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1 Exercise 1

1.1 Problem

For each n ∈ N, we define the n-th harmonic number Hn by

Hn =
1

1
+

1

2
+ · · ·+ 1

n
=

n∑
k=1

1

k
.

Prove that

H1 +H2 + · · ·+Hn = (n+ 1) (Hn+1 − 1) (1)

for each n ∈ N.

1.2 First solution

We shall prove (1) by induction on n:

Induction base: We have H0+1 = H1 =
1

1
(by the definition of H1). Thus, H0+1 − 1 =

1

1
− 1 = 0.
Comparing

H1 +H2 + · · ·+H0 = (empty sum) = 0

1
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with

(0 + 1)

H0+1 − 1︸ ︷︷ ︸
=0

 = 0,

we find
H1 +H2 + · · ·+H0 = (0 + 1) (H0+1 − 1) .

In other words, (1) holds for n = 0. This completes the induction base.
Induction step: Let m be a positive integer. Assume that (1) holds for n = m− 1. We

must prove that (1) holds for n = m.
We have assumed that (1) holds for n = m− 1. In other words,

H1 +H2 + · · ·+Hm−1 = ((m− 1) + 1)
(
H(m−1)+1 − 1

)
.

In view of (m− 1) + 1 = m, this rewrites as

H1 +H2 + · · ·+Hm−1 = m (Hm − 1) . (2)

But the definition of Hm yields

Hm =
1

1
+

1

2
+ · · ·+ 1

m
. (3)

Also, the definition of Hm+1 yields

Hm+1 =
1

1
+

1

2
+ · · ·+ 1

m+ 1
=

(
1

1
+

1

2
+ · · ·+ 1

m

)
︸ ︷︷ ︸

=Hm
(by (3))

+
1

m+ 1
= Hm +

1

m+ 1
.

Hence,

(m+ 1)

 Hm+1︸ ︷︷ ︸
=Hm+

1

m+ 1

−1

 = (m+ 1)

(
Hm +

1

m+ 1
− 1

)

= (m+ 1)Hm + (m+ 1) · 1

m+ 1
− (m+ 1)︸ ︷︷ ︸

=1−(m+1)=−m

= (m+ 1)Hm + (−m)

= (m+ 1)Hm −m.

Comparing this with

H1 +H2 + · · ·+Hm = (H1 +H2 + · · ·+Hm−1)︸ ︷︷ ︸
=m(Hm−1)

(by (2))

+Hm

= m (Hm − 1) +Hm = mHm −m+Hm = (m+ 1)Hm −m,

we obtain
H1 +H2 + · · ·+Hm = (m+ 1) (Hm+1 − 1) .

In other words, (1) holds for n = m. This completes the induction step. Hence, (1) is proven
by induction.
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1.3 Second solution

Each n ∈ N satisfies

Hn =
n∑

k=1

1

k
(4)

(by the definition of Hn).
Now, let n ∈ N. Then,

H1 +H2 + · · ·+Hn =
n∑

m=1

Hm︸︷︷︸
=

m∑
k=1

1

k
(by (4), applied to m instead of n)

=
n∑

m=1

m∑
k=1

1

k
=

n∑
k=1

n∑
m=k

1

k
.

Here, the last equality sign is a consequence of one of Fubini’s principles for the interchange
of summations (namely, [Math222, Corollary 1.6.9]). Thus,

H1 +H2 + · · ·+Hn =
n∑

k=1

n∑
m=k

1

k︸ ︷︷ ︸
=(n−k+1)·

1

k
(since this is a sum of n− k + 1

many equal addends)

=
n∑

k=1

(n− k + 1) · 1
k
.

Comparing this with

(n+ 1) (Hn+1 − 1) = (n+ 1) Hn+1︸ ︷︷ ︸
=

n+1∑
k=1

1

k
(by (4), applied to n+ 1 instead of n)

− (n+ 1)

= (n+ 1)
n+1∑
k=1

1

k
− (n+ 1)︸ ︷︷ ︸

=
n+1∑
k=1

1

(since
n+1∑
k=1

1 = (n+ 1) · 1 = n+ 1)

= (n+ 1)
n+1∑
k=1

1

k
−

n+1∑
k=1

1

=
n+1∑
k=1

(
(n+ 1) · 1

k
− 1

)
︸ ︷︷ ︸

=(n−k+1)·
1

k

=
n+1∑
k=1

(n− k + 1) · 1
k

= (n− (n+ 1) + 1)︸ ︷︷ ︸
=0

· 1

n+ 1
+

n∑
k=1

(n− k + 1) · 1
k(

here, we have split off the addend for k = n+ 1 from the sum
)

=
n∑

k=1

(n− k + 1) · 1
k
,

we obtain H1 +H2 + · · ·+Hn = (n+ 1) (Hn+1 − 1). This solves the exercise.
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2 Exercise 2

2.1 Problem

Let n ∈ N. Compute the number of 4-tuples (A,B,C,D) of subsets of [n] satisfying

A ∩B = C ∩D.

[Hint: This is similar to [17f-hw3s, Exercise 1]. It is not necessary to be as detailed as
in the solution of part (a) of the latter exercise.]

2.2 Solution sketch

We shall say that a 4-tuple (A,B,C,D) of subsets of [n] is good if and only if it satisfies
A ∩B = C ∩D.

We claim the following:

Claim 1: The # of good 4-tuples is 10n.

Let us first give an informal (but perfectly clear to the experienced reader) proof of this
claim, and then formalize it.

Informal proof of Claim 1. A 4-tuple (A,B,C,D) of subsets of [n] is good if and only if it
satisfies the following property: Each i ∈ [n] belongs to

• either all four sets A, B, C and D,

• or the sets A and C but not B and D,

• or the sets A and D but not B and C,

• or the sets B and C but not A and D,

• or the sets B and D but not A and C,

• or the set A but none of the other three sets,

• or the set B but none of the other three sets,

• or the set C but none of the other three sets,

• or the set D but none of the other three sets,

• or none of the four sets A, B, C and D.

1 We shall refer to these 10 possibilities as “Option 1”, “Option 2” and so on.
Thus, the following simple algorithm constructs every good 4-tuple (A,B,C,D): For

each i ∈ [n], we decide which of the 10 options listed above the element i should satisfy (i.e.,
1Indeed, there is (a priori) a total of 16 options for which of the four sets A, B, C and D the element i
belongs to (because i either belongs to A or does not; either belongs to B or does not; either belongs to
C or does not; either belongs to D or does not). But out of these 16 options, only the 10 we just listed
can occur if (A,B,C,D) is good, since the other 6 would violate the equation A∩B = C ∩D (since they
would either make i belong to A∩B but not to C ∩D, or make i belong to C ∩D but not to A∩B). It
is easy to see that, conversely, as long as each i satisfies one of the 10 options listed above, the 4-tuple
(A,B,C,D) is good.
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whether it satisfies Option 1 or Option 2 etc.). There are 10 choices for it, since these 10
options are mutually exclusive. Thus, in total, there are 10n good 4-tuples (because we are
making this decision once for each of the n elements i of [n]). This completes our informal
proof of Claim 1.

