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Errata and questions by Darij Grinberg - I

This is a list of errors in Emanuela Petracci’s thesis “Functional equations
and Lie algebras” I found while reading parts of it. The word “you” always
refers to the author of the thesis.

Despite the many errors, the thesis is a masterpiece of algebra. It provides
(among other things) a proof of the Poincaré-Birkhoff-Witt for Q-algebras
which does not require the ground ring to be a field (so “for Q-algebras”
merely means that the ground ring is a commutative Q-algebra). Among
several such proofs (all of which are highly nontrivial), the one given in this
thesis is probably the most conceptual one.

General errors

• There seems to be a bug in the style you are using: While there are
no dots after “Convention” and “Remark” and the likes (for example,
“Convention 1.1.1” and “Remark 1.1.1”), there are dots after “Defini-
tion” (for instance, “Definition. 1.1.1”).

• The word “verify” is misused as a synonym for “satisfy” throughout
the thesis (a mistake common of Francophone authors).

Chapter 1

• Page 9, §1.1: Replace “not-zero” by “non-zero”.

• Definition 1.1.1: Replace “m,n ∈M” by “m ∈M”.

• Definition 1.1.2: Replace “equipped of” by “equipped with’. (This
mistake occurs in many places throughout the text.)

• Between Definition 1.1.2 and Notation 1.1.1: Remove the “and
α ∈ K” part.
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• Example 1.1.1: Replace “the set formal series in s” by “the set of
formal series in z”.

• Example 1.1.2 b): The last comma in “{v ⊗ w; v ∈M,w ∈ N, }” is
misplaced – it should be outside the brackets.

• You do some kind of introduction to superalgebra in Chapter 1. If you
want this to be self-contained, I think a definition of the notion of the
tensor product of two superalgebras would be in place somewhere in
§1.1: you use this notion later, and you never define it, although you
define much more basic notions (like Example 1.1.2).

• Example 1.1.2 c): In “T (M) := K + (M ⊗M) + (M ⊗M ⊗M) +
· · · ”, you forgot the M addend.

• Between (1.8) and (1.9): Replace “X1, .., Xn ∈M” by “X1, ..., Xn ∈
M”.

• Second absatz of page 12: Remove the “of” from “Because of S (M)
is a coalgebra”. Also, the “coalgebra” here should probably be a “co-
commutative coalgebra”.

• Remark 1.2.1: It wouldn’t hurt to explicitly remind the reader here
that X denotes the “constant function” (1 7→ X, Sn (M) → {0} for
n 6= 0).

• Page 12, one line below remark 1.2.1: “formal vectors field”
should be “formal vector fields”.

• Page 12, one line below Definition 1.2.1: A closing parenthesis
was omitted in “P (S (M)”.

• Proof of Lemma 1.3.1: This is correct, but I don’t understand why
you require k ≥ 1 all the time. Wouldn’t k ≥ 0 be completely enough?

• Remark 1.3.1: Here and in the following, when you write “p (X1 + · · ·+Xn)”,
you actually mean p (X1)+· · ·+p (Xn) (or, what is the same, p (X1 · · ·Xn)).
This appears so often in your paper that I am wondering whether it is
some standard abuse of notation, or I am blind?

• Remark 1.3.1: Replace the “:=” by “=” in “(adx)0 (Y ) := Y ∈ gx”.
This is not a definition of (adx)0 (Y ); it is already defined.
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• First line of page 14: You write: “As a consequence of the last
remark, we can define”. This is right, but there is no need to use the
last remark here. A simpler way to check that q (adx) (Y ) is well-
defined is the following: For every m ∈ N, let S≤m (g) define the K-

subsupermodule
m⊕
i=0

Si (g) of S (g). For every m ∈ N, let g>mx denote the

K-subsupermodule {f ∈ gx | f (S≤m (g)) = 0} of gx. Then, it is easy
to show that x ∈ g>0

x , but every m ∈ N satisfies (adx) (g>mx ) ⊆ g>m+1
x .

