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The purpose of this note is to prove a classical result in linear algebra: that two
m X m-matrices a and b over a commutative ring K are similar if and only if
the polynomial matrices tI,, —a and tI,, — b (wWhere I, is the identity matrix,
and f is a polynomial indeterminate) are equivalent (i.e., satisfy (tI,, —a)p =
q (tI, — b) for two invertible polynomial matrices p and 7).

Even better, we shall prove a generalization of this result, replacing the ma-
trices a and b by two elements 2 and b of a (not necessarily commutative) ring
R, and replacing the polynomial matrices tI, — a and tI;, — b by the polynomi-
als t —a and t — b in R [t]. Here, R [t] denotes the polynomial ring over R in a
single indeterminate t; we will define this object precisely in Definition

Neither this generalization nor our proof is really new. The generaliza-
tion was observed by @user20948 in a comment at MathOverflow ( https://
mathoverflow.net/questions/66269/#comment866429_96046 ), who proved it
tersely but nicely using a commutative diagram of R [f]-modules and their quo-
tients. The proof I give below is merely an elementary rewording of @user20948’s
proof — much less slick, but fully elementary and self-contained. A similar proof
appears in [Gantma?77, Chapter VI, §4-85].

1. Notations and definitions regarding polynomials

Convention 1.1. In the following, rings are always understood to be associa-
tive and with unity, but not necessarily commutative.

We will use the concept of a polynomial ring R [t] over a ring R that is not
necessarily commutative. This notion is widely known in the case when R is
commutative. The definition in the general case is more or less the same, except


https://mathoverflow.net/questions/66269/#comment866429_96046
https://mathoverflow.net/questions/66269/#comment866429_96046
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that certain shortcuts requiring are not available (e.g., the polynomial ring R [¢]
is not an R-algebra in general, and we have to distinguish between left and
right multiplication). Here is the general definition:

Definition 1.2. Let R be a ring. Then, R [t] shall denote the ring of poly-
nomials in a single indeterminate ¢ over R. The definition of this ring is
well-known when R is commutative; we use the same definition in the gen-
eral case: A polynomial p € R [t] means an infinite sequence (po, p1, p2,---)
of elements of R such that all but finitely many n > 0 satisty p, = 0. We
define sums and products of such polynomials by the usual formulas:

(pOI pll PZI .. ) + (qOI qll qu .. ) = (PO + q0/ pl + QL P2 + 5]2; .. )/
(pO/ P, p2,-- ) : (QO; q1,492, - - ) = (7"0, r,12,.. ) ’

where 1, := i piqn—i for each n > 0.
i=0
We identify each a € R with the polynomial (4,0,0,0,...) € R[t]. This

makes R into a subring of R [t]. Hence, a polynomial

p = (po,p1,p2,---) € R[t]

can be multiplied by an element a € R both from the left and from the right:
namely,

ap = (apo,ap1,apa,...) and
pa = (poa, p14, p24, .. .) . (1)

Now, define the indeterminate t as the sequence (0,1,0,0,0,...) € R[t]
(only the second entry is 1). Then, each polynomial p = (po, p1,p2,.-.) €

R [t] satisfies
p=Y put" =) t"pu

n=0 n=0

This is, of course, the standard way of writing polynomials.

Note that the indeterminate f commutes with every polynomial p € R [t],
since multiplying p by t (in either order) is tantamount to shifting all coeffi-
cients of p by one position to the right: If p = (po, p1,p2,-..) € R|[t], then

pt =tp = (0,po, p1,p2,---)- (2)

Remark 1.3. The main difference between the general case (i.e., the case when
Ris arbitrary ring) and the classical commutative case (i.e., the case when R is
a commutative ring) is that in the general case, it is not clear how to evaluate
a polynomial p = (po, p1, p2,--.) € Rt] at a given element a € R. Indeed, we

can define the “left evaluation” ) p,a" and the “right evaluation” ) a"py,
n=0 n=0
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but these are in general not the same (unless a belongs to the center of R),
and neither of them is as well-behaved as in the commutative case. (More on
that below.)

Another difference is that, as mentioned above, R [t] is not an R-algebra if
R is not commutative (since the notion of an R-algebra does not exist in this
case).

