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version of 20 June 2000 (arXiv preprint arXiv:math/0006145v1).

Errata and addenda by Darij Grinberg

I will refer to the results appearing in the paper “Semigroups, rings, and
Markov chains” by the numbers under which they appear in this paper (specifi-
cally, in its version of 20 June 2000, which appears on arXiv as preprint arXiv:math/0006145v1).

Errata

• Page 1, §1: “explcitly”→ “explicitly”.

• Page 3, §1.4: Replace “q-elements” by “q elements”. (The hyphen should
not be there.)

• Page 6, §2.1: At the end of the first paragraph on this page (i.e., right after
the sentence “Thus S has the deletion property (D) stated in Section 1.1”),
I suggest adding something like the following definitions:

“When S is a LRB, the lattice L and the map supp in the above definition
are determined uniquely up to isomorphism (this follows easily from the
surjectivity of supp and the equivalence (3)). The lattice L is called the
lattice of supports (or the support lattice) of S. The surjection supp : S→ L is
called the support map of S. For any s ∈ S, the element supp s of L is called
the support of s.”

(Of course, the purpose of these sentences is to introduce some notations
that you use several times; you’ll probably find a more succinct way to
introduce them.)

• Page 6, §2.1: The last comma in “Sections 4, 5, and 6,” probably should be
a period.

• Page 6, §2.2: You write that S≥x “is a LRB in its own right, the associated
lattice being the interval

[
X, 1̂

]
in L, where X = supp x”. This is correct,

but (in my opinion) not obvious enough to be left to the reader.

• Page 6, §2.2: You write that S≥x “is a LRB in its own right, the associated
lattice being the interval

[
X, 1̂

]
in L, where X = supp x”. This is correct,

but (in my opinion) not obvious enough to be left to the reader.1

1Here is a proof, for the sake of completeness:
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• Page 9, §4.2: In “Let G0 = {G ∈ G : σi (G) = +}”, replace “σi (G) = +” by
“σi (G) = + for all i ∈ J”.

Let x ∈ S. Let X = supp x. The interval
[

X, 1̂
]

of the poset L is a lattice (since L is a lattice).
Its join operation is the restriction of the join operation ∨ of the lattice L; therefore, we shall
denote it by ∨ as well.

It remains to prove that S≥x is a LRB with support lattice
[

X, 1̂
]

and support map supp |S≥x .
In order to do so, we need to prove the following three statements:

Statement 1: The set S≥x is a subsemigroup of S with identity x.

Statement 2: The map supp |S≥x : S≥x →
[

X, 1̂
]

is well-defined and surjective.

Statement 3: For any a ∈ S≥x and b ∈ S≥x, we have
(
supp |S≥x

)
(ab) =((

supp |S≥x

)
a
)
∨
((

supp |S≥x

)
b
)
.

Statement 4: Let a ∈ S≥x and b ∈ S≥x. Then, ab = a holds if and only if(
supp |S≥x

)
b ≤

(
supp |S≥x

)
a.

(These four Statements are precisely the requirements in the definition of a LRB, except
that we have renamed x and y as a and b since the letter x is already taken for something
else.)

Proof of Statement 1: Let a ∈ S≥x and b ∈ S≥x. We have a ≥ x (since a ∈ S≥x). In other
words, x ≤ a. But (5) (applied to y = a) shows that x ≤ a ⇐⇒ xa = a. Thus, xa = a (since
x ≤ a). But (5) (applied to y = ab) shows that x ≤ ab ⇐⇒ xab = ab. Hence, x ≤ ab (since
xa︸︷︷︸
=a

b = ab). In other words, ab ≥ x, so that ab ∈ S≥x.

Now, let us forget that we fixed a and b. We thus have shown that ab ∈ S≥x for every
a ∈ S≥x and b ∈ S≥x. In other words, S≥x is a subsemigroup of S, although we do not yet
know whether it has an identity.

Now, let a ∈ S≥x. Then, a ≥ x (since a ∈ S≥x). In other words, x ≤ a. But (5) (applied to
y = a) shows that x ≤ a⇐⇒ xa = a. Thus, xa = a (since x ≤ a). Also, a︸︷︷︸

=xa

x = xax = xa (by

(4), applied to y = a), so that ax = xa = a.
Now, let us forget that we fixed a. We thus have shown that ax = xa = a for every a ∈ S≥x.

In other words, the subsemigroup S≥x of S has identity a. This finishes the proof of Statement
1.

Proof of Statement 2: Let y ∈ S≥x. Thus, y ≥ x, so that x ≤ y. Hence, xy = y (by (5)).
Thus, supp y︸︷︷︸

=xy

= supp (xy) = supp x ∨ supp y (by (2)), so that supp y = supp x ∨ supp y ≥

supp x = X. In other words, supp y ∈
[

X, 1̂
]
.

