\sum_{i=p-k+1}^{p} (-1)^i 0}_{=0} = \sum_{i=0}^{p-k} (-1)^i \binom{p-k}{i}$

 $= \begin{pmatrix} i \\ i \end{pmatrix}$ (since (p-k)-(p-k-i)=i) = [p-k=0] (by Proposition 6.3, applied to n = p-k) = [p=k] (since the statement "p-k = 0" is equivalent to "p = k").

Thus, (21) is proven in Case 2.

We have now proved (21) in each of the two Cases 1 and 2. Thus, (21) always holds.] Now, (20) becomes

$$\sum_{i=0}^{p} (-1)^{i} {\binom{p}{i}} {\binom{x-i}{q}} = \sum_{\substack{k=0\\ k\in\{0,1,\dots,q\}}}^{q} {\binom{p}{k}} {\binom{x-p}{q-k}} \sum_{\substack{i=0\\ k\in\{0,1,\dots,q\}}}^{p} (-1)^{i} {\binom{p-k}{(p-i)-k}} = \sum_{\substack{k\in\{0,1,\dots,q\}\\ (by\ (21))}}^{p} {\binom{p}{k}} {\binom{x-p}{q-k}} [p=k].$$
(23)

Now, we shall distinguish between two cases: Case 1: We have $p \leq q$. Case 2: We have p > q.

Let us first consider Case 1. In this case, we have $p \leq q$. Hence, $p \in \{0, 1, \ldots, q\}$ (since $p \in \mathbb{N}$). Also, Theorem 1.2 (applied to n = p and k = p) yields $\binom{p}{p} = \binom{p}{p-p} = \binom{p}{0} = 1$. Now, (23) becomes

Hence, the exercise is solved in Case 1.

Let us now consider Case 2. In this case, we have p > q. Hence, q < p. Therefore, q-p < 0, so that $q-p \notin \mathbb{N}$ and thus $\begin{pmatrix} x-p \\ q-p \end{pmatrix} = 0$ (by the definition of binomial coefficients). On the other hand, each $k \in \{0, 1, \dots, q\}$ satisfies $k \le q < p$ and thus $k \ne p$ and thus $p \ne k$ and therefore

$$[p = k] = 0. (24)$$

Now, (23) becomes

$$\sum_{i=0}^{p} (-1)^{i} {\binom{p}{i}} {\binom{x-i}{q}} = \sum_{k \in \{0,1,\dots,q\}} {\binom{p}{k}} {\binom{x-p}{q-k}} \underbrace{[p=k]}_{\substack{=0\\(by\ (24))}}$$
$$= \sum_{k \in \{0,1,\dots,q\}} {\binom{p}{k}} {\binom{x-p}{q-k}} 0 = 0 = {\binom{x-p}{q-p}}$$

(since $\binom{x-p}{q-p} = 0$). Hence, the exercise is solved in Case 2.

We have now solved the exercise in both Cases 1 and 2. Thus, the exercise is solved.

6.4 THIRD SOLUTION (SKETCHED)

The following solution identifies the exercise as a "mutated version" of the Chu–Vandermonde identity (except that we also need the polynomial identity trick, because without it we only obtain a particular case of the exercise).

We shall use the upper negation formula ([Math222, Proposition 1.3.7]):

Proposition 6.4 (Upper negation formula). Let $n \in \mathbb{R}$ and $k \in \mathbb{Z}$. Then,

$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}.$$

We will further use the following variant of the Chu–Vandermonde identity:

Corollary 6.5. Let $n \in \mathbb{R}$, $x \in \mathbb{N}$ and $y \in \mathbb{R}$. Then,

$$\sum_{i=0}^{x} \binom{x}{i} \binom{y}{n-i} = \binom{x+y}{n}.$$
(25)