2. The claim

Recall that an element p of a ring R is called invertible if and only if it has an
inverse (i.e., if there is an element g € R such that pg = gp = 1).
We need one more definition before we can state the main result:

Definition 2.1. Let R be a ring. Let a and b be two elements of R.

(a) We say that a and b are conjugate in R if there exists an invertible element
p € R such that ap = pb.

(b) We say that a and b are equivalent in R if there exist invertible elements
p,q € R such that ap = gb.

I'm not sure how standard the word “equivalent” is; I think other authors
use “unit-equivalent” or “associate” for the same notion.
Our goal is to prove the following:

Theorem 2.2. Let R be a ring. Let a,b € R be two elements. Then, a and b are
conjugate in R if and only if the polynomials t — a and t — b are equivalent
in R [t].

Before we prove this theorem, let us see how it can be used to prove the result
promised at the beginning of this note:

Corollary 2.3. Let K be a ring. Let a,b € K"*™ be two m x m-matrices over
K. Then, the matrices a and b are similar if and only if the matrices tI,, — a
and tI,, — b in (K[t])"*™ are equivalent in (K [t])""™. (Here, I, denotes the
m x m-identity matrix.)

Proof of Corollary The polynomial ring K™ [t] is known to be isomorphic
to the matrix ring (K [t])" ™. Indeed, there is a ring isomorphism

p KX [ = (K [£])""

that sends each polynomial ), A,t" € K™*™ [t] (with A, € K™*™ for all n > 0)
n=0

to the matrix Y t"A, € (K[t])"" ™ (where each A, is now regarded as a matrix
n=0
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over K [t]). This isomorphism p sends the polynomial t —a € K"™*™[t] to the
matrix tI, —a € (K[t])"""; that is, we have p (t —a) = tI,, —a. Similarly,
p(t—"0b)=tl, —0.

Conjugate elements of K" are better known as similar matrices. Thus, we
have the following chain of logical equivalences:

(the matrices a and b are similar)

<= (the matrices a and b are conjugate in K"*"")

<= (the polynomials t —a and t — b are equivalent in K"*" [t])
(by Theorem 2.2} applied to R = K"*"")

= (the matrices p (t —a) and p (t — b) are equivalent in (K [t])mxm>

since p is a ring isomorphism, and thus
two elements ¢ and d of K"™*™ [t]
are equivalent in K™*™ [t] if and only if

their images p (c) and p (d) are equivalent in (K [t])"""

— (the matrices tI,, — a and tI,, — b are equivalent in (K [t])mxm)

(since p (t —a) = tI, —aand p (t — b) = tI,, — b). This proves Corollary2.3| [

3. Right evaluations
The trick to the proof of Theorem [2.2|is the following definition:

Definition 3.1. Let R be a ring, and let 2 € R be arbitrary. Then, we let
tq : R[t] = R be the map that sends each polynomial (po, p1,p2,.-.) € R]t]

(with po, p1,p2,... € R) to ) apy.

n=0

This map r, can be called the right evaluation map at a, since it “evaluates”
polynomials at t = a. But this shouldn’t be taken too literally; in particular,
it is not always true that any two polynomials p,q € R|[t] satisfy r, (pq) =
ta (p) - 1a (9). (However, this equality still holds if a lies in the center of R.)

The following property of r, is straightforward:
Proposition 3.2. Let R be a ring, and let 2 € R be arbitrary. Then, the map

ta : R[] — R is a right R-linear map, i.e., a homomorphism of right R-
modules.

Proof of Proposition3.2} If p = (po, p1,p2,---) and g = (40,491,492, ...) are two
polynomials in R [t] (with po, p1,p2,... € R and qo,41,492,... € R), then their
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sum is p+q = (po+4qo0, P1+491, p2+ 42, ...), and thus the definition of 7,
yields

ra(p+q) =), a" (putaqu) =Y (a"pu+a"qu)

>0~ >0

=a"py+atqy
n n
= Ya'pn  + ) ad'm
n=0 n=0
N—— N——

=1a(p) =74(q)

q
(by the definition of r;)  (by the definition of r,)
=ra(p)+1a(q).

Thus, the map r,; respects addition.

