Math 222: Enumerative Combinatorics, Fall 2019: Homework 2

Darij Grinberg

December 16, 2019

1 ExERCISE 1

1.1 Problem

For each $n \in \mathbb{N}$, we define the n-th harmonic number H_{n} by

$$
H_{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

Prove that

$$
\begin{equation*}
H_{1}+H_{2}+\cdots+H_{n}=(n+1)\left(H_{n+1}-1\right) \tag{1}
\end{equation*}
$$

for each $n \in \mathbb{N}$.

1.2 First solution

We shall prove (1) by induction on n :
Induction base: We have $H_{0+1}=H_{1}=\frac{1}{1}$ (by the definition of H_{1}). Thus, $H_{0+1}-1=$ $\frac{1}{1}-1=0$.

Comparing

$$
H_{1}+H_{2}+\cdots+H_{0}=(\text { empty sum })=0
$$

with

$$
(0+1)(\underbrace{H_{0+1}-1}_{=0})=0
$$

we find

$$
H_{1}+H_{2}+\cdots+H_{0}=(0+1)\left(H_{0+1}-1\right) .
$$

In other words, (1) holds for $n=0$. This completes the induction base.
Induction step: Let m be a positive integer. Assume that (1) holds for $n=m-1$. We must prove that (1) holds for $n=m$.

We have assumed that (1) holds for $n=m-1$. In other words,

$$
H_{1}+H_{2}+\cdots+H_{m-1}=((m-1)+1)\left(H_{(m-1)+1}-1\right) .
$$

In view of $(m-1)+1=m$, this rewrites as

$$
\begin{equation*}
H_{1}+H_{2}+\cdots+H_{m-1}=m\left(H_{m}-1\right) . \tag{2}
\end{equation*}
$$

But the definition of H_{m} yields

$$
\begin{equation*}
H_{m}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{m} . \tag{3}
\end{equation*}
$$

Also, the definition of H_{m+1} yields

$$
H_{m+1}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{m+1}=\underbrace{\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{m}\right)}_{\substack{=H_{m} \\(\text { by }(3))}}+\frac{1}{m+1}=H_{m}+\frac{1}{m+1} .
$$

Hence,

$$
\begin{aligned}
& (m+1)(\underbrace{H_{m+1}}_{=H_{m}+\frac{1}{m+1}}-1)=(m+1)\left(H_{m}+\frac{1}{m+1}-1\right) \\
& =(m+1) H_{m}+\underbrace{(m+1) \cdot \frac{1}{m+1}-(m+1)}_{=1-(m+1)=-m}=(m+1) H_{m}+(-m) \\
& =(m+1) H_{m}-m .
\end{aligned}
$$

Comparing this with

$$
\begin{aligned}
H_{1}+H_{2}+\cdots+H_{m} & =\underbrace{\left(H_{1}+H_{2}+\cdots+H_{m-1}\right)}_{\substack{=m\left(H_{m}-1\right) \\
(\text { by } 22)}}+H_{m} \\
& =m\left(H_{m}-1\right)+H_{m}=m H_{m}-m+H_{m}=(m+1) H_{m}-m,
\end{aligned}
$$

we obtain

$$
H_{1}+H_{2}+\cdots+H_{m}=(m+1)\left(H_{m+1}-1\right) .
$$

In other words, (1) holds for $n=m$. This completes the induction step. Hence, (1) is proven by induction.

1.3 SECOND SOLUTION

Each $n \in \mathbb{N}$ satisfies

$$
\begin{equation*}
H_{n}=\sum_{k=1}^{n} \frac{1}{k} \tag{4}
\end{equation*}
$$

(by the definition of H_{n}).
Now, let $n \in \mathbb{N}$. Then,

$$
\begin{gathered}
H_{1}+H_{2}+\cdots+H_{n}=\sum_{m=1}^{n} \underbrace{H_{m}}_{\substack{m \\
=\sum_{k=1}^{m} \frac{1}{k}}}=\sum_{m=1}^{n} \sum_{k=1}^{m} \frac{1}{k}=\sum_{k=1}^{n} \sum_{m=k}^{n} \frac{1}{k} . \\
\text { (by (4), applied to } m \text { instead of } n \text {) }
\end{gathered}
$$

Here, the last equality sign is a consequence of one of Fubini's principles for the interchange of summations (namely, Math222, Corollary 1.6.9]). Thus,

$$
\begin{aligned}
& H_{1}+H_{2}+\cdots+H_{n}=\sum_{k=1}^{n} \quad \underbrace{\sum_{m=k}^{n} \frac{1}{k}} \quad=\sum_{k=1}^{n}(n-k+1) \cdot \frac{1}{k} . \\
& =(n-k+1) \cdot \frac{1}{k} \\
& \text { (since this is a sum of } n-k+1 \\
& \text { many equal addends) }
\end{aligned}
$$

Comparing this with

$$
\begin{aligned}
& (n+1)\left(H_{n+1}-1\right)=(n+1) \\
& \underbrace{H_{n+1}}_{\substack{n+1}} \quad-(n+1) \\
& =\sum_{k=1}^{n+1} \frac{1}{k} \\
& \text { (by (4), applied to } n+1 \text { instead of } n \text {) } \\
& =(n+1) \sum_{k=1}^{n+1} \frac{1}{k}-\quad \underbrace{(n+1)}_{\substack{n+1 \\
=\sum_{k=1} 1}} \quad=(n+1) \sum_{k=1}^{n+1} \frac{1}{k}-\sum_{k=1}^{n+1} 1 \\
& \text { (since } \left.\sum_{k=1}^{n+1} 1=(n+1) \cdot 1=n+1\right) \\
& =\sum_{k=1}^{n+1} \underbrace{\left((n+1) \cdot \frac{1}{k}-1\right)}_{=(n-k+1) \cdot \frac{1}{k}}=\sum_{k=1}^{n+1}(n-k+1) \cdot \frac{1}{k} \\
& =\underbrace{(n-(n+1)+1)}_{=0} \cdot \frac{1}{n+1}+\sum_{k=1}^{n}(n-k+1) \cdot \frac{1}{k}
\end{aligned}
$$

(here, we have split off the addend for $k=n+1$ from the sum)

$$
=\sum_{k=1}^{n}(n-k+1) \cdot \frac{1}{k},
$$

we obtain $H_{1}+H_{2}+\cdots+H_{n}=(n+1)\left(H_{n+1}-1\right)$. This solves the exercise.

2 Exercise 2

2.1 Problem

Let $n \in \mathbb{N}$. Compute the number of 4-tuples (A, B, C, D) of subsets of $[n]$ satisfying

$$
A \cap B=C \cap D .
$$

[Hint: This is similar to [17f-hw3s, Exercise 1]. It is not necessary to be as detailed as in the solution of part (a) of the latter exercise.]

2.2 SOLUTION SKETCH

We shall say that a 4-tuple (A, B, C, D) of subsets of $[n]$ is good if and only if it satisfies $A \cap B=C \cap D$.

We claim the following:
Claim 1: The \# of good 4-tuples is 10^{n}.
Let us first give an informal (but perfectly clear to the experienced reader) proof of this claim, and then formalize it.

Informal proof of Claim 1. A 4-tuple (A, B, C, D) of subsets of $[n]$ is good if and only if it satisfies the following property: Each $i \in[n]$ belongs to

- either all four sets A, B, C and D,
- or the sets A and C but not B and D,
- or the sets A and D but not B and C,
- or the sets B and C but not A and D,
- or the sets B and D but not A and C,
- or the set A but none of the other three sets,
- or the set B but none of the other three sets,
- or the set C but none of the other three sets,
- or the set D but none of the other three sets,
- or none of the four sets A, B, C and D.

TWe shall refer to these 10 possibilities as "Option 1", "Option 2" and so on.
Thus, the following simple algorithm constructs every good 4-tuple (A, B, C, D) : For each $i \in[n]$, we decide which of the 10 options listed above the element i should satisfy (i.e.,

[^0]whether it satisfies Option 1 or Option 2 etc.). There are 10 choices for it, since these 10 options are mutually exclusive. Thus, in total, there are 10^{n} good 4 -tuples (because we are making this decision once for each of the n elements i of $[n]$). This completes our informal proof of Claim 1.

Next comes a formalized version of this argument:
Formal proof of Claim 1. Consider a 4-tuple (A, B, C, D) of subsets of $[n]$, and an element $i \in[n]$. This element i either lies in A or does not; it either lies in B or does not; it either lies in C or does not; it either lies in D or does not. Thus, we have a total of 16 possible answers to the question "which of the 4 subsets A, B, C and D does i lie in?". Let us encode these answers as 4 -tuples of bits (i.e., of elements of $\{0,1\}$): Namely, we define

$$
\mathbf{w}_{A, B, C, D}(i)=([i \in A],[i \in B],[i \in C],[i \in D]) \in\{0,1\}^{4}
$$

(where we are using the Iverson bracket notation). Thus, for example, if i lies in A and D but not in B and not in C, then $\mathbf{w}_{A, B, C, D}(i)=(1,0,0,1)$.

