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This document serves several purposes:

1. demonstrate how mathematical prose is written in LATEX.

2. introduce some basic conventions and facts that will be used in this combinatorics
class, such as the product rule (see the solution of Exercise 1 below) or the telescope
principle (see the solution of Exercise 2 below) or the conventions for empty sums and
empty products.

3. give examples of rigorous proofs in combinatorics (as opposed to handwavy explana-
tions that the reader either “gets” or doesn’t).

Some caveats are in order. The use of LATEX is highly recommended but not required;
simple or short arguments can be written equally well in systems like Microsoft Office or
even as plain text (LATEX is best for long-form with lots of formulas, cross-references and
citations). The proofs given below are, in many ways, more rigorous and detailed than
necessary; they intend to alert you to the tacit details “under the hood” of many common-
sense arguments, but you don’t have to write at this level of detail.

1 Exercise 1

1.1 Problem

Let n ∈ N. (Here and in the following, N stands for the set {0, 1, 2, . . .}.)

(a) Show that the number of all subsets of {1, 2, . . . , n} is 2n.
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(b) A composition of n shall mean a list1 (i1, i2, . . . , ik) of positive integers such that
i1 + i2 + · · · + ik = n. (For example, the compositions of 3 are (3), (1, 2), (2, 1) and
(1, 1, 1).)

Show that the number of all compositions of n is{
2n−1, if n > 0;

1, if n = 0.

1.2 Solution

Let us first introduce two shorthand notations:

1. If A is any statement (such as “1+1 = 2” or “1+1 = 1” or “there exist infinitely many
primes”), then [A] stands for the number{

1, if A is true;
0, if A is false.

This number belongs to {0, 1}, and is called the truth value of A. For example,

[1 + 1 = 2] = 1, [1 + 1 = 1] = 0, [there exist infinitely many primes] = 1.

This shorthand is called the Iverson bracket notation.

2. If m ∈ Z, then [m] shall mean the set {1, 2, . . . ,m}. When m ≤ 0, this is understood
to be the empty set.

These two shorthand notations use the same symbol (square brackets), but they will
never clash, since the former always has a statement inside the square brackets, whereas the
latter always has an integer inside the square brackets.

Recall the following basic principle (known as the product rule):

Proposition 1.1. If m ∈ N, and if A1, A2, . . . , Am are m finite sets, then the Cartesian
product A1 × A2 × · · · × Am is a finite set again, and satisfies

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · · · |Am| . (1)

(Note that if m = 0, then the Cartesian product A1 × A2 × · · · × Am has 0 factors; in
this case it just consists of a single element, which is the 0-tuple (). Meanwhile, in this case,
the right hand side of (1) becomes a product of 0 numbers, which is 1 by definition. Thus,
(1) turns into “1 = 1” when m = 0.)

Applying (1) to m = n and Ai = {0, 1}, we get∣∣∣∣∣∣{0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n factors

∣∣∣∣∣∣ = |{0, 1}| · |{0, 1}| · · · · · |{0, 1}|︸ ︷︷ ︸
n factors

.

This rewrites as
|{0, 1}n| = |{0, 1}|n . (2)

1“List” means the same as “tuple”; lists are always ordered and finite.

Darij Grinberg 2 darij.grinberg@drexel.edu



Solutions to homework set #0 page 3 of 14

Here, we are using the standard notation Sn (where S is a set and n ∈ N) for the Cartesian
product S × S × · · · × S︸ ︷︷ ︸

n factors

. In view of |{0, 1}| = 2, we can rewrite (2) as

|{0, 1}n| = 2n. (3)

Note that {0, 1}n is the set of all n-tuples of elements of {0, 1}. These are also known as
“binary strings of length n”. For example, (0, 1, 1, 0, 1, 0) ∈ {0, 1}6.

Another basic principle (some call it the bijection principle) is the following:

Proposition 1.2. If X and Y are two sets, and if f : X → Y is a bijection (i.e., a bijective
map), then

|X| = |Y | . (4)

In other words, if there is a bijection between two sets, then these two sets have the same
size.

Note that the size of a set is in general just a cardinal number. But if the set is finite,
this cardinal number is an actual nonnegative integer.

Part (a) of the exercise asks us to show that the number of all subsets of {1, 2, . . . , n}
is 2n. In other words, it asks us to show that the number of all subsets of [n] is 2n (since
[n] = {1, 2, . . . , n}). In other words, it asks us to show that

|{subsets of [n]}| = 2n. (5)

We will show this by constructing a bijection from the set {subsets of [n]} to {0, 1}n.
This will then let us apply (4) and (3) and obtain (5). So let us construct such a bijection:

We define the map A : {subsets of [n]} → {0, 1}n by setting

A (S) = ([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) for each subset S of [n] .

