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Elements in the group algebra of a symmetric group S, are known to
have an interpretation in terms of card shuffling. I will discuss a new
family of such elements, recently constructed by Nadia Lafreniére:

Given a positive integer n, we define n elements t,t,...,t, in the
group algebra of S, by

t; = the sum of the cycles (i), (i,i+1), (i,i+1,i+2), ..., (i,i+1,...,n),

where the cycle (i) is the identity permutation. The first of them, ¢, is
known as the top-to-random shuffle and has been studied by Diaconis,
Fill, Pitman (among others).

The n elements ty, tp,...,t, do not commute. However, we show that
they can be simultaneously triangularized in an appropriate basis of the
group algebra (the "descent-destroying basis"). As a consequence, any
rational linear combination of these 1 elements has rational eigenvalues.
The maximum number of possible distinct eigenvalues turns out to be
the Fibonacci number f,, 11, and underlying this fact is a filtration of the
group algebra connected to "lacunar subsets" (i.e., subsets containing no
consecutive integers).

This talk will include an overview of other families (both well-known
and exotic) of elements of these group algebras. I will also briefly dis-
cuss the probabilistic meaning of these elements as well as some tempt-
ing conjectures.

This is joint work with Nadia Lafreniere.
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Preprint:
¢ Darij Grinberg and Nadia Lafreniére, The one-sided cycle shuffles in the symmet-
ric group algebra, preprint,
https://www.cip.ifi.lmu.de/ grinberg/algebra/s2bl.pdf
Slides of this talk:

e https://www.cip.ifi.lmu.de/ grinberg/algebra/waterloo2022.pdf



https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b1.pdf
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1. Finite group algebras

This talk is mainly about a certain family of elements of the group algebra of
the symmetric group S,. But I shall begin with some generalities.

Let k be any commutative ring (but k = Z is enough for most of our results).

Let G be a finite group. (It will be a symmetric group from the next chapter
onwards.)

Let k [G] be the group algebra of G over k. Its elements are formal k-linear
combinations of elements of G. The multiplication is inherited from G and
extended bilinearly.

Example: Let G be the symmetric group S3 on the set {1,2,3}. Fori € {1,2},
let s; € S3 be the simple transposition that swaps i with i 4 1. Then, in
k [G] = k[S3], we have
(1+s)(1—=s1)=1+s1—851—53=1+51—-5—-1=0;
(1452) (1451 +5152) = 1452 + 51 + 5251 + 5152 + 52815, = ) w.

weS;
For each u € k [G], we define two k-linear maps
L(u):k[G] = kI[G],
X — ux (“left multiplication by u”)
and
R(u):k[G] = k[G],
X = Xu (“right multiplication by u”) .

(So L(u)(x) =uxand R (u) (x) = xu.)

Both L (1) and R (u) belong to the endomorphism ring Endy (k [G]) of the
k-module k [G]. This ring is essentially a |G| x |G|-matrix ring over k. Thus,
L (u) and R (u) can be viewed as |G| x |G|-matrices.

Studying u, L (1) and R (u) is often (but not always) equivalent, because the
maps
L:k[G] — Endy (k[G]) and
R: (k[G])®® — Endy (k[G])
A/—/
opposite ring

are two injective k-algebra morphisms (known as the left and right regular
representations of the group G).
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* When k is a field, each u# € k [G] has a minimal polynomial, i.e., a minimum-
degree monic polynomial P € k[X] such that P (1) = 0. This is also the
minimal polynomial of the endomorphisms L (u) and R (u).

¢ Minimal polynomials also exist for k = Z:

* Proposition 1.1. Let u € Z [G|. Then, the minimal polynomial of u over Q is
actually in Z [X].

* Proof: Follow the standard proof that the minimal polynomial of an algebraic
number is in Z [X]. (Use Gauss’s Lemma.)

* Theorem 1.2. Assume that k is a field. Let u € k[G]. Then, L (1) ~ R (u) as
endomorphisms of k [G].

Note: The symbol ~ means “conjugate to”. Thinking of these endomor-
phisms as |G| x |G|-matrices, this is just similarity of matrices.