Proof of Corollary 6.5 (sketched). We must prove (25). If $n \notin \mathbb{N}$, then each $i \in \{0, 1, \dots, x\}$ satisfies $n - i \notin \mathbb{N}$ and thus $\begin{pmatrix} y \\ n-i \end{pmatrix} = 0$ (by the definition of binomial coefficients). Hence, if $n \notin \mathbb{N}$, then the left hand side of (25) equals 0. So does the right hand side (if $n \notin \mathbb{N}$). Hence, if $n \notin \mathbb{N}$, then (25) is proven. Thus, for the rest of this proof, we WLOG assume that $n \in \mathbb{N}$. Hence, (18) yields

$$\begin{pmatrix} x+y\\n \end{pmatrix} = \sum_{k} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} + \sum_{\substack{k \in \mathbb{Z}; \\ k > x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} + \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} + \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \le x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \ge x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \ge x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix} y\\n-k \end{pmatrix} = \sum_{\substack{k \in \mathbb{Z}; \\ k \ge x}} \begin{pmatrix} x\\k \end{pmatrix} \begin{pmatrix}$$

(here, we have renamed the summation index k as i). This proves (25). Thus, Corollary 6.5 is proved.

Finally, we shall use the polynomial identity trick in the following form ([Math222, Corollary 2.6.9]):

Corollary 6.6. If a polynomial P has infinitely many roots, then P is the zero polynomial.

Now, let us first prove the particular case of the exercise in which $x \in \{p, p+1, p+2, \ldots\}$ (that is, x is an integer $\geq p$):

Claim 1: Let $x \in \{p, p+1, p+2, ...\}$. Then,

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q} = \binom{x-p}{q-p}.$$

[*Proof of Claim 1:* We have $x \ge p$ (since $x \in \{p, p+1, p+2, \ldots\}$) and $x \in \mathbb{Z}$ (for the same reason). For each $i \in \{0, 1, \ldots, p\}$, we have $i \le p$ and thus $p \ge i$ and therefore

 $x - i \in \mathbb{N}$ (since $x \ge p \ge i$ and $x \in \mathbb{Z}$). Hence, for each $i \in \{0, 1, \dots, p\}$, we have

$$\begin{pmatrix} x-i \\ q \end{pmatrix} = \begin{pmatrix} x-i \\ x-i-q \end{pmatrix}$$
 (by Theorem 1.2, applied to $n = x-i$ and $k = q$)
$$= \begin{pmatrix} -(i-x) \\ x-i-q \end{pmatrix}$$
 (since $x-i = -(i-x)$)
$$= (-1)^{x-i-q} \begin{pmatrix} i-x+x-i-q-1 \\ x-i-q \end{pmatrix}$$
(by Proposition 6.4, applied to $n = i-x$ and $k = x-i-q$)
$$= (-1)^{x-i-q} \begin{pmatrix} -q-1 \\ x-i-q \end{pmatrix}$$
(since $i-x+x-i-q-1 = -q-1$).

Thus,

$$\sum_{i=0}^{p} (-1)^{i} {\binom{p}{i}} \underbrace{\binom{x-i}{q}}_{=(-1)^{x-i-q} \binom{-q-1}{x-i-q}} = \sum_{i=0}^{p} (-1)^{i} {\binom{p}{i}} (-1)^{x-i-q} \binom{-q-1}{x-i-q} = \sum_{i=0}^{p} \underbrace{(-1)^{i} (-1)^{x-i-q}}_{=(-1)^{i+(x-i-q)} = (-1)^{x-q}} {\binom{p}{i}} \underbrace{\binom{-q-1}{x-i-q}}_{=\binom{-q-1}{x-q-i}} = \sum_{i=0}^{p} (-1)^{x-q} \binom{p}{i} \binom{-q-1}{x-q-i} = (-1)^{x-q} \underbrace{\sum_{i=0}^{p} \binom{p}{i} \binom{-q-1}{x-q-i}}_{\substack{(\text{since } x-i-q=x-q-i) \\ (\text{since } x-i-q=x-q-i)}} = (-1)^{x-q} \underbrace{\sum_{i=0}^{p} \binom{p}{i} \binom{-q-1}{x-q-i}}_{\substack{(p+(-q-1)) \\ (p+(-q-1)) \\ (p+(-q-1)$$

(since p + (-q - 1) = p - q - 1).

