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1. Fleck’s congruence

Definition 1.1. Let N denote the set {0, 1, 2, . . .}.

The following elementary theorem appears, e.g., in [SchWal12] and in [Granvi05,
(12)]:

Theorem 1.2. Let p be a prime. Let j ∈ Z, n ∈ N and q ∈ N be such that

q ≤ n− 1
p− 1

. Then,

∑
m∈N;

m≡j mod p

(−1)m
(

n
m

)
≡ 0 mod pq.

(The sum on the left hand side of this congruence is well-defined, because

every m > n satisfies
(

n
m

)
= 0.)
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Theorem 1.2 was found in A. Fleck in 1913. In [Granvi05], it is proven using
cyclotomic integers. Here, we shall instead give a proof using nothing more
advanced than polynomials and matrix multiplication. The tactic used in the
following proof is similar to that used in [Grinbe15] (viz., proving congruences
of integers by interpreting them as single-entry pieces of matrix-valued congru-
ences in commutative subrings of matrix rings), and is probably helpful more
often.

2. Preliminaries: Iverson brackets and circulant
matrices

We now start preparing for the proof of Theorem 1.2. Let us first agree on some
notations.

Definition 2.1. We shall use the Iverson bracket notation: If S is a logical state-

ment, then [S ] will mean the integer

{
1, if S is true;
0, if S is false

.

The Iverson bracket can be used for counting (or, rather, for neatly writing up
counting arguments), via the following simple result:

Proposition 2.2. Let K be a set. For each k ∈ K, let A (k) be some logical
statement. Then,

∑
k∈K

[A (k)] = (the number of all k ∈ K satisfying A (k)) .

Proof of Proposition 2.2. We have

∑
k∈K

[A (k)] = ∑
k∈K;

A(k) is true

[A (k)]︸ ︷︷ ︸
=1

(since A(k) is true)

+ ∑
k∈K;

A(k) is false

[A (k)]︸ ︷︷ ︸
=0

(since A(k) is false)

= ∑
k∈K;

A(k) is true

1 + ∑
k∈K;

A(k) is false

0

︸ ︷︷ ︸
=0

= ∑
k∈K;

A(k) is true

1

= (the number of all k ∈ K for which A (k) is true) · 1
= (the number of all k ∈ K for which A (k) is true)
= (the number of all k ∈ K satisfying A (k)) .

This proves Proposition 2.2.

2



Fleck’s binomial congruence using circulant matrices July 14, 2019

Definition 2.3. In the following, all matrices are understood to have integer
entries.

Definition 2.4. Let n ∈N and m ∈N.
(a) If S is an n× m-matrix, and if (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}, then

we will denote the (i, j)-th entry of S by Si,j.
(b) If ai,j is an integer for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, then

we let
(
ai,j
)

1≤i≤n, 1≤j≤m denote the n×m-matrix whose (i, j)-th entry is ai,j for
all (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}.

Thus, any n × m-matrix S satisfies S =
(
Si,j
)

1≤i≤n, 1≤j≤m. Moreover, the
definition of the product of two matrices can be stated as follows: For any
n ∈ N, any m ∈ N, any ` ∈ N, any n× m-matrix

(
ai,j
)

1≤i≤n, 1≤j≤m and any

m× `-matrix
(
bi,j
)

1≤i≤m, 1≤j≤`, we have

(
ai,j
)

1≤i≤n, 1≤j≤m

(
bi,j
)

1≤i≤m, 1≤j≤` =

(
m

∑
k=1

ai,kbk,j

)
1≤i≤n, 1≤j≤`

. (1)

Definition 2.5. Let p be a positive integer. Let Sp be the p × p-matrix
([j ≡ i + 1 mod p])1≤i≤p, 1≤j≤p. Let Ip denote the p× p identity matrix.

For example, I3 =

 1 0 0
0 1 0
0 0 1

 and S3 =

 0 1 0
0 0 1
1 0 0

.

Roughly speaking, the p× p-matrix Sp can be viewed as the result of “moving
Ip one column to the right” in a cyclic way (i.e., each column apart from the last
one moves one unit to the right, whereas the last one moves to the front). More
formally, Sp is the permutation matrix of a cyclic permutation. From this point
of view, the following proposition should be rather obvious:

Proposition 2.6. Let p be a positive integer. Let k ∈N. Then,(
Sp
)k

= ([j ≡ i + k mod p])1≤i≤p, 1≤j≤p .

For the sake of completeness, let me give a formal proof of this proposition:

Proof of Proposition 2.6. We shall prove Proposition 2.6 by induction over k:
Induction base: The definition of the identity matrix Ip yields Ip = ([i = j])1≤i≤p, 1≤j≤p.

But if i and j are two elements of {1, 2, . . . , p}, then [j ≡ i + 0 mod p] = [i = j] 1.

1Proof. Let i and j be two elements of {1, 2, . . . , p}. Then, i ≡ j mod p holds if and only if
i = j (because no two distinct elements of {1, 2, . . . , p} are congruent to each other modulo

3



Fleck’s binomial congruence using circulant matrices July 14, 2019

Hence,

[j ≡ i + 0 mod p]︸ ︷︷ ︸
=[i=j]


1≤i≤p, 1≤j≤p

= ([i = j])1≤i≤p, 1≤j≤p. Comparing this

with
(
Sp
)0

= Ip = ([i = j])1≤i≤p, 1≤j≤p, we obtain
(
Sp
)0

= ([j ≡ i + 0 mod p])1≤i≤p, 1≤j≤p.
In other words, Proposition 2.6 holds for k = 0. This completes the induction
base.

Induction step: Let K ∈ N. Assume that Proposition 2.6 holds for k = K. We
now must prove that Proposition 2.6 holds for k = K + 1.

We have assumed that Proposition 2.6 holds for k = K. In other words, we
have (

Sp
)K

= ([j ≡ i + K mod p])1≤i≤p, 1≤j≤p . (2)

For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , p}, we have

[k ≡ i + K mod p] [j ≡ k + 1 mod p]
= [k ≡ i + K mod p] [j ≡ i + (K + 1)mod p] . (3)

[Proof of (3): Let i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , p}. We must prove the
equality (3). We are in one of the following two cases:

Case 1: We have k ≡ i + K mod p.
Case 2: We don’t have k ≡ i + K mod p.
Let us first consider Case 1. In this case, we have k ≡ i + K mod p. Thus,

k︸︷︷︸
≡i+K mod p

+1 ≡ i + K + 1 = i + (K + 1)mod p. Therefore, we have j ≡ k +

1 mod p if and only if j ≡ i + (K + 1)mod p. Therefore, [j ≡ k + 1 mod p] =
[j ≡ i + (K + 1)mod p]. Now,

[k ≡ i + K mod p] [j ≡ k + 1 mod p]︸ ︷︷ ︸
=[j≡i+(K+1)mod p]

= [k ≡ i + K mod p] [j ≡ i + (K + 1)mod p] .

Hence, (3) is proven in Case 1.
Let us now consider Case 2. In this case, we don’t have k ≡ i + K mod p. Thus,

[k ≡ i + K mod p] = 0. Since [k ≡ i + K mod p] appears as a factor on both sides
of (3), this shows that both sides of (3) are 0. Thus, (3) is proven in Case 2.

p). Thus, we have [i ≡ j mod p] = [i = j]. Now,

j ≡ i + 0︸︷︷︸
=i

mod p

 =

 j ≡ i mod p︸ ︷︷ ︸
this is equivalent to

(i≡j mod p)

 = [i ≡ j mod p] = [i = j] .

Qed.
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We now have proven (3) in each of the two Cases 1 and 2. Thus, (3) always
holds. Qed.]

For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , p}, we have

p

∑
k=1

[k ≡ i + K mod p] [j ≡ k + 1 mod p]

= [j ≡ i + (K + 1)mod p] (4)

2.

2Proof of (4): Let i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , p}.
The following fact is well-known: The integers 1, 2, . . . , p cover each of the remainder

classes modulo p exactly once. In other words, for every integer N, there is exactly one
k ∈ {1, 2, . . . , p} satisfying k ≡ N mod p. In other words, for each integer N, we have

(the number of all k ∈ {1, 2, . . . , p} satisfying k ≡ N mod p) = 1. (5)

But

p

∑
k=1︸︷︷︸

= ∑
k∈{1,2,...,p}

[k ≡ i + K mod p] [j ≡ k + 1 mod p]︸ ︷︷ ︸
=[k≡i+K mod p][j≡i+(K+1)mod p]

(by (3))

= ∑
k∈{1,2,...,p}

[k ≡ i + K mod p] [j ≡ i + (K + 1)mod p]

= [j ≡ i + (K + 1)mod p] · ∑
k∈{1,2,...,p}

[k ≡ i + K mod p]︸ ︷︷ ︸
=(the number of all k∈{1,2,...,p} satisfying k≡i+K mod p)

(by Proposition 2.2 (applied to K={1,2,...,p}
and A(k)=(“k≡i+K mod p”)))

= [j ≡ i + (K + 1)mod p] · (the number of all k ∈ {1, 2, . . . , p} satisfying k ≡ i + K mod p)︸ ︷︷ ︸
=1

(by (5) (applied to N=i+K))

= [j ≡ i + (K + 1)mod p] .

This proves (4).
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Now,(
Sp
)K+1

=
(
Sp
)K︸ ︷︷ ︸

=([j≡i+K mod p])1≤i≤p, 1≤j≤p

Sp︸︷︷︸
=([j≡i+1 mod p])1≤i≤p, 1≤j≤p

= ([j ≡ i + K mod p])1≤i≤p, 1≤j≤p ([j ≡ i + 1 mod p])1≤i≤p, 1≤j≤p

=


p

∑
k=1

[k ≡ i + K mod p] [j ≡ k + 1 mod p]︸ ︷︷ ︸
=[j≡i+(K+1)mod p]

(by (4))


1≤i≤p, 1≤j≤p(

by (1), applied to n = p, m = p, ` = p,
ai,j = [j ≡ i + K mod p] and bi,j = [j ≡ i + 1 mod p]

)
= ([j ≡ i + (K + 1)mod p])1≤i≤p, 1≤j≤p .

In other words, Proposition 2.6 holds for k = K+ 1. This completes the induction
step.

Thus, Proposition 2.6 is proven by induction.

Corollary 2.7. Let p be a positive integer. Let k ∈N. Let u ∈ {1, 2, . . . , p} and
v ∈ {1, 2, . . . , p}. Then,((

Sp
)k
)

u,v
= [v ≡ u + k mod p] .

Proof of Corollary 2.7. Proposition 2.6 yields
(
Sp
)k

= ([j ≡ i + k mod p])1≤i≤p, 1≤j≤p.

