A hyperfactorial divisibility
 Darij Grinberg
 brief version

Let us define a function $H: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
H(n)=\prod_{k=0}^{n-1} k!\quad \text { for every } n \in \mathbb{N}
$$

Our goal is to prove the following theorem:
Theorem 0 (MacMahon). We have

$$
H(b+c) H(c+a) H(a+b) \mid H(a) H(b) H(c) H(a+b+c)
$$

for every $a \in \mathbb{N}$, every $b \in \mathbb{N}$ and every $c \in \mathbb{N}$.
Remark: Here, we denote by \mathbb{N} the set $\{0,1,2, \ldots\}$ (and not the set $\{1,2,3, \ldots\}$, as some authors do).

Before we come to the proof, first some definitions:

Notations.

- Let R be a ring. Let $u \in \mathbb{N}$ and $v \in \mathbb{N}$, and let $a_{i, j}$ be an element of R for every $(i, j) \in\{1,2, \ldots, u\} \times\{1,2, \ldots, v\}$. Then, we denote by $\left(a_{i, j}\right)_{1 \leq i \leq u}^{1 \leq j \leq v}$ the $u \times v$ matrix $A \in R^{u \times v}$ whose entry in row i and column j is $a_{i, j}$ for every $(i, j) \in\{1,2, \ldots, u\} \times\{1,2, \ldots, v\}$.
- Let R be a commutative ring with unity. Let $P \in R[X]$ be a polynomial. Let $j \in \mathbb{N}$. Then, we denote by coeff ${ }_{j} P$ the coefficient of the polynomial P before X^{j}. (In particular, this implies coeff ${ }_{j} P=0$ for every $j>\operatorname{deg} P$.) Thus, for every $P \in R[X]$ and every $d \in \mathbb{N}$ satisfying $\operatorname{deg} P \leq d$, we have

$$
P(X)=\sum_{k=0}^{d} \operatorname{coeff}_{k}(P) \cdot X^{k}
$$

- Let R be a ring. Let $n \in \mathbb{N}$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n elements of R. Then, $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ will mean the diagonal $n \times n$ matrix whose diagonal entries are $a_{1}, a_{2}, \ldots, a_{n}$ (from top-left to bottom-right). In other words, $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\left\{\begin{array}{ll}a_{i}, & \text { if } i=j ; \\ 0, & \text { if } i \neq j\end{array}\right)_{1 \leq i \leq n}^{1 \leq j \leq n}\right.$.
- If n and m are two integers, then the binomial coefficient $\binom{m}{n} \in \mathbb{Q}$ is defined by

$$
\binom{m}{n}= \begin{cases}\frac{m(m-1) \cdots(m-n+1)}{n!}, & \text { if } n \geq 0 \\ 0, & \text { if } n<0\end{cases}
$$

It is well-known that $\binom{m}{n} \in \mathbb{Z}$ for all $n \in \mathbb{Z}$ and $m \in \mathbb{Z}$.

We are first going to prove a known fact from linear algebra:
Theorem 1 (Vandermonde determinant). Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. Let $a_{1}, a_{2}, \ldots, a_{m}$ be m elements of R. Then,

$$
\operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)
$$

Actually we are more interested in a corollary - and generalization - of this fact:

Theorem 2 (generalized Vandermonde determinant). Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. For every $j \in\{1,2, \ldots, m\}$, let $P_{j} \in R[X]$ be a polynomial such that $\operatorname{deg}\left(P_{j}\right) \leq j-1$. Let a_{1}, a_{2}, ..., a_{m} be m elements of R. Then,

$$
\operatorname{det}\left(\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\left(\prod_{j=1}^{m} \operatorname{coeff}_{j-1}\left(P_{j}\right)\right) \cdot \prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)
$$

Both Theorems 1 and 2 can be deduced from the following lemma:
Lemma 3. Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. For every $j \in\{1,2, \ldots, m\}$, let $P_{j} \in R[X]$ be a polynomial such that $\operatorname{deg}\left(P_{j}\right) \leq j-1$. Let $a_{1}, a_{2}, \ldots, a_{m}$ be m elements of R. Then,

$$
\operatorname{det}\left(\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\left(\prod_{j=1}^{m} \operatorname{coeff}_{j-1}\left(P_{j}\right)\right) \cdot \operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) .
$$

