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Abstract. The somewhere-to-below shuffles are the elements

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n

(for ℓ ∈ {1, 2, . . . , n}) in the group algebra k [Sn] of the n-th symmetric
group Sn. Their linear combinations are called the one-sided cycle shuf-
fles. We determine the eigenvalues of the action of any one-sided cycle
shuffle on any Specht module Sλ of Sn.
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1. Introduction

This paper is a continuation of [GriLaf22] with other means. Specifically, our goal
here is to answer some natural representation-theoretical questions around the
somewhere-to-below shuffles in the symmetric group algebra (including [GriLaf22,
Question 16.12]).

At the present moment, this paper is just an outline; one day it will grow to
contain complete proofs.

We recall that the somewhere-to-below shuffles are n special elements t1, t2, . . . , tn of
the group algebra k [Sn] of a symmetric group Sn; they are defined by

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn] ,

where cycℓ,ℓ+1,...,k denotes the cycle that sends ℓ 7→ ℓ+ 1 7→ ℓ+ 2 7→ · · · 7→ k 7→ ℓ
(and leaves all remaining elements of [n] = {1, 2, . . . , n} unchanged). Together
with their linear combinations (called the one-sided cycle shuffles), they have been
introduced and studied in the paper [GriLaf22] (published with abridgements as
[GL24]1) by Lafrenière and the present author. One of the main results is [GriLaf22,
Theorem 11.1], which constructs a basis (aw)w∈Sn

of k [Sn] on which each of the
shuffles t1, t2, . . . , tn acts (by right multiplication) triangularly – i.e., which satisfies

awtℓ ∈ span {av | v ≤ w} for all w ∈ Sn and ℓ ∈ {1, 2, . . . , n}

(for an appropriate total order < on Sn). This entails that the shuffles t1, t2, . . . , tn
and their linear combinations have integer eigenvalues; these eigenvalues have in-
deed been found ([GriLaf22, §12]) along with their multiplicities ([GriLaf22, §13]).
As a further consequence, the k-subalgebra of k [Sn] generated by t1, t2, . . . , tn
is isomorphic to an algebra of upper-triangular matrices, and the commutators[
ti, tj

]
:= titj − tjti are nilpotent; a followup work [Grinbe23] proves even stronger

claims.

1The numbering of results in [GriLaf22] and in [GL24] is identical except for Section 9, so the
reader can consult either version.
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However, like any elements of the group algebra k [Sn], the shuffles t1, t2, . . . , tn
act not just on the whole algebra k [Sn], but on any of its modules, i.e., on any
representation of Sn. Thus, the question about eigenvalues can be asked for each
representation of Sn, in particular for the Specht modules (which are the irreducible
representations of Sn, at least in characteristic 0).

The main goal of this paper is to answer this latter question. Let us give a quick
outline of the answer (which was announced in [GriLaf24, §11])2:

We shall use some basic notions from the representation theory of Sn and from
symmetric functions; the reader can find all prerequisites in [Fulton97, Chapters 6
and 7]. For any partition λ of n, a Specht module Sλ is defined, which is a represen-
tation of Sn with a basis indexed by standard tableaux of shape λ. (In [Fulton97],
it is called Sλ.) This Sn-module Sλ is irreducible when k has characteristic 0. Each
u ∈ k [Sn] acts (on the left) on this Specht module Sλ; we let Lλ (u) denote this
action (viewed as a k-module endomorphism of Sλ).

We let Λ denote the ring of symmetric functions over Z (defined in [Fulton97,
§6.2]). We recall that it has a basis (sλ)λ is a partition of Schur functions sλ.

For each m ∈ N, we let hm ∈ Λ denote the m-th complete homogeneous sym-
metric function. For each m > 1, we let zm ∈ Λ denote the Schur function

zm := s(m−1,1) = hm−1h1 − hm ∈ Λ.

A set of integers is called lacunar if it contains no two consecutive integers. For
each lacunar subset I of [n − 1], we define a symmetric function

zI := hi1−1

m

∏
j=2

zij−ij−1 ∈ Λ,

where i1, i2, . . . , im are the elements of I ∪ {n + 1} in increasing order (so that
im = n + 1 and I = {i1 < i2 < · · · < im−1}). When this symmetric function zI
is expanded in the basis (sλ)λ is a partition of Λ, the coefficient of a given Schur func-
tion sλ shall be called cλ

I . This coefficient cλ
I is actually a Littlewood–Richardson

coefficient (since zI is a skew Schur function), hence a nonnegative integer.
We now claim the following:

Theorem 1.1 (part of Theorem 4.3). Let λ be a partition. Let ω1, ω2, . . . , ωn ∈
k. Then, the eigenvalues of the operator Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) on the
Specht module Sλ are the linear combinations

ω1mI,1 + ω2mI,2 + · · ·+ ωnmI,n for I ⊆ [n − 1] lacunar satisfying cλ
I ̸= 0,

where the mI,k are certain nonnegative integers defined combinatorially (namely,
mI,k is the distance between k and the smallest element of I ∪{n + 1} that is ≥ k).

2The formulation in [GriLaf24, §11] uses the Frobenius characteristic map, but this has turned out
to be a red herring.
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The algebraic multiplicities of these eigenvalues are the cλ
I in the generic case (i.e.,

if no two I’s produce the same linear combination; otherwise the multiplicities
of colliding eigenvalues should be added together). Moreover, if all these linear
combinations are distinct, then Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) is diagonalizable.

The proof of this theorem will rely on the filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆
Ffn+1 = k [Sn] of k [Sn] introduced in [GriLaf22, §8.1]. We call this the Fibonacci
filtration of k [Sn], as its length fn+1 is the (n + 1)-st Fibonacci number. We note
that this filtration is not completely canonical, as it depends on the choice of a
listing Q1, Q2, . . . , Q fn+1 of all lacunar subsets of [n − 1] in the order of increasing
sum of elements (the ties can be broken arbitrarily, whence the non-canonicity).
Much about this filtration was already understood in [GriLaf22], but we will need
some additional information about the action of Sn on its subquotients Fi/Fi−1:

Let A be the k-algebra k [Sn], and let T be its k-subalgebra generated by t1, t2, . . . , tn.
Then, each Fi is a left ideal of A but is also fixed under right multiplication by each
tℓ; therefore, each Fi is an (A, T )-subbimodule of A. Thus, each subquotient Fi/Fi−1
of the Fibonacci filtration is an (A, T )-bimodule. As a right T -module, it is scalar
(meaning that each tℓ acts on it by a scalar, which is in fact the integer mQi,ℓ from
[GriLaf22, Theorem 8.1 (c)]). As a left A-module (i.e., as a representation of Sn), we
describe it explicitly here:

Theorem 1.2 (part of Theorem 3.3). Let i ∈ [ fn+1].
Consider the lacunar subset Qi of [n − 1] (from the above listing

Q1, Q2, . . . , Q fn+1). Write the set Qi ∪ {n + 1} as {i1 < i2 < · · · < im}, so that
im = n + 1. Furthermore, set i0 := 1. Set jk := ik − ik−1 for each k ∈ [m]. Note
that j1 ≥ 0 and j2, j3, . . . , jm > 1 and j1 + j2 + · · ·+ jm = im − i0 = n.

For each p ∈ N, we let Hp denote the trivial 1-dimensional representation of
Sp (that is, the k-module k on which Sp acts trivially), and we let Zp denote the
reflection quotient representation of Sp (that is, the free k-module kp on which
Sp acts by permuting the coordinates, divided by the submodule consisting of
all vectors of the form (a, a, . . . , a) ∈ kp). Then,

Fi/Fi−1
∼= IndSn

Sj1
×Sj2×···×Sjm

(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)︸ ︷︷ ︸
the first tensorand is an H,

while all others are Z ’s

as Sn-representations. Here, we embed Sj1 × Sj2 × · · · × Sjm into Sn by the usual
parabolic embedding (since j1 + j2 + · · ·+ jm = n).

This theorem will be a crucial stepping stone on our way to Theorem 1.1.
We note that neither of our two main results requires any assumption about

the characteristic of k. However, in positive characteristic, care must be taken to
distinguish between the reflection quotient representation Zp in Theorem 1.2 and
the reflection subrepresentation Rp (which consists of the zero-sum vectors in kp);
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the two representations have the same dimension p − 1 (for p ≥ 1), but are not
isomorphic unless char k ̸= p or p ≤ 2.

We suspect that our results can be generalized (“q-deformed”) from the symmet-
ric group algebra to the Hecke algebra Hq (Sn). Most results from [GriLaf22] can
definitely be generalized this way, as will be detailed in forthcoming work.

Acknowledgements The author would like to thank Sarah Brauner, Nadia Lafrenière,
Martin Lorenz, Victor Reiner, Sheila Sundaram and Mark Wildon for inspiring dis-
cussions.

2. Definitions and notations

2.1. Basics

We recall some notations from [GriLaf22].
Let k be any commutative ring. (We don’t require that k is a field or a Q-algebra,

but the reader can think of k = Q as a standing example.)
Let N := {0, 1, 2, . . .} be the set of all nonnegative integers.
For any integers a and b, we set

[a, b] := {k ∈ Z | a ≤ k ≤ b} = {a, a + 1, . . . , b} .

This is an empty set if a > b. In general, [a, b] is called an integer interval.
For each n ∈ Z, let [n] := [1, n] = {1, 2, . . . , n}.
Fix an integer n ∈ N. Let Sn be the n-th symmetric group, i.e., the group of all

permutations of [n]. We multiply permutations in the “continental” way: that is,
(πσ) (i) = π (σ (i)) for all π, σ ∈ Sn and i ∈ [n].

For any k distinct elements i1, i2, . . . , ik of [n], we let cyci1,i2,...,ik
be the permuta-

tion in Sn that sends i1, i2, . . . , ik−1, ik to i2, i3, . . . , ik, i1, respectively while leaving all
remaining elements of [n] unchanged. This permutation is known as a cycle. Note
that cyci = id for any single i ∈ [n].

For any i ∈ [n − 1], we denote the cycle cyci,i+1 by si and call it a simple transpo-
sition.

2.2. Somewhere-to-below shuffles, A and T
Let A be the group algebra k [Sn]. In this algebra, define n elements t1, t2, . . . , tn by
setting3

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn]

for each ℓ ∈ [n]. Thus, in particular, tn = cycn = id = 1 (where 1 means the unity
of k [Sn]). The n elements t1, t2, . . . , tn are known as the somewhere-to-below shuffles.

3We view Sn as a subset of k [Sn] in the obvious way.
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We let T be the k-subalgebra of A generated by these n somewhere-to-below
shuffles t1, t2, . . . , tn. Clearly, A is an (A, T )-bimodule (with A acting from the left
by multiplication, and T acting from the right by multiplication).

2.3. Some Sn-representation theory

We recall that the representations of the symmetric group Sn (over k) are precisely
the left k [Sn]-modules, i.e., the left A-modules. We will use the following four
classes of Sn-representations in particular:

1. The Specht modules Sλ: If λ is any partition of n, then the Specht module Sλ

is a representation of Sn constructed using the Young diagram of shape λ.
For its definition, see [Gri25, Definition 5.4.1 (b)] (where it is called SY(λ)) or
[Fulton97, §7.2] (where it is called Sλ). If k is a field of characteristic 0, then
the Specht module Sλ is irreducible.

2. The trivial representation Hn: We let Hn denote the k-module k, equipped with
a trivial Sn-action (that is, σ · v = v for all σ ∈ Sn and v ∈ k). This is called
the trivial representation of Sn. It is isomorphic to the Specht module S (n).

3. The natural representation Nn: We let Nn denote the free k-module kn =
{(v1, v2, . . . , vn) | all vi ∈ k}, on which Sn acts by permuting the coordinates:

σ · (v1, v2, . . . , vn) =
(

vσ−1(1), vσ−1(2), . . . , vσ−1(n)

)
for all σ ∈ Sn.

This is called the natural representation of Sn.

4. The reflection quotient representation Zn: If n > 0, then the natural representa-
tion Nn has a 1-dimensional subrepresentation

Dn := {(v1, v2, . . . , vn) | all vi are equal} = {(a, a, . . . , a) | a ∈ k} .

The quotient
Zn := Nn/Dn

is thus another representation of Sn. This Zn is called the reflection quo-
tient representation of Sn. As a k-module, it is free of rank n − 1 (with ba-
sis (e1, e2, . . . , en−1), where e1, e2, . . . , en are the standard basis vectors of kn).
Here and in the following, the notation v denotes the residue class of a vector
v modulo some submodule (the submodule is to be inferred from the context).

If k is a field of characteristic 0 (or, more generally, if n is invertible in k), then
this representation Zn is isomorphic to the Specht module S (n−1,1). Without

any such assumptions, Zn is isomorphic to the dual
(
S (n−1,1)

)∗
of this Specht

module. (See Proposition 2.1 below.)
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If V is any k-module, then V∗ shall denote its dual k-module Homk (V, k). If V
is an Sn-representation, then its dual V∗ becomes an Sn-representation as well (see
[Gri25, §5.19.3]).

Proposition 2.1. Let n > 1 be an integer. Then:

(a) The reflection quotient representation Zn is isomorphic (as an Sn-

representation) to the dual
(
S (n−1,1)

)∗
of the Specht module S (n−1,1).

(b) If n is invertible in k, then Zn is isomorphic (as an Sn-representation) to
the Specht module S (n−1,1).

This proposition is clearly part of the folklore, but we outline a proof in the
Appendix (Section A) for the sake of completeness.

2.4. Tensor products, induction and induction products

We shall now discuss certain ways to produce new representations from old.
The symbol “⊗” shall always mean a tensor product over k, unless a different

base ring is provided as a subscript.
It is well-known that if A and B are two k-algebras, then the tensor product

U ⊗ V of any left A-module U and any left B-module V is canonically a left A ⊗ B-
module. An analogous construction exists for tensor products of k left modules.
Thus, if U is a representation of a group G, and if V is a representation of a group
H, then U ⊗ V is a representation of G × H, and a similar fact holds for tensor
products of k representations.

We recall the notion of an induced representation: If G is a group, and if H
is a subgroup of G, then any H-representation V gives rise to a G-representation
IndG

H V defined by
IndG

H V = k [G]⊗k[H] V, (1)

where we view k [G] as a (k [G] , k [H])-bimodule while viewing V as a left k [H]-
module (so that the tensor product over k [H] becomes a left k [G]-module). This
G-representation IndG

H V is called the induced representation of V to G.
We furthermore recall the notion of an induction product ([Fulton97, §7.3]):

Definition 2.2. Let n and m be two nonnegative integers. Then, the direct prod-
uct Sn × Sm can be canonically embedded as a subgroup into Sn+m, by the group
morphism that sends each pair (σ, τ) ∈ Sn × Sm to the permutation σ ∗ τ ∈ Sn+m
that applies σ to the first n elements while applying τ (appropriately shifted)
to the last m elements of [n + m]. (To be fully precise: σ ∗ τ is the permu-
tation of [n + m] that sends 1, 2, . . . , n to σ (1) , σ (2) , . . . , σ (n) while sending
n + 1, n + 2, . . . , n + m to n + τ (1) , n + τ (2) , . . . , n + τ (m).) This is called the
parabolic embedding of Sn × Sm into Sn+m.

Now, if U is an Sn-representation and if V is an Sm-representation, then the
tensor product U ⊗ V is an Sn × Sm-representation, and thus (by the embedding
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of Sn × Sm into Sn+m we just explained) we can construct the induced represen-
tation

U ∗ V := IndSn+m
Sn×Sm

(U ⊗ V)

of Sn+m. This induced representation U ∗ V is called the induction product of U
and V.

More generally, if n1, n2, . . . , nk are any k nonnegative integers, and if Ui is an
Sni-representation for each i ∈ [k], then the induction product U1 ∗ U2 ∗ · · · ∗ Uk is
defined to be the Sn1+n2+···+nk-representation

Ind
Sn1+n2+···+nk
Sn1×Sn2×···×Snk

(U1 ⊗ U2 ⊗ · · · ⊗ Uk) ,

where we embed Sn1 × Sn2 × · · · × Snk into Sn1+n2+···+nk in the obvious way (hav-
ing each Sni act on an appropriate interval4). The latter embedding is again
called the parabolic embedding of Sn1 × Sn2 × · · · × Snk into Sn1+n2+···+nk .

These induction products satisfy associativity up to isomorphism: e.g., we have
(U ∗ V) ∗ W ∼= U ∗ V ∗ W ∼= U ∗ (V ∗ W) for all U, V, W. More generally:

Proposition 2.3. Let n1, n2, . . . , nk be any k nonnegative integers, and let Ui be an
Sni-representation for each i ∈ [k]. Let i ∈ [0, k]. Then,

U1 ∗ U2 ∗ · · · ∗ Uk
∼= (U1 ∗ U2 ∗ · · · ∗ Ui) ∗ (Ui+1 ∗ Ui+2 ∗ · · · ∗ Uk) .

This is again a folklore result, but we sketch a proof in the Appendix (Section A)
to fill a little gap in the literature.

2.5. Lacunar sets and the submodules F (I)

Next, we recall some more concepts from [GriLaf22].
If I is a finite set of integers, then we let sum I denote the sum of all elements of

I. For instance, sum {3, 7} = 3 + 7 = 10.
Let ( f0, f1, f2, . . .) be the Fibonacci sequence. This is the sequence of integers de-

fined recursively by

f0 = 0, f1 = 1, and fm = fm−1 + fm−2 for all m ≥ 2.

4To make this precise: Let mi := n1 + n2 + · · ·+ ni for each i ∈ [0, k]. Then, the integer interval
[n1 + n2 + · · ·+ nk] is partitioned into the intervals [mi−1 + 1, mi] for all i ∈ [k]. The embedding
of Sn1 ×Sn2 ×· · ·×Snk into Sn1+n2+···+nk sends each k-tuple (σ1, σ2, . . . , σk) ∈ Sn1 ×Sn2 ×· · ·×Snk
to the permutation σ1 ∗ σ2 ∗ · · · ∗ σk ∈ Sn1+n2+···+nk defined by

(σ1 ∗ σ2 ∗ · · · ∗ σk) (mi−1 + x) := mi−1 + σi (x) for each i ∈ [k] and each x ∈ [ni] .
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We shall say that a set I ⊆ Z is lacunar if it contains no two consecutive integers
(i.e., there exists no i ∈ I such that i + 1 ∈ I). For instance, the set {1, 4, 6} is
lacunar, while the set {1, 4, 5} is not.

The number of lacunar subsets of [n − 1] is the Fibonacci number fn+1. Let
Q1, Q2, . . . , Q fn+1 be all these fn+1 lacunar subsets of [n − 1], listed in an order that
satisfies

sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum
(
Q fn+1

)
. (2)

We fix this order once and for all5. Many of our constructions will formally (though
rather shallowly) depend on this order.

For any subset I of [n], we define the following:

• We let I − 1 denote the set {i − 1 | i ∈ I} = {j ∈ Z | j + 1 ∈ I}. For in-
stance, {2, 4, 5} − 1 = {1, 3, 4}. Note that I is lacunar if and only if I ∩
(I − 1) = ∅.

• We let I′ be the set [n − 1] \ (I ∪ (I − 1)). This is the set of all i ∈ [n − 1]
satisfying i /∈ I and i + 1 /∈ I. We shall refer to I′ as the non-shadow of I.

For example, if n = 5, then {2, 3}′ = [4] \ {1, 2, 3} = {4}.

• We let
F (I) :=

{
q ∈ k [Sn] | qsi = q for all i ∈ I′

}
.

We can rewrite this equality as

F (I) =
{

t ∈ k [Sn] | tsj = t for all j ∈ I′
}

=
{

t ∈ A | tsj = t for all j ∈ I′
}

(3)

(since k [Sn] = A).

3. The first main theorem: the Fibonacci filtration

3.1. The theorem

For each i ∈ [0, fn+1], we define a k-submodule

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi) of k [Sn]

(so that F0 = 0). In [GriLaf22, Theorem 8.1], the following is shown:

Theorem 3.1.

(a) We have
0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] .

In other words, the k-submodules F0, F1, . . . , Ffn+1 form a k-module filtra-
tion of k [Sn].

5For n ≤ 3, this order is uniquely defined. For n > 3, we need to make a choice.
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(b) We have Fi · tℓ ⊆ Fi for each i ∈ [0, fn+1] and ℓ ∈ [n].

(c) For each i ∈ [ fn+1] and ℓ ∈ [n], we have

Fi ·
(
tℓ − mQi,ℓ

)
⊆ Fi−1.

Here, mQi,ℓ is a certain integer whose definition we will give in Subsection
4.1 (as we will not use it until then).

The filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] will be called the Fibonacci
filtration of A. We can easily see that it is a filtration of (A, T )-bimodules:

Proposition 3.2. Let i ∈ [0, fn+1]. Then, Fi is an (A, T )-subbimodule of A.

Proof. For any I ⊆ [n], the set F (I) is closed under addition and left action of A
(by its very definition), hence is a left A-submodule of A. Thus, Fi (being defined
as a sum of such sets F (I)) is also a left A-submodule of A. Moreover, Fi is also
closed under right multiplication by each tℓ (by Theorem 3.1 (b)), and hence under
the right action of T (since T is the subalgebra generated by t1, t2, . . . , tn). Thus,
Fi is also a right T -submodule of A. Altogether, we conclude that Fi is an (A, T )-
subbimodule of A.

Proposition 3.2 shows that the subquotients Fi/Fi−1 are (A, T )-bimodules as
well. In particular, they are therefore left A-modules, i.e., representations of Sn.
Our second main theorem characterizes these representations:

Theorem 3.3. Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Write
the set Qi ∪ {n + 1} as {i1 < i2 < · · · < im}, so that im = n + 1. Furthermore, set
i0 := 1. Set jk := ik − ik−1 for each k ∈ [m]. (Note that j1 ≥ 0 and j2, j3, . . . , jm > 1
and j1 + j2 + · · ·+ jm = n; this follows from Lemma 3.4 below (applied to I =
Qi).) Then,

Fi/Fi−1
∼= Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm︸ ︷︷ ︸

the first factor is an H,
while all others are Z ’s

as Sn-representations.

We will spend the rest of this section proving this theorem, then restating it (in
the characteristic-0 case) using Littlewood–Richardson coefficients.

3.2. Lemmas on F (Qi)

First, let us show some lemmas about lacunar sets I and the corresponding k-
modules F (I):
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Lemma 3.4. Let I be a lacunar subset of [n − 1]. Write the set I ∪ {n + 1} as
{i1 < i2 < · · · < im}, so that im = n + 1. Furthermore, set i0 := 1. Set jk := ik −
ik−1 for each k ∈ [m]. Then, j1 ≥ 0 and j2, j3, . . . , jm > 1 and j1 + j2 + · · ·+ jm = n.

Proof. By definition, we have j1 = i1 − i0 ≥ 0, since i1 ≥ 1 = i0.
Next, we recall that the set I is lacunar. This lacunarity is preserved even when

we insert the new element n + 1 into this set, since all existing elements of I are ≤
n − 1 (since I ⊆ [n − 1]) and thus cannot be consecutive with n + 1. That is, the set
I ∪ {n + 1} is again lacunar. Since we have written this set as {i1 < i2 < · · · < im},
this yields that any k ∈ [2, m] satisfies ik − ik−1 > 1. In other words, any k ∈ [2, m]
satisfies jk > 1 (since jk = ik − ik−1). In other words, j2, j3, . . . , jm > 1.

It remains to prove that j1 + j2 + · · ·+ jm = n. But recall that jk = ik − ik−1 for
each k ∈ [m]. Hence,

m

∑
k=1

jk =
m

∑
k=1

(ik − ik−1) = im︸︷︷︸
=n+1

− i0︸︷︷︸
=1

(by the telescope principle)

= n + 1 − 1 = n.

In other words, j1 + j2 + · · ·+ jm = n. Thus, Lemma 3.4 is fully proved.

Lemma 3.5. Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Write the set
Qi ∪ {n + 1} as {i1 < i2 < · · · < im}. Furthermore, set i0 := 1. Set jk := ik − ik−1
for each k ∈ [m]. Then, the k-module Fi/Fi−1 is free of rank

n!
j1!j2! · · · jm!

·
m

∏
k=2

(jk − 1) .

Proof. We have Qi ⊆ [n − 1]. Hence, n + 1 is the largest element of Qi ∪ {n + 1}.
Thus, from Qi ∪ {n + 1} = {i1 < i2 < · · · < im}, we obtain

im = n + 1 and Qi = {i1 < i2 < · · · < im−1} .

Lemma 3.4 (applied to I = Qi) shows that j1 + j2 + · · ·+ jm = n. Let
(

n
j1, j2, . . . , jm

)
denote the multinomial coefficient

n!
j1!j2! · · · jm!

. We know from [GriLaf22, Theorem

13.1 (a) and (c)] (applied to p = m − 1) that the k-module Fi/Fi−1 is free of rank

δi =

(
n

j1, j2, . . . , jm

)
·

m

∏
k=2

(jk − 1) .

In view of
(

n
j1, j2, . . . , jm

)
=

n!
j1!j2! · · · jm!

, this is precisely the claim of Lemma

3.5.
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Lemma 3.6. Let I be a subset of [n]. Let j ∈ I. Then, there exists a lacunar subset
J of [n − 1] such that sum J < sum I and J′ ⊆ I′ ∪ {j}.

Proof. Set K := (I \ {j}) ∪ {j − 1} if j > 1, and otherwise set K := I \ {j}. Then, K
is a subset of [n] and satisfies sum K < sum I (since K is obtained from I by remov-
ing the element j and possibly inserting the smaller element j − 1). Furthermore,
[GriLaf22, Proposition 8.6 (a)] says that K′ ⊆ I′ ∪ {j}.

Now, [GriLaf22, Corollary 8.8] (applied to K instead of I) shows that there exists
a lacunar subset J of [n − 1] such that sum J ≤ sum K and J′ ⊆ K′. Consider this J.

The set J is a lacunar subset of [n − 1] and satisfies sum J < sum I (since sum J ≤
sum K < sum I) and J′ ⊆ I′ ∪ {j} (since J′ ⊆ K′ ⊆ I′ ∪ {j}). Hence, such a J exists.
This proves Lemma 3.6.

Lemma 3.7. Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Write the
set Qi ∪ {n + 1} as {i1 < i2 < · · · < im}. Let k ∈ [m − 1]. Then,{

t ∈ F (Qi) | tsik = t
}
⊆ Fi−1.

Proof. As in the proof of Lemma 3.5, we find Qi = {i1 < i2 < · · · < im−1}. Thus,
ik ∈ Qi (since k ∈ [m − 1]). Hence, Lemma 3.6 (applied to I = Qi and j = ik)
shows that there exists a lacunar subset J of [n − 1] such that sum J < sum (Qi)
and J′ ⊆ Q′

i ∪ {ik}. Consider this J. Since J is lacunar, we have J = Qs for some
s ∈ [ fn+1]. Consider this s. Thus, Qs = J, so that sum (Qs) = sum J < sum (Qi)
and therefore s < i (by (2)). Hence, s ≤ i − 1, so that F (Qs) ⊆ Fi−1 (since the
definition of Fi−1 says that Fi−1 = F (Q1) + F (Q2) + · · · + F (Qi−1)). In view of
Qs = J, we can rewrite this as

F (J) ⊆ Fi−1.

Now, (3) (applied to Qi instead of I) shows that

F (Qi) =
{

t ∈ A | tsj = t for all j ∈ Q′
i
}

,

so that {
t ∈ F (Qi) | tsik = t

}
=
{

t ∈ A | tsj = t for all j ∈ Q′
i, and also tsik = t

}
=
{

t ∈ A | tsj = t for all j ∈ Q′
i ∪ {ik}

}
⊆
{

t ∈ A | tsj = t for all j ∈ J′
} (

since J′ ⊆ Q′
i ∪ {ik}

)
= F (J) (by (3), applied to J instead of I)
⊆ Fi−1.

Thus, Lemma 3.7 follows.
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3.3. The elements ∇p

Lemma 3.8. Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Write the
set Qi ∪ {n + 1} as {i1 < i2 < · · · < im}. Furthermore, set i0 := 1.

For each k ∈ [m], let Jk denote the integer interval [ik−1, ik − 1]. Note that the
intervals J1, J2, . . . , Jm are disjoint and – except possibly for J1 – nonempty (J1
is empty if and only if 1 ∈ Qi), and their union is [n]. Thus, we can view the
direct product SJ1 × SJ2 × · · · × SJm as a subgroup of Sn in the obvious way (each
factor SJk acts on the elements of Jk while leaving all remaining elements of [n]
unchanged).

For each (m − 1)-tuple p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm (that is, with
pk ∈ Jk for each k ∈ [2, m]), we define an element

∇p := ∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]

σ ∈ A.

Then:

(a) For any τ = (τ1, τ2, . . . , τm) ∈ SJ1 × SJ2 × · · · × SJm and p =
(p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm, we have

τ∇p = ∇τp,

where

τp := (τ2 (p2) , τ3 (p3) , . . . , τm (pm)) = (τ (p2) , τ (p3) , . . . , τ (pm)) .

(b) The left A-module F (Qi) is generated (as a left A-module) by any single
element of the form ∇p (with p ∈ J2 × J3 × · · · × Jm).

(c) Let ℓ ∈ [2, m]. For each k ∈ [2, m] \ {ℓ}, let pk ∈ Jk be an element. Then,

∑
pℓ∈Jℓ

∇(p2,p3,...,pm) ∈ Fi−1.

(Note that the elements p2, p3, . . . , pℓ−1, pℓ+1, pℓ+2, . . . , pm in this sum are fixed,
whereas pℓ runs through the set Jℓ.)

Proof. As in the proof of Lemma 3.5, we find im = n+ 1 and Qi = {i1 < i2 < · · · < im−1}.

(a) Let τ = (τ1, τ2, . . . , τm) ∈ SJ1 × SJ2 × · · · × SJm and p = (p2, p3, . . . , pm) ∈
J2 × J3 × · · · × Jm. Recall that

∇p = ∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]

σ.
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Multiplying this equality by τ from the left, we obtain

τ∇p = ∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]

τσ = ∑
σ∈Sn;

τ(σ(Jk))=τ(Jk) for each k∈[m];
τ(σ(ik−1))=τ(pk) for each k∈[2,m]

τσ


here, we have replaced the conditions “σ (Jk) = Jk”

and “σ (ik−1) = pk” under the summation sign
by the conditions “τ (σ (Jk)) = τ (Jk) ”

and “τ (σ (ik−1)) = τ (pk) ” (which are equivalent to
the former two conditions because τ is injective)


= ∑

σ∈Sn;
(τσ)(Jk)=Jk for each k∈[m];

(τσ)(ik−1)=τ(pk) for each k∈[2,m]

τσ

 since each k ∈ [m] satisfies τ (σ (Jk)) = (τσ) (Jk)
and τ (σ (ik−1)) = (τσ) (ik−1) (if k > 1)

and τ (Jk) = Jk (since τ ∈ SJ1 × SJ2 × · · · × SJm)


= ∑

σ∈Sn;
σ(Jk)=Jk for each k∈[m];

σ(ik−1)=τ(pk) for each k∈[2,m]

σ

(
here, we have substituted σ for τσ in the sum,
since the map Sn → Sn, σ 7→ τσ is a bijection

)
= ∇τp

(by the definition of ∇τp, since τp = (τ (p2) , τ (p3) , . . . , τ (pm))). This proves
Lemma 3.8 (a).

