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Let us define a function H : N→ N by

H (n) =
n−1∏
k=0

k! for every n ∈ N.

Our goal is to prove the following theorem:

Theorem 0 (MacMahon). We have

H (b+ c)H (c+ a)H (a+ b) | H (a)H (b)H (c)H (a+ b+ c)

for every a ∈ N, every b ∈ N and every c ∈ N.

Remark: Here, we denote by N the set {0, 1, 2, ...} (and not the set {1, 2, 3, ...} ,
as some authors do).

Before we come to the proof, first let us make some definitions:
Notations.

• For any matrix A, we denote by A

[
j
i

]
the entry in the j-th column and

the i-th row of A. [This is usually denoted by Aij or by Ai,j.]

• Let R be a ring. Let u ∈ N and v ∈ N, and let ai,j be an element of R for

every (i, j) ∈ {1, 2, ..., u} × {1, 2, ..., v} . Then, we denote by (ai,j)
1≤j≤v
1≤i≤u the

u× v matrix A ∈ Ru×v which satisfies

A

[
j
i

]
= ai,j for every (i, j) ∈ {1, 2, ..., u} × {1, 2, ..., v} .

• Let R be a commutative ring with unity. Let P ∈ R [X] be a polynomial.
Let j ∈ N. Then, we denote by coeffj P the coefficient of the polynomial
P before Xj. (In particular, this implies coeffj P = 0 for every j > degP .)
Thus, for every P ∈ R [X] and every d ∈ N satisfying degP ≤ d, we have

P (X) =
d∑

k=0

coeffk (P ) ·Xk.

• If n and m are two integers, then the binomial coefficient

(
m

n

)
∈ Q is

defined by (
m

n

)
=


m (m− 1) · · · (m− n+ 1)

n!
, if n ≥ 0;

0, if n < 0
.

It is well-known that

(
m

n

)
∈ Z for all n ∈ Z and m ∈ Z.
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We recall a fact from linear algebra:

Theorem 1 (Vandermonde determinant). Let R be a commuta-
tive ring with unity. Let m ∈ N. Let a1, a2, ..., am be m elements of
R. Then,

det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

We are more interested in a corollary - and generalization - of this fact:

Theorem 2 (generalized Vandermonde determinant). Let R be
a commutative ring with unity. Letm ∈ N. For every j ∈ {1, 2, ...,m},
let Pj ∈ R [X] be a polynomial such that deg (Pj) ≤ j− 1. Let a1, a2,
..., am be m elements of R. Then,

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Both Theorems 1 and 2 can be deduced from the following lemma:

Lemma 3. Let R be a commutative ring with unity. Let m ∈ N.
For every j ∈ {1, 2, ...,m}, let Pj ∈ R [X] be a polynomial such that
deg (Pj) ≤ j − 1. Let a1, a2, ..., am be m elements of R. Then,

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
.

Proof of Lemma 3. For every j ∈ {1, 2, ...,m}, we have Pj (X) =
m−1∑
k=0

coeffk (Pj)·

Xk (since deg (Pj) ≤ j−1 ≤ m−1, since j ≤ m). Thus, for every i ∈ {1, 2, ...,m}
and j ∈ {1, 2, ...,m}, we have

Pj (ai) =
m−1∑
k=0

coeffk (Pj) · aki =
m−1∑
k=0

aki · coeffk (Pj) =
m∑
k=1

ak−1
i · coeffk−1 (Pj) (1)

(here we substituted k − 1 for k in the sum) .

Hence,

(Pj (ai))
1≤j≤m
1≤i≤m =

(
aj−1
i

)1≤j≤m
1≤i≤m · (coeffi−1 (Pj))

1≤j≤m
1≤i≤m (2)

(according to the definition of the product of two matrices)1.

1Here is the proof of (2) in more detail: The definition of the product of two matrices yields

(
aj−1
i

)1≤j≤m

1≤i≤m
· (coeffi−1 (Pj))

1≤j≤m
1≤i≤m =


m∑

k=1

ak−1
i · coeffk−1 (Pj)︸ ︷︷ ︸

=Pj(ai)
(by (1))



1≤j≤m

1≤i≤m

= (Pj (ai))
1≤j≤m
1≤i≤m .

This proves (2).
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But the matrix (coeffi−1 (Pj))
1≤j≤m
1≤i≤m is upper triangular (since coeffi−1 (Pj) = 0

for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i > j 2); hence,

det
(

(coeffi−1 (Pj))
1≤j≤m
1≤i≤m

)
=

m∏
j=1

coeffj−1 (Pj) (since the determinant of an upper

triangular matrix equals the product of its diagonal entries).
Now, (2) yields

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
= det

((
aj−1
i

)1≤j≤m
1≤i≤m · (coeffi−1 (Pj))

1≤j≤m
1≤i≤m

)
= det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
· det

(
(coeffi−1 (Pj))

1≤j≤m
1≤i≤m

)
︸ ︷︷ ︸

=
m∏

j=1
coeffj−1(Pj)

= det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
·
m∏
j=1

coeffj−1 (Pj)

=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
,

and thus, Lemma 3 is proven.
Proof of Theorem 1. For every j ∈ {1, 2, ...,m}, define a polynomial Pj ∈

R [X] by Pj (X) =
j−1∏
k=1

(X − ak). Then, Pj is a monic polynomial of degree j − 1

(since Pj is a product of j − 1 monic polynomials of degree 1 each3). In other
words, deg (Pj) = j−1 and coeffj−1 (Pj) = 1 for every j ∈ {1, 2, ...,m}. Obviously,
deg (Pj) = j − 1 yields deg (Pj) ≤ j − 1 for every j ∈ {1, 2, ...,m}. Thus, Lemma
3 yields

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
. (3)

But the matrix (Pj (ai))
1≤j≤m
1≤i≤m is lower triangular (since Pj (ai) = 0 for every

i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i < j 4); hence, det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

m∏
j=1

Pj (aj) (since the determinant of a lower triangular matrix equals the product

2because i > j yields i−1 > j−1, thus i−1 > deg (Pj) (since deg (Pj) ≤ j−1) and therefore
coeffi−1 (Pj) = 0

3because X − ak is a monic polynomial of degree 1 for every k ∈ {1, 2, ..., j − 1}, and we

have Pj (X) =
j−1∏
k=1

(X − ak)

4because i < j yields i ≤ j − 1 (since i and j are integers) and thus

Pj (ai) =

j−1∏
k=1

(ai − ak)

(
since Pj (X) =

j−1∏
k=1

(X − ak)

)
= 0

(since the factor of the product
j−1∏
k=1

(ai − ak) for k = i equals ai − ai = 0)
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of its diagonal entries). Thus, (3) rewrites as

m∏
j=1

Pj (aj) =

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
.

Since
m∏
j=1

coeffj−1 (Pj)︸ ︷︷ ︸
=1

=
m∏
j=1

1 = 1, this simplifies to

m∏
j=1

Pj (aj) = det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
.

Thus,

det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
=

m∏
j=1

Pj (aj) =
m∏
j=1︸︷︷︸

=
∏

j∈{1,2,...,m}

j−1∏
k=1︸︷︷︸

=
∏

k∈{1,2,...,j−1}
=

∏
k∈{1,2,...,m};

k<j

(aj − ak)

(
since Pj (X) =

j−1∏
k=1

(X − ak) yields Pj (aj) =

j−1∏
k=1

(aj − ak)

)
=

∏
j∈{1,2,...,m}

∏
k∈{1,2,...,m};

k<j

(aj − ak) =
∏

(j,k)∈{1,2,...,m}2;
k<j

(aj − ak)

=
∏

(i,j)∈{1,2,...,m}2;
j<i

(ai − aj)

(here we renamed j and k as i and j in the product)

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Hence, Theorem 1 is proven.
Proof of Theorem 2. Lemma 3 yields

