Math 222: Enumerative Combinatorics, Fall 2019: Homework 3

Darij Grinberg

December 16, 2019
due date: Monday, 2019-11-04 at the beginning of class, or before that through Blackboard.

Please solve 5 of the 6 exercises!

1 ExERCISE 1

1.1 Problem

Let $n \in \mathbb{N}$. Prove that

$$
\sum_{k=0}^{n}\binom{2 n+1}{k}^{2}=\binom{4 n+1}{2 n}
$$

1.2 Solution
[...]

2 ExERCISE 2

2.1 PROBLEM

Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$. Prove that

$$
\sum_{k=1}^{n} \frac{x^{k} y^{n-k}}{k}\binom{n}{k}=\sum_{i=1}^{n} \frac{\left((x+y)^{i}-y^{i}\right) y^{n-i}}{i}
$$

2.2 REMARK

This is easily seen to be a generalization of Math222, Exercise 1.6.4] (indeed, the latter exercise is obtained by setting $x=-1$ and $y=1$). Can you generalize the solution?

2.3 Solution

[...]

3 ExERCISE 3

3.1 Problem

Let $m \in \mathbb{N}$. Prove that

$$
\sum_{i=0}^{m}(-1)^{i} \operatorname{sur}(m, i)=(-1)^{m}
$$

3.2 Solution

[...]

4 EXERCISE 4

4.1 Problem

Let $n \in \mathbb{N}$.
(a) Prove that

$$
\text { (\# of 5-tuples } \left.(a, b, c, d, e) \in[n]^{5} \text { satisfying } a<b<c<d<e\right)=\binom{n}{5} .
$$

(b) Find

$$
\text { (\# of 5-tuples } \left.(a, b, c, d, e) \in[n]^{5} \text { satisfying } a \leq b<c \leq d<e\right) .
$$

4.2 SOLUTION

[...]

5 EXERCISE 5

5.1 Problem

A finite set S of integers is said to be self-centered if its size $|S|$ is odd and equals its $(|S|+1) / 2$-th smallest element (i.e., its median in the statistical sense).

For example, the sets $\{1,3,5\}$ and $\{2,3,5,6,10\}$ are self-centered, while $\{2,4,6\}$ and $\{2\}$ are not.
(a) Given $n \in \mathbb{N}$ and an odd $k \in \mathbb{N}$, find the $\#$ of self-centered k-element subsets of $[n]$. (The result will be a simple explicit formula in terms of binomial coefficients.)
(b) For each $n \in \mathbb{N}$, let a_{n} be the $\#$ of all self-centered subsets of $[n]$. Find the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ or the sequence ($a_{1}, a_{2}, a_{3}, \ldots$) in the OEIS. (No explicit sum-less formula is known.)

5.2 Solution

[...]

6 ExERCISE 6

6.1 Problem

Let $p \in \mathbb{N}$ and $q \in \mathbb{N}$. Prove that

$$
\sum_{i=0}^{p}(-1)^{i}\binom{p}{i}\binom{x-i}{q}=\binom{x-p}{q-p} \quad \text { for all } x \in \mathbb{R}
$$

6.2 SOLUTION

[...]

REFERENCES

[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf
Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version
whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf

