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Elements in the group algebra of a symmetric group Sn are known to
have an interpretation in terms of card shuffling. I will discuss a new
family of such elements, recently constructed by Nadia Lafrenière:

Given a positive integer n, we define n elements t1, t2, . . . , tn in the
group algebra of Sn by

ti = the sum of the cycles (i) , (i, i + 1) , (i, i + 1, i + 2) , . . . , (i, i + 1, . . . , n) ,

where the cycle (i) is the identity permutation. The first of them, t1, is
known as the top-to-random shuffle and has been studied by Diaconis,
Fill, Pitman (among others).

The n elements t1, t2, . . . , tn do not commute. However, we show that
they can be simultaneously triangularized in an appropriate basis of the
group algebra (the "descent-destroying basis"). As a consequence, any
rational linear combination of these n elements has rational eigenvalues.
The maximum number of possible distinct eigenvalues turns out to be
the Fibonacci number fn+1, and underlying this fact is a filtration of the
group algebra connected to "lacunar subsets" (i.e., subsets containing no
consecutive integers).

This talk will include an overview of other families (both well-known
and exotic) of elements of these group algebras. I will also briefly dis-
cuss the probabilistic meaning of these elements as well as some tempt-
ing conjectures.

This is joint work with Nadia Lafrenière.
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***

Preprint:

• Darij Grinberg and Nadia Lafrenière, The one-sided cycle shuffles in the symmet-
ric group algebra, preprint,
https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b1.pdf

Slides of this talk:

• https://www.cip.ifi.lmu.de/~grinberg/algebra/waterloo2022.pdf

https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b1.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/waterloo2022.pdf
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1. Finite group algebras

• This talk is mainly about a certain family of elements of the group algebra of
the symmetric group Sn. But I shall begin with some generalities.

• Let k be any commutative ring (but k = Z is enough for most of our results).

• Let G be a finite group. (It will be a symmetric group from the next chapter
onwards.)

• Let k [G] be the group algebra of G over k. Its elements are formal k-linear
combinations of elements of G. The multiplication is inherited from G and
extended bilinearly.

• Example: Let G be the symmetric group S3 on the set {1, 2, 3}. For i ∈ {1, 2},
let si ∈ S3 be the simple transposition that swaps i with i + 1. Then, in
k [G] = k [S3], we have

(1 + s1) (1 − s1) = 1 + s1 − s1 − s2
1 = 1 + s1 − s1 − 1 = 0;

(1 + s2) (1 + s1 + s1s2) = 1 + s2 + s1 + s2s1 + s1s2 + s2s1s2 = ∑
w∈S3

w.

• For each u ∈ k [G], we define two k-linear maps

L (u) : k [G] → k [G] ,
x 7→ ux (“left multiplication by u”)

and

R (u) : k [G] → k [G] ,
x 7→ xu (“right multiplication by u”) .

(So L (u) (x) = ux and R (u) (x) = xu.)

• Both L (u) and R (u) belong to the endomorphism ring Endk (k [G]) of the
k-module k [G]. This ring is essentially a |G| × |G|-matrix ring over k. Thus,
L (u) and R (u) can be viewed as |G| × |G|-matrices.

• Studying u, L (u) and R (u) is often (but not always) equivalent, because the
maps

L : k [G] → Endk (k [G]) and
R : (k [G])op︸ ︷︷ ︸

opposite ring

→ Endk (k [G])

are two injective k-algebra morphisms (known as the left and right regular
representations of the group G).
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• When k is a field, each u ∈ k [G] has a minimal polynomial, i.e., a minimum-
degree monic polynomial P ∈ k [X] such that P (u) = 0. This is also the
minimal polynomial of the endomorphisms L (u) and R (u).

• Minimal polynomials also exist for k = Z:

• Proposition 1.1. Let u ∈ Z [G]. Then, the minimal polynomial of u over Q is
actually in Z [X].

• Proof: Follow the standard proof that the minimal polynomial of an algebraic
number is in Z [X]. (Use Gauss’s Lemma.)