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
︸ ︷︷ ︸

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai−aj)

by Theorem 1

=

(
m∏
j=1

coeffj−1 (Pj)

)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Hence, Theorem 2 is proven.
A consequence of Theorem 2 is the following fact:
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Corollary 4. Let R be a commutative ring with unity. Let m ∈ N.
Let a1, a2, ..., am be m elements of R. Then,

det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Proof of Corollary 4. For every j ∈ {1, 2, ...,m}, define a polynomial Pj ∈

R [X] by Pj (X) =
j−1∏
k=1

(X − k). Then, Pj is a monic polynomial of degree j − 1

(since Pj is a product of j − 1 monic polynomials of degree 1 each5). In other
words, deg (Pj) = j−1 and coeffj−1 (Pj) = 1 for every j ∈ {1, 2, ...,m}. Obviously,
deg (Pj) = j−1 yields deg (Pj) ≤ j−1 for every j ∈ {1, 2, ...,m}. Thus, Theorem
2 yields

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Since Pj (ai) =
j−1∏
k=1

(ai − k) for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} (since

Pj (X) =
j−1∏
k=1

(X − k)), this rewrites as

det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m

 =

(
m∏
j=1

coeffj−1 (Pj)

)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Since
m∏
j=1

coeffj−1 (Pj)︸ ︷︷ ︸
=1

=
m∏
j=1

1 = 1, this simplifies to

det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Hence, Corollary 4 is proven.
We shall need the following simple lemma:

Lemma 5. Let m ∈ N. Then,∏
(i,j)∈{1,2,...,m}2;

i>j

(i− j) = H (m) .

5because X −k is a monic polynomial of degree 1 for every k ∈ {1, 2, ..., j − 1}, and we have

Pj (X) =
j−1∏
k=1

(X − k)
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Proof of Lemma 5. We have

∏
(i,j)∈{1,2,...,m}2;

i>j

(i− j) =
∏

(i,j)∈{0,1,...,m−1}2;
i+1>j+1︸ ︷︷ ︸

=
∏

(i,j)∈{0,1,...,m−1}2;
i>j

(since i+1>j+1 is equivalent to i>j)

(i+ 1)− (j + 1)︸ ︷︷ ︸
=i−j



(here we substituted i+ 1 and j + 1 for i and j in the product)

=
∏

(i,j)∈{0,1,...,m−1}2;
i>j︸ ︷︷ ︸

=
∏

i∈{0,1,...,m−1}

∏
j∈{0,1,...,m−1};

i>j

(i− j)

=
∏

i∈{0,1,...,m−1}

∏
j∈{0,1,...,m−1};

i>j︸ ︷︷ ︸
=

∏
j∈N;

j≤m−1 and i>j
(since j∈{0,1,...,m−1} is equivalent

to (j∈N and j≤m−1))

(i− j)

=
∏

i∈{0,1,...,m−1}

∏
j∈N;

j≤m−1 and i>j︸ ︷︷ ︸
=

∏
j∈N;
i>j

(since the assertion
(j≤m−1 and i>j) is equivalent to (i>j)

(because if i>j, then j≤m−1 (since
i∈{0,1,...,m−1} yields i≤m−1)))

(i− j)

=
∏

i∈{0,1,...,m−1}

∏
j∈N;
i>j︸︷︷︸

=
∏
j∈N;
j<i

=
i−1∏
j=0

(i− j) =
∏

i∈{0,1,...,m−1}

i−1∏
j=0

(i− j) =
∏

i∈{0,1,...,m−1}

i∏
j=1

j︸︷︷︸
=i!

(here we substituted i− j for j in the second product)

=
∏

i∈{0,1,...,m−1}︸ ︷︷ ︸
=

m−1∏
i=0

i! =
m−1∏
i=0

i! =
m−1∏
k=0

k! (here we renamed i as k in the product)

= H (m) .