Now, assume that the 4 -tuple (A, B, C, D) is good. Then, $\mathbf{w}_{A, B, C, D}(i)$ cannot take certain values. For example, $\mathbf{w}_{A, B, C, D}(i)$ cannot be $(1,1,0,1)$, because in this case, i would be contained in $A \cap B$ (since $[i \in A]=1$ and $[i \in B]=1$) but not in $C \cap D$ (since $[i \in C]=0$), which would contradict the "goodness" condition $A \cap B=C \cap D$. Likewise, there are other values that $\mathbf{w}_{A, B, C, D}(i)$ cannot take. By systematically checking all 16 possible 4 -tuples of bits, we can easily see that the set of impossible values of $\mathbf{w}_{A, B, C, D}(i)$ is

$$
J:=\{(1,1,0,0),(1,1,0,1),(1,1,1,0),(0,0,1,1),(0,1,1,1),(1,0,1,1)\} .
$$

Thus, $\mathbf{w}_{A, B, C, D}(i)$ belongs not only to $\{0,1\}^{4}$, but to the smaller set $\{0,1\}^{4} \backslash J$. It is easy to see that this smaller set has size $\left|\{0,1\}^{4} \backslash J\right|=10$.

Now, forget that we fixed i. Thus, we have defined a 4-tuple $\mathbf{w}_{A, B, C, D}(i) \in\{0,1\}^{4} \backslash J$ for each $i \in[n]$ (assuming that (A, B, C, D) is good). In other words, we have defined a map

$$
\begin{aligned}
\mathbf{w}_{A, B, C, D}:[n] & \rightarrow\{0,1\}^{4} \backslash J, \\
i & \mapsto \mathbf{w}_{A, B, C, D}(i)=([i \in A],[i \in B],[i \in C],[i \in D]) .
\end{aligned}
$$

Note that we can easily reconstruct the 4 -tuple (A, B, C, D) from the map $\mathbf{w}_{A, B, C, D}$; indeed,

$$
\begin{aligned}
& A=\left\{i \in[n] \mid \text { the } 1 \text {-st entry of } \mathbf{w}_{A, B, C, D}(i) \text { is } 1\right\} ; \\
& B=\left\{i \in[n] \mid \text { the 2-nd entry of } \mathbf{w}_{A, B, C, D}(i) \text { is } 1\right\} ; \\
& C=\left\{i \in[n] \mid \text { the 3-rd entry of } \mathbf{w}_{A, B, C, D}(i) \text { is } 1\right\} ; \\
& D=\left\{i \in[n] \mid \text { the 4-th entry of } \mathbf{w}_{A, B, C, D}(i) \text { is } 1\right\} .
\end{aligned}
$$

Now, forget that we fixed (A, B, C, D). We thus have defined a map $\mathbf{w}_{A, B, C, D}:[n] \rightarrow$ $\{0,1\}^{4} \backslash J$ for each good 4-tuple (A, B, C, D). Hence, we can define a map

$$
\begin{aligned}
\mathbf{W}:\{\text { good 4-tuples }\} & \rightarrow\left(\{0,1\}^{4} \backslash J\right)^{[n]}, \\
(A, B, C, D) & \mapsto \mathbf{w}_{A, B, C, D} .
\end{aligned}
$$

(Keep in mind that the notation Y^{X}, where X and Y are two sets, stands for the set of all maps from X to Y. Thus, the values of this map \mathbf{W} are themselves maps.)

We have previously shown that a good 4 -tuple (A, B, C, D) can be reconstructed from the map $\mathbf{w}_{A, B, C, D}$. In other words, the map \mathbf{W} is injective.

Moreover, the map \mathbf{W} is surjective. Indeed, if $\mathbf{f} \in\left(\{0,1\}^{4} \backslash J\right)^{[n]}$ is any map, then we can define a 4 -tuple (A, B, C, D) of subsets of $[n]$ by setting

$$
\begin{aligned}
& A=\{i \in[n] \mid \text { the } 1 \text {-st entry of } \mathbf{f}(i) \text { is } 1\} ; \\
& B=\{i \in[n] \mid \text { the 2-nd entry of } \mathbf{f}(i) \text { is } 1\} ; \\
& C=\{i \in[n] \mid \text { the 3-rd entry of } \mathbf{f}(i) \text { is } 1\} ; \\
& D=\{i \in[n] \mid \text { the 4-th entry of } \mathbf{f}(i) \text { is } 1\} ;
\end{aligned}
$$

and it is easy to see that this 4-tuple (A, B, C, D) will be good (since $\mathbf{f}(i) \in\{0,1\}^{4} \backslash J$ for each $i \in[n]$, which rules out precisely the constellations ${ }^{2}$ that would violate $A \cap B=C \cap D$), and furthermore the image of this good 4 -tuple (A, B, C, D) under the map \mathbf{W} will be our f.

Thus, we now know that the map \mathbf{W} is injective and surjective. Hence, \mathbf{W} is bijective. Thus, the bijection principle yields

$$
\begin{aligned}
\mid\{\text { good 4-tuples }\} \mid= & \left|\left(\{0,1\}^{4} \backslash J\right)^{[n]}\right|=\left|\{0,1\}^{4} \backslash J\right|^{|[n]|} \\
& \left(\text { since }\left|Y^{X}\right|=|Y|^{X X \mid} \text { for any two finite sets } X \text { and } Y\right) \\
= & 10^{n} \quad\left(\text { since }\left|\{0,1\}^{4} \backslash J\right|=10 \text { and }|[n]|=n\right) .
\end{aligned}
$$

In other words, the $\#$ of good 4 -tuples is 10^{n}. This proves Claim 1.

3 Exercise 3

3.1 Problem

Let $n \in \mathbb{N}$. A subset S of $[n]$ is said to be odd-sum if the sum of the elements of S is odd. How many subsets of $[n]$ are odd-sum?

3.2 First solution sketch

The following solution imitates Math222, Third proof of Proposition 1.3.28].
Claim 1: We have

$$
(\# \text { of odd-sum subsets of }[n])=\left\{\begin{array}{ll}
0, & \text { if } n=0 \\
2^{n-1}, & \text { if } n \neq 0
\end{array} .\right.
$$

[Proof of Claim 1: If $n=0$, then the \# of odd-sum subsets of $[n]$ is 0 (since the only subset of $[n]$ is \varnothing in this case, but \varnothing is not odd-sum). Thus, Claim 1 holds when $n=0$. For the rest of this proof, we shall therefore WLOG assume that $n \neq 0$. Hence, $n \geq 1$, so that $1 \in[n]$.

[^1]Let us say that a subset S of $[n]$ is even-sum if the sum of the elements of S is even. Then, each subset of $[n]$ is either even-sum or odd-sum (but not both at the same time). Hence, by the sum rule, we have

```
(# of all subsets of [n])
=(# of even-sum subsets of [n]) +(# of odd-sum subsets of [n]).
```

Comparing this with
(\# of all subsets of $[n])=2^{n} \quad$ (by Math222, Theorem 1.4.1], applied to $S=[n]$),
we obtain

$$
\begin{equation*}
2^{n}=(\# \text { of even-sum subsets of }[n])+(\# \text { of odd-sum subsets of }[n]) . \tag{5}
\end{equation*}
$$

On the other hand, if we add 1 to an even integer, then we obtain an odd integer. Hence, if S is an even-sum subset of $[n]$ such that $1 \notin S$, then $S \cup\{1\}$ is an odd-sum subset of $[n]$. Similarly, if S is an even-sum subset of $[n]$ such that $1 \in S$, then $S \backslash\{1\}$ is an odd-sum subset of $[n]$. Thus, the map

$$
\begin{aligned}
\text { \{even-sum subsets of }[n]\} & \rightarrow\{\text { odd-sum subsets of }[n]\}, \\
S & \mapsto \begin{cases}S \cup\{1\}, & \text { if } 1 \notin S ; \\
S \backslash\{1\}, & \text { if } 1 \in S\end{cases}
\end{aligned}
$$

is well-defined. Similarly, the map

$$
\begin{aligned}
\text { \{odd-sum subsets of }[n]\} & \rightarrow\{\text { even-sum subsets of }[n]\}, \\
S & \mapsto \begin{cases}S \cup\{1\}, & \text { if } 1 \notin S ; \\
S \backslash\{1\}, & \text { if } 1 \in S\end{cases}
\end{aligned}
$$

is well-defined. It is straightforward to see that these two maps are mutually inverse, and thus are bijections. Hence, the bijection principle shows that

$$
(\# \text { of even-sum subsets of }[n])=(\# \text { of odd-sum subsets of }[n]) .
$$

Thus, (5) becomes

$$
\begin{aligned}
2^{n} & =\underbrace{(\# \text { of even-sum subsets of }[n])}_{=(\# \text { of odd-sum subsets of }[n])}+(\# \text { of odd-sum subsets of }[n]) \\
& =(\# \text { of odd-sum subsets of }[n])+(\# \text { of odd-sum subsets of }[n]) \\
& =2 \cdot(\# \text { of odd-sum subsets of }[n]) .
\end{aligned}
$$

Dividing both sides of this equality by 2 , we find $2^{n} / 2=$ (\# of odd-sum subsets of $[n]$), so that

$$
(\# \text { of odd-sum subsets of }[n])=2^{n} / 2=2^{n-1} .
$$

This proves Claim 1.]