(b) The definition of the non-shadow Q′
i yields

Q′
i = [n − 1] \ (Qi ∪ (Qi − 1))
= [n − 1] \ ({i1 < i2 < · · · < im−1} ∪ {i1 − 1 < i2 − 1 < · · · < im−1 − 1})

(since Qi = {i1 < i2 < · · · < im−1}). In other words, Q′
i consists of all elements of

[n − 1] except for those of the forms ik − 1 and ik for k ∈ [m − 1].
Let Γ be the subgroup of Sn generated by the simple transpositions sj with j ∈ Q′

i.
Thus, Γ is generated by all simple transpositions s1, s2, . . . , sn−1 except for those of
the forms sik−1 and sik for k ∈ [m − 1] (by the description of Q′

i in the previous
paragraph). Hence, every permutation ω ∈ Γ preserves the intervals J1, J2, . . . , Jm
as well as the elements i1, i2, . . . , im−1.

Conversely, if some permutation ω ∈ Sn preserves the intervals J1, J2, . . . , Jm as
well as the elements i1, i2, . . . , im−1, then ω must belong to Γ (because such a per-
mutation ω must preserve the intervals J1 = [i0, i1 − 1] as well as Jk \ {ik−1} =
[ik−1 + 1, ik − 1] for all k ∈ [2, m] (since it preserves both Jk and ik−1) as well as
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the length-1 intervals {ik−1} for all k ∈ [2, m], and thus must be a composition
of permutations of these intervals; but any such permutation belongs to Γ (since
any permutation of an integer interval [a, b] can be written as a product of simple
transpositions sj with j ∈ [a, b − 1])).

The subgroup Γ of Sn acts from the right on Sn (simply by right multiplication),
and thus also acts k-linearly from the right on A = k [Sn] (by linear extension),
making A into a permutation module6 of Γ. Applying (3) to I = Qi, we see that

F (Qi) =
{

t ∈ A | tsj = t for all j ∈ Q′
i
}

= {t ∈ A | tω = t for all ω ∈ Γ}

(since Γ is the group generated by the sj with j ∈ Q′
i, and therefore the condition

“tsj = t for all j ∈ Q′
i” is equivalent to “tω = t for all ω ∈ Γ”). Thus, F (Qi) is the

space of fixed points7 of the right Γ-action on A.
However, we know from the basic theory of group actions (see, e.g., [Lor18,

§3.3.1, “Invariants of Permutation Representations”]) that when a finite group G
acts on a set X, the space of fixed points of the corresponding permutation module
is spanned by the orbit sums8. Hence, the k-module F (Qi) is spanned by the orbit
sums of the right Γ-action on Sn (since F (Qi) is the set of fixed points of the right Γ-
action on A, which is the permutation module corresponding to the right Γ-action
on Sn). In other words, F (Qi) is spanned by the orbit sums ∑

σ∈τΓ
σ for τ ∈ Sn (since

each orbit of the right Γ-action on Sn has the form τΓ for some τ ∈ Sn). As a
left A-module, F (Qi) is therefore generated by any one of these orbit sums (since
any two orbit sums ∑

σ∈τ1Γ
σ and ∑

σ∈τ2Γ
σ can be transformed into each other by left

multiplication by τ1τ−1
2 ∈ Sn ⊆ A, and therefore each of them generates the other).

6Recall the definition of a permutation module:
Let G be a finite group. Let X be a right G-set. Let k(X) be the free k-module with basis X.

Then, k(X) becomes a right k [G]-module, where the action of k [G] on k(X) is given by bilinearly

extending the action of G on X (that is, by the rule

(
∑

g∈G
αgg

)(
∑

x∈X
βxx

)
:= ∑

g∈G
∑

x∈X
αgβxgx).

This is called the permutation module corresponding to the right G-set X.
In our present setup, we apply this construction to G = Γ and X = Sn.

7Recall the definition of a space of fixed points: If a k-module V is equipped with a linear right
action of a group G (that is, if V is a right k [G]-module), then its space of fixed points is defined
to be the set {a ∈ V | ag = a for all g ∈ G}. This is a k-submodule of V.

8In more details:
Let G be a finite group. Let X be a right G-set. Consider the corresponding permutation

module k(X), with its right G-action.
For each G-orbit O on X, we define the orbit sum zO := ∑

x∈O
x ∈ k(X). Now, the known fact

that we are citing here is saying that these orbit sums zO (as O ranges over all G-orbits on X)
form a basis of the space of fixed points of k(X) (as a k-module).

In [Lor18, §3.3.1, “Invariants of Permutation Representations”], this is stated for left G-actions,
but the case of right G-actions is analogous.
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Now, let p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm. We shall now show that ∇p
is one of these orbit sums we just mentioned. Indeed, let Ωp be the set of all
permutations σ ∈ Sn that satisfy “σ (Jk) = Jk for each k ∈ [m]” and “σ (ik−1) = pk
for each k ∈ [2, m]”. Then, the definition of ∇p can be rewritten as

∇p = ∑
σ∈Ωp

σ. (4)

We shall now show that Ωp is an orbit of the right Γ-action on Sn (that is, a left
coset of Γ in Sn).

First, we show that the set Ωp is nonempty. Indeed, it is easy to construct some
permutation τ ∈ Ωp: Namely, we pick a permutation τ1 ∈ SJ1 arbitrarily. Fur-
thermore, for each k ∈ [2, m], we pick a permutation τk ∈ SJk that sends ik−1 ∈ Jk
to pk ∈ Jk. The m-tuple (τ1, τ2, . . . , τm) then belongs to SJ1 × SJ2 × · · · × SJm and –
viewed as an element of Sn via the embedding SJ1 × SJ2 × · · · × SJm → Sn – belongs
to Ωp.

Hence, Ωp is nonempty. Pick any τ ∈ Ωp. Then, τ (Jk) = Jk for each k ∈ [m],
and τ (ik−1) = pk for each k ∈ [2, m]. Moreover, these equalities remain valid if we
replace τ by τω for any ω ∈ Γ (because every permutation ω ∈ Γ preserves the
sets J1, J2, . . . , Jm as well as the elements i1, i2, . . . , im−1). Thus, for each ω ∈ Γ, we
have τω ∈ Ωp as well. In other words, τΓ ⊆ Ωp.

Conversely, we claim that Ωp ⊆ τΓ. Indeed, let σ ∈ Ωp be arbitrary. Then,
each k ∈ [m] satisfies σ (Jk) = Jk = τ (Jk), whereas each k ∈ [2, m] satisfies
σ (ik−1) = pk = τ (ik−1). Set ω = τ−1σ ∈ Sn; thus, each k ∈ [m] satisfies
ω (Jk) = τ−1 (σ (Jk)) = Jk (since we just saw that σ (Jk) = τ (Jk)), and each k ∈ [2, m]
satisfies ω (ik−1) = τ−1 (σ (ik−1)) = ik−1 (since we just saw that σ (ik−1) = τ (ik−1)).
Thus, the permutation ω ∈ Sn preserves the intervals J1, J2, . . . , Jm as well as the
elements i1, i2, . . . , im−1. Hence, ω ∈ Γ (because if some permutation ω ∈ Sn pre-
serves the intervals J1, J2, . . . , Jm as well as the elements i1, i2, . . . , im−1, then ω must
belong to Γ). Now, from ω = τ−1σ, we obtain σ = τω ∈ τΓ (since ω ∈ Γ). Forget
that we fixed σ. We thus have proved that σ ∈ τΓ for each σ ∈ Ωp. In other words,
Ωp ⊆ τΓ.

Combining this with τΓ ⊆ Ωp, we obtain Ωp = τΓ. Hence, Ωp is an orbit of the
right Γ-action on Sn. Thus, ∑

σ∈Ωp

σ is an orbit sum of this action. In view of (4), this

means that ∇p is an orbit sum of this action. Hence, as a left A-module, F (Qi) is
generated by ∇p (since we have shown that F (Qi) is generated by any one of the
orbit sums). This proves Lemma 3.8 (b).

(c) Let
ϑ := ∑

pℓ∈Jℓ

∇(p2,p3,...,pm). (5)

We then must show that ϑ ∈ Fi−1.
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We have
ϑ = ∑

pℓ∈Jℓ

∇(p2,p3,...,pm)︸ ︷︷ ︸
∈F(Qi)

(since Lemma 3.8 (b) shows that ∇q∈F(Qi)
for any q∈J2×J3×···×Jm)

∈ F (Qi)

(since F (Qi) is a k-module). On the other hand,

ϑ = ∑
pℓ∈Jℓ

∇(p2,p3,...,pm)

= ∑
pℓ∈Jℓ

∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]

σ
(

by the definition of ∇(p2,p3,...,pm)

)

= ∑
pℓ∈Jℓ

∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]\{ℓ};

σ(iℓ−1)=pℓ

σ


here, we have split up the

condition “σ (ik−1) = pk for each k ∈ [2, m] ”
under the second summation sign

into two: one for k ̸= ℓ and one for k = ℓ


= ∑

σ∈Sn;
σ(Jk)=Jk for each k∈[m];

σ(ik−1)=pk for each k∈[2,m]\{ℓ};
σ(iℓ−1)∈Jℓ

σ (6)

(here, we have subsumed the two summation signs into one by removing the vari-
able pℓ). The condition “σ (iℓ−1) ∈ Jℓ” under the summation sign in (6) is redun-
dant, since it follows from the condition “σ (Jk) = Jk for each k ∈ [m]” (indeed,

the latter condition implies that σ (Jℓ) = Jℓ and therefore σ

 iℓ−1︸︷︷︸
∈Jℓ

 ∈ σ (Jℓ) = Jℓ).