Hence, Lemma 5 is proven.
Now let us prove Theorem 0: Let a ∈ N, let b ∈ N and let c ∈ N.
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We have

H (a+ b+ c) =
a+b+c−1∏
k=0

k! =


a+b−1∏
k=0

k!︸ ︷︷ ︸
=H(a+b)

 ·
a+b+c−1∏
k=a+b

k! = H (a+ b) ·
a+b+c−1∏
k=a+b

k!

= H (a+ b) ·
c∏
i=1

(a+ b+ i− 1)!

(here we substituted a+ b+ i− 1 for k in the product) ,
(4)

H (b+ c) =
b+c−1∏
k=0

k! =


b−1∏
k=0

k!︸ ︷︷ ︸
=H(b)

 ·
b+c−1∏
k=b

k! = H (b) ·
b+c−1∏
k=b

k! = H (b) ·
c∏
i=1

(b+ i− 1)!

(here we substituted b+ i− 1 for k in the product) , (5)

H (c+ a) =
c+a−1∏
k=0

k! =


a−1∏
k=0

k!︸ ︷︷ ︸
=H(a)

 ·
c+a−1∏
k=a

k! = H (a) ·
c+a−1∏
k=a

k! = H (a) ·
c∏
i=1

(a+ i− 1)!

(here we substituted a+ i− 1 for k in the product) . (6)

Next, we show a lemma:

Lemma 6. For every i ∈ N and j ∈ N satisfying i ≥ 1 and j ≥ 1, we
have(

a+ b+ i− 1

a+ i− j

)
=

(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k) .

Proof of Lemma 6. Let i ∈ N and j ∈ N be such that i ≥ 1 and j ≥ 1. One
of the following two cases must hold:

Case 1: We have a+ i− j ≥ 0.
Case 2: We have a+ i− j < 0.
In Case 1, we have

(a+ i− 1)! =
a+i−1∏
k=1

k =


a+i−j∏
k=1

k︸ ︷︷ ︸
=(a+i−j)!

 ·
a+i−1∏

k=a+i−j+1

k = (a+ i− j)! ·
a+i−1∏

k=a+i−j+1

k

= (a+ i− j)! ·
j−1∏
k=1

(a+ i− k)

(here we substituted a+ i− k for k in the product) ,
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so that
(a+ i− 1)!

(a+ i− j)!
=

j−1∏
k=1

(a+ i− k) . (7)

Now,(
a+ b+ i− 1

a+ i− j

)
=

(a+ b+ i− 1)!

(a+ i− j)! · ((a+ b+ i− 1)− (a+ i− j))!
=

(a+ b+ i− 1)!

(a+ i− j)! · (b+ j − 1)!

(since (a+ b+ i− 1)− (a+ i− j) = b+ j − 1)

=
(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
· (a+ i− 1)!

(a+ i− j)!

=
(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k) (by (7)) .

Hence, Lemma 6 holds in Case 1.
In Case 2, we have

j−1∏
k=1

(a+ i− k) =

(
a+i−1∏
k=1

(a+ i− k)

)
·


a+i∏

k=a+i

(a+ i− k)︸ ︷︷ ︸
=a+i−(a+i)=0

 ·
j−1∏

k=a+i+1

(a+ i− k)

(since a+ i− j < 0 yields a+ i < j)

= 0,

so that (
a+ b+ i− 1

a+ i− j

)
= 0 (since a+ i− j < 0)

=
(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
· 0︸︷︷︸

=
j−1∏
k=1

(a+i−k)

=
(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k) .

Hence, Lemma 6 holds in Case 2.
Hence, in both cases, Lemma 6 holds. Thus, Lemma 6 always holds, and this

completes the proof of Lemma 6.
Another trivial lemma:

Lemma 7. Let R be a commutative ring with unity. Let u ∈ N and
v ∈ N, and let ai,j be an element of R for every (i, j) ∈ {1, 2, ..., u} ×
{1, 2, ..., v} .
(a) Let α1, α2, ..., αu be u elements of R. Then,({

αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
· (ai,j)1≤j≤v

1≤i≤u = (αiai,j)
1≤j≤v
1≤i≤u .
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(b) Let β1, β2, ..., βv be v elements of R. Then,

(ai,j)
1≤j≤v
1≤i≤u ·

({
βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v
= (ai,jβj)

1≤j≤v
1≤i≤u .

(c) Let α1, α2, ..., αu be u elements of R. Let β1, β2, ..., βv be v
elements of R. Then,({

αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
·(ai,j)1≤j≤v

1≤i≤u ·
({

βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v
= (αiai,jβj)

1≤j≤v
1≤i≤u .

(d) Let α1, α2, ..., αu be u elements of R. Let β1, β2, ..., βv be v
elements of R. If u = v, then

det
(

(αiai,jβj)
1≤j≤v
1≤i≤u

)
=

(
u∏
i=1

αi

)
·

(
v∏
i=1

βi

)
· det

(
(ai,j)

1≤j≤v
1≤i≤u

)
.

Proof of Lemma 7. (a) For every i ∈ {1, 2, ..., u} and j ∈ {1, 2, ..., v}, we have

u∑
`=1︸︷︷︸

=
∑

`∈{1,2,...,u}

{
αi, if ` = i;
0, if ` 6= i

· a`,j =
∑

`∈{1,2,...,u}

{
αi, if ` = i;
0, if ` 6= i

· a`,j

=
∑

`∈{1,2,...,u};
`=i

{
αi, if ` = i;
0, if ` 6= i︸ ︷︷ ︸

=αi, since `=i

·a`,j +
∑

`∈{1,2,...,u};
`6=i

{
αi, if ` = i;
0, if ` 6= i︸ ︷︷ ︸

=0, since `6=i

·a`,j

=
∑

`∈{1,2,...,u};
`=i

αia`,j +
∑

`∈{1,2,...,u};
6̀=i

0 · a`,j

︸ ︷︷ ︸
=0

=
∑

`∈{1,2,...,u};
`=i

αia`,j =
∑
`∈{i}

αia`,j

(since i ∈ {1, 2, ..., u} yields {` ∈ {1, 2, ..., u} | ` = i} = {i})
= αiai,j.

Thus,({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
·(ai,j)1≤j≤v

1≤i≤u =

(
u∑
`=1

{
αi, if ` = i;
0, if ` 6= i

· a`,j

)1≤j≤v

1≤i≤u

= (αiai,j)
1≤j≤v
1≤i≤u ,

and thus, Lemma 7 (a) is proven.
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(b) For every i ∈ {1, 2, ..., u} and j ∈ {1, 2, ..., v}, we have

v∑
`=1︸︷︷︸

=
∑

`∈{1,2,...,v}

ai,` ·
{
β`, if j = `;
0, if j 6= `

=
∑

`∈{1,2,...,v}

ai,` ·
{
β`, if j = `;
0, if j 6= `

=
∑

`∈{1,2,...,v};
`=j

ai,` ·
{
β`, if j = `;
0, if j 6= `︸ ︷︷ ︸

=β`, since `=j
yields j=`

+
∑

`∈{1,2,...,v};
`6=j

ai,` ·
{
β`, if j = `;
0, if j 6= `︸ ︷︷ ︸

=0, since `6=j
yields j 6=`

=
∑

`∈{1,2,...,v};
`=j

ai,`β` +
∑

`∈{1,2,...,v};
6̀=j

ai,` · 0

︸ ︷︷ ︸
=0

=
∑

`∈{1,2,...,v};
`=j

ai,`β` =
∑
`∈{j}

ai,`β`

(since j ∈ {1, 2, ..., v} yields {` ∈ {1, 2, ..., v} | ` = j} = {j})
= ai,jβj.