3.3 SECOND SOLUTION SKETCH

Here is a very rough outline of a different solution.
Again, we WLOG assume that $n \neq 0$, so that $n \geq 1$.
Let E be the set of all even elements of $[n]$, and let O be the set of all odd elements of $[n]$. Then, E and O are disjoint subsets of $[n]$ whose union is $E \cup O=[n]$. Hence, the sum rule yields $|E|+|O|=|[n]|=n$. Moreover, $1 \in[n]$ (since $n \geq 1$), thus $1 \in O$, and therefore $|O| \geq 1$. A subset S of $[n]$ is odd-sum if and only if it contains an odd number of odd elements 3^{3}, i.e., if the intersection $S \cap O$ is a set of odd size. Thus, the map

$$
\begin{aligned}
\{\text { odd-sum subsets of }[n]\} & \rightarrow\{\text { subsets of } E\} \times\{\text { subsets of } O \text { having odd size }\}, \\
S & \mapsto(S \cap E, S \cap O)
\end{aligned}
$$

is a bijection. Hence, by the bijection principle,

$$
\begin{aligned}
& \text { (\# of odd-sum subsets of }[n]) \\
& =\mid\{\text { subsets of } E\} \times\{\text { subsets of } O \text { having odd size }\} \mid \\
& =(\# \text { of subsets of } E) \cdot(\# \text { of subsets of } O \text { having odd size }) .
\end{aligned}
$$

Now, Math222, Theorem 1.4.1] yields (\# of subsets of E) $=2^{|E|}$. What is (\# of subsets of O having odd size)? Well, the sum rule yields
(\# of subsets of O having odd size)
$=\sum_{\substack{k \in \mathbb{N} ; \\ k \text { is odd }}} \underbrace{(\# \text { of subsets of } O \text { having size } k)}_{=(\# \text { of } k \text {-element subsets of } O)}$

$$
=\binom{|O|}{k}
$$

(by Math222, Theorem 1.3.12])
(this is one of those infinite sums with only finitely many nonzero addends)
$=\sum_{\substack{k \in \mathbb{N} ; \\ k \text { is odd }}}\binom{|O|}{k}=\binom{|O|}{1}+\binom{|O|}{3}+\binom{|O|}{5}+\cdots$
$=2^{|O|-1} \quad$ (by Math222, Proposition 1.3.34], applied to $|O| \operatorname{instead}$ of n).
Hence,

$$
\begin{aligned}
& (\# \text { of odd-sum subsets of }[n]) \\
& =\underbrace{(\# \text { of subsets of } E)}_{=2^{|E|}} \cdot \underbrace{(\# \text { of subsets of } O \text { having odd size })}_{=2^{O O \mid-1}} \\
& =2^{|E|} \cdot 2^{|O|-1}=2^{|E|+|O|-1}=2^{n-1} \quad(\text { since }|E|+|O|=n) .
\end{aligned}
$$

This solves the exercise again.

[^2]
4 ExERCISE 4

4.1 Problem

Let $n \in \mathbb{N}$. Prove that

$$
\begin{equation*}
\sum_{i=0}^{n} 2^{i}\binom{n-i}{i}=\frac{(-1)^{n}+2^{n+1}}{3} \tag{6}
\end{equation*}
$$

[Hint: Remember counting the pseudomino tilings on the previous problem set? Time to count them again! (This is not the only possible solution.)]

4.2 First solution sketch

We WLOG assume that $n>0$ (since the case $n=0$ is easily checked by hand).
We shall use the terminology introduced in Math222, §1.1] for dominos and domino tilings, and we shall use the notion of lacunar sets defined in Math222, Definition 1.4.2]. We shall furthermore use hw1s, Exercise 1], and in particular we shall use the notions of "pseudomino" and "pseudomino tiling" defined therein. We let p_{n} denote the number of all pseudomino tilings of the rectangle $R_{n, 2}$. Then, hw1s, Exercise 1 (b)] yields

$$
\begin{equation*}
p_{n}=\frac{(-1)^{n}+2^{n+1}}{3} \tag{7}
\end{equation*}
$$

A bijection

$$
h:\left\{\text { domino tilings of } R_{n+1,2}\right\} \rightarrow\{\text { lacunar subsets of }[n]\}
$$

has been constructed in Math222, Second proof of Proposition 1.4.9]; it is defined as follows: If T is any domino tiling of $R_{n+1,2}$, then $h(T)$ shall be the set of all $i \in[n+1]$ such that at least one horizontal domino of T starts in column i.

Substituting $n-1$ for n in this construction, we obtain a bijection

$$
h^{\prime}:\left\{\text { domino tilings of } R_{n, 2}\right\} \rightarrow\{\text { lacunar subsets of }[n-1]\}
$$

defined as follows: If T is any domino tiling of $R_{n, 2}$, then $h^{\prime}(T)$ shall be the set of all $i \in[n]$ such that at least one horizontal domino of T starts in column i.

We want to define a bijection similar to h^{\prime}, but with pseudomino tilings instead of domino tilings. The target of this bijection will not be \{lacunar subsets of $[n-1]\}$ anymore, but rather will be \{lacunar pairs\}, where a lacunar pair shall mean a pair (S, T) of two disjoint subsets of $[n-1]$ such that $S \cup T$ is lacunar.

If T is a pseudomino tiling of $R_{n, 2}$, then

- we let $h(T)$ be the set of all $i \in[n]$ such that at least one horizontal domino of T starts in column i;
- we let $d(T)$ be the set of all $i \in[n]$ such that at least one 2×2-rectangle of T start $\left\{_{4}^{4}\right.$ in column i.

[^3]For example, if $n=11$ and

then

$$
h(T)=\{2,8\} \quad \text { and } \quad d(T)=\{4,10\} .
$$

We now define a map

$$
\begin{aligned}
h^{\prime \prime}:\left\{\text { pseudomino tilings of } R_{n, 2}\right\} & \rightarrow\{\text { lacunar pairs }\}, \\
T & \mapsto(h(T), d(T)) .
\end{aligned}
$$

This map is well-defined, because if T is a pseudomino tiling of $R_{n, 2}$, then the pair $(h(T), d(T))$ is a lacunar pair ${ }^{[5}$. Moreover, it is not hard to check that this map $h^{\prime \prime}$ is a bijection ${ }^{6}$. Thus, the bijection principle shows that

$$
\left(\# \text { of pseudomino tilings of } R_{n, 2}\right)=(\# \text { of lacunar pairs }) .
$$

But the definition of p_{n} yields

$$
\begin{equation*}
p_{n}=\left(\# \text { of pseudomino tilings of } R_{n, 2}\right)=(\# \text { of lacunar pairs }) . \tag{8}
\end{equation*}
$$

Now, let us count the lacunar pairs. If (S, T) is a lacunar pair, then $S \cup T$ is a lacunar subset of $[n-1]$. Thus, by the sum rule, we have

$$
\begin{align*}
& \text { (\# of lacunar pairs) } \\
& =\sum_{\substack{L \text { is a lacunar } \\
\text { subset of }[n-1]}}(\# \text { of lacunar pairs }(S, T) \text { with } S \cup T=L) . \tag{9}
\end{align*}
$$

Now, fix a lacunar subset L of $[n-1]$. How many lacunar pairs (S, T) are there that satisfy $S \cup T=L$?

