Similar matrices and equivalent polynomial matrices

Darij Grinberg August 25, 2022

The purpose of this note is to prove a classical result in linear algebra: that two $m \times m$ -matrices a and b over a commutative ring K are similar if and only if the polynomial matrices $tI_m - a$ and $tI_m - b$ (where I_m is the identity matrix, and t is a polynomial indeterminate) are equivalent (i.e., satisfy $(tI_m - a) p = q(tI_m - b)$ for two invertible polynomial matrices p and q).

Even better, we shall prove a generalization of this result, replacing the matrices a and b by two elements a and b of a (not necessarily commutative) ring R, and replacing the polynomial matrices $tI_m - a$ and $tI_m - b$ by the polynomials t - a and t - b in R[t]. Here, R[t] denotes the polynomial ring over R in a single indeterminate t; we will define this object precisely in Definition 1.2.

Neither this generalization nor our proof is really new. The generalization was observed by @user20948 in a comment at MathOverflow (https://mathoverflow.net/questions/66269/#comment866429_96046), who proved it tersely but nicely using a commutative diagram of R[t]-modules and their quotients. The proof I give below is merely an elementary rewording of @user20948's proof – much less slick, but fully elementary and self-contained. A similar proof appears in [Gantma77, Chapter VI, §4–§5].

1. Notations and definitions regarding polynomials

Convention 1.1. In the following, rings are always understood to be associative and with unity, but not necessarily commutative.

We will use the concept of a polynomial ring R[t] over a ring R that is not necessarily commutative. This notion is widely known in the case when R is commutative. The definition in the general case is more or less the same, except

that certain shortcuts requiring are not available (e.g., the polynomial ring R[t] is not an R-algebra in general, and we have to distinguish between left and right multiplication). Here is the general definition:

Definition 1.2. Let R be a ring. Then, R[t] shall denote the ring of polynomials in a single indeterminate t over R. The definition of this ring is well-known when R is commutative; we use the same definition in the general case: A polynomial $p \in R[t]$ means an infinite sequence $(p_0, p_1, p_2, ...)$ of elements of R such that all but finitely many $n \ge 0$ satisfy $p_n = 0$. We define sums and products of such polynomials by the usual formulas:

$$(p_0, p_1, p_2, \ldots) + (q_0, q_1, q_2, \ldots) := (p_0 + q_0, p_1 + q_1, p_2 + q_2, \ldots);$$

 $(p_0, p_1, p_2, \ldots) \cdot (q_0, q_1, q_2, \ldots) := (r_0, r_1, r_2, \ldots),$

where
$$r_n := \sum_{i=0}^n p_i q_{n-i}$$
 for each $n \ge 0$.

We identify each $a \in R$ with the polynomial $(a,0,0,0,...) \in R[t]$. This makes R into a subring of R[t]. Hence, a polynomial

$$p=(p_0,p_1,p_2,\ldots)\in R[t]$$

can be multiplied by an element $a \in R$ both from the left and from the right: namely,

$$ap = (ap_0, ap_1, ap_2, ...)$$
 and $pa = (p_0a, p_1a, p_2a, ...)$. (1)

Now, define the indeterminate t as the sequence $(0,1,0,0,0,\ldots) \in R[t]$ (only the second entry is 1). Then, each polynomial $p=(p_0,p_1,p_2,\ldots) \in R[t]$ satisfies

$$p = \sum_{n \geqslant 0} p_n t^n = \sum_{n \geqslant 0} t^n p_n.$$

This is, of course, the standard way of writing polynomials.

Note that the indeterminate t commutes with every polynomial $p \in R[t]$, since multiplying p by t (in either order) is tantamount to shifting all coefficients of p by one position to the right: If $p = (p_0, p_1, p_2, ...) \in R[t]$, then

$$pt = tp = (0, p_0, p_1, p_2, ...).$$
 (2)

Remark 1.3. The main difference between the general case (i.e., the case when R is arbitrary ring) and the classical commutative case (i.e., the case when R is a commutative ring) is that in the general case, it is not clear how to evaluate a polynomial $p = (p_0, p_1, p_2, ...) \in R[t]$ at a given element $a \in R$. Indeed, we can define the "left evaluation" $\sum_{n\geqslant 0} p_n a^n$ and the "right evaluation" $\sum_{n\geqslant 0} a^n p_n$,

but these are in general not the same (unless a belongs to the center of R), and neither of them is as well-behaved as in the commutative case. (More on that below.)

Another difference is that, as mentioned above, R[t] is not an R-algebra if R is not commutative (since the notion of an R-algebra does not exist in this case).

2. The claim

Recall that an element p of a ring R is called *invertible* if and only if it has an inverse (i.e., if there is an element $q \in R$ such that pq = qp = 1).

We need one more definition before we can state the main result:

Definition 2.1. Let *R* be a ring. Let *a* and *b* be two elements of *R*.

- (a) We say that a and b are *conjugate* in R if there exists an invertible element $p \in R$ such that ap = pb.
- **(b)** We say that a and b are *equivalent* in R if there exist invertible elements $p, q \in R$ such that ap = qb.

I'm not sure how standard the word "equivalent" is; I think other authors use "unit-equivalent" or "associate" for the same notion.

Our goal is to prove the following:

Theorem 2.2. Let R be a ring. Let $a, b \in R$ be two elements. Then, a and b are conjugate in R if and only if the polynomials t - a and t - b are equivalent in R[t].

Before we prove this theorem, let us see how it can be used to prove the result promised at the beginning of this note:

Corollary 2.3. Let K be a ring. Let $a, b \in K^{m \times m}$ be two $m \times m$ -matrices over K. Then, the matrices a and b are similar if and only if the matrices $tI_m - a$ and $tI_m - b$ in $(K[t])^{m \times m}$ are equivalent in $(K[t])^{m \times m}$. (Here, I_m denotes the $m \times m$ -identity matrix.)

Proof of Corollary 2.3. The polynomial ring $K^{m \times m}[t]$ is known to be isomorphic to the matrix ring $(K[t])^{m \times m}$. Indeed, there is a ring isomorphism

$$\rho: K^{m \times m}\left[t\right] \to \left(K\left[t\right]\right)^{m \times m}$$

that sends each polynomial $\sum_{n\geqslant 0} A_n t^n \in K^{m\times m}[t]$ (with $A_n \in K^{m\times m}$ for all $n\geqslant 0$) to the matrix $\sum_{n\geqslant 0} t^n A_n \in (K[t])^{m\times m}$ (where each A_n is now regarded as a matrix

over K[t]). This isomorphism ρ sends the polynomial $t - a \in K^{m \times m}[t]$ to the matrix $tI_m - a \in (K[t])^{m \times m}$; that is, we have $\rho(t - a) = tI_m - a$. Similarly, $\rho(t - b) = tI_m - b$.

Conjugate elements of $K^{m \times m}$ are better known as similar matrices. Thus, we have the following chain of logical equivalences:

```
(the matrices a and b are similar)

\iff (the matrices a and b are conjugate in K^{m \times m})

\iff (the polynomials t-a and t-b are equivalent in K^{m \times m}[t])

(by Theorem 2.2, applied to R = K^{m \times m})

\iff (the matrices \rho (t-a) and \rho (t-b) are equivalent in (K[t])^{m \times m})

\begin{cases}
\text{since } \rho \text{ is a ring isomorphism, and thus} \\
\text{two elements } c \text{ and } d \text{ of } K^{m \times m}[t] \\
\text{are equivalent in } K^{m \times m}[t] \text{ if and only if} \\
\text{their images } \rho(c) \text{ and } \rho(d) \text{ are equivalent in } (K[t])^{m \times m}
\end{cases}

\iff (the matrices tI_m - a and tI_m - b are equivalent in (K[t])^{m \times m})

(since \rho (t-a) = tI_m - a and \rho (t-b) = tI_m - b). This proves Corollary 2.3. \square
```

3. Right evaluations

The trick to the proof of Theorem 2.2 is the following definition:

Definition 3.1. Let R be a ring, and let $a \in R$ be arbitrary. Then, we let $r_a : R[t] \to R$ be the map that sends each polynomial $(p_0, p_1, p_2, ...) \in R[t]$ (with $p_0, p_1, p_2, ... \in R$) to $\sum_{n \geqslant 0} a^n p_n$.

This map r_a can be called the *right evaluation map at a*, since it "evaluates" polynomials at t = a. But this shouldn't be taken too literally; in particular, it is not always true that any two polynomials $p, q \in R[t]$ satisfy $r_a(pq) = r_a(p) \cdot r_a(q)$. (However, this equality still holds if a lies in the center of R.)

The following property of r_a is straightforward:

Proposition 3.2. Let R be a ring, and let $a \in R$ be arbitrary. Then, the map $r_a : R[t] \to R$ is a right R-linear map, i.e., a homomorphism of right R-modules.

Proof of Proposition 3.2. If $p=(p_0,p_1,p_2,...)$ and $q=(q_0,q_1,q_2,...)$ are two polynomials in R[t] (with $p_0,p_1,p_2,... \in R$ and $q_0,q_1,q_2,... \in R$), then their

sum is $p + q = (p_0 + q_0, p_1 + q_1, p_2 + q_2, ...)$, and thus the definition of r_a yields

$$r_{a}(p+q) = \sum_{n\geqslant 0} \underbrace{a^{n}(p_{n}+q_{n})}_{=a^{n}p_{n}+a^{n}q_{n}} = \sum_{n\geqslant 0} (a^{n}p_{n}+a^{n}q_{n})$$

$$= \sum_{\substack{n\geqslant 0 \\ =r_{a}(p) \\ \text{(by the definition of } r_{a})}} + \sum_{\substack{n\geqslant 0 \\ =r_{a}(q) \\ \text{(by the definition of } r_{a})}} a^{n}q_{n}$$

$$= r_{a}(p) + r_{a}(q).$$

Thus, the map r_a respects addition.

If $p = (p_0, p_1, p_2, ...)$ is a polynomial in R[t] (with $p_0, p_1, p_2, ... \in R$), and if $c \in R$, then

$$pc = (p_0, p_1, p_2,...) c$$
 (since $p = (p_0, p_1, p_2,...)$)
= $(p_0c, p_1c, p_2c,...)$ (by (1), applied to c instead of a),

and thus the definition of r_a yields

$$r_{a}(pc) = \sum_{n \geqslant 0} a^{n} p_{n} c = \sum_{\substack{n \geqslant 0 \\ =r_{a}(p)}} a^{n} p_{n} \quad c = r_{a}(p) \cdot c.$$
(by the definition of r_{a})

Thus, the map r_a is right R-linear (since we already know that r_a respects addition). This proves Proposition 3.2.

We will also need the following properties of r_a :

Proposition 3.3. Let R be a ring, and let $a \in R$ be arbitrary. Let $s \in R[t]$. Then:

- (a) We have $r_a(sc) = r_a(s)c$ for any $c \in R$. (b) We have $r_a(st) = ar_a(s)$. (c) We have $r_a((t-a)s) = 0$.

- (d) There exists a polynomial $\bar{s} \in R[t]$ such that $s = r_a(s) + (t a)\bar{s}$.

Proof of Proposition 3.3. Write the polynomial $s \in R[t]$ in the form $s = (s_0, s_1, s_2, ...)$. Thus, the definition of r_a yields $r_a(s) = \sum_{n \ge 0} a^n s_n$.

(a) This follows immediately from Proposition 3.2.

(b) From $s = (s_0, s_1, s_2,...)$, we obtain $st = (0, s_0, s_1, s_2,...)$ (by (2), applied to p = s). Setting $s_{-1} := 0$, we can rewrite this as

$$st = (s_{-1}, s_0, s_1, s_2, \dots)$$
.

Hence, the definition of r_a yields

$$r_{a}(st) = \sum_{n \geqslant 0} a^{n} s_{n-1} = a^{0} \underbrace{s_{0-1}}_{=s_{-1}=0} + \sum_{n \geqslant 1} \underbrace{a^{n}}_{=aa^{n-1}} s_{n-1}$$

$$= \underbrace{a^{0}}_{=0} + \sum_{n \geqslant 1} aa^{n-1} s_{n-1} = \sum_{n \geqslant 1} aa^{n-1} s_{n-1}$$

$$= \sum_{n \geqslant 0} aa^{n} s_{n} \qquad \left(\text{here, we have substituted } n \text{ for } n-1 \text{ in the sum} \right)$$

$$= a \qquad \underbrace{\sum_{n \geqslant 0} a^{n} s_{n}}_{=r_{a}(s)} \qquad = ar_{a}(s).$$
(by the definition of r_{a})

This proves Proposition 3.3 (b).