Thus,

(ai,j)
1≤j≤v
1≤i≤u ·

({
βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v
=

(
v∑
`=1

ai,` ·
{
β`, if j = `;
0, if j 6= `

)1≤j≤v

1≤i≤u

= (ai,jβj)
1≤j≤v
1≤i≤u ,

and thus, Lemma 7 (b) is proven.
(c) We have({

αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
· (ai,j)1≤j≤v

1≤i≤u︸ ︷︷ ︸
=(αiai,j)1≤j≤v

1≤i≤u by Lemma 7 (a)

·
({

βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v

= (αiai,j)
1≤j≤v
1≤i≤u ·

({
βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v
= (αiai,jβj)

1≤j≤v
1≤i≤u

by Lemma 7 (b) (applied to αiai,j instead of ai,j).
Thus, Lemma 7 (c) is proven.

(d) The matrix

({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
is diagonal (since

{
αi, if j = i;
0, if j 6= i

=

0 for every i ∈ {1, 2, ..., u} and j ∈ {1, 2, ..., u} satisfying j 6= i). Since the
determinant of a diagonal matrix equals the product of its diagonal entries, this
yields

det

(({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u

)
=

u∏
i=1

{
αi, if i = i;
0, if i 6= i︸ ︷︷ ︸

=αi, since i=i

=
u∏
i=1

αi.

Similarly,

det

(({
βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v

)
=

v∏
i=1

βi.
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Lemma 7 (c) yields

(αiai,jβj)
1≤j≤v
1≤i≤u =

({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
· (ai,j)1≤j≤v

1≤i≤u ·
({

βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v
.

Thus, if u = v, then

det
(

(αiai,jβj)
1≤j≤v
1≤i≤u

)
= det

(({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u
· (ai,j)1≤j≤v

1≤i≤u ·
({

βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v

)

= det

(({
αi, if j = i;
0, if j 6= i

)1≤j≤u

1≤i≤u

)
︸ ︷︷ ︸

=
u∏

i=1
αi

· det
(

(ai,j)
1≤j≤v
1≤i≤u

)
· det

(({
βi, if j = i;
0, if j 6= i

)1≤j≤v

1≤i≤v

)
︸ ︷︷ ︸

=
v∏

i=1
βi

=

(
u∏
i=1

αi

)
·

(
v∏
i=1

βi

)
· det

(
(ai,j)

1≤j≤v
1≤i≤u

)
.

Thus, Lemma 7 (d) is proven.
Now, let us prove Theorem 0:
Proof of Theorem 0. Let a ∈ N, b ∈ N and c ∈ N. We have

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)

= det

( (a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c

 (by Lemma 6)

= det

((a+ b+ i− 1)!

(a+ i− 1)!
·
j−1∏
k=1

(a+ i− k) · 1

(b+ j − 1)!

)1≤j≤c

1≤i≤c


=

(
c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

)
·

(
c∏
i=1

1

(b+ i− 1)!

)
· det

(j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c


(by Lemma 7 (d), applied to R = Q, u = c, v = c, ai,j =

j−1∏
k=1

(a+ i− k),

αi =
(a+ b+ i− 1)!

(a+ i− 1)!
and βi =

1

(b+ i− 1)!
). Since

det

(j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c

 =
∏

(i,j)∈{1,2,...,c}2;
i>j

(a+ i)− (a+ j)︸ ︷︷ ︸
=i−j


(by Corollary 4, applied to R = Z, m = c and ai = a+ i for every i ∈ {1, 2, ..., c})

=
∏

(i,j)∈{1,2,...,c}2;
i>j

(i− j) = H (c) (by Lemma 5, applied to m = c) ,
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this becomes

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
=

(
c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

)
·

(
c∏
i=1

1

(b+ i− 1)!

)
·H (c) .

(8)
Now,

H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)

=

H (a)H (b)H (c)H (a+ b) ·
c∏
i=1

(a+ b+ i− 1)!(
H (b) ·

c∏
i=1

(b+ i− 1)!

)
·
(
H (a) ·

c∏
i=1

(a+ i− 1)!

)
·H (a+ b)

(by (4), (5) and (6))

=

c∏
i=1

(a+ b+ i− 1)!(
c∏
i=1

(b+ i− 1)!