Proof of Lemma 3. For every $j \in\{1,2, \ldots, m\}$, we have $P_{j}(X)=\sum_{k=0}^{m-1} \operatorname{coeff}_{k}\left(P_{j}\right)$. X^{k} (since $\left.\operatorname{deg}\left(P_{j}\right) \leq j-1 \leq m-1\right)$. Thus, for every $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, m\}$, we have

$$
P_{j}\left(a_{i}\right)=\sum_{k=0}^{m-1} \operatorname{coeff}_{k}\left(P_{j}\right) \cdot a_{i}^{k}=\sum_{k=0}^{m-1} a_{i}^{k} \cdot \operatorname{coeff}_{k}\left(P_{j}\right)=\sum_{k=1}^{m} a_{i}^{k-1} \cdot \operatorname{coeff}_{k-1}\left(P_{j}\right)
$$

(here we substituted $k-1$ for k in the sum). Hence,

$$
\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}=\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m} \cdot\left(\operatorname{coeff}_{i-1}\left(P_{j}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m} .
$$

But the matrix ($\left.\operatorname{coeff}_{i-1}\left(P_{j}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}$ is upper triangular (since coeff ${ }_{i-1}\left(P_{j}\right)=0$ for every $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, m\}$ satisfying $i>j \quad 11$; hence,

[^0]$\operatorname{det}\left(\left(\operatorname{coeff}_{i-1}\left(P_{j}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\prod_{j=1}^{m} \operatorname{coeff}_{j-1}\left(P_{j}\right)$ (since the determinant of an upper triangular matrix equals the product of its diagonal entries).

Now,

$$
\begin{aligned}
& \operatorname{det}\left(\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right. \\
&=\operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right. \\
&\left.\left.\operatorname{coeff}_{i-1}\left(P_{j}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) \\
&=(\underbrace{m}_{j=1} \operatorname{loeff}_{j-1}\left(P_{j}\right)) \cdot \operatorname{det}\left(\left(\operatorname{coeff}_{j-1}\left(P_{j}\right)\right.\right. \\
&\left.\operatorname{det}\left(\operatorname{coeff}_{i-1}^{j-1}\left(P_{j}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)
\end{aligned}
$$

and thus, Lemma 3 is proven.
Proof of Theorem 1. For every $j \in\{1,2, \ldots, m\}$, define a polynomial $P_{j} \in$ $R[X]$ by $P_{j}(X)=\prod_{k=1}^{j-1}\left(X-a_{k}\right)$. Then, P_{j} is a monic polynomial of degree $j-1$. In other words, $\operatorname{deg}\left(P_{j}\right)=j-1$ and coeff $j_{j-1}\left(P_{j}\right)=1$ for every $j \in\{1,2, \ldots, m\}$. Thus, Lemma 3 yields

$$
\begin{equation*}
\operatorname{det}\left(\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\left(\prod_{j=1}^{m} \operatorname{coeff}_{j-1}\left(P_{j}\right)\right) \cdot \operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) . \tag{1}
\end{equation*}
$$

But the matrix $\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}$ is lower triangular (since $P_{j}\left(a_{i}\right)=0$ for every $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, m\}$ satisfying $i<j$, as follows quickly from the definition of $\left.P_{j}\right)$; hence, $\operatorname{det}\left(\left(P_{j}\left(a_{i}\right)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\prod_{j=1}^{m} P_{j}\left(a_{j}\right)$ (since the determinant of a lower triangular matrix equals the product of its diagonal entries). Thus, (1) becomes

$$
\prod_{j=1}^{m} P_{j}\left(a_{j}\right)=(\prod_{j=1}^{m} \underbrace{\operatorname{coeff}_{j-1}\left(P_{j}\right)}_{=1}) \cdot \operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\operatorname{det}\left(\left(a_{i}^{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) .
$$