Hence,
((

Sp
)k
)

u,v
=
(
([j ≡ i + k mod p])1≤i≤p, 1≤j≤p

)
u,v

= [v ≡ u + k mod p].

This proves Corollary 2.7.

Corollary 2.8. Let p be a positive integer. Then,
(
Sp
)p

= Ip.

Proof of Corollary 2.8. For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , p}, we have
j ≡ i + p mod p︸ ︷︷ ︸
this is equivalent to

j≡i+0 mod p
(since i+p≡i=i+0 mod p)


= [j ≡ i + 0 mod p] . (6)

Proposition 2.6 (applied to k = 0) yields(
Sp
)0

= ([j ≡ i + 0 mod p])1≤i≤p, 1≤j≤p . (7)
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Proposition 2.6 (applied to k = p) yields

(
Sp
)p

=

[j ≡ i + p mod p]︸ ︷︷ ︸
=[j≡i+0 mod p]

(by (6))


1≤i≤p, 1≤j≤p

= ([j ≡ i + 0 mod p])1≤i≤p, 1≤j≤p

=
(
Sp
)0

(by (7))
= Ip.

This proves Corollary 2.8.

Corollary 2.9. Let p be a positive integer. Let j ∈ {0, 1, . . . , p− 1} and n ∈ N.
Then,

∑
m∈N;

m≡j mod p

(−1)m
(

n
m

)
=
((

Ip − Sp
)n
)

1,j+1
.

To prove Corollary 2.9, we shall need the binomial formula, in the following
form:

Proposition 2.10. Let x ∈N. Then,

(1 + X)x = ∑
k∈N

(
x
k

)
Xk

(an equality between polynomials in Z [X]). (The sum ∑
k∈N

(
x
k

)
Xk is an in-

finite sum, but only finitely many of its addends are nonzero, so it is well-
defined.)

Proof of Corollary 2.9. We have 1 ∈ {1, 2, . . . , p} (since p is positive) and j + 1 ∈
{1, 2, . . . , p} (since j ∈ {0, 1, . . . , p− 1}). Hence, every k ∈N satisfies

((
Sp
)k
)

1,j+1
=

j + 1 ≡ 1 + k︸ ︷︷ ︸
=k+1

mod p


(by Corollary 2.7 (applied to u = 1 and v = j + 1))

=

j + 1 ≡ k + 1 mod p︸ ︷︷ ︸
this is equivalent to

j≡k mod p

 =

 j ≡ k mod p︸ ︷︷ ︸
this is equivalent to

k≡j mod p


= [k ≡ j mod p] . (8)

7
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Proposition 2.10 (applied to x = n) yields (1 + X)n = ∑
k∈N

(
n
k

)
Xk (an equality

between polynomials in Z [X]). If we substitute −Sp for X in this equality, then

we obtain
(

Ip +
(
−Sp

))n
= ∑

k∈N

(
n
k

) (
−Sp

)k (since the unity of the ring of p× p-

matrices is Ip). Thus, Ip − Sp︸ ︷︷ ︸
=Ip+(−Sp)


n

=
(

Ip +
(
−Sp

))n
= ∑

k∈N

(
n
k

) (
−Sp

)k︸ ︷︷ ︸
=(−1)k(Sp)

k

= ∑
k∈N

(
n
k

)
(−1)k (Sp

)k
= ∑

k∈N

(−1)k
(

n
k

) (
Sp
)k .

Thus,
(

Ip − Sp
)n︸ ︷︷ ︸

= ∑
k∈N

(−1)k

(
n
k

)
(Sp)

k


1,j+1

=

(
∑

k∈N

(−1)k
(

n
k

) (
Sp
)k
)

1,j+1

= ∑
k∈N

(−1)k
(

n
k

)((
Sp
)k
)

1,j+1︸ ︷︷ ︸
=[k≡j mod p]

(by (8))

= ∑
k∈N

(−1)k
(

n
k

)
[k ≡ j mod p]

= ∑
k∈N;

k≡j mod p

(−1)k
(

n
k

)
[k ≡ j mod p]︸ ︷︷ ︸

=1
(since k≡j mod p)

+ ∑
k∈N;

k 6≡j mod p

(−1)k
(

n
k

)
[k ≡ j mod p]︸ ︷︷ ︸

=0
(since k 6≡j mod p)

= ∑
k∈N;

k≡j mod p

(−1)k
(

n
k

)
= ∑

m∈N;
m≡j mod p

(−1)m
(

n
m

)

(here, we have renamed the summation index k as m). This proves Corollary 2.9.

3. The polynomial U

On the other hand, let us recall a standard property of primes:
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Proposition 3.1. Let p be a prime. Let k ∈ {0, 1, . . . , p− 1}. Then,(
p− 1

k

)
≡ (−1)k mod p.

Proposition 3.1 is well-known; we give its proof in the appendix (Section 5)
for the sake of completeness.

Corollary 3.2. Let p be a prime. For every k ∈ {0, 1, . . . , p− 1}, we have

(−1)k
(

p− 1
k

)
− 1

p
∈ Z.

Proof of Corollary 3.2. Let k ∈ {0, 1, . . . , p− 1}. Then, Proposition 3.1 shows that(
p− 1

k

)
≡ (−1)k mod p. Hence,

(−1)k
(

p− 1
k

)
︸ ︷︷ ︸
≡(−1)k mod p

≡ (−1)k (−1)k =
(
(−1)k

)2
= 1 mod p

(since (−1)k ∈ {1,−1}). In other words, p | (−1)k
(

p− 1
k

)
− 1. In other words,

(−1)k
(

p− 1
k

)
− 1

p
∈ Z. This proves Corollary 3.2.