(c) From $s = (s_0, s_1, s_2, ...)$, we obtain $as = (as_0, as_1, as_2, ...)$. Thus, the definition of r_a yields

$$r_{a}(as) = \sum_{n \geqslant 0} \underbrace{a^{n}a}_{=a^{n+1}} s_{n} = \sum_{n \geqslant 0} aa^{n}s_{n} = a \underbrace{\sum_{n \geqslant 0} a^{n}s_{n}}_{=r_{a}(s)} = ar_{a}(s).$$
(by the definition of r_{a})

Now, (2) (applied to p = s) yields st = ts. Hence, $(t - a)s = \underbrace{ts}_{=st} - as = st - as$. Therefore,

$$r_{a}((t-a)s) = r_{a}(st - as)$$

$$= \underbrace{r_{a}(st)}_{=ar_{a}(s)} - \underbrace{r_{a}(as)}_{=ar_{a}(s)}$$
 (by Proposition 3.2)
$$= ar_{a}(s) - ar_{a}(s) = 0.$$

This proves Proposition 3.3 (c).

(d) The element t of R[t] commutes with a (since ta = (0, a, 0, 0, 0, ...) = at). Hence, the equality

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}$$

(which holds for any two commuting elements x and y and any $n \ge 0$) can be applied to x = t and y = a. Thus, for any $n \ge 0$, we have

$$t^{n} - a^{n} = (t - a) \sum_{k=0}^{n-1} t^{k} a^{n-1-k}.$$
 (3)

Subtracting the equality $r_a(s) = \sum_{n \ge 0} a^n s_n$ from the equality $s = (s_0, s_1, s_2, ...) = \sum_{n \ge 0} t^n s_n$, we obtain

$$s - r_a(s) = \sum_{n \geqslant 0} t^n s_n - \sum_{n \geqslant 0} a^n s_n = \sum_{n \geqslant 0} \underbrace{\left(t^n s_n - a^n s_n\right)}_{=(t^n - a^n) s_n}$$

$$= \sum_{n \geqslant 0} \underbrace{\left(t^n - a^n\right)}_{=(t-a) \sum_{k=0}^{n-1} t^k a^{n-1-k}} s_n = \sum_{n \geqslant 0} (t-a) \left(\sum_{k=0}^{n-1} t^k a^{n-1-k}\right) s_n$$

$$= (t-a) \sum_{n \geqslant 0} \left(\sum_{k=0}^{n-1} t^k a^{n-1-k}\right) s_n$$
This sum is well-defined, since all but finitely many of its addends are 0 (because all but finitely many n satisfy $s_n = 0$)

Thus, there exists a polynomial $\bar{s} \in R[t]$ such that $s - r_a(s) = (t - a)\bar{s}$ (namely, $\bar{s} = \sum_{n \geq 0} {n-1 \choose k=0} t^k a^{n-1-k} s_n$). In other words, there exists a polynomial $\bar{s} \in R[t]$ such that $s = r_a(s) + (t - a)\bar{s}$. This proves Proposition 3.3 (d).

4. Proof of Theorem 2.2

We are now ready to prove Theorem 2.2:

Proof of Theorem 2.2. \Longrightarrow : Assume that a and b are conjugate in R. We must show that the polynomials t-a and t-b are equivalent in R[t].

Since a and b are conjugate in R, there exists an invertible element $r \in R$ such that ar = rb (by the definition of "conjugate"). Consider this r. Then, $r \in R \subseteq R[t]$, and furthermore the element r is invertible in R[t] (since r is invertible in R). In the ring R[t], we have

$$(t-a) r = \underbrace{tr}_{\substack{=rt \\ \text{(by (2), applied} \\ \text{to } n=r)}} - \underbrace{ar}_{\substack{=rb}} = rt - rb = r(t-b).$$

Thus, there exist invertible elements $p, q \in R[t]$ such that (t - a) p = q(t - b) (namely, p = r and q = r). In other words, the polynomials t - a and t - b are equivalent in R[t] (by the definition of "equivalent"). This proves the " \Longrightarrow " direction of Theorem 2.2.

 \Leftarrow : Assume that the polynomials t-a and t-b are equivalent in R[t]. We must show that a and b are conjugate in R.

We have assumed that the polynomials t - a and t - b are equivalent in R[t]. In other words, there exist invertible elements $p, q \in R[t]$ such that

$$(t-a) p = q(t-b) \tag{4}$$

(by the definition of "equivalent"). Consider these p and q. Note that p and q are invertible; thus, p^{-1} and q^{-1} are invertible as well.