)
·
(

c∏
i=1

(a+ i− 1)!

) ·H (c)

=

c∏
i=1

(a+ b+ i− 1)!

c∏
i=1

(a+ i− 1)!︸ ︷︷ ︸
=

c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

· 1
c∏
i=1

(b+ i− 1)!︸ ︷︷ ︸
=

c∏
i=1

1

(b+ i− 1)!

·H (c)

=

(
c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

)
·

(
c∏
i=1

1

(b+ i− 1)!

)
·H (c)

= det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
(by (8)) (9)

∈ Z

(since

((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c
∈ Zc×c). In other words,

H (b+ c)H (c+ a)H (a+ b) | H (a)H (b)H (c)H (a+ b+ c) .

Thus, Theorem 0 is proven.

Remarks.
1. Theorem 0 was briefly mentioned (with a combinatorial interpretation,

but without proof) on the first page of [1]. It also follows from the formula

(2.1) in [3] (since
H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)
=

c∏
i=1

(a+ b+ i− 1)! (i− 1)!

(a+ i− 1)! (b+ i− 1)!
),

or, equivalently, the formula (2.17) in [4]. It is also generalized in [2], Section 429
(where one has to consider the limit x→ 1).

2. We can prove more:

12



Theorem 8. For every a ∈ N, every b ∈ N and every c ∈ N, we have

H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)

= det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
= det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
.

We recall a useful fact to help us in the proof:

Theorem 9, the Vandermonde convolution identity. Let x ∈ Z
and y ∈ Z. Let q ∈ Z. Then,(

x+ y

q

)
=
∑
k∈Z

(
x

k

)(
y

q − k

)
.

(The sum on the right hand side is an infinite sum, but only finitely
many of its addends are nonzero.)

Proof of Theorem 8. For every i ∈ {1, 2, ..., c} and every j ∈ {1, 2, ..., c}, we
have(
a+ b+ i− 1

a+ i− j

)
=
∑
k∈Z

(
a+ b

k

)(
i− 1

a+ i− j − k

)
(by Theorem 9, applied to x = a+ b, y = i− 1 and q = a+ i− j)

=
∑
`∈Z

(
a+ b

a− j + `

)(
i− 1

a+ i− j − (a− j + `)

)
(here we substituted a− j + ` for k in the sum)

=
∑
`∈Z

(
a+ b

a− j + `

)(
i− 1

i− `

)
=

∑
`∈Z;

(0≤i−`≤i−1 is true)︸ ︷︷ ︸
=

∑
`∈Z;

0≤i−`≤i−1

=
∑
`∈Z;

1≤`≤i
(since 0≤i−`≤i−1 is
equivalent to 1≤`≤i)

(
a+ b

a− j + `

)(
i− 1

i− `

)
+

∑
`∈Z;

(0≤i−`≤i−1 is false)

(
a+ b

a− j + `

) (
i− 1

i− `

)
︸ ︷︷ ︸

=0, since i−1≥0 and
(0≤i−`≤i−1 is false)

=
∑
`∈Z;

1≤`≤i

(
a+ b

a− j + `

)(
i− 1

i− `

)
+

∑
`∈Z;

(0≤i−`≤i−1 is false)

(
a+ b

a− j + `

)
· 0

︸ ︷︷ ︸
=0

=
∑
`∈Z;

1≤`≤i︸︷︷︸
=

i∑̀
=1

(
a+ b

a− j + `

)(
i− 1

i− `

)
︸ ︷︷ ︸

=

(
i− 1

i− `

)(
a+ b

a− j + `

)

=
i∑

`=1

(
i− 1

i− `

)(
a+ b

a− j + `

)
=

c∑
`=1

(
i− 1

i− `

)(
a+ b

a− j + `

)
 here we replaced the

i∑̀
=1

sign by an
c∑̀
=1

sign, since all addends for ` > i

are zero (as

(
i− 1

i− `

)
= 0 for ` > i, since i− ` < 0 for ` > i) and since c ≥ i

 .
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Thus,((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c
=