As a consequence, for every Y ∈ g, every sufficiently high m ∈ N
satisfies (ad x)m (Y ) = 0, and thus q (adx) (Y ) is well-defined.

• Theorem 1.3.1: The “

(
q (t+ u)− q (u)

t
: [Y, Z]

)
” should be(

q (t+ u)− q (u)

t
: [Y, Z]

)
x

(with an x index).

• Proof of Theorem 1.3.1: Three typos in the computation:
- In the first line of the computation, “adx)k” should be “(adx)k”.

- In the second line of the computation, ”
(

(adx)k
)

(Z)” should be

“
(

(adx)k (Z)
)

”.

- In the third line of the computation, “
(
uk : [Y, Z]

)
” should be “

(
uk : [Y, Z]

)
x
”.

Chapter 2

• Page 15, one line below Remark 2.1.2: You write: “Φa := id∗ϕa ≡
Mult ◦ (1⊗ ϕa) ◦ ∆”. The 1 here stands for id; maybe it would be
better to just call it id (lest it be confused with the neutral element
with respect to convolution).

• Page 16, Lemma 2.1.1: It might be helpful to explain how expres-
sions like “ϕa ∗ Y ” are to be understood. (As far as I understand,
in the expression “ϕa ∗ Y ”, the terms ϕa and Y are understood to

mean the maps S (g)
ϕa

−→ g
inclusion−→ S (g) and S (g)

Y−→ g
inclusion−→ S (g),

respectively.)

• Proof of Lemma 2.1.1 ii): I fear I don’t understand this proof,
although I suspect the problem is on my side and not on that of the
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proof’s1.
Anyway, here is a more down-to-earth proof of Lemma 2.1.1 ii):
Proof of Lemma 2.1.1 ii): In the following, we are going to use the
sumfree Sweedler notation for the comultiplication on S (g). Also we
will assume that all vectors are even, since I don’t want to struggle
with the minus signs. I am pretty sure that the general case can be
proven analogously.
We start with some straightforward observations:
Observation 1: Every α ∈ S (g) and every Y ∈ g satisfy [x, Y ] (α) =
[x (α) , Y ]. (Here, on the left hand side, Y denotes the constant map
Y ∈ gx, as usual.)
Proof of Observation 1: The constant map Y ∈ gx = Hom (S (g) , g)
maps every β ∈ S (g) to ε (β)Y ∈ g. Thus,

[x, Y ] (α) =

x (α(1)

)
, Y
(
α(2)

)︸ ︷︷ ︸
=ε(α(2))Y

 =
[
x
(
α(1)

)
, ε
(
α(2)

)
Y
]

=

x
α(1)ε

(
α(2)

)︸ ︷︷ ︸
=α

 , Y

 = [x (α) , Y ] .

This proves Observation 1.
Observation 2: Every ` ∈ N, b ∈ g and α ∈ S (g) satisfy(

(adx)
(

(adx)` (b)
(
α(2)

))) (
α(1)

)
= (adx)`+1 (b) (α) .

1I have troubles understanding the equation “Φa
g◦Ψb

g = Φa
(gx)y

◦(id ∗ ψ (ad y) (b)) |S(g)=

Φa
(gx)y

◦ψ (ad y) (b)
L |S(g)”. (It is not clear to me how to interpret the term ψ (ad y) (b) – as

an element of (gx)y regarded as a constant map S
(

(gx)y

)
→ (gx)y, or as a (non-constant)

map S (gx)→ gx – in order for both equality signs to be valid.)
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Proof of Observation 2: We have(adx)
(

(adx)` (b)
(
α(2)

))︸ ︷︷ ︸
=[x,(adx)`(b)(α(2))]

(α(1)

)

=
[
x, (adx)` (b)

(
α(2)

)] (
α(1)

)
=
[
x
(
α(1)

)
, (adx)` (b)

(
α(2)

)]
(

by Observation 1, applied to α(1) and (adx)` (b)
(
α(2)

)
instead of α and Y

)
=
[
x, (adx)` (b)

]
︸ ︷︷ ︸

=(adx)`+1(b)

(α) = (ad x)`+1 (b) (α) ,

thus proving Observation 2.
Observation 3: Every q ∈ N, k ∈ N, b ∈ g and α ∈ S (g) satisfy(

(adx)q
(

(adx)k (b)
(
α(2)

))) (
α(1)

)
= (adx)q+k (b) (α) .