Hence, we can remove this condition. Thus, (6) rewrites as

ϑ = ∑
σ∈Sn;

σ(Jk)=Jk for each k∈[m];
σ(ik−1)=pk for each k∈[2,m]\{ℓ}

σ. (7)

However, the two conditions “σ (Jk) = Jk for each k ∈ [m]” and “σ (ik−1) = pk for
each k ∈ [2, m] \ {ℓ}” under the summation sign in (7) remain unchanged if we
replace σ by σsiℓ−1 (since this replacement merely swaps the values of σ on iℓ−1

and iℓ−1 + 1, but this does not break any of the two conditions9). Hence, the set of

9Here we use the fact that the two elements iℓ−1 and iℓ−1 + 1 lie in the same Jk (namely, in
Jℓ = [iℓ−1, iℓ − 1]). This is because Qi is lacunar, so that iℓ−1 < iℓ − 1.
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the permutations σ over which we sum in (7) is fixed under right multiplication by
siℓ−1 . Therefore, the whole sum is fixed under right multiplication by siℓ−1 . Because
of (7), this shows that ϑsiℓ−1 = ϑ. Combining this with ϑ ∈ F (Qi), we obtain

ϑ ∈
{

t ∈ F (Qi) | tsiℓ−1 = t
}
⊆ Fi−1

(by Lemma 3.7, applied to k = ℓ− 1). This proves Lemma 3.8 (c).

3.4. Linear algebra lemmas

We shall furthermore use two facts from linear algebra over commutative rings:

Lemma 3.9. Let s ∈ N. Let M and N be two free k-modules of rank s. Then, any
surjective k-linear map ρ : M → N is an isomorphism.

Proof. This is a well-known folklore result, and follows easily from the known fact
(“Orzech’s theorem” in one of its simplest forms – see, e.g., [GR20, Exercise 2.5.18
(a)], or [Grinbe16, Corollary 0.2] for a more general result) that any surjective en-
domorphism of a free k-module of finite rank is an isomorphism. For the sake of
self-containedness, let me nevertheless give a direct proof:

Let ρ : M → N be a surjective k-linear map. We must show that ρ is an isomor-
phism.

Pick bases (e1, e2, . . . , es) and ( f1, f2, . . . , fs) of M and N (these exist, since M and
N are free of rank s). The surjectivity of ρ then shows that every basis vector fi of
N lies in the image of ρ. That is, every fi can be written as ρ (gi) for some vector
gi ∈ M. Choose such vectors gi, and let τ : N → M be the k-linear map that sends
the basis vectors f1, f2, . . . , fs to g1, g2, . . . , gs, respectively. Then, the composition
ρ ◦ τ : N → N sends each vector fi to fi (since fi

τ7→ gi
ρ7→ ρ (gi) = fi), and thus is

the identity map idN (since f1, f2, . . . , fs form a basis of N).
Now, let A ∈ ks×s be the matrix that represents the linear map ρ : M → N

with respect to our bases of M and N. Likewise, let B ∈ ks×s be the matrix that
represents the linear map τ : N → M with respect to our bases of N and M. Then,
AB is the matrix that represents the linear map ρ ◦ τ : N → N with respect to our
basis of N. Therefore, AB is the identity matrix Is (since ρ ◦ τ is the identity map
idN, which is represented by the identity matrix Is). Hence, det (AB) = det (Is) = 1
and thus 1 = det (AB) = det A · det B. This shows that det A is invertible (with

inverse det B). Hence, the matrix A is invertible (with inverse
1

det A
adj A, by the

well-known identity det A · In = A · adj A = adj A · A). In other words, the k-linear
map ρ is invertible (since it is represented by the matrix A), thus an isomorphism.
This proves Lemma 3.9.

Lemma 3.10. Let V1, V2, . . . , Vm be any k-modules. For each ℓ ∈ [m], let Wℓ be a
k-submodule of Vℓ. For each ℓ ∈ [m], we consider the k-submodule

V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm︸ ︷︷ ︸
This means the tensor product V1⊗V2⊗···⊗Vm,

in which the ℓ-th factor is replaced by Wℓ

of V1 ⊗ V2 ⊗ · · · ⊗ Vm.
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(a) Then, there is a canonical k-module isomorphism

(V1 ⊗ V2 ⊗ · · · ⊗ Vm)⧸
m

∑
ℓ=1

(V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm)︸ ︷︷ ︸
This means the tensor product V1⊗V2⊗···⊗Vm,

in which the ℓ-th factor is replaced by Wℓ

∼= (V1/W1)⊗ (V2/W2)⊗ · · · ⊗ (Vm/Wm) .

(b) If V1, V2, . . . , Vm are furthermore left modules over some k-algebras
A1, A2, . . . , Am, and if W1, W2, . . . , Wm are their submodules (i.e., each Wℓ is a
left Aℓ-submodule of Vℓ), then this isomorphism is a left A1 ⊗ A2 ⊗ · · · ⊗ Am-
module isomorphism.

Proof. (a) We construct both the isomorphism and its inverse using the universal
properties of tensor products and quotients:

• There is a canonical k-linear map

Φ : V1 ⊗ V2 ⊗ · · · ⊗ Vm → (V1/W1)⊗ (V2/W2)⊗ · · · ⊗ (Vm/Wm) ,

sending each pure tensor v1 ⊗ v2 ⊗ · · ·⊗ vm to v1 ⊗ v2 ⊗ · · ·⊗ vm. This k-linear

map Φ is easily seen to vanish on the submodule
m
∑
ℓ=1

(V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm),

and thus factors through the quotient module. Hence, we obtain a k-linear
map

Φ : (V1 ⊗ V2 ⊗ · · · ⊗ Vm)⧸
m

∑
ℓ=1

(V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm)

→ (V1/W1)⊗ (V2/W2)⊗ · · · ⊗ (Vm/Wm)

sending each v1 ⊗ v2 ⊗ · · · ⊗ vm to v1 ⊗ v2 ⊗ · · · ⊗ vm.

• Conversely, there is a canonical k-linear map

Ψ : (V1/W1)⊗ (V2/W2)⊗ · · · ⊗ (Vm/Wm)

→ (V1 ⊗ V2 ⊗ · · · ⊗ Vm)⧸
m

∑
ℓ=1

(V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm)

sending each v1 ⊗ v2 ⊗ · · · ⊗ vm to v1 ⊗ v2 ⊗ · · · ⊗ vm. To show that this map
is well-defined, we need to check that v1 ⊗ v2 ⊗ · · · ⊗ vm depends only on the
residue classes vi rather than on the vi themselves (this is easy: replacing vi
by v′i with vi − v′i ∈ Wi only changes v1 ⊗ v2 ⊗ · · · ⊗ vm by an element of
V1 ⊗ V2 ⊗ · · · ⊗Wi ⊗ · · · ⊗ Vm) and that this dependence is multilinear (this is
again easy).

Clearly, the maps Φ and Ψ are mutually inverse, hence isomorphisms.

(b) This follows easily from the construction in part (a).
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For our specific needs, we specialize Lemma 3.10 to the case W1 = 0:

Lemma 3.11. Let V1, V2, . . . , Vm be any k-modules with m ≥ 1. For each ℓ ∈ [2, m],
let Wℓ be a k-submodule of Vℓ. For each ℓ ∈ [2, m], we consider the k-submodule

V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm︸ ︷︷ ︸
This means the tensor product V1⊗V2⊗···⊗Vm,

in which the ℓ-th factor is replaced by Wℓ

of V1 ⊗ V2 ⊗ · · · ⊗ Vm.

(a) Then, there is a canonical k-module isomorphism

(V1 ⊗ V2 ⊗ · · · ⊗ Vm)⧸
m

∑
ℓ=2

(V1 ⊗ V2 ⊗ · · · ⊗ Wℓ ⊗ · · · ⊗ Vm)︸ ︷︷ ︸
This means the tensor product V1⊗V2⊗···⊗Vm,

in which the ℓ-th factor is replaced by Wℓ

∼= V1 ⊗ (V2/W2)⊗ (V3/W3)⊗ · · · ⊗ (Vm/Wm) .

(b) If V1, V2, . . . , Vm are furthermore left modules over some k-algebras
A1, A2, . . . , Am, and if each Wℓ with ℓ ∈ [2, m] is a left Aℓ-submodule of Vℓ,
then this isomorphism is a left A1 ⊗ A2 ⊗ · · · ⊗ Am-module isomorphism.

Proof. Apply Lemma 3.10 to W1 = 0, and observe that V1/0 ∼= V1.

3.5. Proof of Theorem 3.3

We can now prove Theorem 3.3:

Proof of Theorem 3.3. We shall use the notations of Lemma 3.8. Note that each k ∈
[m] satisfies Jk = [ik−1, ik − 1] and thus

|Jk| = ik − ik−1 = jk. (8)

Explicitly, there is a bijection

[jk] → Jk,
x 7→ ik−1 − 1 + x (9)

for each k ∈ [m].
Consider the tensor product Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗Njm . We recall that the trivial

representation Hj1 = k has a 1-element basis (1), while each natural representation
Njk has basis

(
ep
)

p∈[jk]
=
(
e1, e2, . . . , ejk

)
. However, by abuse of notation, we shall

rename the latter basis of Njk as
(
ep
)

p∈Jk
=
(
eik−1 , eik−1+1, . . . , eik−1

)
instead (by

shifting all subscripts up by ik−1 − 1, that is, renaming each basis vector ex as
eik−1−1+x). Note that this can be done because jk = ik − ik−1.

Having renamed the basis vectors of the k-module Njk , let us also replace the
symmetric group Sjk acting on this module accordingly. Namely, we reinterpret the
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symmetric group Sjk acting on Njk as the symmetric group SJk using the bijection
(9) between the corresponding sets [jk] and Jk. Thus, the left action of Sjk on Njk
becomes a left action of SJk instead; it is still a permutation action (given on our
now-renamed basis by the formula σep = eσ(p) for each p ∈ Jk and σ ∈ SJk). With
these reinterpretations, the parabolic embedding Sj1 × Sj2 × · · ·× Sjm → Sn becomes
the usual embedding SJ1 × SJ2 × · · · × SJm → Sn, which simply combines the m
permutations without any need for shifting (i.e., any m-tuple (σ1, σ2, . . . , σm) ∈
SJ1 × SJ2 × · · · × SJm is identified with the permutation σ ∈ Sn that sends each
element x ∈ Jk to σk (x) for each k ∈ [m]).

For each p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm, we have

∇p ∈ F (Qi) (by Lemma 3.8 (b))
⊆ Fi (since Fi = F (Q1) + F (Q2) + · · ·+ F (Qi))

and thus ∇p ∈ Fi/Fi−1 (where ∇p denotes the residue class of ∇p ∈ Fi in the
quotient Fi/Fi−1). Hence, we can define a k-linear map

Φ : Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Njm → Fi/Fi−1,

1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm 7→ ∇p

for any p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm.

(This map is defined by linearity, since the pure tensors of the form 1 ⊗ ep2 ⊗ ep3 ⊗
· · · ⊗ epm with p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm form a basis of the k-module
Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Njm .) Consider this map Φ.