(This is well-defined, since each of the truth values [1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S] belongs to
{0, 1}.) For example, if n = 5 and S = {2, 4, 5}, then A (S) = (0, 1, 0, 1, 1). (Some call A (S)
the indicator vector of S, since its i-th entry indicates whether i belongs to S or not.)

We want to show that A is a bijection. There are two standard ways to prove that a
map is a bijection: One is to show that it is injective and surjective; another is to exhibit
its inverse. Either of these ways works here; we shall use the latter.

We define the map B : {0, 1}n → {subsets of [n]} by setting

B ((i1, i2, . . . , in)) = {k ∈ [n] | ik = 1} for each (i1, i2, . . . , in) ∈ {0, 1}n .

We want to show that the maps A and B are mutually inverse. In order to do this, we
must show that A ◦ B = id and that B ◦ A = id. (We are using the notation “id” for an
identity map. We don’t specify which set this map acts on, since it is clear from the context:
For example, in “A ◦ B = id”, the “ id” must be the identity map of {0, 1}n, because the
domain of A ◦ B is {0, 1}n. If you really want to be precise, you could denote this identity
map by id{0,1}n .) So let us prove this2:

• In order to show that A ◦B = id, we fix some (i1, i2, . . . , in) ∈ {0, 1}n. We shall show
that (A ◦B) ((i1, i2, . . . , in)) = (i1, i2, . . . , in).

2On an actual homework set, you can leave both of these proofs to the reader. I am merely demonstrating
the basics of rigorous combinatorial reasoning here; otherwise I’d do the same.
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Set S = B ((i1, i2, . . . , in)). Thus, S = B ((i1, i2, . . . , in)) = {k ∈ [n] | ik = 1} (by the
definition of B). Now,

(A ◦B) ((i1, i2, . . . , in)) = A

B ((i1, i2, . . . , in))︸ ︷︷ ︸
=S


= A (S)

= ([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) (6)

(by the definition of A). Now, we shall show that each j ∈ [n] satisfies [j ∈ S] = ij.

Indeed, let j ∈ [n]. Recall that S = {k ∈ [n] | ik = 1}. Hence, if ij = 1, then j ∈ S
and therefore [j ∈ S] = 1 = ij. Therefore, we have proven [j ∈ S] = ij in the case
when ij = 1. On the other hand, if ij 6= 1, then ij = 0 (since ij ∈ {0, 1}) and j /∈ S
(because S = {k ∈ [n] | ik = 1} whereas ij 6= 1) and therefore [j ∈ S] = 0 = ij. Thus,
we have proven [j ∈ S] = ij in the case when ij 6= 1. We have now proven [j ∈ S] = ij
both in the case when ij = 1 and in the case when ij 6= 1. These two cases cover all
possibilities; thus, we always have [j ∈ S] = ij.

Forget that we fixed j. We thus have shown that [j ∈ S] = ij for each j ∈ [n]. Hence,

([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) = (i1, i2, . . . , in) .

Hence, (6) becomes

(A ◦B) ((i1, i2, . . . , in)) = ([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) = (i1, i2, . . . , in)

= id ((i1, i2, . . . , in)) . (7)

Now, forget that we fixed (i1, i2, . . . , in). We thus have proven (7) for each
(i1, i2, . . . , in) ∈ {0, 1}n. Hence, A ◦B = id.

• In order to prove that B ◦ A = id, we fix S ∈ {subsets of [n]}. We are going to show
that (B ◦ A) (S) = S.

We have A (S) = ([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) by the definition of A. Now,

(B ◦ A) (S) = B

 A (S)︸ ︷︷ ︸
=([1∈S],[2∈S],...,[n∈S])


= B (([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]))

= {k ∈ [n] | [k ∈ S] = 1}
(
by the definition of B

)
= {k ∈ [n] | k ∈ S}(

because for any k ∈ [n], we have [k ∈ S] = 1 if and only if k ∈ S
)

= [n] ∩ S = S
(
since S ⊆ [n]

)
= id (S) .

Since we have proven this for each S ∈ {subsets of [n]}, we can thus conclude that
B ◦ A = id.