Next comes a formalized version of this argument:

Formal proof of Claim 1. Consider a 4-tuple (A,B,C,D) of subsets of [n], and an element
i ∈ [n]. This element i either lies in A or does not; it either lies in B or does not; it either
lies in C or does not; it either lies in D or does not. Thus, we have a total of 16 possible
answers to the question “which of the 4 subsets A, B, C and D does i lie in?”. Let us encode
these answers as 4-tuples of bits (i.e., of elements of {0, 1}): Namely, we define

wA,B,C,D (i) = ([i ∈ A] , [i ∈ B] , [i ∈ C] , [i ∈ D]) ∈ {0, 1}4

(where we are using the Iverson bracket notation). Thus, for example, if i lies in A and D
but not in B and not in C, then wA,B,C,D (i) = (1, 0, 0, 1).

Now, assume that the 4-tuple (A,B,C,D) is good. Then, wA,B,C,D (i) cannot take
certain values. For example, wA,B,C,D (i) cannot be (1, 1, 0, 1), because in this case, i would
be contained in A∩B (since [i ∈ A] = 1 and [i ∈ B] = 1) but not in C∩D (since [i ∈ C] = 0),
which would contradict the “goodness” condition A ∩B = C ∩D. Likewise, there are other
values that wA,B,C,D (i) cannot take. By systematically checking all 16 possible 4-tuples of
bits, we can easily see that the set of impossible values of wA,B,C,D (i) is

J := {(1, 1, 0, 0) , (1, 1, 0, 1) , (1, 1, 1, 0) , (0, 0, 1, 1) , (0, 1, 1, 1) , (1, 0, 1, 1)} .

Thus, wA,B,C,D (i) belongs not only to {0, 1}4, but to the smaller set {0, 1}4 \ J . It is easy
to see that this smaller set has size

∣∣{0, 1}4 \ J∣∣ = 10.
Now, forget that we fixed i. Thus, we have defined a 4-tuple wA,B,C,D (i) ∈ {0, 1}4 \ J

for each i ∈ [n] (assuming that (A,B,C,D) is good). In other words, we have defined a map

wA,B,C,D : [n]→ {0, 1}4 \ J,
i 7→ wA,B,C,D (i) = ([i ∈ A] , [i ∈ B] , [i ∈ C] , [i ∈ D]) .

Note that we can easily reconstruct the 4-tuple (A,B,C,D) from the map wA,B,C,D; indeed,

A = {i ∈ [n] | the 1-st entry of wA,B,C,D (i) is 1} ;
B = {i ∈ [n] | the 2-nd entry of wA,B,C,D (i) is 1} ;
C = {i ∈ [n] | the 3-rd entry of wA,B,C,D (i) is 1} ;
D = {i ∈ [n] | the 4-th entry of wA,B,C,D (i) is 1} .

Now, forget that we fixed (A,B,C,D). We thus have defined a map wA,B,C,D : [n] →
{0, 1}4 \ J for each good 4-tuple (A,B,C,D). Hence, we can define a map

W : {good 4-tuples} →
(
{0, 1}4 \ J

)[n]
,

(A,B,C,D) 7→ wA,B,C,D.

(Keep in mind that the notation Y X , where X and Y are two sets, stands for the set of all
maps from X to Y . Thus, the values of this map W are themselves maps.)

We have previously shown that a good 4-tuple (A,B,C,D) can be reconstructed from
the map wA,B,C,D. In other words, the map W is injective.
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Moreover, the map W is surjective. Indeed, if f ∈
(
{0, 1}4 \ J

)[n]
is any map, then we

can define a 4-tuple (A,B,C,D) of subsets of [n] by setting

A = {i ∈ [n] | the 1-st entry of f (i) is 1} ;
B = {i ∈ [n] | the 2-nd entry of f (i) is 1} ;
C = {i ∈ [n] | the 3-rd entry of f (i) is 1} ;
D = {i ∈ [n] | the 4-th entry of f (i) is 1} ;

and it is easy to see that this 4-tuple (A,B,C,D) will be good (since f (i) ∈ {0, 1}4 \ J for
each i ∈ [n], which rules out precisely the constellations2 that would violate A∩B = C∩D),
and furthermore the image of this good 4-tuple (A,B,C,D) under the map W will be our
f .

Thus, we now know that the map W is injective and surjective. Hence, W is bijective.
Thus, the bijection principle yields

|{good 4-tuples}| =
∣∣∣({0, 1}4 \ J)[n]∣∣∣ = ∣∣{0, 1}4 \ J∣∣|[n]|(

since
∣∣Y X

∣∣ = |Y ||X| for any two finite sets X and Y
)

= 10n
(
since

∣∣{0, 1}4 \ J∣∣ = 10 and |[n]| = n
)
.

In other words, the # of good 4-tuples is 10n. This proves Claim 1.

3 Exercise 3

3.1 Problem

Let n ∈ N. A subset S of [n] is said to be odd-sum if the sum of the elements of S is odd.
How many subsets of [n] are odd-sum?

3.2 First solution sketch

The following solution imitates [Math222, Third proof of Proposition 1.3.28].

Claim 1: We have

(# of odd-sum subsets of [n]) =

{
0, if n = 0;

2n−1, if n 6= 0
.

[Proof of Claim 1: If n = 0, then the # of odd-sum subsets of [n] is 0 (since the only
subset of [n] is ∅ in this case, but ∅ is not odd-sum). Thus, Claim 1 holds when n = 0. For
the rest of this proof, we shall therefore WLOG assume that n 6= 0. Hence, n ≥ 1, so that
1 ∈ [n].

2Exercise to the reader: Make this precise. (Formally speaking, you shouldn’t talk about “constellations”
but just prove that A ∩B = C ∩D by considering any i ∈ [n] and showing that i ∈ A ∩B is equivalent
to i ∈ C ∩D.)
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Let us say that a subset S of [n] is even-sum if the sum of the elements of S is even.
Then, each subset of [n] is either even-sum or odd-sum (but not both at the same time).
Hence, by the sum rule, we have

(# of all subsets of [n])

= (# of even-sum subsets of [n]) + (# of odd-sum subsets of [n]) .