¢ We will see a proof of this soon.
e Note: L (1) ~ R (1) would fail if we allowed G to be a monoid.
* The antipode of the group algebra k [G] is defined to be the k-linear map

S :k[G] = k[G],
g g ! for each g € G.

* Proposition 1.3. The antipode S is an involution (that is, So S = id) and a
k-algebra anti-automorphism (that is, S (ab) = S (b) - S (a) for all a, ).

e Lemma 1.4. Assume that k is a field. Let u € k[G]. Then, L (u) ~ L (S (u))
in Endy (k [G]).

* Proof: Consider the standard basis (g),cc of k [G]. The matrix representing

the endomorphism L (S (1)) in this basis is the transpose of the matrix rep-
resenting L (u). But the Taussky—Zassenhaus theorem says that over a field,
each matrix A is similar to its transpose A'.

e Lemma 1.5. Let u € k[G]. Then, L (S (1)) ~ R (u) in Endy (k [G]).
e Proof: We have R (1) =SoL(S(u))oSand S =S5"1.
* Proof of Theorem 1.2: Combine Lemma 1.4 with Lemma 1.5.

* Remark (Martin Lorenz). Theorem 1.2 generalizes to arbitrary Frobenius
algebras.

e Remark. The conjugacy L (#) ~ R (u) can fail if k is not a field (e.g., for
k =Q]Jt] and G = S3).



https://math.stackexchange.com/a/596842/
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* Remark. Let u € k[G]. Even if k = C, we don’t always have u ~ S (u) in
k [G] (easy counterexample for G = Cs).
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2. The symmetric group algebra

Let N := {0,1,2,...}.
Let [k] :== {1,2,...,k} for each k € IN.

Now, fix a positive integer n, and let S, be the n-th symmetric group, i.e., the
group of permutations of the set [n].

Multiplication in S is composition:
(aB) (i) = (w0 B) (i) = a (B (7)) foralla,f € S, and i € [n].

(Warning: SageMath has a different opinion!)

What can we say about the group algebra k [S,,| that doesn’t hold for arbitrary
k[G]?

There is a classical theory (“Young’s seminormal form”) of the structure of
k [S;;] when k has characteristic 0. Two modern treatments are

— |Adriano M. Garsia, Omer Egecioglu, Lectures in Algebraic Combinatorics,
Springer 2020.

— Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the
group algebra of the symmetric group, ..., Commentationes Mathematicae
Universitatis Carolinae, 2016.

Theorem 2.1 (Artin—-Wedderburn-Young). If k is a field of characteristic 0,
then
k[S,] = I My, (k) (as k-algebras),
A is a partition of n ~——~—"
matrix ring

where f, is the number of standard Young tableaux of shape A.

Proof: This follows from Young’s seminormal form. For the shortest readable
proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.

Theorem 2.2. Let k be a field of characteristic 0. Let u € k[S,]. Then,
u~S(u)ink[Sy|.

Proof: Again use Young’s seminormal form. Under the isomorphism k [S,,] =
IT My, (k), the matrices corresponding to S (u) are the trans-

A is a partition of n
poses of the matrices corresponding to u (this follows from (2.3.40) in Gar-
sia/Egecioglu). Now, use the Taussky-Zassenhaus theorem again.



https://doi.org/10.1007/978-3-030-58373-6
https://doi.org/10.1007/978-3-030-58373-6
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://math.stackexchange.com/a/596842/
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o Alternative proof: More generally, let G be an ambivalent finite group (i.e., a
finite group in which each ¢ € G is conjugate to ¢~ !). Let u € k|[G]. Then,
u ~ S (u) in k [G]. To prove this, pass to the algebraic closure of k. By Artin-
Wedderburn, it suffices to show that u and S (u) act by similar matrices on
each irreducible G-module V. But this is easy: Since G is ambivalent, we have
V = V* and thus

(u lv) ~ (u |y+) ~ (S () [v)" ~ (S (u) Iv)
(by Taussky—Zassenhaus).

¢ Note. Characteristic 0 is needed!
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3. The Young—Jucys—Murphy elements

¢ We now go further down the abstraction pole and study concrete elements in
k [Sn].

e For any distinct elements i, iy, ..., i of [n], let cyc; ; j, be the permutation
in S, that cyclically permutes iy > ip — i3 — - — i — i and leaves all
other elements of [1] unchanged.