We now know that A ◦ B = id and B ◦ A = id. Combining these equalities, we
conclude that the maps A and B are mutually inverse. Hence, the map A is invertible, i.e.,
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bijective. In other words, A : {subsets of [n]} → {0, 1}n is a bijection. Thus, (4) (applied
to X = {subsets of [n]}, Y = {0, 1}n and f = A) yields

|{subsets of [n]}| = |{0, 1}n| = 2n
(
by (3)

)
.

This proves (5), thus solving part (a) of the exercise.
It remains to solve part (b). If n = 0, then it demands us to prove that the number of

all compositions of 0 is 1. This is easy enough:3 Recall that a composition of n is defined
as a tuple of positive integers whose sum is n. Thus, the compositions of 0 are the tuples
of positive integers whose sum is 0. Hence, the only composition of 0 is the empty 0-tuple
(), since any other tuple of positive integers would have a positive sum. Thus, the number
of all compositions of 0 is 1.

Having thus dealt with the case n = 0, we can now WLOG4 assume that n > 0. Thus,
part (b) of the exercise claims that the number of all compositions of n is 2n−1.

Since n > 0, we have n − 1 ∈ N (since n is an integer). Thus, we can apply part (a)
of our exercise to n − 1 instead of n. We thus obtain that the number of all subsets of
{1, 2, . . . , n− 1} is 2n−1. In other words, the number of all subsets of [n− 1] is 2n−1 (since
[n− 1] = {1, 2, . . . , n− 1}). In other words,

|{subsets of [n− 1]}| = 2n−1. (8)

This suggests finding a bijection from {subsets of [n− 1]} to {compositions of n}. And
this is indeed what we shall do.

This time we will rely on the following principle:

Proposition 1.3. Let S be a finite set of integers. Then, there exists a unique tuple
(s1, s2, . . . , sk) of integers such that {s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk.

This proposition just says that if you have a finite set of integers, you can list its elements
in increasing order in exactly one way. Obvious, right?

I will not prove Proposition 1.3 here, nor would I require such a proof in homework
solutions; basic results like this can be taken for granted, as far as this course is concerned.
Nevertheless, proving Proposition 1.3 becomes a necessity if one wants to fully understand
the logical foundations of mathematics or implement it in a proof assistant; thus, I will give
a few hints on how such a proof can be obtained:5

[Outline of a proof of Proposition 1.3. First, show that any nonempty finite set of integers
has a unique largest element. Then, prove the existence part of Proposition 1.3 (that is, the claim
that there exists at least one tuple (s1, s2, . . . , sk) of integers such that {s1, s2, . . . , sk} = S and
s1 < s2 < · · · < sk) by induction on |S| (start by picking the largest element t of S, then apply the
induction hypothesis to S \ {t}). Finally, it remains to prove the uniqueness part of Proposition
1.3. In other words, it remains to prove that if (s1, s2, . . . , sk) and (t1, t2, . . . , tj) are two tuples
of integers such that {s1, s2, . . . , sk} = S and {t1, t2, . . . , tj} = S and s1 < s2 < · · · < sk and
t1 < t2 < · · · < tj , then (s1, s2, . . . , sk) = (t1, t2, . . . , tj). Prove this by induction on |S| again: First
argue that both sk and tj equal the largest element of S (and thus each other); then apply the
induction hypothesis to the rests of the lists (and the set S \ {t}, where t is the largest element of
S). Details are left to the reader.]

Now, we define a map

C : {compositions of n} → {subsets of [n− 1]}
3... and can be left to the reader in real homework
4“WLOG” means “without loss of generality”.
5For a complete detailed proof, see [Grinbe16, Theorem 2.46].
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by setting

C ((a1, a2, . . . , ak)) = {a1 + a2 + · · ·+ ai | i ∈ [k − 1]} (9)
= {a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ak−1}

for all compositions (a1, a2, . . . , ak) of n.

6 We first need to check that this C is well-defined – i.e., that {a1 + a2 + · · ·+ ai | i ∈ [k − 1]}
is actually a subset of [n− 1] for any composition (a1, a2, . . . , ak) of n. Before we do this,
let us give a few examples of C:

• If n = 4, then C ((1, 3)) = {1} and C ((1, 1, 2)) = {1, 2} and C ((2, 1, 1)) = {2, 3}.

• If n = 7, then C ((2, 1, 1, 2, 1)) = {2, 3, 4, 6}.

Note that C is called the “partial-sums” map, since it sends a composition (a1, a2, . . . , ak)
to the set of all (nonempty, proper) partial sums a1 + a2 + · · ·+ ai of the composition.