Comparing this with

(# of all subsets of [n]) = 2n (by [Math222, Theorem 1.4.1], applied to S = [n]) ,

we obtain

2n = (# of even-sum subsets of [n]) + (# of odd-sum subsets of [n]) . (5)

On the other hand, if we add 1 to an even integer, then we obtain an odd integer. Hence,
if S is an even-sum subset of [n] such that 1 /∈ S, then S ∪ {1} is an odd-sum subset of [n].
Similarly, if S is an even-sum subset of [n] such that 1 ∈ S, then S \ {1} is an odd-sum
subset of [n]. Thus, the map

{even-sum subsets of [n]} → {odd-sum subsets of [n]} ,

S 7→

{
S ∪ {1} , if 1 /∈ S;

S \ {1} , if 1 ∈ S

is well-defined. Similarly, the map

{odd-sum subsets of [n]} → {even-sum subsets of [n]} ,

S 7→

{
S ∪ {1} , if 1 /∈ S;

S \ {1} , if 1 ∈ S

is well-defined. It is straightforward to see that these two maps are mutually inverse, and
thus are bijections. Hence, the bijection principle shows that

(# of even-sum subsets of [n]) = (# of odd-sum subsets of [n]) .

Thus, (5) becomes

2n = (# of even-sum subsets of [n])︸ ︷︷ ︸
=(# of odd-sum subsets of [n])

+(# of odd-sum subsets of [n])

= (# of odd-sum subsets of [n]) + (# of odd-sum subsets of [n])

= 2 · (# of odd-sum subsets of [n]) .

Dividing both sides of this equality by 2, we find 2n/2 = (# of odd-sum subsets of [n]), so
that

(# of odd-sum subsets of [n]) = 2n/2 = 2n−1.

This proves Claim 1.]
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3.3 Second solution sketch

Here is a very rough outline of a different solution.
Again, we WLOG assume that n 6= 0, so that n ≥ 1.
Let E be the set of all even elements of [n], and let O be the set of all odd elements

of [n]. Then, E and O are disjoint subsets of [n] whose union is E ∪ O = [n]. Hence, the
sum rule yields |E| + |O| = |[n]| = n. Moreover, 1 ∈ [n] (since n ≥ 1), thus 1 ∈ O, and
therefore |O| ≥ 1. A subset S of [n] is odd-sum if and only if it contains an odd number of
odd elements3, i.e., if the intersection S ∩O is a set of odd size. Thus, the map

{odd-sum subsets of [n]} → {subsets of E} × {subsets of O having odd size} ,
S 7→ (S ∩ E, S ∩O)

is a bijection. Hence, by the bijection principle,

(# of odd-sum subsets of [n])

= |{subsets of E} × {subsets of O having odd size}|
= (# of subsets of E) · (# of subsets of O having odd size) .

Now, [Math222, Theorem 1.4.1] yields (# of subsets of E) = 2|E|. What is
(# of subsets of O having odd size)? Well, the sum rule yields

(# of subsets of O having odd size)

=
∑
k∈N;

k is odd

(# of subsets of O having size k)︸ ︷︷ ︸
=(# of k-element subsets of O)

=

(
|O|
k

)
(by [Math222, Theorem 1.3.12])

(this is one of those infinite sums with only finitely many nonzero addends)

=
∑
k∈N;

k is odd

(
|O|
k

)
=

(
|O|
1

)
+

(
|O|
3

)
+

(
|O|
5

)
+ · · ·

= 2|O|−1 (by [Math222, Proposition 1.3.34], applied to |O| instead of n) .

Hence,

(# of odd-sum subsets of [n])

= (# of subsets of E)︸ ︷︷ ︸
=2|E|

· (# of subsets of O having odd size)︸ ︷︷ ︸
=2|O|−1

= 2|E| · 2|O|−1 = 2|E|+|O|−1 = 2n−1 (since |E|+ |O| = n) .

This solves the exercise again.

3because a sum of integers is odd if and only if it has an odd number of odd addends
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4 Exercise 4

4.1 Problem

Let n ∈ N. Prove that
n∑

i=0

2i
(
n− i

i

)
=

(−1)n + 2n+1

3
. (6)

[Hint: Remember counting the pseudomino tilings on the previous problem set? Time
to count them again! (This is not the only possible solution.)]

4.2 First solution sketch

We WLOG assume that n > 0 (since the case n = 0 is easily checked by hand).
We shall use the terminology introduced in [Math222, §1.1] for dominos and domino

tilings, and we shall use the notion of lacunar sets defined in [Math222, Definition 1.4.2].
We shall furthermore use [hw1s, Exercise 1], and in particular we shall use the notions of
“pseudomino” and “pseudomino tiling” defined therein. We let pn denote the number of all
pseudomino tilings of the rectangle Rn,2. Then, [hw1s, Exercise 1 (b)] yields

pn =
(−1)n + 2n+1

3
. (7)

A bijection

h : {domino tilings of Rn+1,2} → {lacunar subsets of [n]}

has been constructed in [Math222, Second proof of Proposition 1.4.9]; it is defined as follows:
If T is any domino tiling of Rn+1,2, then h (T ) shall be the set of all i ∈ [n+ 1] such that at
least one horizontal domino of T starts in column i.

Substituting n− 1 for n in this construction, we obtain a bijection

h′ : {domino tilings of Rn,2} → {lacunar subsets of [n− 1]}

defined as follows: If T is any domino tiling of Rn,2, then h′ (T ) shall be the set of all i ∈ [n]
such that at least one horizontal domino of T starts in column i.

We want to define a bijection similar to h′, but with pseudomino tilings instead of domino
tilings. The target of this bijection will not be {lacunar subsets of [n− 1]} anymore, but
rather will be {lacunar pairs}, where a lacunar pair shall mean a pair (S, T ) of two disjoint
subsets of [n− 1] such that S ∪ T is lacunar.

If T is a pseudomino tiling of Rn,2, then

• we let h (T ) be the set of all i ∈ [n] such that at least one horizontal domino of T
starts in column i;

• we let d (T ) be the set of all i ∈ [n] such that at least one 2× 2-rectangle of T starts4
in column i.

4The meaning of “starts” here is defined as follows: If D = {(i, j) , (i, j + 1) , (i+ 1, j) , (i+ 1, j + 1)} is a
2× 2-rectangle, then we say that D starts in column i.
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For example, if n = 11 and

T = ,

then
h (T ) = {2, 8} and d (T ) = {4, 10} .

We now define a map

h′′ : {pseudomino tilings of Rn,2} → {lacunar pairs} ,
T 7→ (h (T ) , d (T )) .

This map is well-defined, because if T is a pseudomino tiling ofRn,2, then the pair (h (T ) , d (T ))
is a lacunar pair5. Moreover, it is not hard to check that this map h′′ is a bijection6. Thus,
the bijection principle shows that

(# of pseudomino tilings of Rn,2) = (# of lacunar pairs) .

But the definition of pn yields

pn = (# of pseudomino tilings of Rn,2) = (# of lacunar pairs) . (8)

Now, let us count the lacunar pairs. If (S, T ) is a lacunar pair, then S ∪ T is a lacunar
subset of [n− 1]. Thus, by the sum rule, we have

(# of lacunar pairs)

=
∑

L is a lacunar
subset of [n−1]

(# of lacunar pairs (S, T ) with S ∪ T = L) . (9)

Now, fix a lacunar subset L of [n− 1]. How many lacunar pairs (S, T ) are there that
satisfy S ∪ T = L ?