But $x \in \{p, p+1, p+2, \ldots\}$ and thus $x - p \in \mathbb{N}$. Hence, Theorem 1.2 (applied to n = x - p and k = q - p) yields

$$\begin{pmatrix} x-p\\ q-p \end{pmatrix} = \begin{pmatrix} x-p\\ (x-p)-(q-p) \end{pmatrix} = \begin{pmatrix} x-p\\ x-q \end{pmatrix} \quad (\text{since } (x-p)-(q-p)=x-q)$$

$$= \begin{pmatrix} -(p-x)\\ x-q \end{pmatrix} \quad (\text{since } x-p=-(p-x))$$

$$= (-1)^{x-q} \begin{pmatrix} p-x+x-q-1\\ x-q \end{pmatrix}$$

$$(\text{by Proposition 6.4, applied to } n=p-x \text{ and } k=x-q)$$

$$= (-1)^{x-q} \begin{pmatrix} p-q-1\\ x-q \end{pmatrix} \quad (\text{since } p-x+x-q-1=p-q-1)$$

Comparing this with (26), we obtain

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q} = \binom{x-p}{q-p}.$$

This proves Claim 1.]

Having proven Claim 1, we can now solve the exercise by an easy application of the polynomial identity trick:

Define the polynomial

$$P = \sum_{i=0}^{p} (-1)^{i} {p \choose i} {X-i \choose q} - {X-p \choose q-p}$$

(in 1 variable X, with real coefficients).⁵ Then, each $x \in \{p, p+1, p+2, \ldots\}$ satisfies

$$P(x) = \underbrace{\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q}}_{=\binom{x-p}{q-p}} - \binom{x-p}{q-p} = \binom{x-p}{q-p} - \binom{x-p}{q-p} = 0$$

In other words, each $x \in \{p, p+1, p+2, \ldots\}$ is a root of P (by the definition of "root"). Hence, the polynomial P has infinitely many roots (since there are infinitely many $x \in \{p, p+1, p+2, \ldots\}$). Hence, Corollary 6.6 yields that P is the zero polynomial. In other words, P = 0. Hence, for each $x \in \mathbb{R}$, we have P(x) = 0 and thus

$$0 = P(x) = \sum_{i=0}^{p} (-1)^{i} {p \choose i} {x-i \choose q} - {x-p \choose q-p}$$

and thus

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q} = \binom{x-p}{q-p}.$$

This solves the exercise.

6.5 FOURTH SOLUTION (SKETCHED)

The exercise can also be seen as a consequence of two basic facts in the theory of finite differences. Let us introduce just enough of this theory to solve the exercise.

Forget that we fixed p and q.

Let \mathbb{R}^* be the set of all finite lists of real numbers; in other words, let $\mathbb{R}^* = \mathbb{R}^0 \cup \mathbb{R}^1 \cup \mathbb{R}^2 \cup \mathbb{R}^3 \cup \cdots$. Define a map $\Delta : \mathbb{R}^* \to \mathbb{R}^*$ by setting

$$\Delta(a_1, a_2, \dots, a_n) = (a_2 - a_1, a_3 - a_2, \dots, a_n - a_{n-1}) \quad \text{for all } (a_1, a_2, \dots, a_n) \in \mathbb{R}^*.$$

(Thus, in particular, Δ sends the empty list () to the empty list ().)

This map Δ is commonly called the *difference operator*, since it takes any list of numbers to the list of differences between the consecutive entries of the former list.

⁵This is a well-defined polynomial, because we know that $\binom{F}{n}$ is a well-defined polynomial whenever F is a polynomial and $n \in \mathbb{N}$.