Clearly, if (S, T) is a lacunar pair with $S \cup T=L$, then $S \subseteq S \cup T=L$. Thus, the map
$\{$ lacunar pairs (S, T) with $S \cup T=L\} \rightarrow\{$ subsets of $L\}$,

$$
(S, T) \mapsto S
$$

is well-defined. On the other hand, if S is any subset of L, then $(S, L \backslash S)$ is a lacunar pair with $S \cup(L \backslash S)=L$. Thus, the map

$$
\begin{aligned}
\{\text { subsets of } L\} & \rightarrow\{\text { lacunar pairs }(S, T) \text { with } S \cup T=L\}, \\
S & \mapsto(S, L \backslash S)
\end{aligned}
$$

is well-defined. It is easy to see that these two maps are mutually inverse ${ }^{7}$, and thus are bijections. Hence, the bijection principle yields

$$
\text { (\# of lacunar pairs } \begin{align*}
(S, T) \text { with } S \cup T=L) & =(\# \text { of subsets of } L) \\
& =2^{|L|} \tag{10}
\end{align*}
$$

[^4](by Math222, Theorem 1.4.1], applied to $|L|$ and L instead of n and S).
Now, forget that we fixed L. We thus have proved (10) for each lacunar subset L of [$n-1$]. Thus, (9) becomes
(\# of lacunar pairs)
$=\sum_{\substack{L \text { is a acanar } \\ \text { subset of }[n-1]}} \underbrace{(\# \text { of lacunar pairs }(S, T) \text { with } S \cup T=L)}_{\substack{=2|L| \\\left(\text { by } \frac{|L|}{[10}\right)}}$
$=\sum_{\substack{L \text { is a lacunar } \\ \text { subset of }[n-1]}} 2^{|L|}$

$=\sum_{k \in\{0,1, \ldots, n\}} \sum_{\begin{array}{c}L \text { is a lacunar } \\ \text { subset of }[n-1] ; \\ |L|=k\end{array}} \underbrace{2^{|L|}}_{\left(\text {since }=2^{k}|L|=k\right)}$
$\left(\begin{array}{c}\text { here, we have split the sum } \sum_{\substack{L \text { is a lacunar } \\ \text { subset of }[n-1]}} 2^{|L|} \text { according to the value of }|L| \\ \text { (because each subset } L \text { of }[n-1] \text { satisfies }|L| \leq|[n-1]|=n-1 \leq n \\ \text { and therefore }|L| \in\{0,1, \ldots, n\})\end{array}\right)$
$=\sum_{k \in\{0,1, \ldots, n\}}$
$\sum_{\substack{L \text { is a lacunar } \\ \text { subset of } \\|L|=k-1] ;}} 2^{k}$
$=(\#$ of lacunar subsets L of $[n-1]$ such that $|L|=k) \cdot 2^{k}$
$=\sum_{k \in\{0,1, \ldots, n\}} \underbrace{(\# \text { of lacunar subsets } L \text { of }[n-1] \text { such that }|L|=k)}_{=(\# \text { of } k \text {-element lacunar subsets of }[n-1])} \cdot 2^{k}$
$=\binom{(n-1)+1-k}{k}$
(by Math222, Proposition 1.4.10], applied to $n-1$ instead of n)

$$
=\underbrace{\sum_{=\binom{n-k}{k}} \underbrace{\binom{n-1)+1-k}{k}} \cdot 2^{k}=\sum_{k=0}^{n}\binom{n-k}{k} \cdot 2^{k}=\sum_{k=0}^{n} 2^{k}\binom{n-k}{k} .}_{\substack{=\sum_{k=0}^{n} \\ \text { (an equality } \\ \text { of summation signs) }}}
$$

Now, (8) becomes

$$
p_{n}=(\# \text { of lacunar pairs })=\sum_{k=0}^{n} 2^{k}\binom{n-k}{k}=\sum_{i=0}^{n} 2^{i}\binom{n-i}{i}
$$

(here, we have renamed the summation index k as i). Comparing this with (7), we obtain

$$
\sum_{i=0}^{n} 2^{i}\binom{n-i}{i}=\frac{(-1)^{n}+2^{n+1}}{3}
$$

This solves the exercise.

4.3 SECOND SOLUTION

Here is a purely algebraic solution (similar to Grinbe15, solution to Exercise 4.4]):

Forget that we fixed n. Set

$$
\begin{equation*}
g_{n}=\sum_{i=0}^{n} 2^{i}\binom{n-i}{i} \quad \text { for each } n \in\{-1,0,1, \ldots\} \tag{11}
\end{equation*}
$$

Thus,

$$
\begin{gather*}
g_{0}=\sum_{i=0}^{0} 2^{i}\binom{0-i}{i}=\underbrace{2^{0}}_{=1} \underbrace{\binom{0-0}{0}}_{=1}=1 \quad \text { and } \tag{12}\\
g_{-1}=\sum_{i=0}^{-1} 2^{i}\binom{-1-i}{i}=(\text { empty sum })=0 \tag{13}
\end{gather*}
$$

On the other hand,

$$
\begin{align*}
\frac{(-1)^{0}+2^{0+1}}{3} & =\frac{1+2}{3}=1 \quad \text { and } \tag{14}\\
\frac{(-1)^{-1}+2^{-1+1}}{3} & =\frac{-1+1}{3}=0 . \tag{15}
\end{align*}
$$

Comparing (12) with (14), we obtain

$$
\begin{equation*}
g_{0}=\frac{(-1)^{0}+2^{0+1}}{3} \tag{16}
\end{equation*}
$$

Comparing (13) with (15), we obtain

$$
\begin{equation*}
g_{-1}=\frac{(-1)^{-1}+2^{-1+1}}{3} \tag{17}
\end{equation*}
$$

Recall the recurrence of the binomial coefficients:
Theorem 4.1 (Recurrence of the binomial coefficients). Let $n \in \mathbb{R}$ and $k \in \mathbb{R}$. Then,

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

We also recall the following lemma:
Lemma 4.2. Let $k \in \mathbb{R}$. Then, $\binom{0}{k}=[k=0]$.
Here, we are using the Iverson bracket notation.
Also, recall that if $n, k \in \mathbb{R}$ satisfy $k \notin \mathbb{N}$, then

$$
\begin{equation*}
\binom{n}{k}=0 . \tag{18}
\end{equation*}
$$

(This is part of the definition of binomial coefficients.)
Now, we claim the following:
Claim 1: We have $g_{n}=\frac{(-1)^{n}+2^{n+1}}{3}$ for each $n \in\{-1,0,1, \ldots\}$.
[Proof of Claim 1: We shall prove Claim 1 by strong induction on n.
Induction step: Let $m \in\{-1,0,1, \ldots\}$. Assume (as the induction hypothesis) that Claim 1 holds for all $n<m$. We must now prove that Claim 1 holds for $n=m$. In other words, we must prove that $g_{m}=\frac{(-1)^{m}+2^{m+1}}{3}$. If $m=-1$, then this follows immediately from (17). Hence, for the rest of this proof, we WLOG assume that $m \neq-1$. Combining this with $m \in\{-1,0,1, \ldots\}$, we find $m \in\{-1,0,1, \ldots\} \backslash\{-1\}=\{0,1,2, \ldots\}$.

We must prove that $g_{m}=\frac{(-1)^{m}+2^{m+1}}{3}$. If $m=0$, then this follows immediately from (16). Hence, for the rest of this proof, we WLOG assume that $m \neq 0$. Combining this with $m \in\{0,1,2, \ldots\}$, we find $m \in\{0,1,2, \ldots\} \backslash\{0\}=\{1,2,3, \ldots\}$. Hence, $m-2 \in\{-1,0,1, \ldots\}$ and $m-1 \in\{0,1,2, \ldots\} \subseteq\{-1,0,1, \ldots\}$ and $m \geq 1$. Also, from $m \neq 0$, we obtain $[m=0]=0$.

We have $m-2 \in\{-1,0,1, \ldots\}$ and $m-2<m$. Thus, Claim 1 holds for $n=m-2$ (since we assumed that Claim 1 holds for all $n<m$). In other words, we have

$$
\begin{equation*}
g_{m-2}=\frac{(-1)^{m-2}+2^{(m-2)+1}}{3} . \tag{19}
\end{equation*}
$$

We have $m-1 \in\{-1,0,1, \ldots\}$ and $m-1<m$. Thus, Claim 1 holds for $n=m-1$ (since we assumed that Claim 1 holds for all $n<m$). In other words, we have

$$
\begin{equation*}
g_{m-1}=\frac{(-1)^{m-1}+2^{(m-1)+1}}{3} . \tag{20}
\end{equation*}
$$

But the definition of g_{m-2} yields

$$
\begin{equation*}
g_{m-2}=\sum_{i=0}^{m-2} 2^{i}\binom{(m-2)-i}{i} . \tag{21}
\end{equation*}
$$

Likewise, the definition of g_{m-1} yields

$$
\begin{equation*}
g_{m-1}=\sum_{i=0}^{m-1} 2^{i}\binom{(m-1)-i}{i} . \tag{22}
\end{equation*}
$$

Now, the definition of g_{m} yields

$$
\begin{aligned}
g_{m}=\sum_{i=0}^{m} 2^{i}\binom{m-i}{i}=2^{m} & \underbrace{\binom{m-m}{m}}_{\substack{0 \\
m \\
\text { (by Lemma } 4.2 \\
\text { applied to } k=m}}+\sum_{i=0}^{m-1} 2^{i}\binom{m-i}{i}
\end{aligned}
$$