• Theorem 1.2. Assume that k is a field. Let u ∈ k [G]. Then, L (u) ∼ R (u) as
endomorphisms of k [G].

Note: The symbol ∼ means “conjugate to”. Thinking of these endomor-
phisms as |G| × |G|-matrices, this is just similarity of matrices.

• We will see a proof of this soon.

• Note: L (u) ∼ R (u) would fail if we allowed G to be a monoid.

• The antipode of the group algebra k [G] is defined to be the k-linear map

S : k [G] → k [G] ,

g 7→ g−1 for each g ∈ G.

• Proposition 1.3. The antipode S is an involution (that is, S ◦ S = id) and a
k-algebra anti-automorphism (that is, S (ab) = S (b) · S (a) for all a, b).

• Lemma 1.4. Assume that k is a field. Let u ∈ k [G]. Then, L (u) ∼ L (S (u))
in Endk (k [G]).

• Proof: Consider the standard basis (g)g∈G of k [G]. The matrix representing
the endomorphism L (S (u)) in this basis is the transpose of the matrix rep-
resenting L (u). But the Taussky–Zassenhaus theorem says that over a field,
each matrix A is similar to its transpose AT.

• Lemma 1.5. Let u ∈ k [G]. Then, L (S (u)) ∼ R (u) in Endk (k [G]).

• Proof: We have R (u) = S ◦ L (S (u)) ◦ S and S = S−1.

• Proof of Theorem 1.2: Combine Lemma 1.4 with Lemma 1.5.

• Remark (Martin Lorenz). Theorem 1.2 generalizes to arbitrary Frobenius
algebras.

• Remark. The conjugacy L (u) ∼ R (u) can fail if k is not a field (e.g., for
k = Q [t] and G = S3).

https://math.stackexchange.com/a/596842/
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• Remark. Let u ∈ k [G]. Even if k = C, we don’t always have u ∼ S (u) in
k [G] (easy counterexample for G = C3).
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2. The symmetric group algebra

• Let N := {0, 1, 2, . . .}.

• Let [k] := {1, 2, . . . , k} for each k ∈ N.

• Now, fix a positive integer n, and let Sn be the n-th symmetric group, i.e., the
group of permutations of the set [n].

Multiplication in Sn is composition:

(αβ) (i) = (α ◦ β) (i) = α (β (i)) for all α, β ∈ Sn and i ∈ [n] .

(Warning: SageMath has a different opinion!)

• What can we say about the group algebra k [Sn] that doesn’t hold for arbitrary
k [G]?

• There is a classical theory (“Young’s seminormal form”) of the structure of
k [Sn] when k has characteristic 0. Two modern treatments are

– Adriano M. Garsia, Ömer Egecioglu, Lectures in Algebraic Combinatorics,
Springer 2020.

– Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the
group algebra of the symmetric group, ..., Commentationes Mathematicae
Universitatis Carolinae, 2016.

• Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0,
then

k [Sn] ∼= ∏
λ is a partition of n

M fλ
(k)︸ ︷︷ ︸

matrix ring

(as k-algebras) ,

where fλ is the number of standard Young tableaux of shape λ.

• Proof: This follows from Young’s seminormal form. For the shortest readable
proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.

• Theorem 2.2. Let k be a field of characteristic 0. Let u ∈ k [Sn]. Then,
u ∼ S (u) in k [Sn].

• Proof: Again use Young’s seminormal form. Under the isomorphism k [Sn] ∼=
∏

λ is a partition of n
M fλ

(k), the matrices corresponding to S (u) are the trans-

poses of the matrices corresponding to u (this follows from (2.3.40) in Gar-
sia/Egecioglu). Now, use the Taussky–Zassenhaus theorem again.

https://doi.org/10.1007/978-3-030-58373-6
https://doi.org/10.1007/978-3-030-58373-6
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://math.stackexchange.com/a/596842/
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• Alternative proof: More generally, let G be an ambivalent finite group (i.e., a
finite group in which each g ∈ G is conjugate to g−1). Let u ∈ k [G]. Then,
u ∼ S (u) in k [G]. To prove this, pass to the algebraic closure of k. By Artin–
Wedderburn, it suffices to show that u and S (u) act by similar matrices on
each irreducible G-module V. But this is easy: Since G is ambivalent, we have
V ∼= V∗ and thus

(u |V) ∼ (u |V∗) ∼ (S (u) |V)T ∼ (S (u) |V)

(by Taussky–Zassenhaus).