Example 6.7. We have

$$\begin{aligned} \Delta \left(1,1,1 \right) &= \left(0,0 \right); \\ \Delta \left(1,3,5,7 \right) &= \left(2,2,2 \right); \end{aligned} \qquad \begin{array}{l} \Delta \left(1,1,1,1,1 \right) &= \left(0,0,0,0 \right); \\ \Delta \left(1,4,9,16 \right) &= \left(3,5,7 \right). \end{aligned}$$

The first basic fact that we shall use about finite differences is the following:

Proposition 6.8. Let $p \in \mathbb{N}$, $x \in \mathbb{R}$ and $q \in \mathbb{R}$. Then,

$$\Delta\left(\binom{x+0}{q},\binom{x+1}{q},\ldots,\binom{x+p}{q}\right) = \left(\binom{x+0}{q-1},\binom{x+1}{q-1},\ldots,\binom{x+(p-1)}{q-1}\right).$$

In words, this proposition is saying that if we apply the map Δ to a list of binomial coefficients with the same "denominator" q and with their numerators increasing by 1 at each step, then we get a similar list, but without the last entry and with denominator q-1 instead of q.

Proof of Proposition 6.8 (sketched). Because of how Δ was defined, this boils down to checking that

$$\binom{x+(k+1)}{q} - \binom{x+k}{q} = \binom{x+k}{q-1} \quad \text{for each } k \in \{0, 1, \dots, p-1\}.$$

But this follows easily from the recurrence of the binomial coefficients (more precisely, from Theorem 1.4, applied to x + (k + 1) and q instead of n and k).

Now, as usual, we set $\Delta^k = \underbrace{\Delta \circ \Delta \circ \cdots \circ \Delta}_{k \text{ times}}$ for each $k \in \mathbb{N}$. Thus, Δ^k is simply the map that applies Δ a total of k times. (In particular, $\Delta^0 = \text{id and } \Delta^1 = \Delta$.)

Example 6.9. We have

=

$$\begin{split} & \underbrace{\Delta^{0}_{=id}}_{i=id} (1,4,9,16) = (1,4,9,16); \\ & \underbrace{\Delta^{1}_{=\Delta}}_{=\Delta} (1,4,9,16) = \Delta (1,4,9,16) = (3,5,7), \\ & \underbrace{\Delta^{2}_{=\Delta\circ\Delta}}_{i=\Delta\circ\Delta\circ\Delta} (1,4,9,16) = \Delta \left(\underbrace{\Delta (1,4,9,16)}_{=(3,5,7)} \right) = \Delta (3,5,7) = (2,2), \\ & \underbrace{\Delta^{3}_{=\Delta\circ\Delta\circ\Delta}}_{i=\Delta\circ\Delta\circ\Delta} (1,4,9,16) = \Delta \left(\underbrace{\Delta (\Delta (1,4,9,16))}_{=(2,2)} \right) = \Delta (2,2) = (0), \\ & \underbrace{\Delta^{4}_{i=\Delta\circ\Delta\circ\Delta\circ\Delta}}_{i=(0)} (1,4,9,16) = \Delta \left(\underbrace{\Delta (\Delta (\Delta (1,4,9,16)))}_{=(0)} \right) = \Delta (0) = (). \end{split}$$

Thus, $\Delta^k(1, 4, 9, 16) = ()$ for all $k \ge 4$ (since $\Delta() = ()$).

From Proposition 6.8, we can easily obtain the following:

Corollary 6.10. Let $p \in \mathbb{N}$, $k \in \mathbb{N}$, $x \in \mathbb{R}$ and $q \in \mathbb{R}$. Then,

$$\Delta^k \left(\binom{x+0}{q}, \binom{x+1}{q}, \dots, \binom{x+p}{q} \right) = \left(\binom{x+0}{q-k}, \binom{x+1}{q-k}, \dots, \binom{x+(p-k)}{q-k} \right).$$

Proof of Corollary 6.10. Induction on k. The induction step uses Proposition 6.8.