(here, we have split off the addend for $i=m$ from the sum)

$$
=\sum_{i=0}^{m-1} \underbrace{2^{i}}\binom{m-i-1}{i-1}+\binom{m-i-1}{i})=\sum_{i=0}^{m-1}\left(2^{i}\binom{m-i-1}{i-1}+2^{i}\binom{m-i-1}{i}\right)
$$

$$
=2^{i}\binom{m-i-1}{i-1}+2^{i}\binom{m-i-1}{i}
$$

$$
\begin{equation*}
=\sum_{i=0}^{m-1} 2^{i}\binom{m-i-1}{i-1}+\sum_{i=0}^{m-1} 2^{i}\binom{m-i-1}{i} \tag{23}
\end{equation*}
$$

We shall now massage the two sums on the right hand side of this equality, with the ultimate goal of revealing that the first of them is $2 g_{m-2}$ while the second is g_{m-1}.

$$
\begin{aligned}
& =2^{m} \underbrace{[m=0]}_{=0}+\sum_{i=0}^{m-1} 2^{i}\binom{m-i}{i}=\sum_{i=0}^{m-1} 2^{i} \quad \underbrace{\binom{m-i}{i}} \\
& =\binom{m-i-1}{i-1}+\left(\begin{array}{c}
m-i-1 \\
i \\
\text { (by Theorem } \\
\text { to } n=m-i .1 .1 \text { and } k=i \text { aplied }
\end{array}\right)
\end{aligned}
$$

Let us start with the first sum. We have $m-1 \in\{0,1,2, \ldots\}=\mathbb{N}$ and

$$
\begin{aligned}
& \sum_{i=0}^{m-1} 2^{i}\binom{m-i-1}{i-1} \\
& =2^{0} \quad \underbrace{\binom{m-0-1}{0-1}}_{i=1}+\sum_{i}^{m-1} 2^{i}\binom{m-i-1}{i-1}
\end{aligned}
$$

(by $\sqrt{18}$, applied to $n=m-1$ and $k=-1$)
($\left.\begin{array}{c}\text { here, we have split off the addend for } i=0 \text { from the sum } \\ \text { (since } 0 \leq m-1 \text { (because } m \geq 1)\end{array}\right)$
(here, we have substituted $i+1$ for i in the sum)

$$
=\sum_{i=0}^{m-2} 2 \cdot 2^{i}\binom{(m-2)-i}{i}=2 \cdot \underbrace{\sum_{i=0}^{m-2} 2^{i}\binom{(m-2)-i}{i}}_{\substack{=g_{m-2} \\(\text { by }[21])}}
$$

$$
\begin{equation*}
=2 g_{m-2} . \tag{24}
\end{equation*}
$$

Now, let us take a look at the second sum. We have

$$
\begin{align*}
\sum_{i=0}^{m-1} 2^{i} & \underbrace{\left(\begin{array}{c}
m-i
\end{array}\right)}_{\substack{m-i-1 \\
i \\
\hline \\
\left(\text { since } \\
\left(\begin{array}{c}
m-i-1=(m-1)-i) \\
i
\end{array}\right)\right.}}=\sum_{i=0}^{m-1} 2^{i}\binom{(m-1)-i}{i}=g_{m-1} \quad \text { (by (22) }) . \tag{25}
\end{align*}
$$

Now, (23) becomes

$$
\begin{aligned}
& g_{m}=\underbrace{\sum_{i=0}^{m} 2^{i}\binom{m-i-1}{i-1}}_{\substack{=2 g_{m-2} \\
(\text { by }(24))}}+\underbrace{\sum_{i=0}^{m} 2^{i}\binom{m-i-1}{i}}_{\substack{=g_{m-1} \\
(\text { by } 25)}} \\
& \begin{aligned}
=2 & \underbrace{g_{m-2}}_{\left(\text {by } \frac{19}{19}\right)}+\underbrace{g_{m-1}}_{(-1)^{m-2}+2^{(m-2)+1}} \\
= & \frac{(-1)^{m-1}+2^{(m-1)+1}}{\frac{3}{200)}}
\end{aligned} \\
& =2 \cdot \frac{(-1)^{m-2}+2^{(m-2)+1}}{3}+\frac{(-1)^{m-1}+2^{(m-1)+1}}{3} \\
& =\frac{1}{3}(2 \cdot(\underbrace{(-1)^{m-2}}_{=(-1)^{m}}+\underbrace{2^{(m-2)+1}}_{=2^{m-1}})+\underbrace{(-1)^{m-1}}_{=-(-1)^{m}}+\underbrace{2^{(m-1)+1}}_{=2^{m}}) \\
& =\frac{1}{3}(\underbrace{2 \cdot\left((-1)^{m}+2^{m-1}\right)}_{=2 \cdot(-1)^{m}+2 \cdot 2^{m-1}}-(-1)^{m}+2^{m})=\frac{1}{3}\left(2 \cdot(-1)^{m}+2 \cdot 2^{m-1}-(-1)^{m}+2^{m}\right) \\
& =\frac{1}{3}(\underbrace{2 \cdot(-1)^{m}-(-1)^{m}}_{=(-1)^{m}}+\underbrace{2 \cdot 2^{m-1}}_{=2^{m}}+2^{m})=\frac{1}{3}((-1)^{m}+\underbrace{2^{m}+2^{m}}_{=2 \cdot 2^{m}=2^{m+1}}) \\
& =\frac{1}{3}\left((-1)^{m}+2^{m+1}\right)=\frac{(-1)^{m}+2^{m+1}}{3} \text {. }
\end{aligned}
$$

In other words, Claim 1 holds for $n=m$. This completes the induction step. Thus, the induction proof of Claim 1 is finished.]

Now, let $n \in \mathbb{N}$. Then, $n \in \mathbb{N} \subseteq\{-1,0,1, \ldots\}$, so that Claim 1 yields

$$
g_{n}=\frac{(-1)^{n}+2^{n+1}}{3} .
$$

Comparing this with (11), we obtain

$$
\sum_{i=0}^{n} 2^{i}\binom{n-i}{i}=\frac{(-1)^{n}+2^{n+1}}{3}
$$

Thus, the exercise is solved.

5 ExERCISE 5

5.1 PROBLEM

Let $n, k \in \mathbb{R}$. Prove that

$$
\begin{equation*}
\binom{n}{k+1} \cdot\binom{n-1}{k-1} \cdot\binom{n+1}{k}=\binom{n-1}{k} \cdot\binom{n+1}{k+1} \cdot\binom{n}{k-1} . \tag{26}
\end{equation*}
$$

[Hint: Tempting as it may be to use the $\frac{n!}{k!(n-k)!}$ formula, keep in mind that it only holds for $n, k \in \mathbb{N}$ with $k \leq n$. When in doubt, go back to the definition of $\binom{n}{k}$.]

5.2 Solution

Forget that we fixed n and k. We shall use the following identity:
Proposition 5.1. Let $n \in\{1,2,3, \ldots\}$ and $m \in \mathbb{R}$. Then,

$$
\binom{m}{n}=\frac{m}{n}\binom{m-1}{n-1}
$$

Proposition 5.1 is the absorption formula. A proof of Proposition 5.1 can be found in [Grinbe15, Proposition 3.22] ${ }^{8}$ or in Math222, Proposition 1.3.36].

Also, recall that if $n, k \in \mathbb{R}$ satisfy $k \notin \mathbb{N}$, then

$$
\begin{equation*}
\binom{n}{k}=0 . \tag{27}
\end{equation*}
$$

(This is part of the definition of binomial coefficients.)
Now, let $n, k \in \mathbb{R}$. We must prove the identity (26). We are in one of the following two cases:

Case 1: We have $k-1 \in \mathbb{N}$.
Case 2: We have $k-1 \notin \mathbb{N}$.
Let us first consider Case 1. In this case, we have $k-1 \in \mathbb{N}$. Hence, $k \in\{1,2,3, \ldots\}$. Thus, Proposition 5.1 (applied to $n+1$ and k instead of m and n) yields

$$
\binom{n+1}{k}=\frac{n+1}{k}\binom{(n+1)-1}{k-1}=\frac{n+1}{k}\binom{n}{k-1}
$$

(since $(n+1)-1=n)$. Also, Proposition 5.1 (applied to n and k instead of m and n) yields

$$
\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1} .
$$

Furthermore, from $k \in\{1,2,3, \ldots\}$, we obtain $k+1 \in\{2,3,4, \ldots\} \subseteq\{1,2,3, \ldots\}$. Hence, Proposition 5.1 (applied to $n+1$ and $k+1$ instead of m and n) yields

$$
\begin{aligned}
\binom{n+1}{k+1} & =\frac{n+1}{k+1}\binom{(n+1)-1}{(k+1)-1} \\
& =\frac{n+1}{k+1} \underbrace{\binom{n}{k}} \quad(\text { since }(n+1)-1=n \text { and }(k+1)-1=k) \\
& =\frac{n}{k}\binom{n-1}{k-1} \\
& =\frac{n+1}{k+1} \cdot \frac{n}{k}\binom{n-1}{k-1} .
\end{aligned}
$$