But $P_{j}(X)=\prod_{k=1}^{j-1}\left(X-a_{k}\right)$ yields $P_{j}\left(a_{j}\right)=\prod_{k=1}^{j-1}\left(a_{j}-a_{k}\right)$, so that

$$
\begin{aligned}
& \operatorname{det}\left(\left(a_{i}^{j-1}\right)_{\substack{1 \leq i \leq m}}^{\substack{1 \leq j \leq m\\
}}=\prod_{j=1}^{m} P_{j}\left(a_{j}\right)=\prod_{j=1}^{m} \prod_{k=1}^{j-1}\left(a_{j}-a_{k}\right)=\prod_{\substack{(j, k) \in\{1,2, \ldots, m\}^{2} ; \\
k<j}}\left(a_{j}-a_{k}\right)\right. \\
&=\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\
j<i}}\left(a_{i}-a_{j}\right)=\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\
i>j}}\left(a_{i}-a_{j}\right) .
\end{aligned}
$$

Hence, Theorem 1 is proven.
Now, Theorem 2 immediately follows from Lemma 3 and Theorem 1.
A consequence of Theorem 2:

Corollary 4. Let R be a commutative ring with unity. Let $m \in \mathbb{N}$.
Let $a_{1}, a_{2}, \ldots, a_{m}$ be m elements of R. Then,

$$
\operatorname{det}\left(\left(\prod_{k=1}^{j-1}\left(a_{i}-k\right)\right)_{\substack{1 \leq i \leq m}}^{1 \leq j \leq m}\right)=\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)
$$

Proof of Corollary 4. For every $j \in\{1,2, \ldots, m\}$, define a polynomial $P_{j} \in$ $R[X]$ by $P_{j}(X)=\prod_{k=1}^{j-1}(X-k)$. Then, P_{j} is a monic polynomial of degree $j-1$. In other words, $\operatorname{deg}\left(P_{j}\right)=j-1$ and coeff $j-1\left(P_{j}\right)=1$ for every $j \in\{1,2, \ldots, m\}$. Thus, applying Theorem 2 to these polynomials P_{j} yields the assertion of Corollary 4.

Also notice that:
Lemma 5. Let $m \in \mathbb{N}$. Then,

$$
\prod_{\substack{\left\{\{1,2, \ldots, m\}^{2} ; \\ i>j\right.}}(i-j)=H(m)
$$

Proof of Lemma 5. We have

$$
\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}(i-j)=\prod_{\substack{(i, j) \in\{0,1, \ldots, m-1\}^{2} ; \\ i>j}}(i-j)
$$

(here we shifted i and j by 1 , which doesn't change anything since $i-j$ remains constant)

$$
=\prod_{i \in\{0,1, \ldots, m-1\}} \prod_{\substack{j \in\{0,1, \ldots, m-1\} ; \\ i>j}}(i-j)=\prod_{i \in\{0,1, \ldots, m-1\}} \prod_{j=0}^{i-1}(i-j)=\prod_{i \in\{0,1, \ldots, m-1\}} \prod_{=i!}^{i} j
$$

(here, we substituted j for $i-j$ in the second product)

$$
=\prod_{i \in\{0,1, \ldots, m-1\}} i!=\prod_{k=0}^{m-1} k!=H(m)
$$

Hence, Lemma 5 is proven.

Now, we notice that every $a \in \mathbb{N}$, every $b \in \mathbb{N}$ and every $c \in \mathbb{N}$ satisfy

$$
\begin{aligned}
H(a+b+c) & =\prod_{k=0}^{a+b+c-1} k!=(\underbrace{\prod_{k=0}^{a+b-1} k!}_{=H(a+b)}) \cdot \prod_{k=a+b}^{a+b+c-1} k!=H(a+b) \cdot \prod_{k=a+b}^{a+b+c-1} k! \\
& =H(a+b) \cdot \prod_{i=1}^{c}(a+b+i-1)!
\end{aligned}
$$