The second fact about finite differences that we will need is the following explicit description of how Δ^k acts on a tuple:

Proposition 6.11. If $k \in \mathbb{N}$, $n \in \mathbb{N}$, $(a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ and $p \in \{1, 2, \ldots, n-k\}$, then the *p*-th entry of the list $\Delta^k(a_1, a_2, \ldots, a_n)$ is

$$\sum_{i=0}^{k} \left(-1\right)^{k-i} \binom{k}{i} a_{p+i}.$$

For a proof of Proposition 6.11, see my math.stackexchange post

https://math.stackexchange.com/a/1379518/

(where it appears as Theorem 2).

We shall use the following variant of Proposition 6.11:

Corollary 6.12. If $p \in \mathbb{N}$, $n \in \mathbb{N}$, $(a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ and $r \in \{1, 2, \ldots, n-p\}$, then the *r*-th entry of the list $\Delta^p(a_1, a_2, \ldots, a_n)$ is

$$\sum_{i=0}^{p} \left(-1\right)^{p-i} \binom{p}{i} a_{r+i}.$$

Corollary 6.12 is just Proposition 6.11, with k and p renamed as p and r.

Now, let us solve the exercise. Let $p \in \mathbb{N}$, $q \in \mathbb{N}$ and $x \in \mathbb{R}$. Corollary 6.10 (applied to p and x - p instead of k and x) yields

$$\Delta^{p} \left(\binom{(x-p)+0}{q}, \binom{(x-p)+1}{q}, \dots, \binom{(x-p)+p}{q} \right)$$

= $\left(\binom{(x-p)+0}{q-p}, \binom{(x-p)+1}{q-p}, \dots, \binom{(x-p)+(p-p)}{q-p} \right).$ (27)

For each $i \in \mathbb{Z}$, define a real a_i by $a_i = \binom{(x-p)+i-1}{q}$. Then,

$$(a_1, a_2, \dots, a_{p+1}) = \left(\binom{(x-p)+0}{q}, \binom{(x-p)+1}{q}, \dots, \binom{(x-p)+p}{q} \right)$$

In view of this, we can rewrite (27) as

$$\Delta^{p}(a_{1}, a_{2}, \dots, a_{p+1}) = \left(\binom{(x-p)+0}{q-p}, \binom{(x-p)+1}{q-p}, \dots, \binom{(x-p)+(p-p)}{q-p} \right).$$
(28)

Hence,

(the 1-st entry of the list
$$\Delta^p(a_1, a_2, \dots, a_{p+1})) = \begin{pmatrix} (x-p)+0\\ q-p \end{pmatrix} = \begin{pmatrix} x-p\\ q-p \end{pmatrix}$$
. (29)

Corollary 6.12 (applied to n = p + 1 and r = 1) yields that the 1-st entry of the list $\Delta^p(a_1, a_2, \ldots, a_{p+1})$ is

$$\sum_{i=0}^{p} (-1)^{p-i} {p \choose i} \underbrace{a_{1+i}}_{\substack{q \choose q}} \\ = \binom{(x-p) + (1+i) - 1}{q} \\ \text{(by the definition of } a_{1+i}) \\ = \sum_{i=0}^{p} (-1)^{p-i} \underbrace{p \choose i}_{\substack{i \choose q}} \underbrace{(x-p) + (1+i) - 1}_{\substack{q \end{pmatrix}} \\ = \binom{p}{p-i}_{\substack{q \end{pmatrix}}_{\substack{q \end{pmatrix} \text{(by Theorem 1.2, applied to } n=p \text{ and } k=i)}} \underbrace{(x-(p-i))_{\substack{q \end{pmatrix}}}_{\substack{q \end{pmatrix} (\text{since } (x-p) + (1+i) - 1=x-(p-i))}} \\ = \sum_{i=0}^{p} (-1)^{p-i} \binom{p}{p-i} \binom{x-(p-i)}{q} = \sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q}$$

(here, we have substituted i for p - i in the sum). Thus,

(the 1-st entry of the list
$$\Delta^p(a_1, a_2, \dots, a_{p+1})) = \sum_{i=0}^p (-1)^i \binom{p}{i} \binom{x-i}{q}$$
.