We now claim that

$$r_a(q) \cdot r_b(q^{-1}) = 1. \tag{5}$$

[*Proof of (5):* Proposition 3.3 (a) (applied to s = q and $c = r_b(q^{-1})$) yields

$$r_a\left(qr_b\left(q^{-1}\right)\right) = r_a\left(q\right) \cdot r_b\left(q^{-1}\right). \tag{6}$$

However, Proposition 3.3 **(d)** (applied to b and q^{-1} instead of a and s) yields that there exists a polynomial $\bar{s} \in R[t]$ such that $q^{-1} = r_b(q^{-1}) + (t-b)\bar{s}$. Consider this \bar{s} . Then, solving the equality $q^{-1} = r_b(q^{-1}) + (t-b)\bar{s}$ for $r_b(q^{-1})$, we find

$$r_b(q^{-1}) = q^{-1} - (t - b) \,\bar{s}.$$

Thus,

$$q \underbrace{r_b \left(q^{-1} \right)}_{=q^{-1} - (t-b)\bar{s}} = q \left(q^{-1} - (t-b)\bar{s} \right) = 1 - \underbrace{q \left(t - b \right)}_{=(t-a)p} \bar{s} = 1 - (t-a)p\bar{s}.$$
(by (4))

Applying the map r_a to this equality, we find

$$r_{a}\left(qr_{b}\left(q^{-1}\right)\right) = r_{a}\left(1 - (t - a)\ p\overline{s}\right)$$

$$= \underbrace{r_{a}\left(1\right)}_{=1} - \underbrace{r_{a}\left((t - a)\ p\overline{s}\right)}_{=0}$$
 (by Proposition 3.3 (c), from the definition of r_{a}) applied to $p\overline{s}$ instead of s)
$$= 1 - 0 = 1.$$

Comparing this with (6), we obtain $r_a(q) \cdot r_b(q^{-1}) = 1$. Thus, (5) is proven.]

Now, we notice a symmetry slightly hidden in our setting: If we multiply both sides of the equality (4) by q^{-1} on the left and by p^{-1} on the right, then

we obtain $q^{-1}(t-a)pp^{-1} = q^{-1}q(t-b)p^{-1}$. This simplifies to $q^{-1}(t-a) = (t-b)p^{-1}$ (since $q^{-1}(t-a)\underbrace{pp^{-1}}_{=1} = q^{-1}(t-a)$ and $\underbrace{q^{-1}q}_{=1}(t-b)p^{-1} = (t-b)p^{-1}$).

In other words,

$$(t-b) p^{-1} = q^{-1} (t-a).$$

This equality has the same form as (4), but with the elements b, a, p^{-1} and q^{-1} playing the roles of a, b, p and q. Hence, we can prove the equality

$$r_b\left(q^{-1}\right)\cdot r_a\left(\left(q^{-1}\right)^{-1}\right)=1$$

using the same reasoning that we used to prove (5) (but with a, b, p and q replaced by b, a, p^{-1} and q^{-1}). Since $(q^{-1})^{-1} = q$, this equality rewrites as

$$r_b\left(q^{-1}\right)\cdot r_a\left(q\right) = 1.$$

Combining this equality with (5), we conclude that the elements $r_a(q)$ and $r_b(q^{-1})$ are mutually inverse in R. Thus, the element $r_a(q) \in R$ is invertible. Finally, applying the map r_a to both sides of (4), we obtain

$$r_{a}((t-a) p) = r_{a} \underbrace{\left(\underbrace{q(t-b)}_{=qt-qb}\right)} = r_{a}(qt-qb)$$

$$= \underbrace{r_{a}(qt)}_{=ar_{a}(q)} - \underbrace{r_{a}(qb)}_{=r_{a}(q)b}$$
(by Proposition 3.3 (b), (by Proposition 3.3 (a), applied to $s=q$) applied to $s=q$ and $c=b$)
$$= ar_{a}(q) - r_{a}(q) b.$$

Hence,

$$ar_{a}(q)-r_{a}(q)b=r_{a}((t-a)p)=0$$

(by Proposition 3.3 **(c)**, applied to s = p). In other words, $ar_a(q) = r_a(q)b$. Since $r_a(q) \in R$ is invertible, this shows that there exists an invertible element $z \in R$ such that az = zb (namely, $z = r_a(q)$). In other words, a and b are conjugate in R. This proves the " \Leftarrow " direction of Theorem 2.2. The proof of Theorem 2.2 is thus complete.

References

[Gantma77] F. R. Gantmacher, *The Theory of Matrices, volume 1, AMS Chelsea Publishing 1977.*