Clearly, if (S, T ) is a lacunar pair with S ∪ T = L, then S ⊆ S ∪ T = L. Thus, the map

{lacunar pairs (S, T ) with S ∪ T = L} → {subsets of L} ,
(S, T ) 7→ S

is well-defined. On the other hand, if S is any subset of L, then (S, L \ S) is a lacunar pair
with S ∪ (L \ S) = L. Thus, the map

{subsets of L} → {lacunar pairs (S, T ) with S ∪ T = L} ,
S 7→ (S, L \ S)

is well-defined. It is easy to see that these two maps are mutually inverse7, and thus are
bijections. Hence, the bijection principle yields

(# of lacunar pairs (S, T ) with S ∪ T = L) = (# of subsets of L)

= 2|L| (10)
5Check this!
6The inverse map sends a lacunar pair (S, T ) to the pseudomino tiling of Rn,2 whose horizontal dominos
start in the columns i ∈ S and whose 2× 2-rectangles start in the columns i ∈ T and whose remaining
columns are filled with vertical dominos.

7The “hard part” of this is to prove that if (S, T ) is a lacunar pair with S∪T = L, then (S,L \ S) = (S, T ).
But even this is trivial: If (S, T ) is a lacunar pair with S ∪ T = L, then S ∩ T = ∅ (since the definition
of “lacunar pair” implies that S and T are disjoint), and thus T is the complement of S in L (since
S ∪ T = L), which shows that T = L \ S, so that (S, T ) = (S,L \ S).
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(by [Math222, Theorem 1.4.1], applied to |L| and L instead of n and S).
Now, forget that we fixed L. We thus have proved (10) for each lacunar subset L of

[n− 1]. Thus, (9) becomes

(# of lacunar pairs)

=
∑

L is a lacunar
subset of [n−1]

(# of lacunar pairs (S, T ) with S ∪ T = L)︸ ︷︷ ︸
=2|L|

(by (10))

=
∑

L is a lacunar
subset of [n−1]

2|L|

=
∑

k∈{0,1,...,n}

∑
L is a lacunar

subset of [n−1];
|L|=k

2|L|︸︷︷︸
=2k

(since |L|=k)
here, we have split the sum

∑
L is a lacunar
subset of [n−1]

2|L| according to the value of |L|

(because each subset L of [n− 1] satisfies |L| ≤ |[n− 1]| = n− 1 ≤ n
and therefore |L| ∈ {0, 1, . . . , n} )


=

∑
k∈{0,1,...,n}

∑
L is a lacunar

subset of [n−1];
|L|=k

2k

︸ ︷︷ ︸
=(# of lacunar subsets L of [n−1] such that |L|=k)·2k

=
∑

k∈{0,1,...,n}

(# of lacunar subsets L of [n− 1] such that |L| = k)︸ ︷︷ ︸
=(# of k-element lacunar subsets of [n−1])

=

(
(n− 1) + 1− k

k

)
(by [Math222, Proposition 1.4.10], applied to n−1 instead of n)

·2k

=
∑

k∈{0,1,...,n}︸ ︷︷ ︸
=

n∑
k=0

(an equality
of summation signs)

(
(n− 1) + 1− k

k

)
︸ ︷︷ ︸

=

(
n− k

k

) ·2k =
n∑

k=0

(
n− k

k

)
· 2k =

n∑
k=0

2k
(
n− k

k

)
.

Now, (8) becomes

pn = (# of lacunar pairs) =
n∑

k=0

2k
(
n− k

k

)
=

n∑
i=0

2i
(
n− i

i

)
(here, we have renamed the summation index k as i). Comparing this with (7), we obtain

n∑
i=0

2i
(
n− i

i

)
=

(−1)n + 2n+1

3
.

This solves the exercise.

4.3 Second solution

Here is a purely algebraic solution (similar to [Grinbe15, solution to Exercise 4.4]):
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Forget that we fixed n. Set

gn =
n∑

i=0

2i
(
n− i

i

)
for each n ∈ {−1, 0, 1, . . .} . (11)

Thus,

g0 =
0∑

i=0

2i
(
0− i

i

)
= 20︸︷︷︸

=1

(
0− 0

0

)
︸ ︷︷ ︸

=1

= 1 and (12)

g−1 =
−1∑
i=0

2i
(
−1− i

i

)
= (empty sum) = 0. (13)

On the other hand,

(−1)0 + 20+1

3
=

1 + 2

3
= 1 and (14)

(−1)−1 + 2−1+1

3
=
−1 + 1

3
= 0. (15)

Comparing (12) with (14), we obtain

g0 =
(−1)0 + 20+1

3
. (16)

Comparing (13) with (15), we obtain

g−1 =
(−1)−1 + 2−1+1

3
. (17)

Recall the recurrence of the binomial coefficients:

Theorem 4.1 (Recurrence of the binomial coefficients). Let n ∈ R and k ∈ R. Then,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

We also recall the following lemma:

Lemma 4.2. Let k ∈ R. Then,
(
0

k

)
= [k = 0].

Here, we are using the Iverson bracket notation.
Also, recall that if n, k ∈ R satisfy k /∈ N, then(

n

k

)
= 0. (18)

(This is part of the definition of binomial coefficients.)
Now, we claim the following:

Claim 1: We have gn =
(−1)n + 2n+1

3
for each n ∈ {−1, 0, 1, . . .}.
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[Proof of Claim 1: We shall prove Claim 1 by strong induction on n.
Induction step: Let m ∈ {−1, 0, 1, . . .}. Assume (as the induction hypothesis) that

Claim 1 holds for all n < m. We must now prove that Claim 1 holds for n = m. In other

words, we must prove that gm =
(−1)m + 2m+1

3
. If m = −1, then this follows immediately

from (17). Hence, for the rest of this proof, we WLOG assume that m 6= −1. Combining
this with m ∈ {−1, 0, 1, . . .}, we find m ∈ {−1, 0, 1, . . .} \ {−1} = {0, 1, 2, . . .}.

We must prove that gm =
(−1)m + 2m+1

3
. If m = 0, then this follows immediately from

(16). Hence, for the rest of this proof, we WLOG assume that m 6= 0. Combining this with
m ∈ {0, 1, 2, . . .}, we findm ∈ {0, 1, 2, . . .}\{0} = {1, 2, 3, . . .}. Hence, m−2 ∈ {−1, 0, 1, . . .}
and m − 1 ∈ {0, 1, 2, . . .} ⊆ {−1, 0, 1, . . .} and m ≥ 1. Also, from m 6= 0, we obtain
[m = 0] = 0.