Comparing this with (29), we obtain

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \binom{x-i}{q} = \binom{x-p}{q-p}.$$

This solves the exercise.

6.6 Remark

Various other arguments can be used. For example, instead of proving Claim 1 in our third solution above using the Chu–Vandermonde identity, we could have proved it using the Principle of Inclusion and Exclusion^6 .

A cheap (but occasionally useful) generalization of the exercise can be obtained by allowing q to range over \mathbb{R} instead of \mathbb{N} :

Theorem 6.13. Let $p \in \mathbb{N}$ and $q \in \mathbb{R}$. Prove that

$$\sum_{i=0}^{p} (-1)^{i} {p \choose i} {x-i \choose q} = {x-p \choose q-p} \quad \text{for all } x \in \mathbb{R}.$$
 (30)

⁶**Hint:** How many q-element subsets of [x] contain all of 1, 2, ..., p? On the one hand, the answer is $\binom{x-p}{q-p}$; on the other hand, it can be obtained via the Principle of Inclusion and Exclusion (by counting how many q-element subsets of [x] fail to contain some of these elements). Comparing the results will yield Claim 1.

For details, see the answer by Brian M. Scott at https://math.stackexchange.com/questions/ 1536015. Or see [Galvin17, proof of Identity 17.1] for the proof of Claim 1 with p, q and x renamed as n, j and N (slightly restated and with an unnecessary $x \ge q$ condition).

Proof of Theorem 6.13. If $q \in \mathbb{N}$, then this follows immediately from (11). Hence, for the rest of this proof, we can WLOG assume that we don't have $q \in \mathbb{N}$. Assume this. Thus, $q \notin \mathbb{N}$.

Let $x \in \mathbb{R}$. If we had $q - p \in \mathbb{N}$, then we would have $q = \underbrace{(q-p)}_{\in \mathbb{N}} + \underbrace{p}_{\in \mathbb{N}} \in \mathbb{N}$, which would contradict $q \notin \mathbb{N}$. Hence, we cannot have $q - p \in \mathbb{N}$. Thus, $q - p \notin \mathbb{N}$. Hence, the definition of binomial coefficients yields $\binom{x-p}{q-p} = 0$. Comparing this with

$$\sum_{i=0}^{p} (-1)^{i} \binom{p}{i} \underbrace{\binom{x-i}{q}}_{\substack{=0\\ \text{(by the definition of binomial coefficients, since } q \notin \mathbb{N})}^{=0} = \sum_{i=0}^{p} (-1)^{i} \binom{p}{i} 0 = 0,$$

we obtain $\sum_{i=0}^{p} (-1)^{i} {p \choose i} {x-i \choose q} = {x-p \choose q-p}$. This proves Theorem 6.13.

References

[Galvin17] David Galvin, Basic discrete mathematics, 13 December 2017. http://www-users.math.umn.edu/~dgrinber/comb/ 60610lectures2017-Galvin.pdf

(The URL might change, and the text may get updated. In order to reliably obtain the version of 13 December 2017, you can use the archive.org Wayback Machine: https://web.archive.org/web/20180205122609/http://www-users.math.umn.edu/~dgrinber/comb/60610lectures2017-Galvin.pdf .)

- [Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf
- [mt1s] Darij Grinberg, Drexel Fall 2019 Math 222 midterm #1 with solutions, http: //www.cip.ifi.lmu.de/~grinberg/t/19fco/mt1s.pdf
- [Sagan19] Bruce Sagan, Combinatorics: The Art of Counting, version 16 September 2020. https://users.math.msu.edu/users/bsagan/Books/Aoc/final.pdf