Also, Proposition 5.1 (applied to n and $k+1$ instead of m and n) yields

$$
\binom{n}{k+1}=\frac{n}{k+1}\binom{n-1}{(k+1)-1}=\frac{n}{k+1}\binom{n-1}{k}
$$

[^5](since $(k+1)-1=k)$.
Now, comparing
\[

\left.$$
\begin{array}{rl}
& \underbrace{\binom{n}{k+1}} \cdot\binom{n-1}{k-1} \cdot \underbrace{\binom{n+1}{k}} \\
= & \frac{n}{k+1}\binom{n+1}{k} \\
= & \frac{n}{k+1}\binom{n}{k-1} \\
k
\end{array}
$$\right) \cdot\binom{n-1}{k-1} \cdot \frac{n+1}{k}\binom{n}{k-1}=\frac{n(n+1)}{k(k+1)}\binom{n-1}{k} \cdot\binom{n-1}{k-1} \cdot\binom{n}{k-1} .
\]

with

$$
\begin{aligned}
& \binom{n-1}{k} \cdot \underbrace{\binom{n+1}{k+1}} \cdot\binom{n}{k-1} \\
& =\frac{n+1}{k+1} \cdot \frac{n}{k}\binom{n-1}{k-1} \\
& =\binom{n-1}{k} \cdot \frac{n+1}{k+1} \cdot \frac{n}{k}\binom{n-1}{k-1} \cdot\binom{n}{k-1}=\frac{n(n+1)}{k(k+1)}\binom{n-1}{k} \cdot\binom{n-1}{k-1} \cdot\binom{n}{k-1},
\end{aligned}
$$

we obtain

$$
\binom{n}{k+1} \cdot\binom{n-1}{k-1} \cdot\binom{n+1}{k}=\binom{n-1}{k} \cdot\binom{n+1}{k+1} \cdot\binom{n}{k-1} .
$$

Thus, (26) is proven in Case 1.
Let us now consider Case 2. In this case, we have $k-1 \notin \mathbb{N}$. Hence, (27) (applied to $k-1$ instead of k) yields $\binom{n}{k-1}=0$. Also, (27) (applied to $n-1$ and $k-1$ instead of n and k) yields $\binom{n-1}{k-1}=0$. Now, comparing

$$
\binom{n}{k+1} \cdot \underbrace{\binom{n-1}{k-1}}_{=0} \cdot\binom{n+1}{k}=0
$$

with

$$
\binom{n-1}{k} \cdot\binom{n+1}{k+1} \cdot \underbrace{\binom{n}{k-1}}_{=0}=0
$$

we obtain

$$
\binom{n}{k+1} \cdot\binom{n-1}{k-1} \cdot\binom{n+1}{k}=\binom{n-1}{k} \cdot\binom{n+1}{k+1} \cdot\binom{n}{k-1} .
$$

Thus, (26) is proven in Case 2.
We have now proven (26) in both Cases 1 and 2. Hence, (26) always holds. This solves the exercise.

5.3 REMARK

You don't need to know Proposition 5.1 in order to solve the exercise; it merely helps make the solution slicker. Without Proposition 5.1, you can just apply the definition of binomial coefficients, obtaining (in Case 1) the identities

$$
\begin{aligned}
& \binom{n}{k+1}=\frac{n(n-1)(n-2) \cdots(n-k)}{(k+1)!} ; \\
& \binom{n-1}{k-1}=\frac{(n-1)(n-2)(n-3) \cdots(n-k+1)}{(k-1)!} ; \\
& \binom{n+1}{k}=\frac{(n+1) n(n-1) \cdots(n-k+2)}{k!} ; \\
& \binom{n-1}{k}=\frac{(n-1)(n-2)(n-3) \cdots(n-k)}{k!} ; \\
& \binom{n+1}{k+1}=\frac{(n+1) n(n-1) \cdots(n-k+1)}{(k+1)!} ; \\
& \binom{n}{k-1}=\frac{n(n-1)(n-2) \cdots(n-k+2)}{(k-1)!}
\end{aligned}
$$

Using these identities, (26) rewrites as

$$
\begin{aligned}
& \frac{n(n-1)(n-2) \cdots(n-k)}{(k+1)!} \cdot \frac{(n-1)(n-2)(n-3) \cdots(n-k+1)}{(k-1)!} \\
& \quad \cdot \frac{(n+1) n(n-1) \cdots(n-k+2)}{k!} \\
& \quad \frac{(n-1)(n-2)(n-3) \cdots(n-k)}{k!} \cdot \frac{(n+1) n(n-1) \cdots(n-k+1)}{(k+1)!} \\
& \quad \cdot \frac{n(n-1)(n-2) \cdots(n-k+2)}{(k-1)!} .
\end{aligned}
$$

But you can convince yourself that the factors on the two sides of this equality are the same (up to order). Thus, the exercise follows.

6 Exercise 6

6.1 PROBLEM

Fix an $n \in \mathbb{N}$ and an n-element set X.
A filter basis (of X) means a nonempty set F of nonempty subsets of X such that for every $A \in F$ and $B \in F$, there exists some $C \in F$ such that $C \subseteq A \cap B$.

For example, if $X=[4]$, then $\{\{1,3\},\{1,3,4\},\{1,2,3,4\}\}$ is a filter basis, and so is $\{\{2\},\{1,2,3\},\{1,2,4\},\{2,3,4\}\}$. But $\{\{2,3\},\{1,3\},\{1,2,3\}\}$ is not a filter basis (because it contains no $C \subseteq\{2,3\} \cap\{1,3\}$).

Prove the following:
(a) If F is a filter basis, then the intersection of all $A \in F$ does itself belong to F.
(b) The number of all filter bases is

$$
\sum_{k=0}^{n-1}\binom{n}{k} 2^{2^{k}-1} .
$$

6.2 SOLUTION SKETCH

We shall use the following notation: If Y is any set, then $\mathcal{P}(Y)$ will denote the powerset of Y (that is, the set of all subsets of Y). If the set Y is finite, then we thus have

$$
\begin{equation*}
|\mathcal{P}(Y)|=(\# \text { of subsets of } Y)=2^{|Y|} \tag{28}
\end{equation*}
$$

(by Math222, Theorem 1.4.1], applied to Y and $|Y|$ instead of S and n). In particular, $\mathcal{P}(Y)$ is a finite set in this case.

Thus, in particular, $\mathcal{P}(X)$ is a finite set (since X is a finite set).
(a) Let F be a filter basis. Then, F is a set of nonempty subsets of X. Thus, $F \subseteq \mathcal{P}(X)$, so that F is a finite set (since $\mathcal{P}(X)$ is a finite set). Hence, we can write F in the form $F=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ for some nonempty subsets $A_{1}, A_{2}, \ldots, A_{k}$ of X (since F is a set of nonempty subsets of X). Consider these $A_{1}, A_{2}, \ldots, A_{k}$. Note that the set $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is nonempty (since $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}=F$ is a filter basis). Thus, $k \neq 0$, so that $k \geq 1$. Note also that $A_{1}, A_{2}, \ldots, A_{k} \in F$ (since $F=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$).

We have assumed that F is a filter basis. Hence, F is nonempty and has the property that for every $A \in F$ and $B \in F$,

$$
\begin{equation*}
\text { there exists some } C \in F \text { such that } C \subseteq A \cap B \text {. } \tag{29}
\end{equation*}
$$

Now, we claim the following:
Claim 1: For each $i \in[k]$, there exists some $C_{i} \in F$ such that

$$
C_{i} \subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{i} .
$$

[Proof of Claim 1: We shall prove Claim 1 by induction on i :
Induction base: We have $A_{1} \in F$ (since $A_{1}, A_{2}, \ldots, A_{k} \in F$). Thus, there exists some $C_{1} \in F$ such that $C_{1} \subseteq A_{1}$ (namely, $C_{1}=A_{1}$ does the trick). In other words, Claim 1 holds for $i=1$. This completes the induction base.

Induction step: Let $j \in[k]$ be such that $j>1$. Assume that Claim 1 holds for $i=j-1$. We must prove that Claim 1 holds for $i=j$.

We have assumed that Claim 1 holds for $i=j-1$. In other words, there exists some $C_{j-1} \in F$ such that $C_{j-1} \subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{j-1}$. Consider this C_{j-1}. Recall that $A_{1}, A_{2}, \ldots, A_{k} \in F$. Hence, $A_{j} \in F$. Thus, 29) (applied to $A=C_{j-1}$ and $B=A_{j}$) shows that there exists some $C \in F$ such that $C \subseteq C_{j-1} \cap A_{j}$. Consider this C. Thus,

$$
C \subseteq \underbrace{C_{j-1}}_{\subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{j-1}} \cap A_{j} \subseteq\left(A_{1} \cap A_{2} \cap \cdots \cap A_{j-1}\right) \cap A_{j}=A_{1} \cap A_{2} \cap \cdots \cap A_{j} .
$$

Hence, there exists some $C_{j} \in F$ such that $C_{j} \subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{j}$ (namely, $C_{j}=C$). In other words, Claim 1 holds for $i=j$. This completes the induction step. Thus, Claim 1 is proven by induction.]