(here we substituted $a+b+i-1$ for k in the product),
$H(b+c)=\prod_{k=0}^{b+c-1} k!=(\underbrace{\prod_{k=0}^{b-1} k!}_{=H(b)}) \cdot \prod_{k=b}^{b+c-1} k!=H(b) \cdot \prod_{k=b}^{b+c-1} k!=H(b) \cdot \prod_{i=1}^{c}(b+i-1)!$ (here we substituted $b+i-1$ for k in the product),
$H(c+a)=\prod_{k=0}^{c+a-1} k!=(\underbrace{\prod_{k=0}^{a-1} k!}_{=H(a)}) \cdot \prod_{k=a}^{c+a-1} k!=H(a) \cdot \prod_{k=a}^{c+a-1} k!=H(a) \cdot \prod_{i=1}^{c}(a+i-1)!$
(here we substituted $a+i-1$ for k in the product).
Next, a technical lemma.
Lemma 6. For every $i \in \mathbb{N}$ and $j \in \mathbb{N}$ satisfying $i \geq 1$ and $j \geq 1$, we have

$$
\binom{a+b+i-1}{a+i-j}=\frac{(a+b+i-1)!}{(a+i-1)!\cdot(b+j-1)!} \cdot \prod_{k=1}^{j-1}(a+i-k)
$$

The proof of this lemma is completely straightforward: Either we have $a+$ $i-j \geq 0$ and Lemma 6 follows from standard manipulations with binomial coefficients, or we have $a+i-j<0$ and Lemma 6 follows from $\binom{a+b+i-1}{a+i-j}=$ 0 and $\prod_{k=1}^{j-1}(a+i-k)=0$.

Another trivial lemma:
Lemma 7. Let R be a commutative ring with unity. Let $u \in \mathbb{N}$, and let $a_{i, j}$ be an element of R for every $(i, j) \in\{1,2, \ldots, u\}^{2}$.
Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}$ be u elements of R. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{u}$ be u elements of R. Then,

$$
\operatorname{det}\left(\left(\alpha_{i} a_{i, j} \beta_{j}\right)_{1 \leq i \leq u}^{1 \leq j \leq u}\right)=\prod_{i=1}^{u} \alpha_{i} \cdot \prod_{i=1}^{u} \beta_{i} \cdot \operatorname{det}\left(\left(a_{i, j}\right)_{1 \leq i \leq u}^{1 \leq j \leq u}\right) .
$$

This is clear because the matrix $\left(\alpha_{i} a_{i, j} \beta_{j}\right)_{1 \leq i \leq u}^{1 \leq j \leq u}$ can be written as the product

$$
\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}\right) \cdot\left(a_{i, j}\right)_{1 \leq i \leq u}^{1 \leq i \leq u} \cdot \operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{u}\right),
$$

and thus

$$
\begin{aligned}
& \operatorname{det}\left(\left(\alpha_{i} a_{i, j} \beta_{j}\right)_{1 \leq i \leq u}^{1 \leq i \leq u}\right) \\
& =\operatorname{det}\left(\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}\right) \cdot\left(a_{i, j}\right)_{1 \leq i \leq u}^{1 \leq j \leq u} \cdot \operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{u}\right)\right) \\
& =\underbrace{\operatorname{det}\left(\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}\right)\right)}_{=\prod_{i=1}^{u} \alpha_{i}} \cdot \operatorname{det}\left(\left(a_{i, j}\right)_{1 \leq i \leq u}^{1 \leq j \leq u}\right) \cdot \underbrace{\operatorname{det}\left(\operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{u}\right)\right)}_{=\prod_{i=1}^{u} \beta_{i}} .
\end{aligned}
$$

Now, back to proving Theorem 0:
We have

$$
\begin{align*}
& \operatorname{det}\left(\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right) \\
& =\operatorname{det}\left(\left(\frac{(a+b+i-1)!}{(a+i-1)!\cdot(b+j-1)!} \cdot \prod_{k=1}^{j-1}(a+i-k)\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right) \tag{byLemma6}\\
& =\operatorname{det}\left(\left(\frac{(a+b+i-1)!}{(a+i-1)!} \cdot \prod_{k=1}^{j-1}(a+i-k) \cdot \frac{1}{(b+j-1)!}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right) \\
& =\prod_{i=1}^{c} \frac{(a+b+i-1)!}{(a+i-1)!} \cdot \prod_{i=1}^{c} \frac{1}{(b+i-1)!} \cdot \operatorname{det}\left(\left(\prod_{k=1}^{j-1}(a+i-k)\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)
\end{align*}
$$

