Math 222: Enumerative Combinatorics, Fall 2019: Homework 1

Darij Grinberg

December 16, 2019
due date: Monday, 2019-10-07 at the beginning of class, or before that by email or Blackboard.
Please solve as many exercises as you can!

1 ExERCISE 1

1.1 Problem

Let us define a slight variation on domino tilings. We shall use the notations of Math222, §1.1].

A 2×2-rectangle will mean a set of the form $\{(i, j),(i, j+1),(i+1, j),(i+1, j+1)\}$ for some $i, j \in \mathbb{Z}$. (Visually, this is just a set of 4 mutually adjacent squares forming a 2×2-rectangle.)

A pseudomino will mean a set of squares that is either a domino or a 2×2-rectangle.
If S is a set of squares, then a pseudomino tiling of S will mean a set of disjoint pseudominos whose union is S.

For example, here are all five pseudomino tilings of the rectangle $R_{3,2}$:

For any $n \in \mathbb{N}$, we let p_{n} denote the number of all pseudomino tilings of the rectangle $R_{n, 2}$.
[Example: We have $p_{0}=1, p_{1}=1, p_{2}=3, p_{3}=5$.]
(a) Find a recursive formula that expresses p_{n} in terms of p_{n-1} and p_{n-2} when $n \geq 2$.
(b) Prove that $p_{n}=\frac{(-1)^{n}+2^{n+1}}{3}$ for each $n \in \mathbb{N}$.
[Hint: You don't need to be more detailed than in the proof of Math222, Proposition 1.1.9].]

1.2 SOLUTION

[...]

2 ExERCISE 2

2.1 PROBLEM

Again, we shall use the notations of [Math222, §1.1].
An L-tromino will mean a set of squares that has one of the four forms

(Formally speaking, it is a set of the form $\left\{(i, j),\left(i^{\prime}, j\right),\left(i, j^{\prime}\right)\right\}$, where $i, j \in \mathbb{Z}$ and $i^{\prime} \in$ $\{i-1, i+1\}$ and $j^{\prime} \in\{j-1, j+1\}$.)

If S is a set of squares, then an L-tromino tiling of S will mean a set of disjoint L-trominos whose union is S.

For any $n \in \mathbb{N}$, we let L_{n} denote the number of L-tromino tilings of the rectangle $R_{n, 2}$.
We shall use the Iverson bracket notation
Prove that

$$
L_{n}=[3 \mid n] \cdot 2^{n / 3} \quad \text { for each } n \in \mathbb{N} .
$$

[Hint: Feel free to take inspiration from the solution to [18f-hw1s, Exercise 5].]

[^0]This number belongs to $\{0,1\}$, and is called the truth value of \mathcal{A}. For example,

$$
[1+1=2]=1, \quad[1+1=1]=0, \quad[\text { there exist infinitely many primes }]=1
$$

2.2 Solution

[...]

3 ExERCISE 3

3.1 Problem

Again, we shall use the notations of Math222, §1.1].
A horimino shall mean a rectangle of height 1 and positive width (i.e., formally speaking, a set of the form $\{(i, 1),(i+1,1), \ldots,(j, 1)\}$ for some integers $i \leq j)$.

If S is a set of squares, then a horimino tiling of S will mean a set of disjoint horiminos whose union is S.

For example, here are all four horimino tilings of the rectangle $R_{3,1}$:

Let $n \in \mathbb{N}$. Find a simple expression for the number of all horimino tilings of the rectangle $R_{n, 1}$.
[Hint: Make sure your answer works for $n=0$ (you might need to handle this case separately).]

3.2 Solution

[...]

4 EXERCISE 4

4.1 Problem

Let $n \in \mathbb{N}$. Prove that

$$
0^{2} \cdot 1!+1^{2} \cdot 2!+2^{2} \cdot 3!+\cdots+(n-1)^{2} \cdot n!=(n-2) \cdot(n+1)!+2 .
$$

4.2 Solution

[...]

5 ExERCISE 5

5.1 PROBLEM

Let $\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ be a sequence of real numbers such that every $n \geq 1$ satisfies

$$
\begin{equation*}
u_{n}=n u_{n-1}+(-1)^{n} . \tag{1}
\end{equation*}
$$

Prove that $u_{n}=(n-1)\left(u_{n-1}+u_{n-2}\right)$ for each $n \geq 2$.

5.2 Remark

This shows that the recurrence $D_{n}=n D_{n-1}+(-1)^{n}$ for the derangement numbers implies the recurrence $D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$.

5.3 Solution

[...]

6 Exercise 6

6.1 Problem

Let n and m be positive integers.
An n-tuple $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1, \ldots, m\}^{n}$ is said to be even if the sum $i_{1}+i_{2}+\cdots+i_{n}$ is even. (For example, the 4 -tuple ($1,0,4,1$) is even, whereas $(1,0,3,1)$ is not.)
(a) Find a formula for the number of all even n-tuples $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1, \ldots, m\}^{n}$ when m is odd.
(b) Find a formula for the number of all even n-tuples $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1, \ldots, m\}^{n}$ when m is even.
[Hint: Particular cases of this exercise (for $m=1,2,3$) were done in hw0s, Exercise 3] and [18f-hw1s, Exercises 2 and 1]. Can you generalize some of that reasoning?]

6.2 Solution

[...]

References

[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 16 December 2019. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf
Caution: The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above,
see https://gitlab.com/darijgrinberg/darijgrinberg.gitlab.io/blob/ 2dab2743a181d5ba8fc145a661fd274bc37d03be/public/t/19fco/n/n.pdf
[18f-hw1s] Darij Grinberg, UMN Fall 2018 Math 5705 homework set \#1 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18f/hw1s.pdf
[hw0s] Darij Grinberg, Drexel Fall 2019 Math 222 homework set \#0 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/19fco/hw0s.pdf

[^0]: ${ }^{1}$ This means the following:
 If \mathcal{A} is any statement (such as " $1+1=2$ " or " $1+1=1$ " or "there exist infinitely many primes"), then $[\mathcal{A}]$ stands for the number

 $$
 \begin{cases}1, & \text { if } \mathcal{A} \text { is true } \\ 0, & \text { if } \mathcal{A} \text { is false. }\end{cases}
 $$