For each ℓ ∈ [2, m], we can consider the k-submodule Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗
Djℓ ⊗ · · ·⊗Njm of Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · ·⊗Njm , in which its ℓ-th factor Njℓ is replaced
by its submodule Djℓ = {(a, a, . . . , a) | a ∈ k}. We claim that the map Φ sends this
submodule to 0. Indeed, this submodule is spanned by sums of the form

∑
pℓ∈Jℓ

1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

(for fixed p2, p3, . . . , pℓ−1, pℓ+1, . . . , pm in the respective intervals Jk) 10, and the

10Proof. The submodule Djℓ is spanned by the single vector

(1, 1, . . . , 1) = eiℓ−1
+ eiℓ−1+1 + · · ·+ eiℓ−1 = ∑

pℓ∈Jℓ

epℓ ,

and thus the tensor product Hj1 ⊗ Nj2 ⊗ Nj3 ⊗ · · · ⊗ Djℓ ⊗ · · · ⊗ Njm is spanned by the pure
tensors of the form

1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epℓ−1 ⊗
(

∑
pℓ∈Jℓ

epℓ

)
⊗ epℓ+1 ⊗ · · · ⊗ epm

= ∑
pℓ∈Jℓ

1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm for fixed p2, p3, . . . , pℓ−1, pℓ+1, . . . , pm.
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map Φ sends such sums to

∑
pℓ∈Jℓ

∇(p2,p3,...,pm) = ∑
pℓ∈Jℓ

∇(p2,p3,...,pm) = 0Fi/Fi−1
,

since Lemma 3.8 (c) shows that ∑
pℓ∈Jℓ

∇(p2,p3,...,pm) ∈ Fi−1.

Thus, the k-linear map

Φ : Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Njm → Fi/Fi−1

sends all the k-submodules Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗Djℓ ⊗ · · · ⊗Njm for ℓ ∈ [2, m] to
0. By linearity, we can thus conclude that Φ also sends their sum

m
∑
ℓ=2

(
Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Djℓ ⊗ · · · ⊗ Njm

)
to 0. Therefore, Φ factors through the

quotient k-module

(
Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Njm

)
⧸

m

∑
ℓ=2

(
Hj1 ⊗Nj2 ⊗Nj3 ⊗ · · · ⊗ Djℓ ⊗ · · · ⊗ Njm

)
∼= Hj1 ⊗

(
Nj2/Dj2

)
⊗
(
Nj3/Dj3

)
⊗ · · · ⊗

(
Njm /Djm

)(
by Lemma 3.11 (a), applied to V1 = Hj1 and Vℓ = Njℓ for ℓ > 1

and Wℓ = Djℓ for ℓ > 1

)
= Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

(
since Np/Dp = Zp for each p > 0

)
.

Thus, we obtain a k-linear map

Φ : Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm → Fi/Fi−1,

1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm 7→ ∇p

for any p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm.

Consider this map Φ. Using Lemma 3.8 (a), it is easy to see that this map Φ is
Sj1 × Sj2 × · · · × Sjm-equivariant11, and thus is a left k

[
Sj1 × Sj2 × · · · × Sjm

]
-module

morphism.

11Proof. Let τ = (τ1, τ2, . . . , τm) ∈ Sj1 × Sj2 × · · · × Sjm be any m-tuple, and let p = (p2, p3, . . . , pm) ∈
J2 × J3 × · · · × Jm. We shall show that

Φ
(
τ ·
(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

))
= τ · Φ

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

)
.

By linearity, this will entail that the map Φ is Sj1 × Sj2 × · · · × Sjm -equivariant (since elements of
the form 1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm span Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm ).

Indeed, as we mentioned at the beginning of our proof, we regard each Sjk as SJk , so
that the permutations τ1, τ2, . . . , τm act not on the sets [j1] , [j2] , . . . , [jm] but rather on the sets
J1, J2, . . . , Jm. The embedding of SJ1 × SJ2 × · · · × SJm into Sn is the usual one, so that our m-tuple
τ = (τ1, τ2, . . . , τm) is equated with the permutation τ ∈ Sn given by

τ (x) = τk (x) for each k ∈ [m] and x ∈ Jk. (10)
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But the definition of an induction product yields

Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm

= IndSn
Sj1

×Sj2×···×Sjm

(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)
= k [Sn]︸ ︷︷ ︸

=A

⊗k[Sj1
×Sj2×···×Sjm ]

(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)
(by (1))

= A⊗k[Sj1
×Sj2×···×Sjm ]

(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)
.

Hence, we can define a left A-module morphism

Ψ : Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm → Fi/Fi−1,

a ⊗k[Sj1
×Sj2×···×Sjm ]

v 7→ a · Φ (v)

(this is well-defined, since Φ : Hj1 ⊗ Zj2 ⊗ Zj3 ⊗ · · · ⊗ Zjm → Fi/Fi−1 is a left
k
[
Sj1 × Sj2 × · · · × Sjm

]
-module morphism). Explicitly, Ψ is given by

Ψ
(

a ⊗k[Sj1
×Sj2×···×Sjm ]

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

))
= a · Φ

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

)
= a · ∇p for any a ∈ A and p = (p2, p3, . . . , pm) ∈ J2 × J3 × · · · × Jm

(by the definition of Φ). Hence, using Lemma 3.8 (b), it is easy to see that this map
Ψ is surjective12.

We now know that Ψ is a surjective left A-module morphism from Hj1 ∗ Zj2 ∗
Zj3 ∗ · · · ∗ Zjm to Fi/Fi−1. We shall now show that Ψ is an isomorphism.

As in Lemma 3.8 (a), we set

τp := (τ2 (p2) , τ3 (p3) , . . . , τm (pm)) = (τ (p2) , τ (p3) , . . . , τ (pm)) .

Now, we have τ = (τ1, τ2, . . . , τm) and thus

τ ·
(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

)
= τ11 ⊗ τ2ep2 ⊗ τ3ep3 ⊗ · · · ⊗ τmepm

= 1 ⊗ eτ2(p2) ⊗ eτ3(p3) ⊗ · · · ⊗ eτm(pm).

Therefore,

Φ
(
τ ·
(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

))
= Φ

(
1 ⊗ eτ2(p2) ⊗ eτ3(p3) ⊗ · · · ⊗ eτm(pm)

)
= ∇τp

(
by the definition of Φ, since τp = (τ2 (p2) , τ3 (p3) , . . . , τm (pm))

)
= τ∇p

(
since Lemma 3.8 (a) yields ∇τp = τ∇p

)
= τ · ∇p = τ · Φ

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

)
(since the definition of Φ yields ∇p = Φ

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

)
). This is precisely what we

wanted to show. Hence, we have proved that the map Φ is Sj1 × Sj2 × · · · × Sjm -equivariant.
12Proof. The map Ψ is left A-linear. Hence, its image is a left A-submodule of Fi/Fi−1.
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From Lemma 3.5, we know that the k-module Fi/Fi−1 is free of rank

n!
j1!j2! · · · jm!

·
m

∏
k=2

(jk − 1) .

But the k-module

Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm = IndSn
Sj1

×Sj2×···×Sjm

(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)
is also free of rank13

|Sn|∣∣Sj1 × Sj2 × · · · × Sjm
∣∣︸ ︷︷ ︸

=
n!

j1!j2! · · · jm!

·dim
(
Hj1 ⊗Zj2 ⊗Zj3 ⊗ · · · ⊗ Zjm

)︸ ︷︷ ︸
=dim(Hj1)·

m
∏

k=2
dim(Zjk)

=1·
m
∏

k=2
(jk−1)

(since Hj1
is free of rank 1,

whereas each Zjk
is free of rank jk−1)

=
n!

j1!j2! · · · jm!
·

m

∏
k=2

(jk − 1) .

Thus, Lemma 3.9 (applied to M = Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm and N = Fi/Fi−1 and

s =
n!

j1!j2! · · · jm!
·

m
∏

k=2
(jk − 1) and ρ = Ψ) shows that the surjective k-linear map

By the definition of Fi, we have

Fi = F (Q1) + F (Q2) + · · ·+ F (Qi)

= F (Q1) + F (Q2) + · · ·+ F (Qi−1)︸ ︷︷ ︸
=Fi−1

+ F (Qi) = Fi−1 + F (Qi) .

Hence, the composition of canonical maps

F (Qi)
inclusion−→ Fi

projection−→ Fi/Fi−1 (11)

is surjective.
But Lemma 3.8 (b) shows that the left A-module F (Qi) is generated by a single element

of the form ∇p. Hence, the quotient A-module Fi/Fi−1 is generated by a single element of
the form ∇p (since the map (11) is surjective). But any such element of the form ∇p lies in

the image of Ψ (since we have ∇p = Ψ
(

1 ⊗k[Sj1
×Sj2×···×Sjm ]

(
1 ⊗ ep2 ⊗ ep3 ⊗ · · · ⊗ epm

))
when

p = (p2, p3, . . . , pm)). Thus, the image of Ψ must contain a generator of Fi/Fi−1, and thus must
be the entire A-module Fi/Fi−1 (since this image is a left A-submodule of Fi/Fi−1). In other
words, Ψ is surjective.

13Here, we are denoting the rank of a free k-module V by dim V, and we are using the fact that

an induced representation IndG
H V is free of rank

|G|
|H| · dim V (as a k-module) whenever V is

free (as a k-module). (The latter fact is an easy consequence of the fact that k [G] is a free right

k [H]-module of rank
|G|
|H| .)
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Ψ : Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm → Fi/Fi−1 must be an isomorphism. Since Ψ is a
left A-module morphism, we thus conclude that Ψ is a left A-module isomor-
phism. Therefore, Fi/Fi−1

∼= Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm as left A-modules, i.e., as
Sn-representations. Hence, Theorem 3.3 is proved.

3.6. In terms of Littlewood–Richardson coefficients

In the characteristic-0 case, we can restate the claim of Theorem 3.3 in terms of
Littlewood–Richardson coefficients. Let us first recount the bare minimum of sym-
metric function theory needed to state this.