(by Lemma 7, applied to $R=\mathbb{Q}, u=c, a_{i, j}=\prod_{k=1}^{j-1}(a+i-k), \alpha_{i}=\frac{(a+b+i-1)!}{(a+i-1)!}$ and $\left.\beta_{i}=\frac{1}{(b+i-1)!}\right)$. Since

$$
\operatorname{det}\left(\left(\prod_{k=1}^{j-1}(a+i-k)\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)=\prod_{\substack{(i, j) \in\{1,2, \ldots, c\}^{2} ; \\ i>j}}(\underbrace{(a+i)-(a+j)}_{=i-j})
$$

(by Corollary 4, applied to $R=\mathbb{Z}, m=c$ and $a_{i}=a+i$ for every $i \in\{1,2, \ldots, c\}$)
$=\prod_{\substack{(i, j) \in\{1,2, \ldots, c\}^{2} ; \\ i>j}}(i-j)=H(c) \quad$ (by Lemma 5, applied to $m=c$),
this becomes

$$
\begin{equation*}
\operatorname{det}\left(\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)=\prod_{i=1}^{c} \frac{(a+b+i-1)!}{(a+i-1)!} \cdot \prod_{i=1}^{c} \frac{1}{(b+i-1)!} \cdot H(c) . \tag{5}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \frac{H(a) H(b) H(c) H(a+b+c)}{H(b+c) H(c+a) H(a+b)} \\
& =\frac{H(a) H(b) H(c) H(a+b) \cdot \prod_{i=1}^{c}(a+b+i-1)!}{\left(H(b) \cdot \prod_{i=1}^{c}(b+i-1)!\right) \cdot\left(H(a) \cdot \prod_{i=1}^{c}(a+i-1)!\right) \cdot H(a+b)} \\
& \quad(b y(2),(3) \text { and (4) }) \\
& =\frac{\prod_{i=1}^{c}(a+b+i-1)!}{\prod_{i=1}^{c}(b+i-1)!\cdot \prod_{i=1}^{c}(a+i-1)!} \cdot H(c)=\underbrace{\prod_{i=1}^{c}(a+i-1)!}_{\prod_{i=1}^{c}(a+b+i-1)!} \cdot \underbrace{\prod_{i=1}^{c}(b+i-1)!}_{\prod_{i=1}^{c}(a+b+i-1)!}=\prod_{i=1}^{c} \frac{1}{(b+i-1)!} \\
& =\left(\prod_{i=1}^{c} \frac{(a+b+i-1)!}{(a+i-1)!}\right) \cdot\left(\prod_{i=1}^{c} \frac{1}{(b+i-1)!}\right) \cdot H(c) \\
& =\operatorname{det}\left(\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq i \leq c}\right) \tag{6}\\
& \in \mathbb{Z}
\end{align*}
$$

(since $\left.\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} \in \mathbb{Z}^{c \times c}\right)$. In other words,

$$
H(b+c) H(c+a) H(a+b) \mid H(a) H(b) H(c) H(a+b+c) .
$$

Thus, Theorem 0 is finally proven.

Remarks.

1. Theorem 0 was briefly mentioned (with a combinatorial interpretation, but without proof) on the first page of [1]. It also follows from the formula (2.1) in [3] (since $\left.\frac{H(a) H(b) H(c) H(a+b+c)}{H(b+c) H(c+a) H(a+b)}=\prod_{i=1}^{c} \frac{(a+b+i-1)!(i-1)!}{(a+i-1)!(b+i-1)!}\right)$, or, equivalently, the formula (2.17) in [4]. It is also generalized in [2], Section 429 (where one has to consider the limit $x \rightarrow 1$).
2. We can prove more:

Theorem 8. For every $a \in \mathbb{N}$, every $b \in \mathbb{N}$ and every $c \in \mathbb{N}$, we have

$$
\begin{aligned}
& \frac{H(a) H(b) H(c) H(a+b+c)}{H(b+c) H(c+a) H(a+b)} \\
& =\operatorname{det}\left(\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)=\operatorname{det}\left(\left(\binom{a+b}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right) .
\end{aligned}
$$

We recall a useful fact to help us in the proof:

Theorem 9, the Vandermonde convolution identity. Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$. Let $q \in \mathbb{Z}$. Then,

$$
\binom{x+y}{q}=\sum_{k \in \mathbb{Z}}\binom{x}{k}\binom{y}{q-k}
$$

(The sum on the right hand side is an infinite sum, but only finitely many of its addends are nonzero.)