Let us now show that C is well-defined:
[Proof of the well-definedness of C. Let (a1, a2, . . . , ak) be a composition of n. We must show

that {a1 + a2 + · · ·+ ai | i ∈ [k − 1]} is actually a subset of [n− 1]. In other words, we must show
that a1 + a2 + · · · + ai ∈ [n− 1] for each i ∈ [k − 1]. So let us fix i ∈ [k − 1]. Then, i ≥ 1, so
that a1 + a2 + · · · + ai is a nonempty sum of positive integers (because a1, a2, . . . , ak are positive
integers). Thus, a1 + a2 + · · · + ai is itself a positive integer. Also, from i ∈ [k − 1], we obtain
i ≤ k − 1. Hence, ai+1 + ai+2 + · · · + ak is a nonempty sum of positive integers as well (because
a1, a2, . . . , ak are positive integers). Thus, ai+1 + ai+2 + · · ·+ ak is itself a positive integer. Hence,
ai+1 + ai+2 + · · ·+ ak ≥ 1. But now,

(a1 + a2 + · · ·+ ai) + (ai+1 + ai+2 + · · ·+ ak) = a1 + a2 + · · ·+ ak = n

(since (a1, a2, . . . , ak) is a composition of n). Therefore,

a1 + a2 + · · ·+ ai = n− (ai+1 + ai+2 + · · ·+ ak)︸ ︷︷ ︸
≥1

≤ n− 1.

Since a1 + a2 + · · ·+ ai is a positive integer, this shows that a1 + a2 + · · ·+ ai ∈ [n− 1]. But this
is precisely what we wanted to show. Hence, C is well-defined.]

Next, we define a map

D : {subsets of [n− 1]} → {compositions of n}

as follows: Let S be a subset of [n− 1]. Then, Proposition 1.3 shows that there exists a
unique tuple (s1, s2, . . . , sk) of integers such that {s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk.
Consider this tuple, and extend it further by setting s0 = 0 and sk+1 = n. Then, we have
the following inequalities:

• s1 < s2 < · · · < sk;

• s0 < si for each i ∈ [k] (because each i ∈ [k] satisfies si ∈ {s1, s2, . . . , sk} = S ⊆ [n− 1],
so that si > 0 = s0);

• si < sk+1 for each i ∈ [k] (because each i ∈ [k] satisfies si ∈ {s1, s2, . . . , sk} = S ⊆
[n− 1], so that si ≤ n− 1 < n = sk+1);

6Note that every composition (a1, a2, . . . , ak) of n satisfies k ≥ 1. Indeed, if it wouldn’t, then it would
satisfy k = 0 and therefore a1 + a2 + · · · + ak = a1 + a2 + · · · + a0 = (empty sum) = 0, which would
contradict a1 + a2 + · · ·+ ak = n > 0.
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• s0 < sk+1 (since sk+1 = n > 0 = s0).

Combining these inequalities, we obtain s0 < s1 < · · · < sk+1. Now, set

D (S) = (s1 − s0, s2 − s1, . . . , sk+1 − sk) .

This defines D.
In fact, we again need to prove thatD is well-defined – i.e., that (s1 − s0, s2 − s1, . . . , sk+1 − sk)

is actually a composition of n. But this is easy: The tuple (s1 − s0, s2 − s1, . . . , sk+1 − sk) consists
of positive integers (since s0 < s1 < · · · < sk+1), and the sum of these integers is

(s1 − s0) + (s2 − s1) + · · ·+ (sk+1 − sk)

= (s1 + s2 + · · ·+ sk+1)︸ ︷︷ ︸
=(s1+s2+···+sk)+sk+1

− (s0 + s1 + · · ·+ sk)︸ ︷︷ ︸
=s0+(s1+s2+···+sk)

= ((s1 + s2 + · · ·+ sk) + sk+1)− (s0 + (s1 + s2 + · · ·+ sk))

= sk+1 − s0 = n− 0
(
since sk+1 = n and s0 = 0

)
= n.

Thus, D is indeed well-defined.
Note that the map D depends on n. For example, if n = 5, then D ({1, 3}) = (1, 2, 2),

but if n = 7, then D ({1, 3}) = (1, 2, 4). But n is fixed in our current setting, which allows
us to leave it out of our notation.