Proof of Observation 3: We prove Observation 3 by induction over q.
The induction base is the case when q = 0; this case is easy (it reduces

to showing that
(

(adx)k (b)
(
α(2)

)) (
α(1)

)
= (adx)k (b) (α), but this is

clear since (adx)k (b)
(
α(2)

)
is a constant map and thus satisfies(

(adx)k (b)
(
α(2)

)) (
α(1)

)
= ε

(
α(1)

)
· (adx)k (b)

(
α(2)

)
= (adx)k (b)

ε (α(1)

)
α(2)︸ ︷︷ ︸

=α

 = (adx)k (b) (α)

). For the induction step, we assume that some q ∈ N satisfies(
(adx)q

(
(adx)k (b)

(
α(2)

))) (
α(1)

)
= (adx)q+k (b) (α) (1)

for all α ∈ S (g), and try to prove that(
(adx)q+1

(
(adx)k (b)

(
α(2)

))) (
α(1)

)
= (adx)q+1+k (b) (α)
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for all α ∈ S (g). But this follows from
(adx)q+1

(
(adx)k (b)

(
α(2)

))︸ ︷︷ ︸
=(adx)((adx)q((adx)k(b)(α(2))))

=[x,(adx)q((adx)k(b)(α(2)))]


(
α(1)

)

=
[
x, (adx)q

(
(adx)k (b)

(
α(2)

))] (
α(1)

)
=
[
x
((
α(1)

)
(1)

)
,
(

(adx)q
(

(adx)k (b)
(
α(2)

)))((
α(1)

)
(2)

)]

=

x
(
α(1)

)
,
(

(adx)q
(

(adx)k (b)
((
α(2)

)
(2)

)))((
α(2)

)
(1)

)
︸ ︷︷ ︸

=(adx)q+k(b)(α(2))
(by (1), applied to α(2) instead of α)


(by coassociativity)

=
[
x
(
α(1)

)
, (adx)q+k (b)

(
α(2)

)]
=

[
x, (adx)q+k (b)

]
︸ ︷︷ ︸

=(adx)(q+k)+1(b)=(adx)q+1+k(b)

(α) = (ad x)q+1+k (b) (α) .

Thus, Observation 3 is proven.
Observation 4: Every f ∈ Hom (S (g) , S (g)), every Y ∈ g and every
α ∈ S (g) satisfy

(f ∗ Y ) (α) = f (α)Y

(where the expression Y in “f ∗Y ” is regarded as a map S (g)→ S (g)
by first considering it as a constant map S (g)→ g and then composing
it with the inclusion map g→ S (g)).
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Proof of Observation 4: We have

(f ∗ Y ) (α) = f
(
α(1)

)
Y
(
α(2)

)︸ ︷︷ ︸
=Y ε(α(2))

(by the definition
of the constant map Y )

= f
(
α(1)

)
Y ε
(
α(2)

)

= f

α(1)ε
(
α(2)

)︸ ︷︷ ︸
=α

Y = f (α)Y.

This proves Observation 4.
Now let us prove Lemma 2.1.1 ii): We want to show that

Φa ◦Ψb = id ∗
(
ϕa ∗ ψb −

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

)
.