We have m − 2 ∈ {−1, 0, 1, . . .} and m − 2 < m. Thus, Claim 1 holds for n = m − 2
(since we assumed that Claim 1 holds for all n < m). In other words, we have

gm−2 =
(−1)m−2 + 2(m−2)+1

3
. (19)

We have m − 1 ∈ {−1, 0, 1, . . .} and m − 1 < m. Thus, Claim 1 holds for n = m − 1
(since we assumed that Claim 1 holds for all n < m). In other words, we have

gm−1 =
(−1)m−1 + 2(m−1)+1

3
. (20)

But the definition of gm−2 yields

gm−2 =
m−2∑
i=0

2i
(
(m− 2)− i

i

)
. (21)

Likewise, the definition of gm−1 yields

gm−1 =
m−1∑
i=0

2i
(
(m− 1)− i

i

)
. (22)

Darij Grinberg 13 darij.grinberg@drexel.edu



Solutions to homework set #2 page 14 of 25

Now, the definition of gm yields

gm =
m∑
i=0

2i
(
m− i

i

)
= 2m

(
m−m

m

)
︸ ︷︷ ︸

=

(
0

m

)
=[m=0]

(by Lemma 4.2,
applied to k=m)

+
m−1∑
i=0

2i
(
m− i

i

)

(here, we have split off the addend for i = m from the sum)

= 2m [m = 0]︸ ︷︷ ︸
=0

+
m−1∑
i=0

2i
(
m− i

i

)
=

m−1∑
i=0

2i
(
m− i

i

)
︸ ︷︷ ︸

=

(
m− i− 1

i− 1

)
+

(
m− i− 1

i

)
(by Theorem 4.1, applied

to n=m−i and k=i)

=
m−1∑
i=0

2i
((

m− i− 1

i− 1

)
+

(
m− i− 1

i

))
︸ ︷︷ ︸
=2i

(
m− i− 1

i− 1

)
+2i

(
m− i− 1

i

) =
m−1∑
i=0

(
2i
(
m− i− 1

i− 1

)
+ 2i

(
m− i− 1

i

))

=
m−1∑
i=0

2i
(
m− i− 1

i− 1

)
+

m−1∑
i=0

2i
(
m− i− 1

i

)
. (23)

We shall now massage the two sums on the right hand side of this equality, with the
ultimate goal of revealing that the first of them is 2gm−2 while the second is gm−1.
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Let us start with the first sum. We have m− 1 ∈ {0, 1, 2, . . .} = N and

m−1∑
i=0

2i
(
m− i− 1

i− 1

)

= 20
(
m− 0− 1

0− 1

)
︸ ︷︷ ︸
=

(
m− 1

−1

)
=0

(by (18), applied to n=m−1 and k=−1)

+
m−1∑
i=1

2i
(
m− i− 1

i− 1

)

(
here, we have split off the addend for i = 0 from the sum

(since 0 ≤ m− 1 (because m ≥ 1))

)
=

m−1∑
i=1

2i
(
m− i− 1

i− 1

)
=

m−2∑
i=0

2i+1︸︷︷︸
=2·2i

(
m− (i+ 1)− 1

(i+ 1)− 1

)
︸ ︷︷ ︸
=

(
(m− 2)− i

i

)
(since m−(i+1)−1=(m−2)−i

and (i+1)−1=i)

(here, we have substituted i+ 1 for i in the sum)

=
m−2∑
i=0

2 · 2i
(
(m− 2)− i

i

)
= 2 ·

m−2∑
i=0

2i
(
(m− 2)− i

i

)
︸ ︷︷ ︸

=gm−2

(by (21))

= 2gm−2. (24)

Now, let us take a look at the second sum. We have

m−1∑
i=0

2i
(
m− i− 1

i

)
︸ ︷︷ ︸

=

(
(m− 1)− i

i

)
(since m−i−1=(m−1)−i)

=
m−1∑
i=0

2i
(
(m− 1)− i

i

)
= gm−1 (by (22)) . (25)
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Now, (23) becomes

gm =
m∑
i=0

2i
(
m− i− 1

i− 1

)
︸ ︷︷ ︸

=2gm−2

(by (24))

+
m∑
i=0

2i
(
m− i− 1

i

)
︸ ︷︷ ︸

=gm−1

(by (25))

= 2 gm−2︸︷︷︸
=
(−1)m−2 + 2(m−2)+1

3
(by (19))

+ gm−1︸︷︷︸
=
(−1)m−1 + 2(m−1)+1

3
(by (20))

= 2 · (−1)
m−2 + 2(m−2)+1

3
+

(−1)m−1 + 2(m−1)+1

3

=
1

3

2 ·

(−1)m−2︸ ︷︷ ︸
=(−1)m

+2(m−2)+1︸ ︷︷ ︸
=2m−1

+ (−1)m−1︸ ︷︷ ︸
=−(−1)m

+2(m−1)+1︸ ︷︷ ︸
=2m


=

1

3

2 ·
(
(−1)m + 2m−1

)︸ ︷︷ ︸
=2·(−1)m+2·2m−1

− (−1)m + 2m

 =
1

3

(
2 · (−1)m + 2 · 2m−1 − (−1)m + 2m

)

=
1

3

2 · (−1)m − (−1)m︸ ︷︷ ︸
=(−1)m

+2 · 2m−1︸ ︷︷ ︸
=2m

+2m

 =
1

3

(−1)m + 2m + 2m︸ ︷︷ ︸
=2·2m=2m+1


=

1

3

(
(−1)m + 2m+1

)
=

(−1)m + 2m+1

3
.

In other words, Claim 1 holds for n = m. This completes the induction step. Thus, the
induction proof of Claim 1 is finished.]

Now, let n ∈ N. Then, n ∈ N ⊆ {−1, 0, 1, . . .}, so that Claim 1 yields

gn =
(−1)n + 2n+1

3
.

Comparing this with (11), we obtain
n∑

i=0

2i
(
n− i

i

)
=

(−1)n + 2n+1

3
.

Thus, the exercise is solved.

5 Exercise 5

5.1 Problem

Let n, k ∈ R. Prove that(
n

k + 1

)
·
(
n− 1

k − 1

)
·
(
n+ 1

k

)
=

(
n− 1

k

)
·
(
n+ 1

k + 1

)
·
(

n

k − 1

)
. (26)
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[Hint: Tempting as it may be to use the
n!

k! (n− k)!
formula, keep in mind that it only

holds for n, k ∈ N with k ≤ n. When in doubt, go back to the definition of
(
n

k

)
.]

5.2 Solution

Forget that we fixed n and k. We shall use the following identity:

Proposition 5.1. Let n ∈ {1, 2, 3, . . .} and m ∈ R. Then,(
m

n

)
=

m

n

(
m− 1

n− 1

)
.

Proposition 5.1 is the absorption formula. A proof of Proposition 5.1 can be found in
[Grinbe15, Proposition 3.22]8 or in [Math222, Proposition 1.3.36].

Also, recall that if n, k ∈ R satisfy k /∈ N, then(
n

k

)
= 0. (27)

(This is part of the definition of binomial coefficients.)
Now, let n, k ∈ R. We must prove the identity (26). We are in one of the following two

cases:
Case 1: We have k − 1 ∈ N.
Case 2: We have k − 1 /∈ N.
Let us first consider Case 1. In this case, we have k − 1 ∈ N. Hence, k ∈ {1, 2, 3, . . .}.