We now claim that the maps C and D are mutually inverse.
Proving this is again a fairly straightforward matter, so we restrict ourselves to an outline:

• In order to prove that C ◦D = id, we fix some subset S of [n− 1], and we try to show that
(C ◦D) (S) = S.
Proposition 1.3 shows that there exists a unique tuple (s1, s2, . . . , sk) of integers such that
{s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk. Consider this tuple, and extend it further by
setting s0 = 0 and sk+1 = n. The definition of D shows that

D (S) = (s1 − s0, s2 − s1, . . . , sk+1 − sk) . (10)

Now,

(C ◦D) (S) = C (D (S)) = C ((s1 − s0, s2 − s1, . . . , sk+1 − sk))
(
by (10)

)
= {(s1 − s0) + (s2 − s1) + · · ·+ (si − si−1) | i ∈ [k + 1− 1]}

(by (9), applied to k+1 and (s1 − s0, s2 − s1, . . . , sk+1 − sk) instead of k and (a1, a2, . . . , ak)).
Since

(s1 − s0) + (s2 − s1) + · · ·+ (si − si−1)

= (s1 + s2 + · · ·+ si)︸ ︷︷ ︸
=(s1+s2+···+si−1)+si

− (s0 + s1 + · · ·+ si−1)︸ ︷︷ ︸
=s0+(s1+s2+···+si−1)

= ((s1 + s2 + · · ·+ si−1) + si)− (s0 + (s1 + s2 + · · ·+ si−1))

= si − s0︸︷︷︸
=0

= si

for each i ∈ [k + 1− 1], this becomes

(C ◦D) (S) =

(s1 − s0) + (s2 − s1) + · · ·+ (si − si−1)︸ ︷︷ ︸
=si

| i ∈ [k + 1− 1]


=

si | i ∈

k + 1− 1︸ ︷︷ ︸
=k

 = {si | i ∈ [k]} = {s1, s2, . . . , sk} = S = id (S) .

Since we have proven this for each subset S of [n− 1], we thus conclude that C ◦D = id.
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• In order to prove D ◦ C = id, we fix some composition (a1, a2, . . . , aj) of n. We shall show
that (D ◦ C) ((a1, a2, . . . , aj)) = (a1, a2, . . . , aj).

Let S be the set C ((a1, a2, . . . , aj)). Then, S is a subset of [n− 1] (since C is well-defined).

Recall that (a1, a2, . . . , aj) is a composition of n. Thus, a1, a2, . . . , aj are positive integers
whose sum is n. Hence, a1 + a2 + · · · + aj = n > 0, so that j > 0 (since otherwise,
a1 + a2 + · · ·+ aj would be an empty sum and therefore equal to 0). Since a1, a2, . . . , aj are
positive integers, we have

a1 < a1 + a2 < a1 + a2 + a3 < · · · < a1 + a2 + · · ·+ aj−1.

Moreover,

S = C ((a1, a2, . . . , aj)) = {a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ aj−1}

(by the definition of C). Hence, the (j − 1)-tuple

(a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ aj−1)

is a tuple (s1, s2, . . . , sk) of integers such that {s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk.

But Proposition 1.3 shows that there is a unique tuple (s1, s2, . . . , sk) of integers such that
{s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk. This unique tuple must be the (j − 1)-
tuple (a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ aj−1) (because as we have just seen,
the latter (j − 1)-tuple is such a tuple). Consider this tuple; thus,

(s1, s2, . . . , sk) = (a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ aj−1) .

In other words, k = j − 1 and

si = a1 + a2 + · · ·+ ai for each i ∈ [k] . (11)

Extend the k-tuple (s1, s2, . . . , sk) further by setting s0 = 0 and sk+1 = n. The definition of
D then shows that

D (S) = (s1 − s0, s2 − s1, . . . , sk+1 − sk) . (12)

But a1+ a2+ · · ·+ a0 is an empty sum and thus equals 0. Also, k = j− 1 leads to k+1 = j,
so that a1 + a2 + · · ·+ ak+1 = a1 + a2 + · · ·+ aj = n. Now, the equality (11) holds not only
for each i ∈ [k], but also for i = 0 (since s0 = 0 = a1 + a2 + · · ·+ a0) and for i = k+1 (since
sk+1 = n = a1 + a2 + · · ·+ ak+1). Hence, this equality holds for all i ∈ {0, 1, . . . , k + 1}. In
other words, we have

si = a1 + a2 + · · ·+ ai for each i ∈ {0, 1, . . . , k + 1} . (13)

Hence, for each i ∈ [k + 1], we have

si︸︷︷︸
=a1+a2+···+ai

(by (13))

− si−1︸︷︷︸
=a1+a2+···+ai−1

(by (13), applied to i− 1 instead of i)

= (a1 + a2 + · · ·+ ai)− (a1 + a2 + · · ·+ ai−1)

= ai.