• Note. Characteristic 0 is needed!
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3. The Young–Jucys–Murphy elements

• We now go further down the abstraction pole and study concrete elements in
k [Sn].

• For any distinct elements i1, i2, . . . , ik of [n], let cyci1,i2,...,ik
be the permutation

in Sn that cyclically permutes i1 7→ i2 7→ i3 7→ · · · 7→ ik 7→ i1 and leaves all
other elements of [n] unchanged.

• Note. cyci = id; cyci,j is a transposition.

• For each k ∈ [n], we define the k-th Young–Jucys–Murphy (YJM) element

mk := cyc1,k + cyc2,k + · · ·+ cyck−1,k ∈ k [Sn] .

• Note. We have m1 = 0. Also, S (mk) = mk for each k ∈ [n].

• Theorem 3.1. The YJM elements m1, m2, . . . , mn commute: We have mimj =
mjmi for all i, j.

• Proof: Easy computational exercise.

• Theorem 3.2. The minimal polynomial of mk over Q divides

k−1

∏
i=−k+1

(X − i) = (X − k + 1) (X − k + 2) · · · (X + k − 1) .

(For k ≤ 3, some factors here are redundant.)

• First proof: Study the action of mk on each Specht module (simple Sn-module).
See, e.g., G. E. Murphy, A New Construction of Young’s Seminormal Representa-
tion ..., 1981 for details.

• Second proof (Igor Makhlin): Some linear algebra does the trick. Induct on
k using the facts that mk and mk+1 are simultaneously diagonalizable over C

(since they are symmetric as real matrices and commute) and satisfy skmk+1 =
mksk + 1, where sk := cyck,k+1. See https://mathoverflow.net/a/83493/ for
details.

• More results and context can be found in §3.3 in Ceccherini-Silberstein/Scarabotti/Tolli,
Representation Theory of the Symmetric Groups, 2010.

• Question. Is there a self-contained algebraic/combinatorial proof of Theorem
3.2 without linear algebra or representation theory?

• Theorem 3.3. For each k ∈ {0, 1, . . . , n}, we can evaluate the k-th elementary
symmetric polynomial ek at the YJM elements m1, m2, . . . , mn to obtain

ek (m1, m2, . . . , mn) = ∑
σ∈Sn;

σ has exactly n−k cycles

σ.

https://doi.org/10.1016/0021-8693(81)90205-2
https://doi.org/10.1016/0021-8693(81)90205-2
https://mathoverflow.net/a/83493/
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
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• Proof: Nice homework exercise (once stripped of the algebra).

• There are formulas for other symmetric polynomials applied to m1, m2, . . . , mn
(see Garsia/Egecioglu).

• Theorem 3.4 (Moran).

{ f (m1, m2, . . . , mn) | f ∈ k [X1, X2, . . . , Xn] symmetric}
= (center of the group algebra k [Sn]) .

• Proof: See any of:

– Gadi Moran, The center of Z [Sn+1] ..., 1992.

– G. E. Murphy, The Idempotents of the Symmetric Group ..., 1983, Theorem
1.9 (for the case k = Z, but the general case easily follows).

(For k = Q, this is Theorem 4.4.5 in CS/S/T as well.)

https://www.ams.org/journals/tran/1992-332-01/S0002-9947-1992-1062873-1/
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1017/CBO9781139192361
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A. The card shuffling point of view

• Permutations are often visualized as shuffled decks of cards:

Imagine a deck of cards labeled 1, 2, . . . , n.