Let us now forget that we fixed y. We thus have shown that supp y ∈
[

X, 1̂
]

for every

y ∈ S≥x. Hence, supp (S≥x) ⊆
[

X, 1̂
]
. Therefore, the map supp |S≥x : S≥x →

[
X, 1̂

]
is

well-defined.
We shall now show that this map is surjective. Indeed, let Y ∈

[
X, 1̂

]
. Thus, Y ∈ L and

Y ≥ X. Since the map supp : S → L is surjective, we thus see that there exists some y ∈ S
satisfying Y = supp y. Consider such a y. We have supp x = X ≤ Y = supp y. Hence, (3)
(applied to y and x instead of x and y) shows that yx = y.

But (5) (applied to xy instead of y) shows that x ≤ xy⇐⇒ xxy = xy. Hence, x ≤ xy (since
xx︸︷︷︸
=x

y = xy). In other words, xy ≥ x, so that xy ∈ S≥x. Now, (2) shows that supp (xy) =
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• Page 9, §4.2: “faces in G” should be “faces in G”.

• Page 13, §5.1, Remark: “maximal elements”→ “maximal elements ( 6= 1̂)”.

• Page 14: In “where cX is the number of maximal chains in the interval
[X, V] in L”, the lattice L should be defined. (It is not the lattice of sup-
ports of Fn,q, but rather the lattice of all subspaces of V, including those of
dimension n− 1.)

• Page 14: “get a line l1”→ “get a line `1”.

• Page 15, §6.1: “the rank of any maximal”→ “the size of any maximal”.

• Page 16: “any fixed basis of X to a basis”→ “any fixed ordered basis of X
to an ordered basis”.

• Pages 24–25, §8.2: Any appearance of “A” in §8.2 should be replaced by
an “R”. (There are three appearances on page 24, and six appearances on
page 25, not counting the two “A′”s.)

• Page 24, §8.2: It would be useful to point out that g (z) is understood

to be an element of A
((

1
z

))
(that is, of the ring of Laurent series in

1
z

over A). Later it becomes clear that g (z) is indeed a rational function in
z over A; but before this is shown, it is important to understand whether

g (z) is viewed as a Laurent series in
1
z

(correct) or as a Laurent series in z
(incorrect).

In my opinion, it is also useful to stress that you regard k (z) ⊗ A as a

subring of A
((

1
z

))
, since k (z) is canonically a subring of k

((
1
z

))
.

supp x︸ ︷︷ ︸
=X

∨ supp y︸ ︷︷ ︸
=Y

= X ∨ Y = Y (since X ≤ Y). Hence, Y = supp

 xy︸︷︷︸
∈S≥x

 ∈ supp (S≥x) =

(
supp |S≥x

)
(S≥x).

Now, let us forget that we fixed y. We thus have shown that Y ∈
(
supp |S≥x

)
(S≥x) for

every Y ∈
[

X, 1̂
]
. In other words,

[
X, 1̂

]
⊆
(
supp |S≥x

)
(S≥x). In other words, the map

supp |S≥x : S≥x →
[

X, 1̂
]

is surjective. This finishes the proof of Statement 2.
Proof of Statement 3: Let a ∈ S≥x and b ∈ S≥x. Since S≥x is a subsemigroup of S

(by Statement 1), this shows that ab ∈ S≥x. Now, (2) (applied to a and b instead of
x and y) shows that supp (ab) = supp a ∨ supp b. This rewrites as

(
supp |S≥x

)
(ab) =((

supp |S≥x

)
a
)
∨
((

supp |S≥x

)
b
)

(since
(
supp |S≥x

)
(ab) = supp (ab),

(
supp |S≥x

)
a = supp a

and
(
supp |S≥x

)
b = supp b). This proves Statement 3.

Proof of Statement 4: Assume that
(
supp |S≥x

)
b ≤

(
supp |S≥x

)
a. This rewrites as supp b ≤

supp a (since
(
supp |S≥x

)
a = supp a and

(
supp |S≥x

)
b = supp b). Hence, (3) (applied to a

and b instead of x and y) yields ab = a. This proves Statement 4.
Now, all four Statements are proven, and the proof is complete.
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This explains how exactly you can make sense of the statement that g (z)
is a rational function (namely, this statement means that g (z) lies in the

subring k (z)⊗ A of A
((

1
z

))
).