Proof of Theorem 8. For every $i \in\{1,2, \ldots, c\}$ and every $j \in\{1,2, \ldots, c\}$, we have

$$
\binom{a+b+i-1}{a+i-j}=\sum_{k \in \mathbb{Z}}\binom{a+b}{k}\binom{i-1}{a+i-j-k}
$$

(by Theorem 9, applied to $x=a+b, y=i-1$ and $q=a+i-j$)

$$
\begin{aligned}
& =\sum_{\ell \in \mathbb{Z}}\binom{a+b}{a-j+\ell}\binom{i-1}{i-\ell} \quad \text { (here we substituted } a-j+\ell \text { for } k \text { in the sum) } \\
& =\sum_{\ell=1}^{c}\binom{a+b}{a-j+\ell}\binom{i-1}{i-\ell}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\text { here, we restricted the summation from } \ell \in \mathbb{Z} \text { to } \ell \in\{1,2, \ldots, c\}, \\
\text { which doesn't change the sum because } \\
\binom{a+b}{a-j+\ell}\binom{i-1}{i-\ell}=0 \text { for all } \ell \in \mathbb{Z} \backslash\{1,2, \ldots, c\}
\end{array}\right)
$$

$$
=\sum_{\ell=1}^{c}\binom{i-1}{i-\ell}\binom{a+b}{a-j+\ell} .
$$

Thus,

$$
\begin{align*}
\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} & =\left(\sum_{\ell=1}^{c}\binom{i-1}{i-\ell}\binom{a+b}{a-j+\ell}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} \\
& =\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} \cdot\left(\binom{a+b}{a-j+i}\right)_{1 \leq j \leq c}^{1 \leq i \leq c} \\
& =\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} \cdot\left(\binom{a+b}{a+i-j}\right)_{1 \leq j \leq c}^{1 \leq j \leq c} \tag{7}
\end{align*} .
$$

Now, the matrix $\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}$ is lower triangular (since $\binom{i-1}{i-j}=0$ for every $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, m\}$ satisfying $i<j$). Since the determinant of an lower triangular matrix equals the product of its diagonal entries, this yields

$$
\begin{align*}
& \operatorname{det}\left(\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)=\prod_{j=1}^{m} \tag{8}\\
&=\binom{j-1}{0}=1
\end{align*}
$$

Now,
$\operatorname{det}\left(\left(\binom{a+b+i-1}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)=\operatorname{det}\left(\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c} \cdot\left(\binom{a+b}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)$
(by (7))
$=\underbrace{\operatorname{det}\left(\left(\binom{i-1}{i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right.}_{=1 \text { by } 8 \text { 8) }}) \cdot \operatorname{det}\left(\left(\binom{a+b}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)$
$=\operatorname{det}\left(\left(\binom{a+b}{a+i-j}\right)_{1 \leq i \leq c}^{1 \leq j \leq c}\right)$.
Combined with (6), this yields Theorem 8.
3. We notice a particularly known consequence of Corollary 4:

Corollary 10. Let $m \in \mathbb{N}$. Let $a_{1}, a_{2}, \ldots, a_{m}$ be m integers. Then,

$$
\operatorname{det}\left(\left(\binom{a_{i}-1}{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) \cdot H(m)=\prod_{\substack{(i, j) \in\left\{\begin{array}{c}
1,2, \ldots, m\}^{2} ; \\
i>j \\
1 \leq i
\end{array}\right.}}\left(a_{i}-a_{j}\right) .
$$

In particular,

$$
H(m) \mid \prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)
$$

Proof of Corollary 10. For every $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, m\}$, we have

$$
\begin{equation*}
\binom{a_{i}-1}{j-1}=\frac{\prod_{k=1}^{j-1}\left(a_{i}-k\right)}{(j-1)!}=1 \cdot \prod_{k=1}^{j-1}\left(a_{i}-k\right) \cdot \frac{1}{(j-1)!} . \tag{9}
\end{equation*}
$$