A permutation σ ∈ Sn corresponds to the state in which the cards are ar-
ranged σ (1) , σ (2) , . . . , σ (n) from top to bottom.

• A random state is an element ∑
σ∈Sn

aσσ of R [Sn] whose coefficients aσ ∈ R are

nonnegative and add up to 1. This is interpreted as a distribution on the n!
possible states, where aσ is the probability for the deck to be in state σ.

• We drop the “add up to 1” condition, and only require that ∑
σ∈Sn

aσ > 0. The

probabilities must then be divided by ∑
σ∈Sn

aσ.

• For instance, 1+ cyc1,2,3 corresponds to the random state in which the deck is

sorted as 1, 2, 3 with probability
1
2

and sorted as 2, 3, 1 with probability
1
2

.

• An R-vector space endomorphism of R [Sn], such as L (u) or R (u) for some
u ∈ R [Sn], acts as a (random) shuffle, i.e., a transformation of random states.
This is just the standard way how Markov chains are constructed from tran-
sition matrices.

• For example, if k > 1, then the right multiplication R (mk) by the YJM element
mk corresponds to swapping the k-th card with some card above it chosen
uniformly at random.

• Transposing such a matrix performs a time reversal of a random shuffle.
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4. Top-to-random and random-to-top shuffles

• Another family of elements of k [Sn] are the k-top-to-random shuffles

Bk := ∑
σ∈Sn;

σ−1(k+1)<σ−1(k+2)<···<σ−1(n)

σ

defined for all k ∈ {0, 1, . . . , n}. Thus,

Bn−1 = Bn = ∑
σ∈Sn

σ;

B1 = cyc1 + cyc1,2 + cyc1,2,3 + · · ·+ cyc1,2,...,n;

B0 = id .

• As a random shuffle, Bk (to be precise, R (Bk)) takes the top k cards and moves
them to random positions.

• B1 is known as the top-to-random shuffle or the Tsetlin library.

• Theorem 4.1 (Diaconis, Fill, Pitman). We have

Bk+1 = (B1 − k)Bk for each k ∈ {0, 1, . . . , n − 1} .

• Corollary 4.2. The n + 1 elements B0, B1, . . . , Bn commute and are polynomi-
als in B1.

• Theorem 4.3 (Wallach). The minimal polynomial of B1 over Q is

∏
i∈{0,1,...,n−2,n}

(X − i) = (X − n)
n−2

∏
i=0

(X − i) .

• These are not hard to prove in this order. See https://mathoverflow.net/
questions/308536 for the details.

• More can be said: in particular, the multiplicities of the eigenvalues 0, 1, . . . , n−
2, n of R (B1) over Q are known.

• The antipodes S (B0) , S (B1) , . . . , S (Bn) are known as the random-to-top shuf-
fles and have essentially the same properties (since S is an algebra anti-
automorphism).

• Main references:

– Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of
Generalized Jacquet Integrals, 1988, Appendix.

– Persi Diaconis, James Allen Fill and Jim Pitman, Analysis of Top to Random
Shuffles, 1992.

https://mathoverflow.net/questions/308536
https://mathoverflow.net/questions/308536
https://doi.org/10.2969/aspm/01410123
https://doi.org/10.2969/aspm/01410123
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf


One-sided cycle shuffles (talk) page 12

5. Random-to-random shuffles

• Here is a further family. For each k ∈ {0, 1, . . . , n}, we let

Rk := ∑
σ∈Sn

noninvn−k (σ) · σ,

where noninvn−k (σ) denotes the number of (n − k)-element subsets of [n] on
which σ is increasing.

• Theorem 5.1 (Reiner, Saliola, Welker). The n + 1 elements R0, R1, . . . , Rn
commute (but are not polynomials in R1 in general).

• Theorem 5.2 (Dieker, Saliola, Lafrenière). The minimal polynomial of each
Ri over Q is a product of X − i’s for distinct integers i. For example, the one
of R1 divides

n2

∏
i=−n2

(X − i) .