We recall that Z [X] denotes the ring of all polynomials in one indeterminate
X with integer coefficients.

Corollary 3.3. Let p be a prime. Then, there exists a polynomial U ∈ Z [X]
such that (1− X)p = (1− Xp) + p (1− X)U.

Proof of Corollary 3.3. For every k ∈ {0, 1, . . . , p− 1}, we have
(−1)k

(
p− 1

k

)
− 1

p
∈

Z (by Corollary 3.2). Thus, for every k ∈ {0, 1, . . . , p− 1}, we can define an el-

ement ak ∈ Z by ak =

(−1)k
(

p− 1
k

)
− 1

p
. Consider these elements ak. Every

k ∈ {0, 1, . . . , p− 1} satisfies

pak = (−1)k
(

p− 1
k

)
− 1 (9)

9
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(since ak =

(−1)k
(

p− 1
k

)
− 1

p
).

Define a polynomial A ∈ Z [X] by A =
p−1
∑

k=0
akXk.

The binomial formula says the following: If a and b are any two elements of a
commutative ring A, and if g ∈N, then

(a + b)g =
g

∑
k=0

(
g
k

)
akbg−k.

This formula (applied to A = Z [X], a = −X, b = 1 and g = p− 1) yields

((−X) + 1)p−1 =
p−1

∑
k=0

(
p− 1

k

)
(−X)k︸ ︷︷ ︸
=(−1)kXk

1p−1−k︸ ︷︷ ︸
=1

=
p−1

∑
k=0

(
p− 1

k

)
(−1)k︸ ︷︷ ︸

=(−1)k

(
p− 1

k

) Xk =
p−1

∑
k=0

(−1)k
(

p− 1
k

)
Xk.

Since (−X) + 1 = 1− X, this rewrites as follows:

(1− X)p−1 =
p−1

∑
k=0

(−1)k
(

p− 1
k

)
Xk. (10)

On the other hand, a well-known identity states the following: If a and b are
any two elements of a commutative ring A, and if g ∈N, then

ag − bg = (a− b)
g−1

∑
k=0

akbg−1−k.

This formula (applied to A = Z [X], a = 1, b = X and g = p) yields

1p − Xp = (1− X)
p−1

∑
k=0

1k︸︷︷︸
=1

Xp−1−k = (1− X)
p−1

∑
k=0

Xp−1−k

= (1− X)
p−1

∑
k=0

Xk (11)

(here, we have substituted k for p− 1− k in the sum).

10
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Now,

(1− X)p︸ ︷︷ ︸
=(1−X)(1−X)p−1

−

 1︸︷︷︸
=1p

−Xp


= (1− X) (1− X)p−1 − (1p − Xp)︸ ︷︷ ︸

=(1−X)
p−1
∑

k=0
Xk

(by (11))

= (1− X) (1− X)p−1 − (1− X)
p−1

∑
k=0

Xk = (1− X)

(
(1− X)p−1 −

p−1

∑
k=0

Xk

)
.

Since

(1− X)p−1︸ ︷︷ ︸
=

p−1
∑

k=0
(−1)k

(
p− 1

k

)
Xk

(by (10))

−
p−1

∑
k=0

Xk

=
p−1

∑
k=0

(−1)k
(

p− 1
k

)
Xk −

p−1

∑
k=0

Xk =
p−1

∑
k=0

(
(−1)k

(
p− 1

k

)
− 1
)

︸ ︷︷ ︸
=pak

(by (9))

Xk

=
p−1

∑
k=0

pakXk = p
p−1

∑
k=0

akXk

︸ ︷︷ ︸
=A

(since A=
p−1
∑

k=0
akXk)

= pA,

this becomes

(1− X)p − (1− X)p = (1− X)

(
(1− X)p−1 −

p−1

∑
k=0

Xk

)
︸ ︷︷ ︸

=pA

= (1− X) pA = p (1− X) A.

In other words, (1− X)p = (1− Xp) + p (1− X) A. Hence, there exists a poly-
nomial U ∈ Z [X] such that (1− X)p = (1− Xp) + p (1− X)U (namely, U = A).
This proves Corollary 3.3.

11
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4. Back to the matrix

We now shall use the polynomial U from Corollary 3.3 to factor out powers of p
from powers of Ip − Sp when p is a prime.

Proposition 4.1. Let p be a prime. Corollary 3.3 shows that there exists a
polynomial U ∈ Z [X] such that (1− X)p = (1− Xp) + p (1− X)U. Consider
this U.

Let Up = U
(
Sp
)
. (This is the p × p-matrix obtained by substituting the

matrix Sp for X in the polynomial U.)
(a) We have

(
Ip − Sp

)
Up = Up

(
Ip − Sp

)
.

(b) We have
(

Ip − Sp
)p

= p
(

Ip − Sp
)

Up.
(c) For every q ∈N, we have(

Ip − Sp
)q(p−1)+1

= pq (Ip − Sp
) (

Up
)q .

We shall now prove this proposition. Our proof will use some very basic ab-
stract algebra (namely, the notion of a Z-subalgebra generated by some elements,
and the fact that any Z-algebra generated by a single element is commutative).
We shall show a way to avoid this proposition in the appendix (Section 6).