In order to do that, it is enough to show that every α ∈ S (g) satisfies

(
Φa ◦Ψb

)
(α) =

(
id ∗

(
ϕa ∗ ψb −

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

))
(α) .
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Since(
Φa ◦Ψb

)
(α)

= Φa

 Ψb (α)︸ ︷︷ ︸
=(id∗ψb)(α)=α(1)ψ

b(α(2))=(ψb(α(2)))
L
(α(1))

 = Φa
((
ψb
(
α(2)

))L (
α(1)

))

=
(

Φa ◦
(
ψb
(
α(2)

))L) (
α(1)

)
=

(
id ∗

(
ϕa ∗

(
ψb
(
α(2)

))
−
(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

(
α(2)

)])
x

))(
α(1)

)


since Lemma 2.1.1 i) (applied to Y = ψb
(
α(2)

)
) yields

Φa ◦
(
ψb
(
α(2)

))L
= id ∗

(
ϕa ∗

(
ψb
(
α(2)

))
−
(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

(
α(2)

)])
x

)


=
(
id ∗ ϕa ∗

(
ψb
(
α(2)

))) (
α(1)

)︸ ︷︷ ︸
=(id∗ϕa)(α(1))·ψb(α(2))

(by Observation 4, applied to

id∗ϕa, ψb(α(2)) and α(1)

instead of f , Y and α)

−
(
id ∗

(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

(
α(2)

)])
x

)(
α(1)

)
︸ ︷︷ ︸

=(α(1))(1)

ϕ (t+ u)− ϕ (t)

u
:[a,ψb(α(2))]


x

(
(α(1))(2)

)

= (id ∗ ϕa)
(
α(1)

)
· ψb

(
α(2)

)︸ ︷︷ ︸
=(id∗ϕa∗ψb)(α)

−
(
α(1)

)
(1)

(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

(
α(2)

)])
x

((
α(1)

)
(2)

)
︸ ︷︷ ︸

=α(1)

ϕ (t+ u)− ϕ (t)

u
:[a,ψb(α(3))]


x

(α(2))

=α(1)

ϕ (t+ u)− ϕ (t)

u
:

[
a,ψb

(
(α(2))(2)

)]
x

(
(α(2))(1)

)

=
(
id ∗ ϕa ∗ ψb

)
(α)− α(1)

(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

((
α(2)

)
(2)

)])
x

((
α(2)

)
(1)

)
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and(
id ∗

(
ϕa ∗ ψb −

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

))
(α)

=
(
id ∗ ϕa ∗ ψb

)
(α)−

(
id ∗

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

)
(α)︸ ︷︷ ︸

=α(1)

ϕ (t+ u)− ϕ (t)

u
ψ(u):[a,b]


x

(α(2))

=
(
id ∗ ϕa ∗ ψb

)
(α)− α(1)

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

(
α(2)

)
,

this rewrites as(
id ∗ ϕa ∗ ψb

)
(α)− α(1)

(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

((
α(2)

)
(2)

)])
x

((
α(2)

)
(1)

)
=
(
id ∗ ϕa ∗ ψb

)
(α)− α(1)

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

(
α(2)

)
.

Hence, it will be enough to prove that

α(1)

(
ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

((
α(2)

)
(2)

)])
x

((
α(2)

)
(1)

)
= α(1)

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

(
α(2)

)
. (2)

This will clearly be proven if we succeed to show that every β ∈ S (g)
satisfies (

ϕ (t+ u)− ϕ (t)

u
:
[
a, ψb

(
β(2)

)])
x

(
β(1)

)
=

(
ϕ (t+ u)− ϕ (t)

u
ψ (u) : [a, b]

)
x

(β) (3)

(because applying (3) to β = α(2) and multiplying with α(1), we will
obtain (2)). So let us prove (3).
Let us show a somewhat stronger assertion: let us show that every
polynomial P ∈ K [t, u] satisfies(

P :
[
a, ψb

(
β(2)

)])
x

(
β(1)

)
= (P · ψ (u) : [a, b])x (β) . (4)
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Once this equality (4) is proven, (3) will immediately follow (by setting

P =
ϕ (t+ u)− ϕ (t)

u
). So let us prove (4):

Since the equality (4) is linear in ψ and P and continuous in ψ, we can
WLOG assume that ψ = zk for some k ∈ N, and that P = truq for
some r ∈ N and q ∈ N. Then,(
P :

[
a, ψb

(
β(2)

)])
x

(
β(1)

)
=
(
truq :

[
a, ψb

(
β(2)

)])
x

(
β(1)