The exact factors can be given in terms of certain statistics on Young diagrams.

• Main references:

– Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized
Shuffling Operators, arXiv:1102.2460.

– A.B. Dieker, F.V. Saliola, Spectral analysis of random-to-random Markov chains,
2018.

– Nadia Lafrenière, Valeurs propres des opérateurs de mélanges symétrisés, the-
sis, 2019.

• Question: Simpler proofs? (Even commutativity takes a dozen pages!)

• Question (Reiner): How big is the subalgebra of Q [Sn] generated by R0, R1, . . . , Rn
? Does it have dimension O

(
n2) ? Some small values:

n 1 2 3 4 5 6

dim (Q [R0, R1, . . . , Rn]) 1 2 4 7 15 30

• Remark 5.3. We have
Rk =

1
k!

· S (Bk) · Bk,

but this isn’t all that helpful, since the Bk don’t commute with the S (Bk).

https://arxiv.org/abs/1102.2460
https://arxiv.org/abs/1102.2460
https://doi.org/10.1016/j.aim.2017.10.034
https://doi.org/10.1016/j.aim.2017.10.034
https://arxiv.org/abs/1912.07718
https://arxiv.org/abs/1912.07718
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6. Somewhere-to-below shuffles

• In 2021, Nadia Lafrenière defined the somewhere-to-below shuffles t1, t2, . . . , tn
by setting

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn]

for each ℓ ∈ [n].

• Thus, t1 = B1 and tn = id.

• As a card shuffle, tℓ takes the ℓ-th card from the top and moves it further
down the deck.

• Their linear combinations

λ1t1 + λ2t2 + · · ·+ λntn with λ1, λ2, . . . , λn ∈ k

are called one-sided cycle shuffles and also have a probabilistic meaning
when λ1, λ2, . . . , λn ≥ 0.

• Fact: t1, t2, . . . , tn do not commute for n ≥ 3. For n = 3, we have

[t1, t2] = cyc1,2 + cyc1,2,3 − cyc1,3,2 − cyc1,3 .

• However, they come pretty close to commuting!

• Theorem 6.1 (Lafreniere, G., 2022+). There exists a basis of the k-module
k [Sn] in which all of the endomorphisms R (t1) , R (t2) , . . . , R (tn) are repre-
sented by upper-triangular matrices.
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7. The descent-destroying basis

• This basis is not hard to define, but I haven’t seen it before.

• For each w ∈ Sn, we let

Des w := {i ∈ [n − 1] | w (i) > w (i + 1)} (the descent set of w) .

• For each i ∈ [n − 1], we let si := cyci,i+1.

• For each I ⊆ [n − 1], we let

G (I) := (the subgroup of Sn generated by the si for i ∈ I) .

• For each w ∈ Sn, we let

aw := ∑
σ∈G(Des w)

wσ ∈ k [Sn] .

In other words, you get aw by breaking up the word w into maximal decreas-
ing factors and re-sorting each factor arbitrarily (without mixing different
factors).

• The family (aw)w∈Sn
is a basis of k [Sn] (by triangularity).

• For instance, for n = 3, we have

a[123] = [123] ;

a[132] = [132] + [123] ;

a[213] = [213] + [123] ;

a[231] = [231] + [213] ;

a[312] = [312] + [132] ;

a[321] = [321] + [312] + [231] + [213] + [132] + [123] .

• Theorem 7.1 (Lafrenière, G.). For any w ∈ Sn and ℓ ∈ [n], we have

awtℓ = µw,ℓaw + ∑
v∈Sn;
v≺w

λw,ℓ,vav

for some nonnegative integer µw,ℓ, some integers λw,ℓ,v and a certain partial
order ≺ on Sn.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular with
respect to the basis (aw)w∈Sn

.

• Examples:
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– For n = 4, we have

a[4312]t2 = a[4312] + a[4321] − a[4231] − a[3241] − a[2143]︸ ︷︷ ︸
subscripts are ≺[4312]

.