* Note. cyc; = id; CyC; i is a transposition.
e For each k € [n], we define the k-th Young-Jucys—Murphy (YJM) element
My i= CyCy p +CyCyp + - +Cyc_1; € K[Sn] .
e Note. We have m; = 0. Also, S (my) = my for each k € [n].
e Theorem 3.1. The YJM elements mq,my, ..., m, commute: We have mim; =
mjm; for all i, j.
* Proof: Easy computational exercise.

¢ Theorem 3.2. The minimal polynomial of m; over Q divides

ﬁ (X—i)=(X—k+1)(X—k+2)- - (X+k—1).
i=—k+1

(For k < 3, some factors here are redundant.)

e First proof: Study the action of m; on each Specht module (simple S;,-module).
See, e.g., G. E. Murphy, A New Construction of Young's Seminormal Representa-
tion ..., 1981 for details.

» Second proof (Igor Makhlin): Some linear algebra does the trick. Induct on
k using the facts that my and my, 1 are simultaneously diagonalizable over C
(since they are symmetric as real matrices and commute) and satisfy sy, =
mysi + 1, where s; := cycy ;1. See https://mathoverflow.net/a/83493/ for
details.

e More results and context can be found in §3.3 in Ceccherini-Silberstein/Scarabotti/Tolli,
Representation Theory of the Symmetric Groups, 2010.

* Question. Is there a self-contained algebraic/combinatorial proof of Theorem
3.2 without linear algebra or representation theory?

* Theorem 3.3. For each k € {0,1,...,n}, we can evaluate the k-th elementary
symmetric polynomial ¢ at the YJM elements my, my, ..., m; to obtain

e (my,my, ... ,my) = Z .
TES,;
o has exactly n—k cycles



https://doi.org/10.1016/0021-8693(81)90205-2
https://doi.org/10.1016/0021-8693(81)90205-2
https://mathoverflow.net/a/83493/
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
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Proof: Nice homework exercise (once stripped of the algebra).

There are formulas for other symmetric polynomials applied to my, my, ..., m,
(see Garsia/Egecioglu).

Theorem 3.4 (Moran).

{f(my,my,...,my) | fek[Xy,Xp,..., Xn] symmetric}
= (center of the group algebra k [S,]) .

Proof: See any of:

- Gadi Moran, The center of Z [S;+1] ..., 1992.

- G. E. Murphy, The Idempotents of the Symmetric Group ..., 1983, Theorem
1.9 (for the case k = Z, but the general case easily follows).

(For k = Q, this is Theorem 4.4.5 in CS/S/T as well.)



https://www.ams.org/journals/tran/1992-332-01/S0002-9947-1992-1062873-1/
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1017/CBO9781139192361
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A. The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.

A permutation ¢ € S, corresponds to the state in which the cards are ar-
ranged o (1),0(2),...,0 (n) from top to bottom.

A random state is an element ) a,0 of R [S,] whose coefficients 4, € R are
oES,
nonnegative and add up to 1. This is interpreted as a distribution on the n!

possible states, where a, is the probability for the deck to be in state ¢.

We drop the “add up to 1” condition, and only require that ) a, > 0. The
oEeS,
probabilities must then be divided by ) a,.

TESy
For instance, 1+ cyc, , 5 corresponds to the random state in which the deck is
1 1
sorted as 1,2,3 with probability 5 and sorted as 2, 3,1 with probability 5
An R-vector space endomorphism of R [S,], such as L (u) or R (u) for some
u € R[S;], acts as a (random) shuffle, i.e., a transformation of random states.

This is just the standard way how Markov chains are constructed from tran-
sition matrices.

For example, if k > 1, then the right multiplication R (my) by the YJM element
my. corresponds to swapping the k-th card with some card above it chosen
uniformly at random.

Transposing such a matrix performs a time reversal of a random shuffle.
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4. Top-to-random and random-to-top shuffles

Another family of elements of k [S,] are the k-top-to-random shuffles

Bk = Z o
oESy;
o (k+1) <o (k+2)<--<o™(n)
defined for all k € {0,1,...,n}. Thus,

B,_1 =B, = Z g,

By =cyc) +cyc, +eycio3+ - eye,
By =id.