Proof of Proposition 4.1. Corollary 2.8 yields
(
Sp
)p

= Ip. Hence, Ip −
(
Sp
)p

= 0.
Let Zp×p denote the Z-algebra of all p × p-matrices. Let A denote the Z-

subalgebra of Zp×p generated by Sp. Hence, A is a Z-algebra generated by
a single element (namely, by Sp). Recall that every Z-algebra generated by a
single element is commutative. Thus, the Z-algebra A is commutative (since A
is a Z-algebra generated by a single element). The matrix Sp belongs to this
commutative Z-algebra A (since A is generated by Sp). Hence, we can substitute
Sp for X on both sides of the equality

(1− X)p = (1− Xp) + p (1− X)U.

We thus obtain(
Ip − Sp

)p
=
(

Ip −
(
Sp
)p
)

︸ ︷︷ ︸
=0

+p
(

Ip − Sp
)

U
(
Sp
)︸ ︷︷ ︸

=Up

= p
(

Ip − Sp
)

Up.

This proves Proposition 4.1 (b).
[Notice that the elements of A are known as the circulant matrices of size p.]
(a) Proposition 4.1 (a) follows easily from the commutativity of A. We leave

the details to the reader, since we will not actually use Proposition 4.1 (a).
(c) We shall prove Proposition 4.1 (c) by induction over q:
Induction base: We have

(
Ip − Sp

)0(p−1)+1
= p0 (Ip − Sp

) (
Up
)0 (in fact, both

sides of this equality equal Ip − Sp). In other words, Proposition 4.1 (c) holds for
q = 0. This completes the induction base.

12
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Induction step: Let Q ∈ N. Assume that Proposition 4.1 (c) holds for q = Q.
We must now prove that Proposition 4.1 (c) holds for q = Q + 1.

We have assumed that Proposition 4.1 (c) holds for q = Q. In other words, we
have (

Ip − Sp
)Q(p−1)+1

= pQ (Ip − Sp
) (

Up
)Q . (12)

Now,

(Q + 1) (p− 1)︸ ︷︷ ︸
=Q(p−1)+(p−1)

+1 = Q (p− 1) + (p− 1) + 1︸ ︷︷ ︸
=p

= Q (p− 1) + p,

so that (
Ip − Sp

)(Q+1)(p−1)+1

=
(

Ip − Sp
)Q(p−1)+p

=
(

Ip − Sp
)Q(p−1) (

Ip − Sp
)p︸ ︷︷ ︸

=p(Ip−Sp)Up
(by Proposition 4.1 (b))

=
(

Ip − Sp
)Q(p−1) p

(
Ip − Sp

)
Up = p

(
Ip − Sp

)Q(p−1) (Ip − Sp
)︸ ︷︷ ︸

=(Ip−Sp)
Q(p−1)+1

=pQ(Ip−Sp)(Up)
Q

(by (12))

Up

= ppQ︸︷︷︸
=pQ+1

(
Ip − Sp

) (
Up
)Q Up︸ ︷︷ ︸

=(Up)
Q+1

= pQ+1 (Ip − Sp
) (

Up
)Q+1 .

In other words, Proposition 4.1 (c) holds for q = Q + 1. This completes the
induction step. Thus, Proposition 4.1 (c) is proven by induction.

Corollary 4.2. Let p be a prime. Let u ∈ {1, 2, . . . , n} and v ∈ {1, 2, . . . , n}. Let

j, n and q be elements of N such that q ≤ n− 1
p− 1

. Then, pq |
((

Ip − Sp
)n
)

u,v
.

Proof of Corollary 4.2. Define U and Up as in Proposition 4.1.
Since p is prime, we have p > 1, so that p− 1 > 0. Hence, we can multiply

the inequality q ≤ n− 1
p− 1

by p − 1. We thus obtain q (p− 1) ≤ n − 1, so that

n− 1 ≥ q (p− 1).
Let h = n− 1− q (p− 1). Thus, h ∈N (since n− 1 ≥ q (p− 1)).
Now,

n = (n− 1− q (p− 1))︸ ︷︷ ︸
=h

+ (q (p− 1) + 1) = h + (q (p− 1) + 1) .

13
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Hence,(
Ip − Sp

)n
=
(

Ip − Sp
)h+(q(p−1)+1)

=
(

Ip − Sp
)h (Ip − Sp

)q(p−1)+1︸ ︷︷ ︸
=pq(Ip−Sp)(Up)

q

(by Proposition 4.1 (c))

(since h ∈N and q (p− 1) + 1 ∈N)

=
(

Ip − Sp
)h pq (Ip − Sp

) (
Up
)q

= pq (Ip − Sp
)h (Ip − Sp

)︸ ︷︷ ︸
=(Ip−Sp)

h+1

(
Up
)q

= pq (Ip − Sp
)h+1 (Up

)q .

Therefore, (
Ip − Sp

)n︸ ︷︷ ︸
=pq(Ip−Sp)

h+1
(Up)

q


u,v

=
(

pq (Ip − Sp
)h+1 (Up

)q
)

u,v
= pq

((
Ip − Sp

)h+1 (Up
)q
)

u,v
.

This is clearly divisible by pq (since
((

Ip − Sp
)h+1 (Up

)q
)

u,v
∈ Z). In other

words,
((

Ip − Sp
)n
)

u,v
is divisible by pq. In other words, pq |

((
Ip − Sp

)n
)

u,v
.

This proves Corollary 4.2.