– For n = 3, the endomorphism R (t1) is represented by the matrix

a[321] a[231] a[132] a[213] a[312] a[123]

a[321] 3 1 1 1
a[231] 1 −1 1
a[132] 1
a[213] 1
a[312] 1
a[123] 1

(empty cells = zero entries). For instance, the last column means a[123]t1 =
a[123] + a[231].

• Corollary 7.2. The eigenvalues of these endomorphisms R (t1) , R (t2) , . . . , R (tn)
and of all their linear combinations

R (λ1t1 + λ2t2 + · · ·+ λntn)

are integers as long as λ1, λ2, . . . , λn are.

• How many different eigenvalues do they have?

• R (t1) = R (B1) has only n eigenvalues: 0, 1, . . . , n − 2, n, as we have seen
before. The other R (tℓ)’s have even fewer.

• But their linear combinations R (λ1t1 + λ2t2 + · · ·+ λntn) can have many more.
How many?
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8. Lacunar sets and Fibonacci numbers

• A set S of integers is called lacunar if it contains no two consecutive integers
(i.e., we have s + 1 /∈ S for all s ∈ S).

• Theorem 8.1 (combinatorial interpretation of Fibonacci numbers, folklore).
The number of lacunar subsets of [n − 1] is the Fibonacci number fn+1.

(Recall: f0 = 0, f1 = 1, fn = fn−1 + fn−2.)

• Theorem 8.2. When λ1, λ2, . . . , λn ∈ C are generic, the number of distinct
eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn) is fn+1. In this case, the endomor-
phism R (λ1t1 + λ2t2 + · · ·+ λntn) is diagonalizable.

• Note that fn+1 ≪ n!.

• One way such a theorem can be proved is by finding a filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

of the k-module k [Sn] such that each R (tℓ) acts as a scalar on each of its
quotients Fi/Fi−1. In matrix terms, this means bringing R (tℓ) to a block-
triangular form, with the diagonal blocks being “scalar times I” matrices.

• It is only natural that the quotients should correspond to the lacunar subsets
of [n − 1].

• Let us approach the construction of this filtration.
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9. The F (I) filtration

• For each I ⊆ [n], we set
sum I := ∑

i∈I
i

and
Î := {0} ∪ I ∪ {n + 1}

and
I′ := [n − 1] \ (I ∪ (I − 1))

and
F (I) :=

{
q ∈ k [Sn] | qsi = q for all i ∈ I′

}
⊆ k [Sn] .

In probabilistic terms, F (I) consists of those random states of the deck that
do not change if we swap the i-th and (i + 1)-st cards from the top as long as
neither i nor i + 1 is in I. To put it informally: F (I) consists of those random
states that are “fully shuffled” between any two consecutive Î-positions.

• For any ℓ ∈ [n], we let mI,ℓ be the distance from ℓ to the next-higher element
of Î. In other words,

mI,ℓ :=
(

smallest element of Î that is ≥ ℓ
)
− ℓ ∈ {0, 1, . . . , n} .

For example, if n = 5 and I = {2, 3}, then Î = {0, 2, 3, 6} and

(mI,1, mI,2, mI,3, mI,4, mI,5) = (1, 0, 0, 2, 1) .

We note that, for any ℓ ∈ [n], we have the equivalence

mI,ℓ = 0 ⇐⇒ ℓ ∈ Î ⇐⇒ ℓ ∈ I.

• Crucial Lemma 9.1. Let I ⊆ [n] and ℓ ∈ [n]. Then,

qtℓ ∈ mI,ℓq + ∑
J⊆[n];

sum J<sum I

F (J) for each q ∈ F (I) .

• Proof: Expand qtℓ by the definition of tℓ, and break up the resulting sum into
smaller bunches using the interval decomposition

[ℓ, n] = [ℓ, ik − 1] ⊔ [ik, ik+1 − 1] ⊔ [ik+1, ik+2 − 1] ⊔ · · · ⊔
[
ip, n

]
(where ik < ik+1 < · · · < ip are the elements of I larger or equal to ℓ). The
[ℓ, ik − 1] bunch gives the mI,ℓq term; the others live in appropriate F (J)’s.