Now, recall that $k \geq 1$, so that $k \in[k]$. Hence, Claim 1 (applied to $i=k$) shows that there exists some $C_{k} \in F$ such that $C_{k} \subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{k}$. Consider this C_{k}. Now,
$C_{k} \in F=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$. In other words, $C_{k}=A_{j}$ for some $j \in[k]$. Consider this j. Combining $A_{1} \cap A_{2} \cap \cdots \cap A_{k} \subseteq A_{j}=C_{k}$ with $C_{k} \subseteq A_{1} \cap A_{2} \cap \cdots \cap A_{k}$, we obtain $A_{1} \cap A_{2} \cap \cdots \cap A_{k}=C_{k} \in F$.

But $F=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$. Hence, the intersection of all $A \in F$ is $A_{1} \cap A_{2} \cap \cdots \cap A_{k}$, and thus does itself belong to F (since $A_{1} \cap A_{2} \cap \cdots \cap A_{k} \in F$). This solves part (a) of the exercise.
(b) A bit of terminology will come useful: If F is any filter basis, then the core of F is defined to be the intersection of all $A \in F$. This core does itself belong to F (by part (a) of the exercise). In other words,

$$
\begin{equation*}
\text { if } K \text { is the core of a filter basis } F \text {, then } K \in F \text {. } \tag{30}
\end{equation*}
$$

Now, instead of counting all filter bases right away, let us count only all filter bases with a given core:

Claim 2: Let K be a nonempty subset of X. Then,

$$
(\# \text { of filter bases with core } K)=2^{2^{n-|K|}-1}
$$

We won't prove this right away, since we can make our job a little bit easier with some more terminology (and with two more auxiliary claims that we will prove before returning to prove Claim 2).

Previously, we have defined

$$
\mathcal{P}(Y)=\{\text { all subsets of } Y\} \quad \text { for any set } Y .
$$

Now, let us introduce a subtler notation: If Y and Z are any two sets, then we define

$$
\mathcal{P}(Y, Z)=\{\text { all sets } S \text { such that } Z \subseteq S \subseteq Y\} .
$$

This is the set of all sets "lying between" Z and Y (that is, the set of all sets S satisfying $Z \subseteq S \subseteq Y)$. For example,

$$
\begin{aligned}
\mathcal{P}(\{1,2,3,4\},\{1,3\}) & =\{\{1,3\},\{1,2,3\},\{1,3,4\},\{1,2,3,4\}\} ; \\
\mathcal{P}(\{1,2,3,4\},\{1,2,3\}) & =\{\{1,2,3\},\{1,2,3,4\}\} ; \\
\mathcal{P}(\{1,2,3,4\},\{1,2,3,4\}) & =\{\{1,2,3,4\}\} .
\end{aligned}
$$

We will only use the notation $\mathcal{P}(Y, Z)$ in the case when $Z \subseteq Y$, since otherwise $\mathcal{P}(Y, Z)=\varnothing$. In this case, it is easy to compute the size of $\mathcal{P}(Y, Z)$:

Claim 3: Let Y be a finite set. Let Z be a subset of Y. Then,

$$
|\mathcal{P}(Y, Z)|=2^{|Y \backslash Z|} .
$$

[Proof of Claim 3: Here is the idea: The elements of $\mathcal{P}(Y, Z)$ are the subsets S of Y that contain Z as a subset. To choose such an S, we only need to decide which elements of $Y \backslash Z$ go into S (since the elements of Z are already forced to go into S); and this can be done in $2^{|Y \backslash Z|}$ many ways (since we have 2 choices for each of the $|Y \backslash Z|$ many elements of $Y \backslash Z)$. Hence, $|\mathcal{P}(Y, Z)|=2^{|Y \backslash Z|}$.

A formal version of this argument looks as follows: The maps

$$
\begin{aligned}
\mathcal{P}(Y, Z) & \rightarrow \mathcal{P}(Y \backslash Z), \\
S & \mapsto S \backslash Z
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}(Y \backslash Z) & \rightarrow \mathcal{P}(Y, Z), \\
T & \mapsto T \cup Z
\end{aligned}
$$

are easily seen to be well-defined and mutually inverse; hence, they are bijections. Thus, the bijection principle yields $|\mathcal{P}(Y, Z)|=|\mathcal{P}(Y \backslash Z)|=2^{|Y \backslash Z|}$ (by (28), applied to $Y \backslash Z$ instead of Y). This proves Claim 3.]

Claim 4: Let K be a nonempty subset of X. Then,

$$
\{\text { filter bases with core } K\}=\mathcal{P}(\mathcal{P}(X, K),\{K\})
$$

Before we prove Claim 4, let us spell out what it says without the symbols: "Let K be a nonempty subset of X. Then, the filter bases with core K are precisely the sets lying between $\{K\}$ and the set of all sets lying between K and X.". Or, to make it more intuitive: "Let K be a nonempty subset of X. Then, a filter basis with core K will consist of sets lying between K and X, and will always contain K. Conversely, any set consisting of sets lying between K and X is a filter basis with core K as long as it contains K.".
[Proof of Claim 4: We shall first prove that

$$
\begin{equation*}
\{\text { filter bases with core } K\} \subseteq \mathcal{P}(\mathcal{P}(X, K),\{K\}) \tag{31}
\end{equation*}
$$

Indeed, let $F \in\{$ filter bases with core $K\}$. We shall show that $F \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$.
Indeed, F is a filter basis with core K (since $F \in\{$ filter bases with core $K\}$). Thus, $K \in F$ (by (30)). Hence, $\{K\} \subseteq F$. Moreover, F is a set of subsets of X (since F is a filter basis); thus, each $A \in F$ is a subset of X. But K is the core of F, that is, the intersection of all $A \in F$ (by the definition of a core). Therefore, each $A \in F$ satisfies $K \subseteq A$ and thus $K \subseteq A \subseteq X$ (since A is a subset of X). In other words, each $A \in F$ belongs to $\mathcal{P}(X, K)$ (since $K \subseteq A \subseteq X$ means precisely that $A \in \mathcal{P}(X, K)$ (by the definition of $\mathcal{P}(X, K))$. In other words, $F \subseteq \mathcal{P}(X, K)$. Hence, $\{K\} \subseteq F \subseteq \mathcal{P}(X, K)$. In other words, $F \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$ (by the definition of $\mathcal{P}(\mathcal{P}(X, K),\{K\})$).

Forget that we fixed F. We thus have shown that $F \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$ for each $F \in\{$ filter bases with core $K\}$. This proves (31).

On the other hand, let us prove that

$$
\begin{equation*}
\mathcal{P}(\mathcal{P}(X, K),\{K\}) \subseteq\{\text { filter bases with core } K\} . \tag{32}
\end{equation*}
$$

Indeed, let $G \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$. We shall prove that $G \in\{$ filter bases with core $K\}$.
From $G \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$, we obtain $\{K\} \subseteq G \subseteq \mathcal{P}(X, K)$ (by the definition of $\mathcal{P}(\mathcal{P}(X, K),\{K\}))$. Thus, $K \in\{K\} \subseteq G$. Moreover, each element A of G belongs to $\mathcal{P}(X, K)$ (since $G \subseteq \mathcal{P}(X, K)$), and thus satisfies $K \subseteq A \subseteq X$ (by the definition of $\mathcal{P}(X, K))$. Thus, each $A \in G$ is a nonempty subset of X (indeed, it is a subset of X because $A \subseteq X$, and it is nonempty because $K \subseteq A$ for the nonempty set K). Thus, G is a set of nonempty subsets of X. Furthermore, G itself is nonempty, since $K \in G$. Finally, for every $A \in G$ and $B \in G$, we have $K \subseteq A$ (since $A \in G \subseteq \mathcal{P}(X, K)$ entails that $K \subseteq A \subseteq X$)
and $K \subseteq B$ (similarly) and therefore $K \subseteq A \cap B$. Hence, for every $A \in G$ and $B \in G$, there exists some $C \in G$ such that $C \subseteq A \cap B$ (namely, $C=K$).

Thus, G is a nonempty set of nonempty subsets of X such that for every $A \in G$ and $B \in G$, there exists some $C \in G$ such that $C \subseteq A \cap B$. In other words, G is a filter basis (by the definition of a filter basis).

Now, let L be the core of G. Thus, L is the intersection of all $A \in G$ (by the definition of a core). Hence, $L \subseteq A$ for each $A \in G$. Applying this to $A=K$, we obtain $L \subseteq K$ (since $K \in G$). Conversely, we can easily see that $K \subseteq L$ as follows: Since L is the core of the filter basis G, we have $L \in G$ (by (30), applied to G and L instead of F and K). Hence, $L \in G \subseteq \mathcal{P}(X, K)$, so that $K \subseteq L \subseteq X$ (by the definition of $\mathcal{P}(X, K)$), and thus in particular $K \subseteq L$. Combining $L \subseteq K$ with $K \subseteq L$, we obtain $L=K$. In other words, the core of G is K (since L is the core of G). Hence, G is a filter basis with core K. In other words, $G \in\{$ filter bases with core $K\}$.