(
c∑
`=1

(
i− 1

i− `

)(
a+ b

a− j + `

))1≤j≤c

1≤i≤c

=

((
i− 1

i− j

))1≤j≤c

1≤i≤c
·


(

a+ b

a− j + i

)
︸ ︷︷ ︸

=

(
a+ b

a+ i− j

)



1≤j≤c

1≤i≤c

=

((
i− 1

i− j

))1≤j≤c

1≤i≤c
·
((

a+ b

a+ i− j

))1≤j≤c

1≤i≤c
. (10)

Now, the matrix

((
i− 1

i− j

))1≤j≤c

1≤i≤c
is lower triangular (since

(
i− 1

i− j

)
= 0 for every

i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i < j 6). Since the determinant
of an lower triangular matrix equals the product of its diagonal entries, this yields

det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c

)
=

m∏
j=1

(
j − 1

j − j

)
︸ ︷︷ ︸

=

(
j − 1

0

)
=1

=
m∏
j=1

1 = 1. (11)

Now,

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
= det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c
·
((

a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
(by (10))

= det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c

)
︸ ︷︷ ︸

=1 by (11)

· det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)

= det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
.

Combined with (9), this yields

H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)

= det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
= det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
.

6because i < j yields i− j < 0 and thus

(
i− 1

i− j

)
= 0
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Thus, Theorem 8 is proven.
3. We notice a particularly known consequence of Corollary 4:

Corollary 10. Let m ∈ N. Let a1, a2, ..., am be m integers. Then,

det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) . (12)

In particular,

H (m) |
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Proof of Corollary 10. Corollary 4 (applied to R = Z) yields

det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) . (13)

Now, for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we have

(
ai − 1

j − 1

)
=

(j−1)−1∏
k=0

((ai − 1)− k)

(j − 1)!
=

1

(j − 1)!

(j−1)−1∏
k=0

((ai − 1)− k)

=
1

(j − 1)!

j−1∏
k=1

(ai − 1)− (k − 1)︸ ︷︷ ︸
=ai−k


(here we substituted k − 1 for k in the product)

=
1

(j − 1)!

j−1∏
k=1

(ai − k) = 1 ·

(
j−1∏
k=1

(ai − k)

)
· 1

(j − 1)!
. (14)
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Therefore,

det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
= det

(1 ·

(
j−1∏
k=1

(ai − k)

)
· 1

(j − 1)!

)1≤j≤m

1≤i≤m



=


m∏
i=1

1︸︷︷︸
=1

 ·
(

m∏
i=1

1

(i− 1)!

)
︸ ︷︷ ︸

=
1

m∏
i=1

(i− 1)!

· det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m


︸ ︷︷ ︸

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai−aj)

(by (13)) by Lemma 7 (d), applied to R = Q, u = m, v = m,

ai,j =
j−1∏
k=1

(ai − k) , αi = 1 and βi =
1

(i− 1)!


=

1
m∏
i=1

(i− 1)!
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) ,

so that∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) = det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·
m∏
i=1

(i− 1)!

= det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·
m−1∏
k=0

k!︸ ︷︷ ︸
=H(m)

(here we substituted k for i− 1 in the product)

= det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) .

Thus,

H (m) |
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)

(since det


(ai − 1

j − 1

)
︸ ︷︷ ︸

∈Z


1≤j≤m

1≤i≤m

 ∈ Z). Thus, Corollary 10 is proven.

Corollary 11. Let m ∈ N. Let a1, a2, ..., am be m integers. Then,

det

(((
ai

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .
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Proof of Corollary 11. The equality (12) (applied to ai+1 instead of ai) yields

det

(((
(ai + 1)− 1

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

((ai + 1)− (aj + 1))︸ ︷︷ ︸
=ai−aj

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Since (ai + 1)− 1 = ai for every i ∈ {1, 2, . . . ,m}, this rewrites as

det

(((
ai

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

This proves Corollary 11.
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