As a random shuffle, B (to be precise, R (By)) takes the top k cards and moves
them to random positions.

B; is known as the top-to-random shuffle or the Tsetlin library.
Theorem 4.1 (Diaconis, Fill, Pitman). We have

Bi.1 = (B1 — k) By foreach k € {0,1,...,n —1}.

Corollary 4.2. The n + 1 elements By, By, ..., B, commute and are polynomi-
als in B;.

Theorem 4.3 (Wallach). The minimal polynomial of B; over Q is

\
N

n

I (X—i)=X-n)]](X-1).

i€{0,1,...n—2,n} i

Il
=

These are not hard to prove in this order. See https://mathoverflow.net/
questions/308536 for the details.

More can be said: in particular, the multiplicities of the eigenvalues 0,1, ...,n —
2,n of R (By) over Q are known.

The antipodes S (By),S (B1),...,S (By) are known as the random-to-top shuf-
fles and have essentially the same properties (since S is an algebra anti-
automorphism).

Main references:

— Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of
Generalized Jacquet Integrals, 1988, Appendix.

— Persi Diaconis, James Allen Fill and Jim Pitman, Analysis of Top to Random
Shuffles, 1992.



https://mathoverflow.net/questions/308536
https://mathoverflow.net/questions/308536
https://doi.org/10.2969/aspm/01410123
https://doi.org/10.2969/aspm/01410123
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
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5. Random-to-random shuffles
e Here is a further family. For each k € {0,1,...,n}, we let

Ry := ) noninv,_(0) -0,
ogEeS,

where noninv,, _; (¢) denotes the number of (n — k)-element subsets of [n] on
which ¢ is increasing.

¢ Theorem 5.1 (Reiner, Saliola, Welker). The n + 1 elements Ry, Ry,..., R,
commute (but are not polynomials in R; in general).

¢ Theorem 5.2 (Dieker, Saliola, Lafreniere). The minimal polynomial of each
R; over Q is a product of X — i’s for distinct integers i. For example, the one
of Ry divides

n2

[T xX—i).

i=—n?

The exact factors can be given in terms of certain statistics on Young diagrams.

¢ Main references:

- Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized
Shuffling Operators, arXiv:1102.2460.

- A.B. Dieker, F.V. Saliola, Spectral analysis of random-to-random Markov chains,
2018.

- Nadia Lafreniere, Valeurs propres des opérateurs de mélanges symétrisés, the-
sis, 2019.

* Question: Simpler proofs? (Even commutativity takes a dozen pages!)

* Question (Reiner): How big is the subalgebra of Q [S,,| generated by R, Ry, ..., Ry
? Does it have dimension O (n?) ? Some small values:

n 1123456
dim (Q[Ro,Ry,...,Ry]) || 1[2]4|7|15]30

¢ Remark 5.3. We have 1
Re = ;S (By) By,

but this isn’t all that helpful, since the By don’t commute with the S (By).



https://arxiv.org/abs/1102.2460
https://arxiv.org/abs/1102.2460
https://doi.org/10.1016/j.aim.2017.10.034
https://doi.org/10.1016/j.aim.2017.10.034
https://arxiv.org/abs/1912.07718
https://arxiv.org/abs/1912.07718
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6. Somewhere-to-below shuffles

In 2021, Nadia Lafreniere defined the somewhere-to-below shuffles t1, t5, ..., t,
by setting

te=cyc,+eyc g Ty ot €Yy € K[Sh]
for each ¢ € [n].
Thus, t; = By and t,, = id.

As a card shuffle, t, takes the ¢-th card from the top and moves it further
down the deck.

Their linear combinations
Aty 4+ Aoty + -+ -+ Apty with A, Ay,..., A, €k

are called one-sided cycle shuffles and also have a probabilistic meaning
when A, Ay, ..., A > 0.

Fact: t1,t5,...,t, do not commute for n > 3. For n = 3, we have
[t1,t2] = CyCy o+ CyCi 3 —CYCy39 —CYCy3-

However, they come pretty close to commuting!