Thus, Proposition 5.1 (applied to n+ 1 and k instead of m and n) yields(
n+ 1

k

)
=

n+ 1

k

(
(n+ 1)− 1

k − 1

)
=

n+ 1

k

(
n

k − 1

)
(since (n+ 1)−1 = n). Also, Proposition 5.1 (applied to n and k instead of m and n) yields(

n

k

)
=

n

k

(
n− 1

k − 1

)
.

Furthermore, from k ∈ {1, 2, 3, . . .}, we obtain k + 1 ∈ {2, 3, 4, . . .} ⊆ {1, 2, 3, . . .}. Hence,
Proposition 5.1 (applied to n+ 1 and k + 1 instead of m and n) yields(

n+ 1

k + 1

)
=

n+ 1

k + 1

(
(n+ 1)− 1

(k + 1)− 1

)
=

n+ 1

k + 1

(
n

k

)
︸︷︷︸

=
n

k

(
n− 1

k − 1

) (since (n+ 1)− 1 = n and (k + 1)− 1 = k)

=
n+ 1

k + 1
· n
k

(
n− 1

k − 1

)
.

Also, Proposition 5.1 (applied to n and k + 1 instead of m and n) yields(
n

k + 1

)
=

n

k + 1

(
n− 1

(k + 1)− 1

)
=

n

k + 1

(
n− 1

k

)
8where it is stated only for m ∈ Q, but this makes no difference to the proof
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(since (k + 1)− 1 = k).
Now, comparing(

n

k + 1

)
︸ ︷︷ ︸

=
n

k + 1

(
n− 1

k

) ·
(
n− 1

k − 1

)
·

(
n+ 1

k

)
︸ ︷︷ ︸

=
n+ 1

k

(
n

k − 1

)
=

n

k + 1

(
n− 1

k

)
·
(
n− 1

k − 1

)
· n+ 1

k

(
n

k − 1

)
=

n (n+ 1)

k (k + 1)

(
n− 1

k

)
·
(
n− 1

k − 1

)
·
(

n

k − 1

)
with(

n− 1

k

)
·

(
n+ 1

k + 1

)
︸ ︷︷ ︸

=
n+ 1

k + 1
·
n

k

(
n− 1

k − 1

) ·
(

n

k − 1

)

=

(
n− 1

k

)
· n+ 1

k + 1
· n
k

(
n− 1

k − 1

)
·
(

n

k − 1

)
=

n (n+ 1)

k (k + 1)

(
n− 1

k

)
·
(
n− 1

k − 1

)
·
(

n

k − 1

)
,

we obtain (
n

k + 1

)
·
(
n− 1

k − 1

)
·
(
n+ 1

k

)
=

(
n− 1

k

)
·
(
n+ 1

k + 1

)
·
(

n

k − 1

)
.

Thus, (26) is proven in Case 1.
Let us now consider Case 2. In this case, we have k − 1 /∈ N. Hence, (27) (applied to

k − 1 instead of k) yields
(

n

k − 1

)
= 0. Also, (27) (applied to n− 1 and k − 1 instead of n

and k) yields
(
n− 1

k − 1

)
= 0. Now, comparing

(
n

k + 1

)
·
(
n− 1

k − 1

)
︸ ︷︷ ︸

=0

·
(
n+ 1

k

)
= 0

with (
n− 1

k

)
·
(
n+ 1

k + 1

)
·
(

n

k − 1

)
︸ ︷︷ ︸

=0

= 0,

we obtain (
n

k + 1

)
·
(
n− 1

k − 1

)
·
(
n+ 1

k

)
=

(
n− 1

k

)
·
(
n+ 1

k + 1

)
·
(

n

k − 1

)
.

Thus, (26) is proven in Case 2.
We have now proven (26) in both Cases 1 and 2. Hence, (26) always holds. This solves

the exercise.
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5.3 Remark

You don’t need to know Proposition 5.1 in order to solve the exercise; it merely helps make
the solution slicker. Without Proposition 5.1, you can just apply the definition of binomial
coefficients, obtaining (in Case 1) the identities(

n

k + 1

)
=

n (n− 1) (n− 2) · · · (n− k)

(k + 1)!
;(

n− 1

k − 1

)
=

(n− 1) (n− 2) (n− 3) · · · (n− k + 1)

(k − 1)!
;(

n+ 1

k

)
=

(n+ 1)n (n− 1) · · · (n− k + 2)

k!
;(

n− 1

k

)
=

(n− 1) (n− 2) (n− 3) · · · (n− k)

k!
;(

n+ 1

k + 1

)
=

(n+ 1)n (n− 1) · · · (n− k + 1)

(k + 1)!
;(

n

k − 1

)
=

n (n− 1) (n− 2) · · · (n− k + 2)

(k − 1)!
.

Using these identities, (26) rewrites as

n (n− 1) (n− 2) · · · (n− k)

(k + 1)!
· (n− 1) (n− 2) (n− 3) · · · (n− k + 1)

(k − 1)!

· (n+ 1)n (n− 1) · · · (n− k + 2)

k!

=
(n− 1) (n− 2) (n− 3) · · · (n− k)

k!
· (n+ 1)n (n− 1) · · · (n− k + 1)

(k + 1)!

· n (n− 1) (n− 2) · · · (n− k + 2)

(k − 1)!
.

But you can convince yourself that the factors on the two sides of this equality are the same
(up to order). Thus, the exercise follows.

6 Exercise 6

6.1 Problem

Fix an n ∈ N and an n-element set X.
A filter basis (of X) means a nonempty set F of nonempty subsets of X such that for

every A ∈ F and B ∈ F , there exists some C ∈ F such that C ⊆ A ∩B.
For example, if X = [4], then {{1, 3} , {1, 3, 4} , {1, 2, 3, 4}} is a filter basis, and so is

{{2} , {1, 2, 3} , {1, 2, 4} , {2, 3, 4}}. But {{2, 3} , {1, 3} , {1, 2, 3}} is not a filter basis (because
it contains no C ⊆ {2, 3} ∩ {1, 3}).

Prove the following:

(a) If F is a filter basis, then the intersection of all A ∈ F does itself belong to F .

Darij Grinberg 19 darij.grinberg@drexel.edu



Solutions to homework set #2 page 20 of 25

(b) The number of all filter bases is

n−1∑
k=0

(
n

k

)
22

k−1.

6.2 Solution sketch

We shall use the following notation: If Y is any set, then P (Y ) will denote the powerset of
Y (that is, the set of all subsets of Y ). If the set Y is finite, then we thus have

|P (Y )| = (# of subsets of Y ) = 2|Y | (28)

(by [Math222, Theorem 1.4.1], applied to Y and |Y | instead of S and n). In particular,
P (Y ) is a finite set in this case.