Thus,
(s1 − s0, s2 − s1, . . . , sk+1 − sk) = (a1, a2, . . . , ak+1) = (a1, a2, . . . , aj)

(since k + 1 = j). Thus, (12) becomes

D (S) = (s1 − s0, s2 − s1, . . . , sk+1 − sk) = (a1, a2, . . . , aj) .
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Now,

(D ◦ C) ((a1, a2, . . . , aj)) = D

C ((a1, a2, . . . , aj))︸ ︷︷ ︸
=S

 = D (S)

= (a1, a2, . . . , aj) = id ((a1, a2, . . . , aj)) .

This shows that D ◦ C = id.

Combining C ◦ D = id with D ◦ C = id, we conclude that the maps C and D are mutually
inverse.

Thus, the map

C : {compositions of n} → {subsets of [n− 1]}

is invertible, i.e., is a bijection. Hence, using (4) again7, we obtain

|{compositions of n}| = |{subsets of [n− 1]}| = 2n−1

(by (8)). In other words, the number of all compositions of n is 2n−1. This completes our
solution to part (b) of the exercise (since this is what part (b) claims for n > 0).

2 Exercise 2

2.1 Problem

For any real number x and any k ∈ N, we define a number xk by8

xk = x (x− 1) (x− 2) · · · (x− k + 1) =
k−1∏
i=0

(x− i) .

(Note that if k = 0, then the product on the right hand side of this equality is an empty
product, and thus equals 1 by definition. Hence, x0 = 1 for every real x. Also, x1 = x,
x2 = x (x− 1), and so on. The notation xn is called the n-th falling factorial of x.)

Let k ∈ N and n ∈ N. Prove that
n∑

i=0

ik =
1

k + 1
(n+ 1)k+1 . (14)

2.2 Remark

Remark 2.1. This may remind you of the classical formula∫ n

0

xkdx =
1

k + 1
nk+1

7this time, applied to X = {compositions of n}, Y = {subsets of [n− 1]} and f = C
8Note that the letter i does not stand for the imaginary unit

√
−1 in combinatorics, unless we explicitly

say that it does.
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from calculus; in fact, (14) is something like a “discrete version” of this formula (with the
integral replaced by a finite sum, and the k-th power xk replaced by the falling factorial xk).

The equality (14) rewrites as

0k + 1k + · · ·+ nk =
1

k + 1
(n+ 1)k+1 .

For example, for k = 1, this simplifies to

0 + 1 + · · ·+ n =
1

2
(n+ 1)n,

which is a famous formula. (It is common to start the sum at 1 rather than 0, but this
doesn’t matter.)

2.3 Solution

There are several ways to solve this exercise; the two simplest are probably the one by
induction on n, and the one using the telescope principle. In truth they are “essentially the
same” (i.e., you can easily translate one into the other). I shall show the second one only.

Let me state the telescope principle first:

Proposition 2.2. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers9. Then,
m∑
i=1

(ai − ai−1) = am − a0.

Proposition 2.2 is known as the “telescope principle” since it contracts the sum
m∑
i=1

(ai − ai−1)

to the single difference am − a0, like folding a telescope.
The simplest way to convince yourself that Proposition 2.2 is true is by expanding the

left hand side:
m∑
i=1

(ai − ai−1) = (a1 − a0) + (a2 − a1) + (a3 − a2) + · · ·+ (am − am−1)

and watching all the terms cancel each other out except for the −a0 and the am. More
formally, this argument can be emulated by an induction on m. Here is a different proof
(which illustrates a few of the basic rules for manipulating sums):

Proof of Proposition 2.2. If m = 0, then
m∑
i=1

(ai − ai−1) =
0∑

i=1

(ai − ai−1) = (empty sum) = 0 = am − a0

(since m = 0 leads to am = a0). Thus, Proposition 2.2 holds if m = 0. Hence, for the rest of
this proof, we can WLOG assume that m 6= 0. Let us assume this.10 Thus, m ≥ 1. Hence,

m∑
i=1

ai =
m−1∑
i=1

ai + am

9I am saying “real numbers” just for the sake of saying something definite. You could just as well say
“complex numbers” or “rational numbers” or “elements of an abelian group (where the operation of the
group is written as addition)”. The telescope principle is a general property of sums and differences; it
does not depend on what exactly we are summing.