Theorem 6.1 (Lafreniere, G., 2022+). There exists a basis of the k-module
k [S,] in which all of the endomorphisms R (t1),R (f2),...,R (t,) are repre-
sented by upper-triangular matrices.
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7. The descent-destroying basis

This basis is not hard to define, but I haven’t seen it before.

For each w € §,;, we let

Desw:={iecn—-1] | w(i) >w({i+1)} (the descent set of w).

For each i € [n — 1], we let s; := cyg; i+1°

For each I C [n — 1], we let

G (I) := (the subgroup of S, generated by the s; fori € I).

For each w € §,;, we let

Ay = Z wo € k [Sn] .
ce€G(Desw)

In other words, you get a,, by breaking up the word w into maximal decreas-
ing factors and re-sorting each factor arbitrarily (without mixing different
factors).

The family (aw),,cs, is a basis of k [S,] (by triangularity).

For instance, for n = 3, we have

a1 = [123];

apsy = [132] + [123];

api3) = [213] + [123];

apa) = [231] + [213];

ajz) = [312] +[132];

Ay = [321] + [312] + [231] + [213] + [132] + [123].

Theorem 7.1 (Lafreniére, G.). For any w € S, and ¢ € [n], we have

Awty = Py p0w + Z Aw 000

vESy;
v<w

for some nonnegative integer p,, ¢, some integers Ay ¢, and a certain partial

order < on S;,.
Thus, the endomorphisms R (t1),R (t2),...,R (t,) are upper-triangular with
respect to the basis (aw) ¢, -

Examples:
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— For n = 4, we have

az12)t2 = apziz) + f[4321] — @[4231) — 4[3241] — 4[2143] -

subscripts are <[4312]

- For n = 3, the endomorphism R (t1) is represented by the matrix

A3p1)  Ap31] An32) 4213) 4312] 4123
a[321] 3 1 1 1
Ll[231] 1 —1 1
a[132)
1213
a[312] 1
a[123] 1

(empty cells = zero entries). For instance, the last column means a[;p3t; =
a1123) 1 A31]-

* Corollary 7.2. The eigenvalues of these endomorphisms R (#1),R (t2),..., R (tx)
and of all their linear combinations

R (At + Aptp + -+ -+ Apty)
are integers as long as Ay, A, ..., Ay, are.
¢ How many different eigenvalues do they have?

* R(#1) = R(Bj) has only n eigenvalues: 0,1,...,n —2,n, as we have seen
before. The other R (#;)’s have even fewer.

* But their linear combinations R (A1f1 + Aptp + - - - + Ayty,) can have many more.
How many?
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8. Lacunar sets and Fibonacci numbers

A set S of integers is called lacunar if it contains no two consecutive integers
(i.e., wehaves+1 ¢ S for all s € S).

Theorem 8.1 (combinatorial interpretation of Fibonacci numbers, folklore).
The number of lacunar subsets of [n — 1] is the Fibonacci number f, .

(Recall: fo =0, f1=1, fn= fu—1+ fu=2.)

Theorem 8.2. When Ay, A,..., A, € C are generic, the number of distinct
eigenvalues of R (A1f] + Axty + - - - + Ayty) is fy4+1. In this case, the endomor-
phism R (A1t + Ayt + - - - + Anty) is diagonalizable.

Note that f,, 11 < n!.

One way such a theorem can be proved is by finding a filtration
0=FhChCRC- - CF,,  =k[S]

of the k-module k [S,| such that each R () acts as a scalar on each of its
quotients F;/F;_1. In matrix terms, this means bringing R (t;) to a block-
triangular form, with the diagonal blocks being “scalar times I” matrices.

It is only natural that the quotients should correspond to the lacunar subsets
of [n —1].

Let us approach the construction of this filtration.
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9. The F(I) filtration

* For each I C [n], we set

sum/! := Zi

iel
and
I={0}Uulu{n+1}
and
I''=mn-1\(IU({l-1))
and

F(I):={qek|[Sy] | gsi=qforallieI'} Ck[S,].

In probabilistic terms, F (I) consists of those random states of the deck that
do not change if we swap the i-th and (i 4 1)-st cards from the top as long as
neither i nor i + 1 is in I. To put it informally: F (I) consists of those random
states that are “fully shuffled” between any two consecutive I-positions.