If p = (po,p1,p2,...) is a polynomial in R [t] (with pg, p1, p2,... € R), and if
¢ € R, then

pe = (po,p1,p2,-..) C (since p = (po, p1,P2,---))
= (poc, p1c, pac, .- .) (by (1), applied to c instead of a),

and thus the definition of 7, yields

ra (pc) = Z a"ppc = Z a"py c=1,(p)-c.
n=0 n=0

=ra(p)
(by the definition of r,)

Thus, the map 7, is right R-linear (since we already know that r, respects addi-
tion). This proves Proposition O

We will also need the following properties of 7,:

Proposition 3.3. Let R be a ring, and let 2 € R be arbitrary. Lets € R[¢].
Then:

(@) We have r, (sc) = 1, (s) ¢ for any c € R.
(b) We have r, (st) = ar, (s).
(c) We have r, ((t —a)s) = 0.

(d) There exists a polynomial s € R [¢] such that s = 7, (s) 4 (t — a)5.

Proof of Proposition Write the polynomial s € R [t] in the form s = (s¢, 51,2, .. .)-
Thus, the definition of 7, yields r, (s) = Y a"sy.

n=0

(a) This follows immediately from Proposition
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(b) From s = (so, 51,2, .. .), we obtain st = (0,sp, s1,52,-..) (by (2), applied to
p = s). Setting s_1 := 0, we can rewrite this as

st = (5-1,50,51,52,---) -

Hence, the definition of r, yields

0
ra (st) = Z a's,_1=a so-1 + Z NP
n=0 :s_V1:0 n>=1 — a1
_ tZOO + Zaan—ls _ Z n—1
=a0 n—1= ) aa" sy
=0 n>1 n=1
. here, we have substituted n
= Z aas, i
for n — 1 in the sum
n=0
=a Y a"sy =ar, (s).
n=0
N——r
=T4(s)
(by the definition of r,)

This proves Proposition [3.3] (b).

(c) From s = (sg,s1,52,...), we obtain as = (asg, as1,asy,...). Thus, the defi-
nition of r, yields

— n _ n _ n _
ro(as) =Y a'a sy =) aa"s, =a Y asy =ar, (s).
n=20_ 441 n=0 n=0
=a n | SR
=ra(s)
(by the definition of r;)

=aa

Now, (2) (applied to p = s) yields st = ts. Hence, (t —a)s = _ts —as =
st — as. Therefore,

ta ((t—a)s) =r, (st —as)

= rq (St) — 14 (as) (by Proposition [3.2))
—— ——r
=ar,(s) =ary(s)

(by Proposition 3.3 (b))
=arg (s) —ar, (s) = 0.
This proves Proposition [3.3] (c).

(d) The element ¢ of R [t] commutes with a (since ta = (0,4,0,0,0,...) = at).
Hence, the equality

n—1
X yn — (x o y) Z xkyn—l—k
k=0
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(which holds for any two commuting elements x and y and any n > 0) can be
applied to x =t and y = a. Thus, for any n > 0, we have

n—1
' —a" = (t—a) ) tha" 17K (3)
k=0

Subtracting the equality r, (s) = ). a”s, from the equality s = (so,s1,52,...) =
n=0
Y t"s,, we obtain
n=0

s—1.(s) = Z t"s, — Z as, = Z (t"sy —a"sy)
—_——

n=0 n=0 n=0
=(t"—a")sy

— Y ("—d") su= Y. (t—a) (Zl tka”1k> Sn
k=0

n>0 ‘Vl—’ n=0

e

=(t—a) ¥ tkgn—1-k
k=0

(by @)
n—1
=(t—a) Y. [Y ta" K5,
n=0 \ k=0

This sum is well-defined,
since all but finitely many
of its addends are 0 (because
all but finitely many # satisfy s,=0)

Thus, there exists a polynomial 5 € R [t] such thats —r, (s) = (t —a) 5 (namely,

n—1

s=Y < Y tka”_l_k> sy). In other words, there exists a polynomial 5 € R [¢]
n=0 \k=0

such that s = 1, (s) + (t — a) 5. This proves Proposition 3.3/ (d). O

4. Proof of Theorem 2.2

We are now ready to prove Theorem

Proof of Theorem 2.2} =>: Assume that a and b are conjugate in R. We must
show that the polynomials f — a and t — b are equivalent in R [¢].