10In actual homework, feel free to just say “Assume WLOG that m 6= 0” without giving the justification
that we just gave. The reader can be trusted to fill it in.
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and
m∑
i=1

ai−1 = a1−1︸︷︷︸
=a0

+
m∑
i=2

ai−1 = a0 +
m∑
i=2

ai−1 = a0 +
m−1∑
i=1

ai

(here, we have substituted i for i− 1 in the sum). Thus,

m∑
i=1

(ai − ai−1) =
m∑
i=1

ai︸ ︷︷ ︸
=

m−1∑
i=1

ai+am

−
m∑
i=1

ai−1︸ ︷︷ ︸
=a0+

m−1∑
i=1

ai

=

(
m−1∑
i=1

ai + am

)
−

(
a0 +

m−1∑
i=1

ai

)
= am − a0.

This proves Proposition 2.2.

Now, let us come back to the problem at hand. We want to prove (14) using Proposition
2.2. The key turns out to be the following formula:

Lemma 2.3. Let i be a real number, and k ∈ N. Then,

(i− 1)k =
1

k + 1
ik+1 − 1

k + 1
(i− 1)k+1 .

Proof of Lemma 2.3. The definition of (i− 1)k yields

(i− 1)k = (i− 1) ((i− 1)− 1) ((i− 1)− 2) · · · ((i− 1)− k + 1) = (i− 1) (i− 2) · · · (i− k) .

But the definition of ik+1 yields

ik+1 = i (i− 1) (i− 2) · · · (i− (k + 1) + 1) = i (i− 1) (i− 2) · · · (i− k)

= i ((i− 1) (i− 2) · · · (i− k))︸ ︷︷ ︸
=(i−1)k

= i (i− 1)k .

On the other hand, the definition of (i− 1)k+1 yields

(i− 1)k+1 = (i− 1) ((i− 1)− 1) ((i− 1)− 2) · · · ((i− 1)− (k + 1) + 1)

= (i− 1) (i− 2) · · · (i− k − 1)

= ((i− 1) (i− 2) · · · (i− k))︸ ︷︷ ︸
=(i−1)k

(i− k − 1) = (i− 1)k (i− k − 1) .

Subtracting the preceding two equalities from each other, we find

ik+1 − (i− 1)k+1 = i (i− 1)k − (i− 1)k (i− k − 1)

= (i− (i− k − 1))︸ ︷︷ ︸
=k+1

(i− 1)k = (k + 1) (i− 1)k .

We can divide this equality by k + 1 (since k + 1 > 0), and thus obtain

ik+1 − (i− 1)k+1

k + 1
= (i− 1)k .

In other words,

(i− 1)k =
ik+1 − (i− 1)k+1

k + 1
=

1

k + 1
ik+1 − 1

k + 1
(i− 1)k+1 .

This proves Lemma 2.3.

Darij Grinberg 11 darij.grinberg@drexel.edu



Solutions to homework set #0 page 12 of 14

We also note that the definition of 0k+1 yields

0k+1 = 0 (0− 1) (0− 2) · · · (0− (k + 1) + 1) = 0 (0− 1) (0− 2) · · · (0− k) = 0.

Now, let us substitute i− 1 for i in the sum
n∑

i=0

ik. Thus, we find

n∑
i=0

ik =
n+1∑
i=1

(i− 1)k︸ ︷︷ ︸
=

1

k + 1
ik+1−

1

k + 1
(i−1)k+1

(by Lemma 2.3)

=
n+1∑
i=1

(
1

k + 1
ik+1 − 1

k + 1
(i− 1)k+1

)

=
1

k + 1
(n+ 1)k+1 − 1

k + 1
0k+1︸︷︷︸
=0(

by Proposition 2.2, applied to m = n+ 1 and ai =
1

k + 1
ik+1

)
=

1

k + 1
(n+ 1)k+1 − 1

k + 1
0 =

1

k + 1
(n+ 1)k+1 .

This solves the exercise.

3 Exercise 3

3.1 Problem

Let n be a positive integer.
An n-tuple (i1, i2, . . . , in) ∈ {0, 1}n is said to be even if the sum i1+ i2+ · · ·+ in is even.

(For example, the 4-tuple (1, 0, 0, 1) is even, whereas (1, 0, 1, 1) is not.)
Prove that the number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1}n is 2n−1.

3.2 Solution

Let En be the set of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1}n. Then, the exercise wants us
to show that |En| = 2n−1.

We shall achieve this by finding a bijection from En to {0, 1}n−1.
Define a map A : En → {0, 1}n−1 by setting

A ((i1, i2, . . . , in)) = (i1, i2, . . . , in−1) for each (i1, i2, . . . , in) ∈ En.