We can now finally prove Theorem 1.2:

Proof of Theorem 1.2. Let s and k be the quotient and the remainder when j is
divided by p. Thus, k ∈ {0, 1, . . . , p− 1} and j = ps+ k. Now, j = p︸︷︷︸

≡0 mod p

s+ k ≡

k mod p. Hence, for every m ∈ N, the condition (m ≡ j mod p) is equivalent
to the condition (m ≡ k mod p). Hence, we can replace the summation sign

∑
m∈N;

m≡j mod p

in the sum ∑
m∈N;

m≡j mod p

(−1)m
(

n
m

)
by ∑

m∈N;
m≡k mod p

. Thus,

∑
m∈N;

m≡j mod p︸ ︷︷ ︸
= ∑

m∈N;
m≡k mod p

(−1)m
(

n
m

)
= ∑

m∈N;
m≡k mod p

(−1)m
(

n
m

)
=
((

Ip − Sp
)n
)

1,k+1
(13)

(by Corollary 2.9).
Notice that k ∈ {0, 1, . . . , p− 1}, so that k + 1 ∈ {1, 2, . . . , p}. Also, 1 ∈
{1, 2, . . . , p} (since p ≥ 1).

14
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But Corollary 4.2 (applied to u = 1 and v = k+ 1) yields pq |
((

Ip − Sp
)n
)

1,k+1
.

In light of (13), this rewrites as pq | ∑
m∈N;

m≡j mod p

(−1)m
(

n
m

)
. In other words,

∑
m∈N;

m≡j mod p

(−1)m
(

n
m

)
≡ 0 mod pq. This proves Theorem 1.2.

5. Appendix 1: Proof of Proposition 3.1

We are going to prove Proposition 3.1. Let us first recall a really basic fact from
number theory:

Proposition 5.1. Let a, b and c be three integers such that b is coprime to c.
Assume that c | ab. Then, c | a.

Proposition 5.1 appears (for example) in [NiZuMo91, Theorem 1.10].
Next, we observe the following:

Lemma 5.2. Let p be a prime. Let k ∈ {0, 1, . . . , p− 1}. Then, k! is coprime to
p.

Proof of Lemma 5.2. We shall prove Lemma 5.2 by induction over k:
Induction base: Clearly, 0! is coprime to any integer (since 0! = 1), thus in

particular to p. In other words, Lemma 5.2 holds for k = 0. This completes the
induction base.

Induction step: Let K ∈ {0, 1, . . . , p− 1} be positive. Assume that Lemma 5.2
holds for k = K− 1. We must prove that Lemma 5.2 holds for k = K.

We have assumed that Lemma 5.2 holds for k = K− 1. In other words, (K− 1)!
is coprime to p.

Set q = gcd (K!, p). Then, q = gcd (K!, p) is a positive integer (since K! and p
are positive integers). Also, q = gcd (K!, p) | K! and q = gcd (K!, p) | p.

Assume (for the sake of contradiction) that q 6= 1. Then, q > 1 (since q is a
positive integer).

The number q is a positive divisor of p (since q is positive and q | p). Therefore,
q is either 1 or p (since the only positive divisors of p are 1 and p (since p is
prime)). Since q 6= 1, we thus conclude that q = p. Hence, p = q | K! =
K · (K− 1)!. Recall also that (K− 1)! is coprime to p. Thus, Proposition 5.1
(applied to a = K, b = (K− 1)! and c = p) shows that p | K. Since K and p are
positive, this entails that K ≥ p.

But K ∈ {0, 1, . . . , p− 1}, so that K ≤ p− 1 < p. This contradicts K ≥ p. This
contradiction proves that our assumption (that q 6= 1) was wrong. Hence, we
cannot have q 6= 1. Thus, we must have q = 1. In view of q = gcd (K!, p), this
rewrites as gcd (K!, p) = 1. In other words, K! is coprime to p. In other words,

15
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Lemma 5.2 holds for k = K. This completes the induction step. Lemma 5.2 is
thus proven by induction.

Here is another lemma, which shows how we can (sometimes) cancel factors
from congruences:

Lemma 5.3. Let b and c be integers such that c is nonzero and such that b
is coprime to c. Let a and a′ be integers such that ba ≡ ba′mod c. Then,
a ≡ a′mod c.

Proof of Lemma 5.3. We have ba ≡ ba′mod c. In other words, c | ba− ba′. In other
words, c | (a− a′) b (since ba− ba′ = b (a− a′) = (a− a′) b). Thus, Proposition
5.1 (applied to a− a′ instead of a) yields c | a− a′. In other words, a ≡ a′mod c.
This proves Lemma 5.3.

First proof of Proposition 3.1. The definition of
(

p− 1
k

)
yields

(
p− 1

k

)
=

(p− 1) (p− 2) · · · (p− k)
k!

.

Hence, k!
(

p− 1
k

)
= (p− 1) (p− 2) · · · (p− k).

But p− i ≡ −i mod p for every i ∈ Z. Multiplying these congruences for all
i ∈ {1, 2, . . . , k}, we obtain

(p− 1) (p− 2) · · · (p− k) ≡ (−1) (−2) · · · (−k)

= (−1)k (1 · 2 · · · · · k)︸ ︷︷ ︸
=k!

= (−1)k k! mod p.

Hence,

k!
(

p− 1
k

)
= (p− 1) (p− 2) · · · (p− k) ≡ (−1)k k! = k! (−1)k mod p. (14)

But Lemma 5.2 shows that k! is coprime to p. Hence, from (14), we obtain(
p− 1

k

)
≡ (−1)k mod p (by Lemma 5.3, applied to c = p, a =

(
p− 1

k

)
, a′ =

(−1)k and b = k!). This proves Proposition 3.1.

