
Promotion and Rowmotion
Jessica Striker, Nathan Williams

version 17 Sep 2012 (arXiv:1108.1172v3)
Errata and comments, 2 July 2013

• Page 3, Theorem 2.8: Replace “Cn” by “Cnm”.

• Page 6, Lemma 4.1: I personally would write “x 7→ gx” instead of your “x →
gx”, as I belong to the set of mathematicians who make a distinction between
the→ and 7→ arrows.

• Page 8, after the proof of Corollary 4.9: In “∅ = I0 ⊂ I1 · · · ⊂ In = P”, it
would be better to add a “⊂” sign after the “I1”. (This appears at least twice
in the text.)

• Page 8, after the proof of Corollary 4.9: Replace “in the singleton set Ii+1− Ii”
by “in the singleton set Ii− Ii−1” (unless you have suddenly decided that linear
extensions are bijections to {0, 1, . . . , n− 1} rather than {1, 2, . . . , n}).

• Page 9, Definition 4.13: Replace “R” by “R”.

• Page 10, proof of Lemma 5.1: Replace “
n
∏
j=1

gi” by “
n
∏
i=1

gi” on the first line and

also on the last line of the proof.

• I’m unhappy with your notation
β

∏
i=α

f (i), which (I believe) you define to be

something like
{

f (α) f (α + 1) · · · f (β) , if α ≤ β;
f (α) f (α− 1) · · · f (β) , if α ≥ β

. I understand that

this notation is an answer to the noncommutativity of the groups in which

the products live, but I’d prefer

−→
β

∏
i=α

and

←−
β

∏
i=α

instead. The problem with your

notation is that it conflicts with the classical convention that an empty product

like
α−1
∏

i=α
f (i) has to mean 1 (this is, for example, the meaning of the products

in Definition 4.8 when k = n = 0, or the meaning of the product in Theorem
5.4 when m = 1).

• Page 14: On the first line of this page, I think both “J”’s in “ei + en ∈ J if and
only if ei − en ∈ J” should be “I”’s.

• Page 16: You write: “A word containing parentheses is called balanced if the
number of left parentheses is always greater than or equal to the number of
right parentheses.” I’d wish the word “always” be more concretized (you prob-
ably mean “in every initial subword”, not “in every subword”).
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• Page 20, Definition 8.7: To be honest I don’t find this very readable. What
exactly are the “outward-pointing edges”; what does “every second” mean
(starting where?); are the paths directed (you say “begin” and “end” yet you
don’t draw arrows); and don’t you want to say that the paths should not cross?

• Page 21, §8.3: In the first line of §8.3, the “2n” should be in mathmode (i. e.,
inside dollar signs).

——————————————–
Here is something more substantial, but probably not an error on your side: I

don’t understand your proof of Lemma 5.1. But I have an alternative one, which
seems easier to formalize. Let me sketch it:

Alternative proof of Lemma 5.1: First, let me notice that the conditions on the gi can
be replaced by the following one:

gigj = gjgi for every two i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfying |i− j| > 1.
(1)

Of course, (1) is a consequence of the conditions you give, but it is much more
general and I wouldn’t be surprised if Lemma 5.1 is also useful in cases where your
conditions are not satisfied (Hecke algebras?). (That said, it is also not necessary to
require the gi to be generators...)

We will show that
for any k ∈ {1, 2, . . . , n} and any ω ∈ Sk and ν ∈ Sk, there exists

an α ∈ 〈g1, g2, . . . , gk−1〉 such that

−→
k

∏
i=1

gω(i) = α ·

−→k∏
i=1

gν(i)

 · α−1

 (2)

(where my

−→
k

∏
i=1

means what you would call
k

∏
i=1

). Once this is shown, we will imme-

diately obtain the claim of Lemma 5.1 just by applying this to k = n. Notice how
(2) says α ∈ 〈g1, g2, . . . , gk−1〉, not α ∈ 〈g1, g2, . . . , gk〉; this is what makes (2) prone to
induction over k.

Proof of (2): Of course, (2) is clear for k = 1, so we only need to do the induction
step.

Let ω ∈ Sk and ν ∈ Sk. It is easy to find an ω′ ∈ Sk−1 and γ ∈ 〈g1, g2, . . . , gk−1〉
such that −→

k

∏
i=1

gω(i) = γgk ·

−→k−1

∏
i=1

gω′(i)

 · γ−1. (3)
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1 Similarly, we can find a ν′ ∈ Sk−1 and δ ∈ 〈g1, g2, . . . , gk−1〉 such that

−→
k

∏
i=1

gν(i) = δgk ·

−→k−1

∏
i=1

gν′(i)

 · δ−1. (4)

But by the induction assumption, there exists a β ∈ 〈g1, g2, . . . , gk−2〉 such that

−→
k−1

∏
i=1

gω′(i) = β ·

−→k−1

∏
i=1

gν′(i)

 · β−1. (5)

Now, since β ∈ 〈g1, g2, . . . , gk−2〉, we have gkβ = βgk (as an easy consequence of
(1)). Thus, (3) becomes

−→
k

∏
i=1

gω(i) = γgk ·

−→k−1

∏
i=1

gω′(i)


︸ ︷︷ ︸

=β·

−→k−1
∏
i=1

gν′(i)

·β−1

(by (5))

·γ−1

= γ gkβ︸︷︷︸
=βgk

·

−→k−1

∏
i=1

gν′(i)

 · β−1γ−1 = γ β︸︷︷︸
=βδ−1δ

gk ·

−→k−1

∏
i=1

gν′(i)

 · β−1︸︷︷︸
=δ−1δβ−1

γ−1

= γβδ−1 δgk ·

−→k−1

∏
i=1

gν′(i)

 · δ−1

︸ ︷︷ ︸
=

−→
k

∏
i=1

gν(i)

(by (4))

δβ−1γ−1

= γβδ−1 ·

−→k∏
i=1

gν(i)

 · δβ−1γ−1︸ ︷︷ ︸
=(δ−1)

−1
β−1γ−1=(γβδ−1)

−1

= γβδ−1 ·

−→k∏
i=1

gν(i)

 · (γβδ−1
)−1

.

1Indeed, let a = ω−1 (k), set γ = gω(1)gω(2) · · · gω(a−1), and let ω′ ∈ Sk−1 be defined by(
ω′ (1) , ω′ (2) , . . . , ω′ (k− 1)

)
= (ω (a + 1) , ω (a + 2) , . . . , ω (k) , ω (1) , ω (2) , . . . , ω (a− 1)) .
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Thus, there exists an α ∈ 〈g1, g2, . . . , gk−1〉 such that

−→
k

∏
i=1

gω(i) = α ·

−→k∏
i=1

gν(i)

 · α−1

(namely, α = γβδ−1). This completes the induction step, and proves Lemma 5.1.
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