Therefore,

$$
\text { (by Lemma 7, applied to } \left.R=\mathbb{Q}, u=m, a_{i, j}=\prod_{k=1}^{j-1}\left(a_{i}-k\right), \alpha_{i}=1 \text { and } \beta_{i}=\frac{1}{(i-1)!}\right)
$$

$$
=\frac{1}{H(m)} \cdot \prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right),
$$

$$
\begin{aligned}
& \operatorname{det}\left(\left(\binom{a_{i}-1}{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right)=\operatorname{det}\left(\left(1 \cdot \prod_{k=1}^{j-1}\left(a_{i}-k\right) \cdot \frac{1}{(j-1)!}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) \\
& =\underbrace{\prod_{i=1}^{m} 1}_{=1} \cdot \underbrace{\prod_{k=0}^{m} \frac{1}{i=1} \frac{1}{(i-1)!}}_{\substack{m-1}}=\frac{1}{\prod_{i=1}^{m-1} k!}=\frac{1}{H(m)} \quad \underbrace{\left(a_{i}-a_{j}\right) \text { by Corollary } 4}_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\
i>j}}
\end{aligned}
$$

so that

$$
\prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)=\operatorname{det}\left(\left(\binom{a_{i}-1}{j-1}\right)_{1 \leq i \leq m}^{1 \leq j \leq m}\right) \cdot H(m)
$$

Thus,

$$
H(m) \mid \prod_{\substack{(i, j) \in\{1,2, \ldots, m\}^{2} ; \\ i>j}}\left(a_{i}-a_{j}\right)
$$

(since det $(\underbrace{\binom{a_{i}-1}{j-1}}_{\in \mathbb{Z}})_{1 \leq i \leq m}) \in \mathbb{Z}$). Thus, Corollary 10 is proven.
Corollary 11. Let $m \in \mathbb{N}$. Let $a_{1}, a_{2}, \ldots, a_{m}$ be m integers. Then,

$$
\operatorname{det}\left(\left(\binom{a_{i}}{j-1}\right)^{1 \leq i \leq m} 1 \leq \prod_{\substack{(i, j) \in\left\{\{1,2, \ldots, m\}^{2} ; \\ i>j\right.}}\left(a_{i}-a_{j}\right) .\right.
$$

Proof of Corollary 11. This follows from Corollary 10, applied to $a_{i}+1$ instead of a_{i}.

References

[1] Theresia Eisenkölbl, Rhombus tilings of a hexagon with three fixed border tiles, J. Combin. Theory Ser. A 88 (1999), 368-378; arXiv:math/9712261v2 [math.CO]. http://arxiv.org/abs/math/9712261v2
[2] Percy Alexander MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
http://www.archive.org/details/combinatoryanaly02macmuoft ${ }^{2}$
[3] Christian Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507v2 [math.CO]. http://arxiv.org/abs/math.CO/0503507v2
[4] Christian Krattenthaler, Advanced Determinant Calculus, $S \backslash$ 'eminaire Lotharingien Combin. 42 (1999) (The Andrews Festschrift), paper B42q, 67 pp; arXiv:math/9902004v3 [math.CO].
http://arxiv.org/abs/math/9902004v3

[^1]
[^0]: ${ }^{1}$ because $i>j$ yields $i-1>j-1$, thus $i-1>\operatorname{deg}\left(P_{j}\right)$ (since $\left.\operatorname{deg}\left(P_{j}\right) \leq j-1\right)$ and therefore $\operatorname{coeff}_{i-1}\left(P_{j}\right)=0$

[^1]: ${ }^{2}$ See also:

 - Percy Alexander MacMahon, Combinatory Analysis, vol. 1, Cambridge University Press, 1915, http://www.archive.org/details/combinatoryanal01macmuoft;
 - Percy Alexander MacMahon, An introduction to Combinatory analysis, Cambridge University Press, 1920, http://www.archive.org/details/ introductiontoco00macmrich.