Thus, in particular, P (X) is a finite set (since X is a finite set).

(a) Let F be a filter basis. Then, F is a set of nonempty subsets ofX. Thus, F ⊆ P (X),
so that F is a finite set (since P (X) is a finite set). Hence, we can write F in the form
F = {A1, A2, . . . , Ak} for some nonempty subsets A1, A2, . . . , Ak of X (since F is a set of
nonempty subsets of X). Consider these A1, A2, . . . , Ak. Note that the set {A1, A2, . . . , Ak}
is nonempty (since {A1, A2, . . . , Ak} = F is a filter basis). Thus, k 6= 0, so that k ≥ 1. Note
also that A1, A2, . . . , Ak ∈ F (since F = {A1, A2, . . . , Ak}).

We have assumed that F is a filter basis. Hence, F is nonempty and has the property
that for every A ∈ F and B ∈ F ,

there exists some C ∈ F such that C ⊆ A ∩B. (29)

Now, we claim the following:

Claim 1: For each i ∈ [k], there exists some Ci ∈ F such that

Ci ⊆ A1 ∩ A2 ∩ · · · ∩ Ai.

[Proof of Claim 1: We shall prove Claim 1 by induction on i:
Induction base: We have A1 ∈ F (since A1, A2, . . . , Ak ∈ F ). Thus, there exists some

C1 ∈ F such that C1 ⊆ A1 (namely, C1 = A1 does the trick). In other words, Claim 1 holds
for i = 1. This completes the induction base.

Induction step: Let j ∈ [k] be such that j > 1. Assume that Claim 1 holds for i = j−1.
We must prove that Claim 1 holds for i = j.

We have assumed that Claim 1 holds for i = j − 1. In other words, there exists
some Cj−1 ∈ F such that Cj−1 ⊆ A1 ∩ A2 ∩ · · · ∩ Aj−1. Consider this Cj−1. Recall that
A1, A2, . . . , Ak ∈ F . Hence, Aj ∈ F . Thus, (29) (applied to A = Cj−1 and B = Aj) shows
that there exists some C ∈ F such that C ⊆ Cj−1 ∩ Aj. Consider this C. Thus,

C ⊆ Cj−1︸︷︷︸
⊆A1∩A2∩···∩Aj−1

∩Aj ⊆ (A1 ∩ A2 ∩ · · · ∩ Aj−1) ∩ Aj = A1 ∩ A2 ∩ · · · ∩ Aj.

Hence, there exists some Cj ∈ F such that Cj ⊆ A1 ∩ A2 ∩ · · · ∩ Aj (namely, Cj = C). In
other words, Claim 1 holds for i = j. This completes the induction step. Thus, Claim 1 is
proven by induction.]

Now, recall that k ≥ 1, so that k ∈ [k]. Hence, Claim 1 (applied to i = k) shows that
there exists some Ck ∈ F such that Ck ⊆ A1 ∩ A2 ∩ · · · ∩ Ak. Consider this Ck. Now,
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Ck ∈ F = {A1, A2, . . . , Ak}. In other words, Ck = Aj for some j ∈ [k]. Consider this
j. Combining A1 ∩ A2 ∩ · · · ∩ Ak ⊆ Aj = Ck with Ck ⊆ A1 ∩ A2 ∩ · · · ∩ Ak, we obtain
A1 ∩ A2 ∩ · · · ∩ Ak = Ck ∈ F .

But F = {A1, A2, . . . , Ak}. Hence, the intersection of all A ∈ F is A1 ∩ A2 ∩ · · · ∩ Ak,
and thus does itself belong to F (since A1 ∩A2 ∩ · · · ∩Ak ∈ F ). This solves part (a) of the
exercise.

(b) A bit of terminology will come useful: If F is any filter basis, then the core of F is
defined to be the intersection of all A ∈ F . This core does itself belong to F (by part (a)
of the exercise). In other words,

if K is the core of a filter basis F , then K ∈ F. (30)

Now, instead of counting all filter bases right away, let us count only all filter bases with
a given core:

Claim 2: Let K be a nonempty subset of X. Then,

(# of filter bases with core K) = 22
n−|K|−1.

We won’t prove this right away, since we can make our job a little bit easier with some
more terminology (and with two more auxiliary claims that we will prove before returning
to prove Claim 2).

Previously, we have defined

P (Y ) = {all subsets of Y } for any set Y.

Now, let us introduce a subtler notation: If Y and Z are any two sets, then we define

P (Y, Z) = {all sets S such that Z ⊆ S ⊆ Y } .

This is the set of all sets “lying between” Z and Y (that is, the set of all sets S satisfying
Z ⊆ S ⊆ Y ). For example,

P ({1, 2, 3, 4} , {1, 3}) = {{1, 3} , {1, 2, 3} , {1, 3, 4} , {1, 2, 3, 4}} ;
P ({1, 2, 3, 4} , {1, 2, 3}) = {{1, 2, 3} , {1, 2, 3, 4}} ;
P ({1, 2, 3, 4} , {1, 2, 3, 4}) = {{1, 2, 3, 4}} .

We will only use the notation P (Y, Z) in the case when Z ⊆ Y , since otherwise
P (Y, Z) = ∅. In this case, it is easy to compute the size of P (Y, Z):

Claim 3: Let Y be a finite set. Let Z be a subset of Y . Then,

|P (Y, Z)| = 2|Y \Z|.

[Proof of Claim 3: Here is the idea: The elements of P (Y, Z) are the subsets S of Y
that contain Z as a subset. To choose such an S, we only need to decide which elements of
Y \ Z go into S (since the elements of Z are already forced to go into S); and this can be
done in 2|Y \Z| many ways (since we have 2 choices for each of the |Y \ Z| many elements of
Y \ Z). Hence, |P (Y, Z)| = 2|Y \Z|.
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A formal version of this argument looks as follows: The maps

P (Y, Z)→ P (Y \ Z) ,
S 7→ S \ Z

and

P (Y \ Z)→ P (Y, Z) ,

T 7→ T ∪ Z

are easily seen to be well-defined and mutually inverse; hence, they are bijections. Thus,
the bijection principle yields |P (Y, Z)| = |P (Y \ Z)| = 2|Y \Z| (by (28), applied to Y \ Z
instead of Y ). This proves Claim 3.]

Claim 4: Let K be a nonempty subset of X. Then,

{filter bases with core K} = P (P (X,K) , {K}) .

Before we prove Claim 4, let us spell out what it says without the symbols: “Let K be
a nonempty subset of X. Then, the filter bases with core K are precisely the sets lying
between {K} and the set of all sets lying between K and X.”. Or, to make it more intuitive:
“Let K be a nonempty subset of X. Then, a filter basis with core K will consist of sets lying
between K and X, and will always contain K. Conversely, any set consisting of sets lying
between K and X is a filter basis with core K as long as it contains K.”.