See the paper for the details.
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• Thus, we obtain a filtration of k [Sn] if we label the subsets I of [n] in the order
of increasing sum I and add up the respective F (I)s.

• Unfortunately, this filtration has 2n, not fn+1 terms.

• Fortunately, that’s because many of its terms are redundant. The ones that
aren’t correspond precisely to the I’s that are lacunar subsets of [n − 1]:

• Lemma 9.2. Let k ∈ N. Then,

∑
J⊆[n];

sum J<k

F (J) = ∑
J⊆[n−1] is lacunar;

sum J<k

F (J) .

• Proof: If J ⊆ [n] contains n or fails to be lacunar, then F (J) is a submodule of
some F (K) with sum K < sum J. (Exercise!)

• Now, we let Q1, Q2, . . . , Q fn+1 be the fn+1 lacunar subsets of [n − 1], listed in
such an order that

sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum
(
Q fn+1

)
.

Then, define a k-submodule

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi) of k [Sn]

for each i ∈ [0, fn+1] (so that F0 = 0). The resulting filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

satisfies the properties we need:

• Theorem 9.3. For each i ∈ [ fn+1] and ℓ ∈ [n], we have Fi ·
(
tℓ − mQi,ℓ

)
⊆ Fi−1

(so that R (tℓ) acts as multiplication by mQi,ℓ on Fi/Fi−1).

• Proof: Lemma 9.1 + Lemma 9.2.

• Lemma 9.4. The quotients Fi/Fi−1 are nontrivial for all i ∈ [ fn+1].

• Proof: See below.

• Corollary 9.5. Let k be a field, and let λ1, λ2, . . . , λn ∈ k. Then, the eigenval-
ues of R (λ1t1 + λ2t2 + · · ·+ λntn) are the linear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar.

• Theorem 8.2 easily follows by some linear algebra.
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10. Back to the basis

• The descent-destroying basis (aw)w∈Sn
is compatible with our filtration:

• Theorem 10.1. For each I ⊆ [n], the family (aw)w∈Sn; I′⊆Des w is a basis of the
k-module F (I).

• If w ∈ Sn is any permutation, then the Q-index of w is defined to be the
smallest i ∈ [ fn+1] such that Q′

i ⊆ Des w. We call this Q-index Qind w.

• Proposition 10.2. Let w ∈ Sn and i ∈ [ fn+1]. Then, Qind w = i if and only if
Q′

i ⊆ Des w ⊆ [n − 1] \ Qi.

• Theorem 10.3. For each i ∈ [0, fn+1], the k-module Fi is free with basis
(aw)w∈Sn; Qind w≤i.

• Corollary 10.4. For each i ∈ [ fn+1], the k-module Fi/Fi−1 is free with basis
(aw)w∈Sn; Qind w=i.

• This yields Lemma 9.4 and also leads to Theorem 7.1, made precise as follows:

• Theorem 10.5 (Lafrenière, G.). For any w ∈ Sn and ℓ ∈ [n], we have

awtℓ = µw,ℓaw + ∑
v∈Sn;

Qind v<Qind w

λw,ℓ,vav

for some nonnegative integer µw,ℓ and some integers λw,ℓ,v.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular with
respect to the basis (aw)w∈Sn

as long as the permutations w ∈ Sn are ordered
by increasing Q-index.

• Note that the numbering Q1, Q2, . . . , Q fn+1 of the lacunar subsets of [n − 1]
is not unique; we just picked one. Nevertheless, our construction is “essen-
tially” independent of choices, since Proposition 10.2 describes QQind w inde-
pendently of this numbering (it is the unique lacunar L ⊆ [n − 1] satisfying
L′ ⊆ Des w ⊆ [n − 1] \ L). To get rid of the dependence on the numbering, we
should think of the filtration as being indexed by a poset.
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11. The multiplicities

• With Corollary 10.4, we know not only the eigenvalues of the R (tℓ)’s, but
also their multiplicities:

• Corollary 11.1. Assume that k is a field. Let λ1, λ2, . . . , λn ∈ k. For each i ∈
[ fn+1], let δi be the number of all permutations w ∈ Sn satisfying Qind w = i,
and we let

gi :=
n

∑
ℓ=1

λℓmQi,ℓ ∈ k.