)
=
[
(adx)r (a) , (adx)q

(
ψb
(
β(2)

))] (
β(1)

)
=
[
((adx)r (a))

((
β(1)

)
(1)

)
,
(
(adx)q

(
ψb
(
β(2)

))) ((
β(1)

)
(2)

)]
=
[
((adx)r (a))

(
β(1)

)
,
(

(adx)q
(
ψb
((
β(2)

)
(2)

)))((
β(2)

)
(1)

)]
and  P · ψ (u)︸ ︷︷ ︸

=truq ·uk=truq+k

: [a, b]


x

(β)

=
(
truq+k : [a, b]

)
x

(β) =
[
(adx)r (a) , (adx)q+k (b)

]
(β)

=
[
((adx)r (a))

(
β(1)

)
,
(

(adx)q+k (b)
) (
β(2)

)]
.

The equality (4) thus transforms into[
((adx)r (a))

(
β(1)

)
,
(

(adx)q
(
ψb
((
β(2)

)
(2)

)))((
β(2)

)
(1)

)]
=
[
((adx)r (a))

(
β(1)

)
,
(

(adx)q+k (b)
) (
β(2)

)]
. (5)

It thus remains to prove (5).
Since ψb = ψ︸︷︷︸

=zk

(adx) (b) = (ad x)k (b), every γ ∈ S (g) satisfies

(
(adx)q

(
ψb
(
γ(2)

))) (
γ(1)

)
=
(

(adx)q
(

(adx)k (b)
(
γ(2)

))) (
γ(1)

)
= (adx)q+k (b) (γ)

(by Observation 3, applied to γ instead of α). Applying this to γ = β(2)

and taking the Lie bracket with ((adx)r (a))
(
β(1)

)
, we obtain (5). As

explained above, this completes the proof of Lemma 2.1.1 ii).
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• Proof of Theorem 2.1.1: The first three lines of this proof don’t seem
to belong into this proof. Neither does the last line of the computation.
Also, there are some typos:

- On the third line of the computation, “
ψ (t+ u)− ψ (t)

u
ϕ (u)” should

be
ψ (t+ u)− ψ (u)

t
ϕ (t).

- On the fourth line of the computation, I think there should be a
(−1)something term in front of the second fraction. I am not exactly sure
here since I have never been following the (−1) signs carefully.

• Lemma 2.1.2: In this lemma (and its proof), “N” should be replaced
by N\{0}. (Here I am assuming that N contains 0 in your terminology.
This assumption is reinforced by the statement of Remark 1.3.1.)

• Proof of Lemma 2.1.3: Replace “(w (t, u) , [α, β])x” by “(w (t, u) : [α, β])x”
(three times).

• Proof of Lemma 2.1.3: In the formula, there are two commata in-
stead of one on the right hand side.

• Proof of Theorem 2.1.2: You write: “By theorem 1.2.1, this iden-
tity is equivalent to”. In my opinion, what you are using here is not
Theorem 1.2.1, but simply the ∗-invertibility of id.

• Remark 2.2.2: Replace “
1

ez − 1
” by

z

ez − 1
. Also, replace “

∞∑
k≥0

” by∑
k≥0

.

• Proof of Theorem 2.2.4: In the first line of this proof, “ω (, u)”
should be ω (t, u).

• Lemma 2.2.3: You might want to change “K [t] /tN” into K0 [t] /tN .
(In fact, you only consider ϕ ∈ K0 [t] /tN in the proof. I am not sure
whether this is because the other case is not interesting enough to you,
or you can easily rule it out.)

• Theorem 2.2.5: Replace “tn” by tN (I think).

• First line of §2.3: Replace “commutating” by “commuting”.
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• (2.16): The lower arrow of this commutative diagram should be Fh.

• Proof of Theorem 2.4.1: A comma is missing in “x1, ...xn+1”.

• Proof of Theorem 2.4.1: Replace the “g” by an “h” in “Let Y :=
Fg (x1 · · · xn ⊗ xn+1)”.