We will use standard notations for (integer) partitions; in particular, the size of a
partition λ will be denoted by |λ|. We let Par denote the set of all partitions. We
let Λ be the ring of symmetric functions over Z (not over k); we refer to [GR20,
§2.1] or [Sag01, §4.3] for its definition14. To each partition λ corresponds a special
symmetric function sλ ∈ Λ called the Schur function; see [GR20, (2.2.4)] or [Sag01,
§4.4] or [Egg19, Definition 5.3] for its definition. It is well-known (see [Sag01,
(4.26) and Theorem 4.9.4] or [GR20, Definition 2.5.8 and Corollary 2.6.12] or [Egg19,
Theorem 10.40]) that a product sµsν of two Schur functions (for µ, ν ∈ Par) can
always be written as an N-linear combination of Schur functions – i.e., there exist
coefficients cλ

µ,ν ∈ N for all λ, µ, ν ∈ Par such that every two partitions µ and ν
satisfy

sµsν = ∑
λ∈Par

cλ
µ,νsλ. (12)

These coefficients cλ
µ,ν are known as the Littlewood–Richardson coefficients. More

generally, if µ1, µ2, . . . , µk are any k partitions, then we can write the product
sµ1sµ2 · · · sµk in the form

sµ1sµ2 · · · sµk = ∑
λ∈Par

cλ
µ1,µ2,...,µk

sλ (13)

with coefficients cλ
µ1,µ2,...,µk

∈ N. These “k-Littlewood–Richardson coefficients” cλ
µ1,µ2,...,µk

are, in fact, easily computed by recursion using the standard Littlewood–Richardson
coefficients cλ

µ,ν: Namely, for k = 0, we have

cλ = δλ,∅ (Kronecker delta) ;

for k = 1, we have
cλ

µ = δλ,µ (Kronecker delta) ;

and for any higher k, we have

cλ
µ1,µ2,...,µk

= ∑
ν∈Par

cν
µ1,µ2,...,µk−1

cλ
ν,µk

14Note that [Sag01, §4.3] uses C as the base ring, but everything works for any base ring.



Representations of somewhere-to-below shuffles, version 2025-08-01 page 26

(since the product sµ1sµ2 · · · sµk can be computed as
(
sµ1sµ2 · · · sµk−1

)
sµk).

Note that any Schur function sλ is homogeneous of degree |λ|. Hence, a Littlewood–
Richardson coefficient cλ

µ,ν is always 0 unless |λ| = |µ|+ |ν|. Thus, we can rewrite
the equality (12) as

sµsν = ∑
λ∈Par;

|λ|=|µ|+|ν|

cλ
µ,νsλ. (14)

Likewise, we can rewrite (13) as

sµ1sµ2 · · · sµk = ∑
λ∈Par;

|λ|=|µ1|+|µ2|+···+|µk|

cλ
µ1,µ2,...,µk

sλ. (15)

We note that there is a second Littlewood–Richardson rule ([Sag01, Theorem
4.9.2], [GR20, (2.6.4)], [Egg19, Theorem 10.40]) that decomposes a skew Schur func-
tion sλ/µ into an N-linear combination of (straight) Schur functions sν as follows:

sλ/µ = ∑
ν∈Par

cλ
µ,νsν. (16)

The formula (13) can also be viewed as a particular case of that second rule, since
the product sµ1sµ2 · · · sµk can be written as the skew Schur function sµ1∗µ2∗···∗µk cor-
responding to the skew shape µ1 ∗ µ2 ∗ · · · ∗ µk obtained by attaching the Young
diagrams of µ1, µ2, . . . , µk to each other along their northeastern/southwestern cor-
ners (see [RW84, §1] for the precise definition; this claim follows from [Egg19,
Proposition 5.9]; cf. also [Sta24, Figure 7.2]). Thus, a k-Littlewood–Richardson co-
efficient cλ

µ1,µ2,...,µk
can actually be rewritten as a (regular) Littlewood–Richardson

coefficient using (16): If we write the skew shape µ1 ∗ µ2 ∗ · · · ∗ µk as α/β, then

cλ
µ1,µ2,...,µk

= cα
β,λ. (17)

The same Littlewood–Richardson coefficients govern the decomposition of in-
duction products of Specht modules into Specht modules in characteristic 0. Namely,
if k is a field of characteristic 0, and if µ and ν are two partitions of respective sizes
i and j, then

Sµ ∗ Sν ∼=
⊕

λ∈Par;
|λ|=i+j

(
Sλ
)⊕cλ

µ,ν
(18)

as Si+j-modules15. Indeed, this follows from the Schur function equality (14) us-
ing the Frobenius characteristic map [Sag01, Theorem 4.7.4] (in fact, this map – or,
rather, its inverse – sends Schur functions sλ to Specht modules Sλ, while send-
ing products of symmetric functions to induction products of representations16).

15The notation V⊕k means the direct sum V ⊕ V ⊕ · · · ⊕ V of k copies of V.
16For products with two factors, this is proved in [Sag01, Theorem 4.7.4] (using characters and

Frobenius reciprocity). For products with k factors, it follows from the two-factor case using
Proposition 2.3.
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Likewise, if k is a field of characteristic 0, and if µ1, µ2, . . . , µk are k partitions of
respective sizes i1, i2, . . . , ik, then

Sµ1 ∗ Sµ2 ∗ · · · ∗ Sµk ∼=
⊕

λ∈Par;
|λ|=i1+i2+···+ik

(
Sλ
)⊕cλ

µ1,µ2,...,µk (19)

as Si1+i2+···+ik-modules. When k is a field of characteristic ̸= 0, or, more generally,
just any commutative ring, then the isomorphisms (18) and (19) still hold in a
weaker form, where the direct sums are replaced by filtrations whose subquotients
are Specht modules of the form Sλ (see [Cla91, Theorem 9.7] for the more general
problem of finding such filtrations of skew Specht modules17).

Now, Theorem 3.3 gives rise to the following decomposition of Fi/Fi−1:

Corollary 3.12. Assume that k is a field of characteristic 0.
Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Write the set Qi ∪

{n + 1} as {i1 < i2 < · · · < im}, so that im = n + 1. Furthermore, set i0 := 1.
Set jk := ik − ik−1 for each k ∈ [m]. (Note that j1 ≥ 0 and j2, j3, . . . , jm > 1 and
j1 + j2 + · · ·+ jm = n; this follows from Lemma 3.4 (applied to I = Qi).)

Let Parn be the set of all partitions of n. Then,

Fi/Fi−1
∼=

⊕
λ∈Parn

(
Sλ
)⊕cλ

(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1)

(where the subscripts in cλ
(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1) are the partition (j1) fol-

lowed by the partitions (jk − 1, 1) for all k ∈ [2, m]).

Proof. The set Qi ∪ {n + 1} is lacunar (since Qi is lacunar, and since Qi ⊆ [n − 1]
ensures that n + 1 is larger than any element of Qi by at least 2). In other words,
every k > 1 satisfies ik > ik−1 + 1. Hence, every k > 1 satisfies jk > 1 (since
jk = ik − ik−1) and therefore

Zjk
∼= S (jk−1,1) (20)

(by Proposition 2.1 (b), since jk is invertible in k).
Also, we have Hp ∼= S (p) for each p ∈ N (since both Hp and S (p) are trivial

1-dimensional representations of Sp). Thus, Hj1
∼= S (j1).

17Indeed, the induction product Sµ1 ∗ Sµ2 ∗ · · · ∗ Sµk is easily seen to be isomorphic to the skew
Specht module Sα/β, where α/β = µ1 ∗ µ2 ∗ · · · ∗ µk. Thus, [Cla91, Theorem 9.7] (applied to
this skew diagram α/β) yields a Specht series (i.e., a filtration whose subquotients are Specht
modules of the form Sλ) for Sµ1 ∗ Sµ2 ∗ · · · ∗ Sµk .
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Now, Theorem 3.3 yields

Fi/Fi−1
∼= Hj1 ∗ Zj2 ∗ Zj3 ∗ · · · ∗ Zjm︸ ︷︷ ︸

the first factor is an H,
while all others are Z ’s

∼= S (j1) ∗ S (j2−1,1) ∗ S (j3−1,1) ∗ · · · ∗ S (jm−1,1)(
since Hj1

∼= S (j1), and since Zjk
∼= S (jk−1,1) for each k > 1

(by (20))

)
∼=

⊕
λ∈Par;

|λ|=j1+j2+···+jm

(
Sλ
)⊕cλ

(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1) (by (19))

=
⊕

λ∈Par;
|λ|=n

(
Sλ
)⊕cλ

(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1) (since j1 + j2 + · · ·+ jm = n)

=
⊕

λ∈Parn

(
Sλ
)⊕cλ

(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1) .

This proves Corollary 3.12.

4. The Specht module spectrum

4.1. The theorem

We need a few more notations from [GriLaf22]. For any subset I of [n], we define
the following:

• We let Î be the set {0} ∪ I ∪ {n + 1}. We shall refer to Î as the enclosure of I.

For example, if n = 5, then {̂2, 3} = {0, 2, 3, 6}.

• For any ℓ ∈ [n], we let mI,ℓ be the number(
smallest element of Î that is ≥ ℓ

)
− ℓ ∈ [0, n + 1 − ℓ] ⊆ [0, n] .

For example, if n = 6 and I = {2, 5}, then

(mI,1, mI,2, mI,3, mI,4, mI,5, mI,6) = (1, 0, 2, 1, 0, 1) .

We note that an ℓ ∈ [n] satisfies mI,ℓ = 0 if and only if ℓ ∈ Î (or, equivalently,
ℓ ∈ I).

We recall that any partition λ of n gives rise to an Sn-representation called the
Specht module Sλ. If λ is a partition of n, and if a ∈ A, then the action of a on Sλ

(that is, the k-linear map Sλ → Sλ, w 7→ aw) will be denoted by Lλ (a).
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Definition 4.1. Let λ be a partition of n. Let I be a lacunar subset of [n − 1]. Write
the set I ∪ {n + 1} as {i1 < i2 < · · · < im}, so that im = n + 1. Furthermore, set
i0 := 1. Set jk := ik − ik−1 for each k ∈ [m]. (Note that Lemma 3.4 shows that
j1 ≥ 0 and j2, j3, . . . , jm > 1, hence j2, j3, . . . , jm ≥ 2.)

The m-Littlewood–Richardson coefficient cλ
(j1), (j2−1,1), (j3−1,1), ..., (jm−1,1) (as de-

fined in (13), where the subscripts are the partition (j1) followed by the partitions
(jk − 1, 1) for all k ∈ [2, m]) will then be denoted by cλ

I .

As we recall from Corollary 3.12, if I = Qi for some i ∈ [ fn+1], then this coeffi-
cient cλ

I is the multiplicity of the Specht module Sλ in the left A-module Fi/Fi−1
when k is a field of characteristic 0. Indeed, we can rewrite Corollary 3.12 as
follows using Definition 4.1:

Corollary 4.2. Assume that k is a field of characteristic 0.
Let i ∈ [ fn+1]. Let Parn be the set of all partitions of n. Then,

Fi/Fi−1
∼=

⊕
λ∈Parn

(
Sλ
)⊕cλ

Qi .