Let κ ∈ k. Then, the algebraic multiplicity of κ as an eigenvalue of the endo-
morphism R (λ1t1 + λ2t2 + · · ·+ λntn) equals

∑
i∈[ fn+1];

gi=κ

δi.

• Can we compute the δi explicitly? Yes!

• Theorem 11.2. Let i ∈ [ fn+1]. Let δi be the number of all permutations w ∈ Sn
satisfying Qind w = i. Then:

(a) Write the set Qi in the form Qi =
{

i1 < i2 < · · · < ip
}

, and set i0 = 1 and
ip+1 = n + 1. Let jk = ik − ik−1 for each k ∈ [p + 1]. Then,

δi =

(
n

j1, j2, . . . , jp+1

)
︸ ︷︷ ︸

multinomial
coefficient

·
p+1

∏
k=2

(jk − 1) .

(b) We have δi | n!.

• Question. This reminds of the hook-length formula for standard tableaux. Is
it connected to Fibonacci tableaux (paths in the Young–Fibonacci lattice)?
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12. Variants

• Most of what we said about the somewhere-to-below shuffles tℓ can be ex-
tended to their antipodes S (tℓ) (the “below-to-somewhere shuffles”). For
instance:

• Theorem 12.1. There exists a basis of the k-module k [Sn] in which all of the
endomorphisms R (S (t1)) , R (S (t2)) , . . . , R (S (tn)) are represented by upper-
triangular matrices.

• We can also use left instead of right multiplication:

• Theorem 12.2. There exists a basis of the k-module k [Sn] in which all of the
endomorphisms L (t1) , L (t2) , . . . , L (tn) are represented by upper-triangular
matrices.

• These follow from Theorem 6.1 using dual bases, transpose matrices and
Proposition 1.3. No new combinatorics required!

• Question. Do we have L (tℓ) ∼ R (tℓ) in Endk (k [Sn]) when k is not a field?

• Remark. The similarity tℓ ∼ S (tℓ) in k [Sn] holds when char k = 0, but not
for general fields k. (E.g., it fails for k = F2 and n = 4 and ℓ = 1.)
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13. Conjectures and questions

• The simultaneous trigonalizability of the endomorphisms R (t1) , R (t2) , . . . , R (tn)
yields that their pairwise commutators are nilpotent. Hence, the pairwise
commutators

[
ti, tj

]
are also nilpotent.

• Question. How small an exponent works in
[
ti, tj

]∗
= 0 ?

• Conjecture 13.1. We have
[
ti, tj

]j−i+1
= 0 for any 1 ≤ i < j ≤ n.

• Conjecture 13.2. We have
[
ti, tj

]n−j+1
= 0 for any 1 ≤ i < j ≤ n.

• Conjecture 13.3. We have
[
ti, tj

]n−j
= 0 for any 1 ≤ i < j < n − 1.

• We can prove Conjecture 13.1 for j = i + 1 and Conjecture 13.2 for j = n − 1.
We can also show that

tn−1 [ti, tn−1] = 0 and [ti, tn−1]
[
tj, tn−1

]
= 0

and ti+1ti = (ti − 1) ti

for all i and j.

• Question. What can be said about the k-subalgebra k [t1, t2, . . . , tn] of k [Sn] ?
Note:

n 1 2 3 4 5 6 7

dim (Q [t1, t2, . . . , tn]) 1 2 4 9 23 66 212

(this sequence is not in the OEIS as of 2022-06-20).

• Question. How do the F (I) and the Fi decompose into Specht modules when
k is a field of characteristic 0 ?

• Question. How do t1, t2, . . . , tn act on a given Specht module?
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