We are now done proving Proposition 3.1; but let us explore the surroundings
a bit more and give a (slightly) different proof of Proposition 3.1, which shows
a generalization. But first, here is a simple fact about binomial coefficients:

Proposition 5.4. Let k ∈N. Then,
(
−1
k

)
= (−1)k.

16
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In this proposition, we are using the fact that binomial coefficients
(

n
k

)
are

defined for negative n just as well as for n ∈ N. These binomial coefficients
no longer count subsets (after all, they can be negative), but nevertheless are
integers3.

Proof of Proposition 5.4. The definition of
(
−1
k

)
yields(

−1
k

)
=

(−1) (−2) · · · (−k)
k!

=
1
k!

(−1) (−2) · · · (−k)︸ ︷︷ ︸
=(−1)k(1·2·····k)

=
1
k!

(−1)k (1 · 2 · · · · · k)︸ ︷︷ ︸
=k!

=
1
k!

(−1)k k! = (−1)k .

Proposition 5.4 is proven.

We can now generalize Proposition 3.1:

Proposition 5.5. Let p be a prime. Let u and v be two integers such that

u ≡ v mod p. Let k ∈ {0, 1, . . . , p− 1}. Then,
(

u
k

)
≡
(

v
k

)
mod p.

Notice the condition k ∈ {0, 1, . . . , p− 1}. Proposition 5.5 no longer holds

when k = p (indeed, p ≡ 0 mod p but
(

p
p

)
6≡
(

0
p

)
mod p). When you work

modulo p, you cannot blindly replace an integer by a different integer congruent
to it modulo p when said integer appears inside a binomial coefficient.

Proof of Proposition 5.5. The definition of
(

u
k

)
yields

(
u
k

)
=

u (u− 1) · · · (u− k + 1)
k!

.

Hence, k!
(

u
k

)
= u (u− 1) · · · (u− k + 1). The same argument (applied to v in-

stead of u) shows that k!
(

v
k

)
= v (v− 1) · · · (v− k + 1).

But every i ∈ Z satisfies u− i ≡ v− i mod p (since u ≡ v mod p). Multiplying
these congruences for all i ∈ {0, 1, . . . , k− 1}, we obtain

u (u− 1) · · · (u− k + 1) ≡ v (v− 1) · · · (v− k + 1)mod p.

Hence,

k!
(

u
k

)
= u (u− 1) · · · (u− k + 1)

≡ v (v− 1) · · · (v− k + 1) = k!
(

v
k

)
mod p. (15)

3See [Grinbe17, Proposition 3.20] for the proof of this fact.
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But Lemma 5.2 shows that k! is coprime to p. Hence, from (15), we obtain(
u
k

)
≡
(

v
k

)
mod p (by Lemma 5.3, applied to c = p, a =

(
u
k

)
, a′ =

(
v
k

)
and

b = k!). Proposition 5.5 is proven.

Second proof of Proposition 3.1. We have p − 1 ≡ −1 mod p. Hence, Proposition
5.5 (applied to u = p− 1 and v = −1) shows that(

p− 1
k

)
≡
(
−1
k

)
= (−1)k mod p (by Proposition 5.4) .

This proves Proposition 3.1 again.

Let us record a simple (and really classical) fact that follows from Proposition
3.1:

Corollary 5.6. Let p be a prime. Let k ∈ {1, 2, . . . , p− 1}. Then, p |
(

p
k

)
.

Proof of Corollary 5.6. We have k ∈ {1, 2, . . . , p− 1} ⊆ {0, 1, . . . , p− 1}. Thus,

Proposition 3.1 yields
(

p− 1
k

)
≡ (−1)k mod p.

But k ∈ {1, 2, . . . , p− 1}, and thus k− 1 ∈ {0, 1, . . . , (p− 1)− 1} ⊆ {0, 1, . . . , p− 1}.

Thus, Proposition 3.1 (applied to k− 1 instead of k) yields
(

p− 1
k− 1

)
≡ (−1)k−1 mod p.

But the recurrence relation of the binomial coefficients (see, e.g., [Grinbe17,

Proposition 3.11]) shows that
(

m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
for every m ∈ Q and

every positive integer n. Applying this to m = p and n = k, we obtain(
p
k

)
=

(
p− 1
k− 1

)
︸ ︷︷ ︸

≡(−1)k−1 mod p

+

(
p− 1

k

)
︸ ︷︷ ︸

≡(−1)k=−(−1)k−1 mod p

≡ (−1)k−1 +
(
− (−1)k−1

)
= 0 mod p.

In other words, p |
(

p
k

)
. This proves Corollary 5.6.

6. Appendix 2: avoiding subalgebras

Above, we have derived Corollary 4.2 from Proposition 4.1, which was proven
using a little bit of abstract algebra. Let us now show how essentially the same
argument could have been rewritten in fully elementary terms. We shall derive
Corollary 4.2 from the following fact:
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Proposition 6.1. Let p be a prime.

For every k ∈ {0, 1, . . . , p− 1}, we have
(−1)k

(
p− 1

k

)
− 1

p
∈ Z (by Corol-

lary 3.2).
Thus, for every k ∈ {0, 1, . . . , p− 1}, we can define an element ak ∈ Z by

ak =

(−1)k
(

p− 1
k

)
− 1

p
. Consider these elements ak.

Define a p× p-matrix Up by Up =
p−1
∑

k=0
ak
(
Sp
)k.