• Page 24, proof of Proposition 2: I think this proof is missing a few steps.
You leave the following statements unproven:

Statement 1: Suppose that R is split semisimple with primitive idempotents
(ei)i∈I , and write a = ∑

i
λiei with λi ∈ K. Then, the λi (for i ∈ I) are

distinct.

Statement 2: Up to relabelling, there is only one choice of a set I and two
families (ei)i∈I ∈ RI and (λi)i∈I ∈ K I satisfying (18).

(Statement 1 is needed to prove the first sentence of Proposition 2. State-
ment 2 is needed to prove the second sentence.)

Proof of Statement 1: Let j and j′ be two distinct elements of I.

Let G be the subset
{

∑
i

µiei | (µi)i∈I ∈ K I and µj = µj′

}
of R. Then, G is a

k-subalgebra of R (this is easy to see) and satisfies G 6= R (since ej /∈ G). But
every k-subalgebra of R which contains a must be R itself (since a generates
the k-algebra R). Hence, if we had a ∈ G, then we would have G = R (since
G would be a k-subalgebra of R which contains a), which would contradict
G 6= R. Thus, we cannot have a ∈ G. In other words, we have a /∈ G. In
other words, λj 6= λj′ .

Now, let us forget that we fixed j and j′. We thus have shown that λj 6= λj′

for any two distinct elements j and j′ of I. In other words, the λi (for i ∈ I)
are distinct. This proves Statement 1.

Proof of Statement 2: Consider a set I and two families (ei)i∈I ∈ RI and
(λi)i∈I ∈ K I satisfying (18). We shall show that the λi and the correspond-
ing ei can be reconstructed from g (z) (up to labelling). This will clearly
prove Statement 2.

The function g (z) is a rational function in z (in the sense that g (z) ∈ k (z)⊗
A). Hence, for every µ ∈ k, an element Resµ g (z) of A is well-defined
(namely, it is defined as the coefficient of (z− µ)−1 when g (z) is expanded
as a Laurent series in z − µ). Now, (18) shows that the elements λi of k
are the poles of g (z) (that is, the elements µ ∈ k for which Resµ g (z) 6= 0),
and the elements ei of A are their corresponding residues (i.e., we have
ei = Resλi g (z) for every i ∈ I). Thus, the λi and the corresponding ei can
be reconstructed from g (z) (up to labelling). This proves Statement 2.

• Page 28, §8.6: Replace “(Section 2.3)” by “(Section 5.1)”.
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• Page 32, Proposition 4: Why does “the smallest face F ≤ C′ such that
FC = C′” exist?

• Page 37, §A.1: Replace “and is denoted σ (F)” by “and is denoted σ (F) =
(σi (F))i∈I”. (This way, the notation σi (F) is also defined.)

• Page 37, §A.1: Somewhere here you should probably define C as the set of
all chambers of A. (You use this notation in §A.7, and maybe earlier.)

• Page 37, §A.2: The notation “F is a face of G” is not defined. (It means
“F ≤ G”.)

• Page 41, §B.2: Replace “If S has an identity e” by “If S has an identity e”
(the “e” should be in mathmode).

• Page 41, §B.2: Replace “it is is a lattice” by “it is a lattice”.

• Page 41, proof of Proposition 9: Replace “cx = x” by “cx = c” (twice).

• Page 42, §C.1: The paragraph starting with “In case L is a geometric lattice”
has confused me for a while until I resolved the ambiguities. The problem
is that the mX in (14) are defined not for X ∈ L but for X ∈ L, so the
correct version of the claim “d

([
X̂, 1

])
= mX” should be “d

([
X̂, 1

])
={

mX, if rank (X) 6= n− 1;
0, if rank (X) = n− 1

(where the mX are those of (14), not those of

(13))”. In particular, I find it important to point out that the mX are not
those of (13); at the first sight they would seem to be the numbers more
directly connected to the d

([
X̂, 1

])
.

You might also want to replace “random walk” by “random walk on the
chambers of S” to get this point across again.

• Page 43, Proposition 10: You should say that a “cover of X” means an
element Y ∈ L such that Y covers X.

• Page 45, §C.3: The equality (46) holds only for n > 0.

• Page 45, §C.3: Replace “a flag X1 < X2 < · · · < Xl” by “a flag 0̂ < X1 <

X2 < · · · < Xl < 1̂”.

• Page 46, Proposition 11: Again, (50) holds only for n > 0.

• Page 46, proof of Proposition 11: You say that (−1)n h[n−1] (L) = µL

(
0̂, 1̂
)

holds “by (49)”. I do not know enough topology to understand this, but it
might be worth pointing out that (−1)n h[n−1] (L) = µL

(
0̂, 1̂
)

also follows
from (47) using Hall’s formula for the Möbius function.
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