* For any ¢ € [n], we let m; ; be the distance from ¢ to the next-higher element
of I. In other words,

mpp = (smallest element of I thatis > E) —0e{0,1,...,n}.

For example, if n =5 and I = {2,3}, then T= {0,2,3,6} and
(mr1, mpo, my3, mra, mys) =(1, 0,0, 2, 1).

We note that, for any ¢ € [n], we have the equivalence

~

my=0 <= (el <+ [lecl

* Crucial Lemma 9.1. Let I C [n] and ¢ € [n]. Then,

gteempg+ Y, F()) for each g € F(I).

J<[n];
sum [<sum [

* Proof: Expand gt, by the definition of t;,, and break up the resulting sum into
smaller bunches using the interval decomposition

[,n] = [0, i — 1 U [ig, igpq — ) U [iggq, iggo — 1L+ - L [ip, 1’1]

(where i < ij4q < -+ < i, are the elements of I larger or equal to ¢). The
[¢,ix — 1] bunch gives the m] q term; the others live in appropriate F (])’s.

See the paper for the details.
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e Thus, we obtain a filtration of k [S,] if we label the subsets I of [1] in the order
of increasing sum I and add up the respective F (I)s.

¢ Unfortunately, this filtration has 2", not f,;; terms.

¢ Fortunately, that’s because many of its terms are redundant. The ones that
aren’t correspond precisely to the I’s that are lacunar subsets of [n — 1]:

e Lemma 9.2. Let k € IN. Then,

Z[)] F(J) = Y E(]).
JC[nl;

JC[n—1] is lacunar;
sum J<k sum J<k

* Proof: If | C [n] contains n or fails to be lacunar, then F (]) is a submodule of
some F (K) with sum K < sum J. (Exercise!)

* Now, we let Q1,Qa,...,Qy,.,, be the f, 1 lacunar subsets of [n — 1], listed in
such an order that

sum (Qq) < sum (Qz) < --- <sum (Qy, ,) -
Then, define a k-submodule
Fi:=F(Q1)+F(Q2)+---+F(Q) of k [S]
for each i € [0, f,+1] (so that Fy = 0). The resulting filtration
0=FCHhCRC- - CF,, =k[S]
satisfies the properties we need:

* Theorem 9.3. For each i € [f,;1] and ¢ € [n], we have F; - (t; —mq,s) C F1
(so that R (ty) acts as multiplication by mq , on F;/F;_y).

* Proof: Lemma 9.1 + Lemma 9.2.
e Lemma 9.4. The quotients F;/F;_1 are nontrivial for all i € [f;; 1]
* Proof: See below.

¢ Corollary 9.5. Let k be a field, and let A, Ay, ..., A, € k. Then, the eigenval-
ues of R (Aqty + Aty + - - - + Apty) are the linear combinations

Ampq+ Agmypp+ -+ Agmpy for I C [n — 1] lacunar.

* Theorem 8.2 easily follows by some linear algebra.
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10.

Back to the basis

The descent-destroying basis (aw),,cs, is compatible with our filtration:

Theorem 10.1. For each I C [n], the family (aw),,cs . /cpesy 1S @ basis of the
k-module F (I). -

If w € S, is any permutation, then the Q-index of w is defined to be the
smallest i € [f,1] such that Q) C Desw. We call this Q-index Qind w.

Proposition 10.2. Let w € S, and i € [f,,41]. Then, Qind w = i if and only if
Q! CDesw C [n—1]\ Q;.
Theorem 10.3. For each i € [0, f,11], the k-module F; is free with basis

(aw)wesn; Qind w<i-

Corollary 10.4. For each i € [f,11], the k-module F;/F;_1 is free with basis
(%)wesn; Qind w=i*

This yields Lemma 9.4 and also leads to Theorem 7.1, made precise as follows:

Theorem 10.5 (Lafreniére, G.). For any w € S, and ¢ € [n], we have

Elwtg = yw,gaw + Z )\w,glvﬁlv
vESy;
Qind v<Qind w

for some nonnegative integer ., , and some integers A, ¢ ,,.

Thus, the endomorphisms R (t1),R (t2),...,R (t,) are upper-triangular with
respect to the basis (ay),cs, as long as the permutations w € S, are ordered
by increasing Q-index.