Since a4 and b are conjugate in R, there exists an invertible element » € R
such that ar = rb (by the definition of “conjugate”). Consider this r. Then,
r € R C R|[t], and furthermore the element r is invertible in R [t] (since 7 is
invertible in R). In the ring R [¢], we have

(t—a)r= tr —ar =rt—rb=r(t—0).

=rt
(by (), applied
to p=r)
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Thus, there exist invertible elements p,q € R [t] such that (t —a)p = g (t — D)
(namely, p = r and g = r). In other words, the polynomials t —a and t — b are
equivalent in R [t] (by the definition of “equivalent”). This proves the “=—"
direction of Theorem

<=: Assume that the polynomials t —a and t — b are equivalent in R [¢]. We
must show that a and b are conjugate in R.

We have assumed that the polynomials ¢ — a and ¢ — b are equivalent in R [¢].
In other words, there exist invertible elements p, g € R [t] such that

(t—a)p=q(t—0b) (4)

(by the definition of “equivalent”). Consider these p and 4. Note that p and g
are invertible; thus, p‘l and q_l are invertible as well.

We now claim that
ra(a) - (7)) =1 5)
[Proof of (B): Proposition [3.3| (a) (applied to s = g and ¢ = r,, (971)) yields

Ta (qrb (q’l)) =ra(q)1p (cfl) : (6)

However, Proposition (d) (applied to b and g~ ! instead of a and s) yields that
there exists a polynomial 5 € R [t] such that ' =7, (371) + (t — b) 5. Consider
this 5. Then, solving the equality ! =r, (g7!) + (t — b) 5 for r, (37 1), we find

n(rt) =gt -(t-b)s

Thus,
q rp (q_1> :q(q_l—(t—b)E) =1—q(t—b)s=1—(t—a)ps.
—_—— ——
=q717(t7b)§ :(t*a)l’
(by @)

Applying the map r, to this equality, we find

ra (a7 (071)) = ra (1= (t—a) ps)

= tq (1) —  1a((t —a)ps) (by Proposition [3.2))
—— N ——
-1 -0
(this follows easily (by Proposition [3.3] (c),
from the applied to ps instead of s)
definition of ;)
=1-0=1.

Comparing this with (@), we obtain 7, (q) - 7, (7!) = 1. Thus, () is proven.]

Now, we notice a symmetry slightly hidden in our setting: If we multiply
both sides of the equality (@) by g~! on the left and by p~! on the right, then
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we obtain ¢! (t —a) pp~! = g 'q(t — b) p~!. This simplifies to g~ (t —a) =

(t—b) p‘l (since q_l (t—a) ppfl = q_l (t—a)and qflq (t—b) p_l = (t—b) p_l).
=1 =1

In other words,

(t=b)p~'=q""(t—a).
This equality has the same form as (@), but with the elements b, a, p~! and g~!
playing the roles of 4, b, p and q. Hence, we can prove the equality

o) o () ) -

using the same reasoning that we used to prove (but with 4, b, p and g
replaced by b, a, p~! and q71). Since (g71) = g, this equality rewrites as

r(a7) ) = 1.

Combining this equality with (5), we conclude that the elements r, () and
ry (97') are mutually inverse in R. Thus, the element r, () € R is invertible.
Finally, applying the map r, to both sides of (4), we obtain

ra((E—a)p) =ra [ q(t=b) | =ra(qt —gb)

——

=qt—qb
= ra (qt) - ta (qb) (by Proposition [3.2))
—— ——r
=ara(q) =ra(q)b
(by Proposition[3.3/(b),  (by Proposition [3.3](a),
applied to s=q) applied to s=q and c=b)

= ara (q) —1a (q) b.

Hence,
ara (q) —ta(q)b=r,((t —a)p) =0

(by Proposition (c), applied to s = p). In other words, ar, (q9) = r.(q) .
Since 7, (q) € R is invertible, this shows that there exists an invertible element
z € R such that az = zb (namely, z = r,(g)). In other words, a and b are
conjugate in R. This proves the “<=" direction of Theorem The proof of
Theorem P2.2}is thus complete. O
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