Forget that we fixed G. We thus have shown that $G \in\{$ filter bases with core $K\}$ for each $G \in \mathcal{P}(\mathcal{P}(X, K),\{K\})$. This proves (32).

We have now proved the two relations (31) and (32). Combining them, we obtain

$$
\{\text { filter bases with core } K\}=\mathcal{P}(\mathcal{P}(X, K),\{K\}) .
$$

Thus, Claim 4 is proven.]
Claim 2 is now easy:
[Proof of Claim 2: We know that K is a subset of X. Thus,

$$
|X \backslash K|=\underbrace{|X|}_{\substack{=n \\ \text { (since } X \text { is an } n \text {-element set) }}}-|K|=n-|K|
$$

and

$$
\begin{aligned}
&|\mathcal{P}(X, K)|=2^{|X \backslash K|} \\
&=2^{n-|K|} \\
& \\
&(\text { sy Claim } 3, \text { applied to }|X \backslash K|=n-|K|) .
\end{aligned}
$$

But $K \subseteq K \subseteq X$ and thus $K \in \mathcal{P}(X, K)$ (by the definition of $\mathcal{P}(X, K)$). Hence, $\{K\}$ is a subset of $\mathcal{P}(X, K)$. Thus,

$$
|\mathcal{P}(X, K) \backslash\{K\}|=\underbrace{|\mathcal{P}(X, K)|}_{=2^{n-|K|}}-\underbrace{|\{K\}|}_{=1}=2^{n-|K|}-1 .
$$

Now,

$$
\begin{aligned}
& (\# \text { of filter bases with core } K) \\
& =|\underbrace{\{\text { filter bases with core } K\}}_{\begin{array}{c}
=\mathcal{P}(\mathcal{P}(X, K),\{K\}) \\
\text { by Claim 4) }
\end{array}}|=|\mathcal{P}(\mathcal{P}(X, K),\{K\})| \\
& \left.=2^{|\mathcal{P}(X, K) \backslash\{K\}|} \quad \text { (by Claim 3, applied to } Y=\mathcal{P}(X, K) \text { and } Z=\{K\}\right) \\
& \left.=2^{2^{n-|K|}-1} \quad \text { (since }|\mathcal{P}(X, K) \backslash\{K\}|=2^{n-|K|}-1\right) .
\end{aligned}
$$

This proves Claim 2.]
At last, we can solve the actual problem:

If F is any filter basis, then the core of F does itself belong to F (as we have already seen), and thus is a nonempty subset of X (since F is a set of nonempty subsets of X). Hence, the sum rule shows that

$$
\begin{aligned}
& \text { (\# of filter bases) } \\
& =\sum_{\substack{K \text { is a nonempty } \\
\text { subset of } X}} \underbrace{(\# \text { of filter bases with core } K)}_{\begin{array}{c}
\bar{b}^{2 n-|K|}-1 \\
\text { (by Claim 2) }
\end{array}}=\sum_{\substack{K \text { is a nonempty } \\
\text { subset of } X}} 2^{2^{n-|K|}-1} \\
& =\underbrace{\sum_{\begin{array}{c}
k \in\{1,2, \ldots, n\}
\end{array}} \sum_{\begin{array}{c}
K \text { is a nonempty } \\
\text { subset of } X ; \\
|K|=k
\end{array}} \underbrace{2^{2^{n-|K|}-1}}_{\begin{array}{c}
=^{2^{n-k}-1} \\
\text { (since }|K|=k)
\end{array}}, ~}_{=\sum_{k=1}^{n}} \\
& \left(\begin{array}{c}
\text { here, we have split the sum according to the value of }|K|, \\
\text { because if } K \text { is a nonempty subset of } X \text {, then }|K| \in\{1,2, \ldots, n\} \\
\text { (since } X \text { is an } n \text {-element set) }
\end{array}\right) \\
& =\sum_{k=1}^{n} \underbrace{}_{\substack{K \text { is a nonempty } \\
\text { subset of } X X ; \\
|K|=k}} 2^{2^{n-k}-1} \\
& =(\# \text { of nonempty subsets } K \text { of } X \text { satisfying }|K|=k) \cdot 2^{2^{n-k}-1} \\
& =\sum_{k=1}^{n} \underbrace{(\# \text { of nonempty subsets } K \text { of } X \text { satisfying }|K|=k)}_{\begin{array}{c}
(\# \text { of nonempty } k \text {-element subsets of } X) \\
=(\# \text { of } k \text {-element subsets of } X)
\end{array}} \cdot 2^{2^{n-k}-1} \\
& \text { (since every } k \text {-element subset of } X \text { is nonempty } \\
& \text { (because } k \geq 1>0 \text {)) } \\
& =\sum_{k=1}^{n} \underbrace{(\# \text { of } k \text {-element subsets of } X)}_{=\binom{n}{k}} \quad \cdot 2^{2^{n-k}-1} \\
& \text { (by Math222] Theorem 1.3.12], since } X \text { is an } n \text {-element set) } \\
& =\sum_{k=1}^{n} \quad \underbrace{\binom{n}{k}} \quad 2^{2^{n-k}-1} \\
& =\binom{n}{n-k} \\
& \text { (by Math222, Theorem 1.3.11]) } \\
& =\sum_{k=1}^{n}\binom{n}{n-k} 2^{2^{n-k}-1}=\sum_{k=0}^{n-1}\binom{n}{k} 2^{2^{k}-1}
\end{aligned}
$$

(here, we have substituted k for $n-k$ in the sum). This solves part (b) of the exercise.

References

[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~ $\operatorname{grinberg/t/19fco/n/n.pdf~Also~available~on~}$ the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf
Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version
whose numbering is guaranteed to match that in the citations above, see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf
[17f-hw3s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set \#3 with solutions, http://www.cip.ifi.lmu.de/~ grinberg/t/17f/hw3os.pdf
[18f-hw1s] Darij Grinberg, UMN Fall 2018 Math 5705 homework set \#1 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18f/hw1s.pdf
[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/ detnotes/releases/tag/2019-01-10.
[hw0s] Darij Grinberg, Drexel Fall 2019 Math 222 homework set \#0 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/19fco/hw0s.pdf
[hw1s] Darij Grinberg, Drexel Fall 2019 Math 222 homework set \#1 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/19fco/hw1s.pdf

[^0]: ${ }^{1}$ Indeed, there is (a priori) a total of 16 options for which of the four sets A, B, C and D the element i belongs to (because i either belongs to A or does not; either belongs to B or does not; either belongs to C or does not; either belongs to D or does not). But out of these 16 options, only the 10 we just listed can occur if (A, B, C, D) is good, since the other 6 would violate the equation $A \cap B=C \cap D$ (since they would either make i belong to $A \cap B$ but not to $C \cap D$, or make i belong to $C \cap D$ but not to $A \cap B$). It is easy to see that, conversely, as long as each i satisfies one of the 10 options listed above, the 4 -tuple (A, B, C, D) is good.

[^1]: ${ }^{2}$ Exercise to the reader: Make this precise. (Formally speaking, you shouldn't talk about "constellations" but just prove that $A \cap B=C \cap D$ by considering any $i \in[n]$ and showing that $i \in A \cap B$ is equivalent to $i \in C \cap D$.)

[^2]: ${ }^{3}$ because a sum of integers is odd if and only if it has an odd number of odd addends

[^3]: ${ }^{4}$ The meaning of "starts" here is defined as follows: If $D=\{(i, j),(i, j+1),(i+1, j),(i+1, j+1)\}$ is a 2×2-rectangle, then we say that D starts in column i.

[^4]: ${ }^{5}$ Check this!
 ${ }^{6}$ The inverse map sends a lacunar pair (S, T) to the pseudomino tiling of $R_{n, 2}$ whose horizontal dominos start in the columns $i \in S$ and whose 2×2-rectangles start in the columns $i \in T$ and whose remaining columns are filled with vertical dominos.
 ${ }^{7}$ The "hard part" of this is to prove that if (S, T) is a lacunar pair with $S \cup T=L$, then $(S, L \backslash S)=(S, T)$. But even this is trivial: If (S, T) is a lacunar pair with $S \cup T=L$, then $S \cap T=\varnothing$ (since the definition of "lacunar pair" implies that S and T are disjoint), and thus T is the complement of S in L (since $S \cup T=L)$, which shows that $T=L \backslash S$, so that $(S, T)=(S, L \backslash S)$.

[^5]: ${ }^{8}$ where it is stated only for $m \in \mathbb{Q}$, but this makes no difference to the proof