[Proof of Claim 4: We shall first prove that

{filter bases with core K} ⊆ P (P (X,K) , {K}) . (31)

Indeed, let F ∈ {filter bases with core K}. We shall show that F ∈ P (P (X,K) , {K}).
Indeed, F is a filter basis with core K (since F ∈ {filter bases with core K}). Thus,

K ∈ F (by (30)). Hence, {K} ⊆ F . Moreover, F is a set of subsets of X (since F is a filter
basis); thus, each A ∈ F is a subset of X. But K is the core of F , that is, the intersection
of all A ∈ F (by the definition of a core). Therefore, each A ∈ F satisfies K ⊆ A and
thus K ⊆ A ⊆ X (since A is a subset of X). In other words, each A ∈ F belongs to
P (X,K) (since K ⊆ A ⊆ X means precisely that A ∈ P (X,K) (by the definition of
P (X,K))). In other words, F ⊆ P (X,K). Hence, {K} ⊆ F ⊆ P (X,K). In other words,
F ∈ P (P (X,K) , {K}) (by the definition of P (P (X,K) , {K})).

Forget that we fixed F . We thus have shown that F ∈ P (P (X,K) , {K}) for each
F ∈ {filter bases with core K}. This proves (31).

On the other hand, let us prove that

P (P (X,K) , {K}) ⊆ {filter bases with core K} . (32)

Indeed, let G ∈ P (P (X,K) , {K}). We shall prove that G ∈ {filter bases with core K}.
From G ∈ P (P (X,K) , {K}), we obtain {K} ⊆ G ⊆ P (X,K) (by the definition

of P (P (X,K) , {K})). Thus, K ∈ {K} ⊆ G. Moreover, each element A of G belongs
to P (X,K) (since G ⊆ P (X,K)), and thus satisfies K ⊆ A ⊆ X (by the definition of
P (X,K)). Thus, each A ∈ G is a nonempty subset of X (indeed, it is a subset of X
because A ⊆ X, and it is nonempty because K ⊆ A for the nonempty set K). Thus, G is a
set of nonempty subsets of X. Furthermore, G itself is nonempty, since K ∈ G. Finally, for
every A ∈ G and B ∈ G, we have K ⊆ A (since A ∈ G ⊆ P (X,K) entails that K ⊆ A ⊆ X)
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and K ⊆ B (similarly) and therefore K ⊆ A∩B. Hence, for every A ∈ G and B ∈ G, there
exists some C ∈ G such that C ⊆ A ∩B (namely, C = K).

Thus, G is a nonempty set of nonempty subsets of X such that for every A ∈ G and
B ∈ G, there exists some C ∈ G such that C ⊆ A ∩ B. In other words, G is a filter basis
(by the definition of a filter basis).

Now, let L be the core of G. Thus, L is the intersection of all A ∈ G (by the definition
of a core). Hence, L ⊆ A for each A ∈ G. Applying this to A = K, we obtain L ⊆ K
(since K ∈ G). Conversely, we can easily see that K ⊆ L as follows: Since L is the core
of the filter basis G, we have L ∈ G (by (30), applied to G and L instead of F and K).
Hence, L ∈ G ⊆ P (X,K), so that K ⊆ L ⊆ X (by the definition of P (X,K)), and thus in
particular K ⊆ L. Combining L ⊆ K with K ⊆ L, we obtain L = K. In other words, the
core of G is K (since L is the core of G). Hence, G is a filter basis with core K. In other
words, G ∈ {filter bases with core K}.

Forget that we fixed G. We thus have shown that G ∈ {filter bases with core K} for
each G ∈ P (P (X,K) , {K}). This proves (32).

We have now proved the two relations (31) and (32). Combining them, we obtain

{filter bases with core K} = P (P (X,K) , {K}) .

Thus, Claim 4 is proven.]
Claim 2 is now easy:
[Proof of Claim 2: We know that K is a subset of X. Thus,

|X \K| = |X|︸︷︷︸
=n

(since X is an n-element set)

− |K| = n− |K|

and

|P (X,K)| = 2|X\K| (by Claim 3, applied to Y = X and Z = K)

= 2n−|K| (since |X \K| = n− |K|) .

But K ⊆ K ⊆ X and thus K ∈ P (X,K) (by the definition of P (X,K)). Hence, {K} is a
subset of P (X,K). Thus,

|P (X,K) \ {K}| = |P (X,K)|︸ ︷︷ ︸
=2n−|K|

− |{K}|︸ ︷︷ ︸
=1

= 2n−|K| − 1.

Now,

(# of filter bases with core K)

=

∣∣∣∣∣∣∣∣∣{filter bases with core K}︸ ︷︷ ︸
=P(P(X,K),{K})

(by Claim 4)

∣∣∣∣∣∣∣∣∣ = |P (P (X,K) , {K})|

= 2|P(X,K)\{K}| (by Claim 3, applied to Y = P (X,K) and Z = {K})

= 22
n−|K|−1 (

since |P (X,K) \ {K}| = 2n−|K| − 1
)
.

This proves Claim 2.]
At last, we can solve the actual problem:
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If F is any filter basis, then the core of F does itself belong to F (as we have already
seen), and thus is a nonempty subset of X (since F is a set of nonempty subsets of X).
Hence, the sum rule shows that

(# of filter bases)

=
∑

K is a nonempty
subset of X

(# of filter bases with core K)︸ ︷︷ ︸
=22

n−|K|−1

(by Claim 2)

=
∑

K is a nonempty
subset of X

22
n−|K|−1

=
∑

k∈{1,2,...,n}︸ ︷︷ ︸
=

n∑
k=1

∑
K is a nonempty

subset of X;
|K|=k

22
n−|K|−1︸ ︷︷ ︸

=22
n−k−1

(since |K|=k)

 here, we have split the sum according to the value of |K| ,
because if K is a nonempty subset of X, then |K| ∈ {1, 2, . . . , n}

(since X is an n-element set)


=

n∑
k=1

∑
K is a nonempty

subset of X;
|K|=k

22
n−k−1

︸ ︷︷ ︸
=(# of nonempty subsets K of X satisfying |K|=k)·22n−k−1

=
n∑

k=1

(# of nonempty subsets K of X satisfying |K| = k)︸ ︷︷ ︸
=(# of nonempty k-element subsets of X)

=(# of k-element subsets of X)
(since every k-element subset of X is nonempty

(because k≥1>0))

·22n−k−1

=
n∑

k=1

(# of k-element subsets of X)︸ ︷︷ ︸
=

(
n

k

)
(by [Math222, Theorem 1.3.12], since X is an n-element set)

·22n−k−1

=
n∑

k=1

(
n

k

)
︸︷︷︸

=

(
n

n− k

)
(by [Math222, Theorem 1.3.11])

22
n−k−1

=
n∑

k=1

(
n

n− k

)
22

n−k−1 =
n−1∑
k=0

(
n

k

)
22

k−1

(here, we have substituted k for n− k in the sum). This solves part (b) of the exercise.
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