• Proof of Theorem 2.4.1: Replace every letter “X” in “ft,i : Xj 7→{
Xj, j 6= i
Xit, j = i

” by a lowercase “x”.

• Proof of Theorem 2.4.1: Replace “ft,i (Y )” by “f̃t,i (Y )”.

• Proof of Theorem 2.4.1: I don’t understand how you obtain “Y =∑n+1
i=1 Y1,i”. However, it is completely enough to know that “Y =∑
i≥0 Y1,i”, and this is obvious.

• Proof of Theorem 2.4.1: Replace “i ∈ {i, ..., n+ 1}” by “i ∈ {1, ..., n+ 1}”.

• Proof of Theorem 2.4.1: Replace “brackets of n elements” by “brack-
ets of n+ 1 elements”.

• Proof of Lemma 2.5.1: “using (2.2)” should be “using (2.1)” in my
opinion.

• Proof of Theorem 2.5.1 ii): In the formula, you write “
(
Φa1 ◦ Φg(aj) ◦ Φan

)
(1)”.

This should be(
Φa1 ◦ · · · ◦ Φaj−1 ◦ Φg(aj) ◦ Φaj+1 ◦ · · · ◦ Φan

)
(1) .

(You can leave out the Φaj−1 and Φaj+1 terms if you wish, but at least
the · · · should be there.)

• Proof of Theorem 2.5.1 ii): You write “[g2,Φ
a
1] = 1⊗ϕa1◦(g2 ⊗ 1 + 1⊗ g2 −∆ ◦ g2)+

Φg(a)”. This should be

[g2,Φ
a
1] = m ◦ (1⊗ ϕa1) ◦ ((g2 ⊗ 1 + 1⊗ g2) ◦∆−∆ ◦ g2) + Φg(a).

(Besides I don’t understand why you are renaming id as 1 again, but
it’s fine for me.)

• Proof of Lemma 2.5.2: “From identity (1.2)” should be “From iden-
tity (2.2)”.
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• Remark 2.5.5: Replace “Dedeking” by “Dedekind”.

• Remark 2.5.5: There is a useless parenthesis before “it is shown that
β is one-to-one”.

Chapter 3

• Page 31: Replace “if A is a K-algebra equipped with a comultiplication
∆” by “if A is a K-coalgebra with a comultiplication ∆”.

• (3.1): The right hand side should be ∂ (X1) ◦ · · · ◦ ∂ (Xn) (f) |0 rather
than ∂ (X1) ◦ · · · ◦ ∂ (Xn) |0 (f).

• Theorem 3.1.1: I believe “−ϕc (adx) (a)” should be “− (ϕc (adx) (a))T”.

• Proof of Theorem 3.1.1: The minus sign in “− (−1)p(X1···Xn)p(a) 〈X1 · · ·Xn, ξ
a
c (f)〉”

should be removed. (The minus sign should only appear later due to
the definition of the dual of a representation of a Lie algebra.)

• Remark 3.1.1: I don’t understand what is meant by “the evaluation
of ξac in X ∈ g0”.

Chapter 4

• Page 36: It would be good to clarify if the notions of “K-supersymmetric
space” (or “K-super symmetric space”) and “K-symmetric space” are
used interchangeably. (I think they are, but I am not sure.)

• Page 36, Example 4.0.1: Doesn’t the example i) only work when
K = K0 ?

• Page 36, proof of Lemma 4.0.2: Replace “Φc et Φd” by “Φc and
Φd”.

• Page 37, Theorem 4.0.2: Replace “A representations” by “A repre-
sentation”.

• Page 40, §4.2: Replace “of finite rang” by “of finite rank”.

• Page 40, §4.3: Replace “we give a an example” by “we give an ex-
ample”.
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Chapter 5

• Page 47, §5.1: Replace “for any X, Y ∈ g” by “for any X, Y ∈M”.

• Page 47, §5.1: Replace “We say that α is not-degenerate” by “If
M = g and N = K, then we say that α is non-degenerate”.

• Generally, replace every appearance of “not-degenerate” in the text by
“non-degenerate”.

Chapter 6

• .

Appendix

• .
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