(a) We have
(

Ip − Sp
)p

= p
(

Ip − Sp
)

Up.
(b) For every q ∈N, we have(

Ip − Sp
)q(p−1)+1

= pq (Ip − Sp
) (

Up
)q .

The proof of this proposition will mostly be a mix of our above proof of Propo-
sition 4.1 and our proof of Corollary 3.3.

Proof of Proposition 6.1. (a) Every k ∈ {0, 1, . . . , p− 1} satisfies

pak = (−1)k
(

p− 1
k

)
− 1 (16)

(since ak =

(−1)k
(

p− 1
k

)
− 1

p
).

Let Zp×p denote the ring of all p× p-matrices. The two matrices −Sp and Ip
in Zp×p commute (since

(
−Sp

)
Ip = −Sp = Ip

(
−Sp

)
). Thus, −Sp and Ip are two

commuting elements of the ring Zp×p.
The binomial formula says the following: If a and b are any two commuting

elements of a ring A (that is, any two elements of a ring A satisfying ab = ba),
and if g ∈N, then

(a + b)g =
g

∑
k=0

(
g
k

)
akbg−k.
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This formula (applied to A = Zp×p, a = −Sp, b = Ip and g = p− 1) yields

((
−Sp

)
+ Ip

)p−1
=

p−1

∑
k=0

(
p− 1

k

) (
−Sp

)k︸ ︷︷ ︸
=(−1)k(Sp)

k

(
Ip
)p−1−k︸ ︷︷ ︸
=Ip

=
p−1

∑
k=0

(
p− 1

k

)
(−1)k︸ ︷︷ ︸

=(−1)k

(
p− 1

k

)
(
Sp
)k

=
p−1

∑
k=0

(−1)k
(

p− 1
k

) (
Sp
)k .

Since
(
−Sp

)
+ Ip = Ip − Sp, this rewrites as follows:

(
Ip − Sp

)p−1
=

p−1

∑
k=0

(−1)k
(

p− 1
k

) (
Sp
)k . (17)

On the other hand,

(
Ip − Sp

) p−1

∑
k=0

(
Sp
)k

=
p−1

∑
k=0

(
Sp
)k − Sp

p−1

∑
k=0

(
Sp
)k

︸ ︷︷ ︸
=

p−1
∑

k=0
Sp(Sp)

k

=
p−1

∑
k=0

(
Sp
)k −

p−1

∑
k=0

Sp
(
Sp
)k︸ ︷︷ ︸

=(Sp)
k+1

=
p−1

∑
k=0

(
Sp
)k −

p−1

∑
k=0

(
Sp
)k+1

=
p−1

∑
k=0

(
Sp
)k

︸ ︷︷ ︸
=(Sp)

0
+

p−1
∑

k=1
(Sp)

k

−
p

∑
k=1

(
Sp
)k

︸ ︷︷ ︸
=

p−1
∑

k=1
(Sp)

k
+(Sp)

p

(here, we have substituted k for k + 1 in the second sum)

=

((
Sp
)0

+
p−1

∑
k=1

(
Sp
)k
)
−
(

p−1

∑
k=1

(
Sp
)k

+
(
Sp
)p
)

=
(
Sp
)0︸ ︷︷ ︸

=Ip

−
(
Sp
)p︸ ︷︷ ︸

=Ip
(by Corollary 2.8)

= Ip − Ip = 0. (18)
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Now, (
Ip − Sp

)p

=
(

Ip − Sp
)p︸ ︷︷ ︸

=(Ip−Sp)(Ip−Sp)
p−1

− 0︸︷︷︸
=(Ip−Sp)

p−1
∑

k=0
(Sp)

k

(by (18))

=
(

Ip − Sp
) (

Ip − Sp
)p−1 −

(
Ip − Sp

) p−1

∑
k=0

(
Sp
)k

=
(

Ip − Sp
) ((

Ip − Sp
)p−1 −

p−1

∑
k=0

(
Sp
)k
)

.

Since (
Ip − Sp

)p−1︸ ︷︷ ︸
=

p−1
∑

k=0
(−1)k

(
p− 1

k

)
(Sp)

k

(by (17))

−
p−1

∑
k=0

(
Sp
)k

=
p−1

∑
k=0

(−1)k
(

p− 1
k

) (
Sp
)k −

p−1

∑
k=0

(
Sp
)k

=
p−1

∑
k=0

(
(−1)k

(
p− 1

k

)
− 1
)

︸ ︷︷ ︸
=pak

(by (16))

(
Sp
)k

=
p−1

∑
k=0

pak
(
Sp
)k

= p
p−1

∑
k=0

ak
(
Sp
)k

︸ ︷︷ ︸
=Up

(since Up=
p−1
∑

k=0
ak(Sp)

k
)

= pUp,

this becomes (
Ip − Sp

)p
=
(

Ip − Sp
) ((

Ip − Sp
)p−1 −

p−1

∑
k=0

(
Sp
)k
)

︸ ︷︷ ︸
=pUp

=
(

Ip − Sp
)

pUp = p
(

Ip − Sp
)

Up.

This proves Proposition 6.1 (a).
(b) Proposition 6.1 (b) can be derived from Proposition 6.1 (a) in the same way

as Proposition 4.1 (c) was derived from Proposition 4.1 (b).

Second proof of Corollary 4.2. We can copy the above proof of Corollary 4.2 verba-
tim, with the only change that we use Proposition 6.1 (b) instead of Proposition
4.1 (c).
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