Note that the numbering Q1,Q>,...,Qy,,, of the lacunar subsets of [n — 1]
is not unique; we just picked one. Nevertheless, our construction is “essen-
tially” independent of choices, since Proposition 10.2 describes Qqing, inde-
pendently of this numbering (it is the unique lacunar L C [n — 1] satisfying
L’ CDesw C [n— 1]\ L). To get rid of the dependence on the numbering, we
should think of the filtration as being indexed by a poset.
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11. The multiplicities

e With Corollary 10.4, we know not only the eigenvalues of the R (¢;)’s, but
also their multiplicities:

¢ Corollary 11.1. Assume that k is a field. Let A1, A5,..., A, € k. For each i €
[fn+1], let §; be the number of all permutations w € S, satisfying Qindw = i,
and we let

n
gi:= Z )\gﬂ’lQi/g e k.
=1

Let ¥ € k. Then, the algebraic multiplicity of x as an eigenvalue of the endo-
morphism R (Aqt] + Apty + - - - + Auty) equals

Yoo
ie[frwl]/'
gi=K

¢ Can we compute the é; explicitly? Yes!

e Theorem 11.2. Let i € [f,+1]. Let §; be the number of all permutations w € S,
satisfying Qind w = i. Then:

(a) Write the set Q; in the form Q; = {i1 < << ip}, and setip = 1 and
ipt1 =n+1. Let jy = iy — ix_ for each k € [p + 1]. Then,

n p+1
o=, " ) TLG-D,
J1, ]2/ - "/]p—l—l k=2
mult;:omial
coefficient

(b) We have ¢; | n!.

* Question. This reminds of the hook-length formula for standard tableaux. Is
it connected to Fibonacci tableaux (paths in the Young-Fibonacci lattice)?
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12.

Variants

Most of what we said about the somewhere-to-below shuffles t, can be ex-
tended to their antipodes S (t;) (the “below-to-somewhere shuffles”). For
instance:

Theorem 12.1. There exists a basis of the k-module k [S,] in which all of the
endomorphisms R (S (1)), R (S (t2)),...,R (S (tx)) are represented by upper-
triangular matrices.

We can also use left instead of right multiplication:

Theorem 12.2. There exists a basis of the k-module k [S,] in which all of the
endomorphisms L (¢1),L (t2),...,L(t,) are represented by upper-triangular
matrices.

These follow from Theorem 6.1 using dual bases, transpose matrices and
Proposition 1.3. No new combinatorics required!

Question. Do we have L (f;) ~ R (t;) in Endy (k [S,]) when k is not a field?

Remark. The similarity t;, ~ S (/) in k [S,] holds when chark = 0, but not
for general fields k. (E.g., it fails fork = F, and n =4 and ¢/ = 1.)
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13. Conjectures and questions

* The simultaneous trigonalizability of the endomorphisms R (t1),R (t2),..., R (t,)
yields that their pairwise commutators are nilpotent. Hence, the pairwise
commutators [t;,¢;] are also nilpotent.

* Question. How small an exponent works in [t;, ;] =07

* Conjecture 13.1. We have [t,-,t‘]j*ile

j =0forany1 <i<j<n.

* Conjecture 13.2. We have [t;, tj}n_jﬂ =0forany1<i<j<n.

e Conjecture 13.3. We have [t;,t]]"/ =0forany 1 <i<j<n-—1.

¢ We can prove Conjecture 13.1 for j = i + 1 and Conjecture 13.2 for j = n — 1.
We can also show that

th1[titho1] =0 and [tistu—1] [tjs tn—1] = O
and tiy 1t = (ti — 1) t;
for all i and j.

* Question. What can be said about the k-subalgebra k [t1, t2, ..., t,] of k [S,] ?
Note:

n 112(3(4|5|6 | 7
dim (Q [ty,t2,...,tn]) [ 124 |9|23 |66 212
(this sequence is not in the OEIS as of 2022-06-20).

* Question. How do the F (I) and the F; decompose into Specht modules when
k is a field of characteristic 0 ?

* Question. How do t1,1,...,t,; act on a given Specht module?
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