Thus, the map A simply throws away the last entry of an even n-tuple.
We want to prove that A is bijective. We can achieve this by proving that A is injective

and surjective: 11

• Let us first show that A is injective. This means showing that if (i1, i2, . . . , in) and
(j1, j2, . . . , jn) are two elements of En (that is, even n-tuples) satisfying

A ((i1, i2, . . . , in)) = A ((j1, j2, . . . , jn)) , (15)
11Again, there is much more detail in the following argumentation than you need when writing up your

homework.
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then
(i1, i2, . . . , in) = (j1, j2, . . . , jn) . (16)

So let (i1, i2, . . . , in) and (j1, j2, . . . , jn) be two elements of En satisfying (15). We must
prove (16).

The definition of A yields

A ((i1, i2, . . . , in)) = (i1, i2, . . . , in−1) and A ((j1, j2, . . . , jn)) = (j1, j2, . . . , jn−1) .

Thus, (15) rewrites as

(i1, i2, . . . , in−1) = (j1, j2, . . . , jn−1) .

In other words,
ik = jk for each k ∈ [n− 1] . (17)

Hence, i1 + i2 + · · ·+ in−1 = j1 + j2 + · · ·+ jn−1.

On the other hand, the n-tuple (i1, i2, . . . , in) is even (since (i1, i2, . . . , in) ∈ En). In
other words, i1 + i2 + · · · + in is even. In other words, i1 + i2 + · · · + in ≡ 0 mod 2.
Similarly, j1 + j2 + · · ·+ jn ≡ 0 mod 2. Now,

(i1 + i2 + · · ·+ in−1)︸ ︷︷ ︸
=j1+j2+···+jn−1

+jn = (j1 + j2 + · · ·+ jn−1) + jn = j1 + j2 + · · ·+ jn ≡ 0

≡ i1 + i2 + · · ·+ in = (i1 + i2 + · · ·+ in−1) + in mod 2.

Subtracting i1 + i2 + · · ·+ in−1 from both sides of this congruence, we obtain jn ≡ in
mod 2. But jn and in are two elements of {0, 1}, and thus can only be congruent to
each other modulo 2 if they are equal. Hence, from jn ≡ in mod 2, we obtain jn = in.
In other words, in = jn. Hence, ik = jk holds not only for k ∈ [n− 1] (as we have
shown in (17)), but also for k = n. In other words, we have ik = jk for all k ∈ [n]. In
other words, (i1, i2, . . . , in) = (j1, j2, . . . , jn). Thus, (16) is proven. So we have shown
that A is injective.

• Let us now prove that A is surjective. To do that, we need to show that for each
(j1, j2, . . . , jn−1) ∈ {0, 1}n−1, there exists some (i1, i2, . . . , in) ∈ En such that

A ((i1, i2, . . . , in)) = (j1, j2, . . . , jn−1) .

So let us fix some (j1, j2, . . . , jn−1) ∈ {0, 1}n−1. We need to show that there exists
some (i1, i2, . . . , in) ∈ En such that A ((i1, i2, . . . , in)) = (j1, j2, . . . , jn−1).

Indeed, let us construct this (i1, i2, . . . , in) as follows:

We set ik = jk for each k ∈ [n− 1]. This defines n−1 elements i1, i2, . . . , in−1 of {0, 1}.
Next, we define a further element in of {0, 1} by

in =

{
0, if i1 + i2 + · · ·+ in−1 is even;
1, if i1 + i2 + · · ·+ in−1 is odd.

Then, the number i1 + i2 + · · · + in is even (because we can write it as the sum
(i1 + i2 + · · ·+ in−1) + in of the two numbers i1 + i2 + · · · + in−1 and in, which are
either both even or both odd). In other words, the n-tuple (i1, i2, . . . , in) ∈ {0, 1}n is
even. In other words, (i1, i2, . . . , in) ∈ En. Finally, the definition of A yields

A ((i1, i2, . . . , in)) = (i1, i2, . . . , in−1) = (j1, j2, . . . , jn−1)
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(since ik = jk for each k ∈ [n− 1]). Thus, we have constructed an (i1, i2, . . . , in) ∈
En such that A ((i1, i2, . . . , in)) = (j1, j2, . . . , jn−1). This completes our proof of the
surjectivity of A.

We now know that the map A is both injective and surjective. Hence, A is bijective. In
other words, A : En → {0, 1}n−1 is a bijection. Hence, (4) (applied toX = En, Y = {0, 1}n−1
and f = A) yields

|En| =
∣∣{0, 1}n−1∣∣ = 2n−1

(where the last equality sign follows from (3), applied to n − 1 instead of n). This solves
the exercise.
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