We shall now state our first main theorem:

Theorem 4.3. Let k be any field. Let λ be a partition of n. Let ω1, ω2, . . . , ωn ∈ k.
For each subset I of [n], we set

ωI := ω1mI,1 + ω2mI,2 + · · ·+ ωnmI,n ∈ k.

Then:

(a) The eigenvalues of the operator Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) on the Specht
module Sλ are the elements

ωI for all lacunar subsets I ⊆ [n − 1] satisfying cλ
I ̸= 0,

and their respective algebraic multiplicities are the cλ
I in the generic case (i.e., if

no two I’s produce the same ωI ; otherwise the multiplicities of colliding eigen-
values should be added together).

(b) If all these ωI (for all lacunar subsets I ⊆ [n − 1] satisfying cλ
I ̸= 0) are

distinct, then Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) is diagonalizable.

(c) We have

∏
I⊆[n−1] is lacunar;

cλ
I ̸=0

(Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωI idSλ) = 0.
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To prove this theorem, we will need a further theorem, which “maps” the Fi-
bonacci filtration from A to a given Specht module Sλ:

Theorem 4.4. Let k be any field of characteristic 0. Let λ be a partition of n.
Then, there exists a filtration

0 = Fλ
fn+1

⊆ Fλ
fn+1−1 ⊆ Fλ

fn+1−2 ⊆ · · · ⊆ Fλ
2 ⊆ Fλ

1 ⊆ Fλ
0 = Sλ

(note the “backward” indexing!) of the Specht module Sλ by left T -submodules
with the following four properties:

1. Each subquotient Fλ
i−1/Fλ

i (for i ∈ [ fn+1]) has dimension cλ
Qi

as a k-vector
space (see Definition 4.1 for the meaning of cλ

I ).

2. In particular, an i ∈ [ fn+1] satisfies Fλ
i−1 = Fλ

i if and only if cλ
Qi

= 0.

3. On each subquotient Fλ
i−1/Fλ

i (for i ∈ [ fn+1]), each element tℓ ∈ T (for
ℓ ∈ [n]) acts as multiplication by the scalar mQi,ℓ.

4. More generally, on each subquotient Fλ
i−1/Fλ

i (for i ∈ [ fn+1]), each
element P (t1, t2, . . . , tn) ∈ T (where P is a polynomial in n non-
commuting indeterminates over k) acts as multiplication by the scalar
P
(
mQi,1, mQi,2, . . . , mQi,n

)
.

4.2. Lemmas about Sn-representations

In order to prove Theorem 4.3 and Theorem 4.4, we need a few lemmas about
left A-modules (i.e., representations of Sn). We begin with something basic and
well-known (see, e.g., [EGH+11, last paragraph of §5.13]):

Proposition 4.5. Assume that k is a field of characteristic 0. Let λ and µ be two
partitions of n. Then, the Specht modules Sλ and Sµ satisfy

HomA
(
Sλ,Sµ

)
∼=
{

k, if λ = µ;
0, if λ ̸= µ

as k-vector spaces.

(Here and in the following, “HomA” always stands for the set of left A-module
morphisms. This is always a k-vector space, but usually not an A-module on
any side.)

For the sake of completeness, we give a proof of this proposition in the Appendix
(Section A).
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Lemma 4.6. Assume that k is a field of characteristic 0. Let λ be a partition
of n. Define the contravariant functor HomA

(
−,Sλ

)
from the category of left

A-modules to the category of k-vector spaces that is given by

X 7→ HomA
(

X,Sλ
)

on objects

and likewise on morphisms. (This is a contravariant Hom functor.)
This contravariant functor HomA

(
−,Sλ

)
is exact (i.e., respects exact se-

quences).

Proof. The k-algebra A = k [Sn] is semisimple (by Maschke’s theorem, since k is
a field of characteristic 0). Hence, every short exact sequence of left A-modules
is split. Consequently, any Hom functor from the category of left A-modules is
exact18. Thus, the contravariant Hom functor HomA

(
−,Sλ

)
is exact. This proves

Lemma 4.6.

Note that the Specht module Sλ in Lemma 4.6 could be replaced by any left
A-module, but we will use Sλ only. The same applies to the following lemma:

Lemma 4.7. Let λ be a partition of n. Let J be a left A-submodule of A (that is,
a left ideal of A). Then, there is a canonical k-vector space isomorphism

HomA
(
A/J, Sλ

)
→
{

v ∈ Sλ | Jv = 0
}

,

f 7→ f
(
1A
)

.

Proof. The left A-module morphisms from A/J to Sλ can be identified with the left
A-module morphisms from A to Sλ that vanish on J. Thus, we obtain a k-vector

18We remind the reader of the proof of this fact: Let F be a contravariant Hom functor from the
category of left A-modules (the case of a covariant Hom functor is analogous). We must show
that F is exact.

Let 0 → X → Y → Z → 0 be a short exact sequence of left A-modules. Then, this sequence is
split (since every short exact sequence of left A-modules is split), and thus is isomorphic to the
obvious exact sequence 0 → X → X⊕Z → Z → 0. The Hom functor F sends the latter sequence
to another short exact sequence 0 → F (X) → F (X)⊕F (Z) → F (Z) → 0 (since Hom functors
respect finite direct sums). But F is a functor; thus, F sends any two isomorphic complexes to
two isomorphic complexes. Hence, because the two short exact sequences 0 → X → Y → Z → 0
and 0 → X → X ⊕ Z → Z → 0 are isomorphic, their images under F must also be isomorphic.
In other words, the image of the short exact sequence 0 → X → Y → Z → 0 under F is
isomorphic to the image of 0 → X → X ⊕ Z → Z → 0 under F . But the latter image is exact, as
we have shown. Hence, the former image is also exact.

Thus, F sends the original short exact sequence 0 → X → Y → Z → 0 to a short exact
sequence. Since this is true for any short exact sequence 0 → X → Y → Z → 0, we thus have
shown that the functor F respects short exact sequences. In other words, F is exact, qed.
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space isomorphism

Φ : HomA
(
A/J, Sλ

)
→
{

g ∈ HomA
(
A, Sλ

)
| g (J) = 0

}
,

f 7→
(
A → Sλ, a 7→ f (a)

)
.

However, recall the well-known k-vector space isomorphism HomA (A, M) ∼= M
that holds for any k-algebra A and any left A-module M. Thus, in particular, the
left A-module morphisms from A to Sλ can be identified with the elements of Sλ

via the k-vector space isomorphism

Ψ : HomA
(
A, Sλ

)
→ Sλ,

g 7→ g (1A) .

This latter isomorphism has the property that a left A-module morphism g ∈
HomA

(
A, Sλ

)
satisfies g (J) = 0 if and only if its image Ψ (g) satisfies J ·Ψ (g) = 0

(since g (J) = g (J · 1A) = J · g (1A)︸ ︷︷ ︸
=Ψ(g)

= J · Ψ (g)). Thus, Ψ can be restricted to a k-

vector space isomorphism

Ψ′ :
{

g ∈ HomA
(
A, Sλ

)
| g (J) = 0

}
→
{

v ∈ Sλ | Jv = 0
}

,

g 7→ g (1A) .

The composition Ψ′ ◦ Φ is thus a k-vector space isomorphism

HomA
(
A/J, Sλ

)
→
{

v ∈ Sλ | Jv = 0
}

,

f 7→ f
(
1A
)

.

This is clearly canonical in J, so that Lemma 4.7 is proved.

4.3. The proofs

We are now ready to prove Theorem 4.4 and Theorem 4.3, in this order.

Proof of Theorem 4.4. For each i ∈ [0, fn+1], we define a subset Fλ
i of Sλ by

Fλ
i :=

{
v ∈ Sλ | Fiv = 0

}
.

This subset Fλ
i is actually a left T -submodule of Sλ (since Proposition 3.2 shows

that Fi is a right T -submodule of A) 19. Moreover, because of

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] = A,

19Proof. To show that Fλ
i is closed under addition, we observe that any v, w ∈ Fλ

i satisfy v + w ∈ Fλ
i
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we have
Sλ = Fλ

0 ⊇ Fλ
1 ⊇ Fλ

2 ⊇ · · · ⊇ Fλ
fn+1

= 0.

This is a left T -module filtration of Sλ, albeit written backwards. We can rewrite it
as

0 = Fλ
fn+1

⊆ Fλ
fn+1−1 ⊆ Fλ

fn+1−2 ⊆ · · · ⊆ Fλ
2 ⊆ Fλ

1 ⊆ Fλ
0 = Sλ.

Our goal is to show that this filtration satisfies the four properties 1, 2, 3 and 4
claimed in Theorem 4.4.

For this purpose, we fix i ∈ [ fn+1]. First, we shall show property 3. We must
show that each element tℓ ∈ T acts on Fλ

i−1/Fλ
i as multiplication by the scalar mQi,ℓ.

So we let ℓ ∈ [n] and v ∈ Fλ
i−1/Fλ

i (with v ∈ Fλ
i−1) be arbitrary. We must show that

tℓv = mQi,ℓv in Fλ
i−1/Fλ

i .
We have v ∈ Fλ

i−1. In other words, v ∈ Sλ and Fi−1v = 0 (by the definition of
Fλ

i−1).
Theorem 3.1 (c) yields Fi ·

(
tℓ − mQi,ℓ

)
⊆ Fi−1. Hence,

Fi ·
(
tℓ − mQi,ℓ

)︸ ︷︷ ︸
⊆Fi−1

v ⊆ Fi−1v = 0,

so that Fi ·
(
tℓ − mQi,ℓ

)
v = 0. In other words,

(
tℓ − mQi,ℓ

)
v ∈ Fλ

i (by the definition
of Fλ

i ). In other words, tℓv − mQi,ℓv ∈ Fλ
i . In other words, tℓv = mQi,ℓv in Fλ

i−1/Fλ
i .

In other words, tℓv = mQi,ℓv in Fλ
i−1/Fλ

i . Thus, the proof of property 3 is complete.
Property 4 follows immediately from property 3.
Let us now prove property 1.
Note that Fi is a left A-submodule of A (by Proposition 3.2). Lemma 4.7 shows

that whenever J is a left A-submodule of A (that is, a left ideal of A), there is a
canonical k-vector space isomorphism

HomA
(
A/J, Sλ

)
→
{

v ∈ Sλ | Jv = 0
}

,

f 7→ f
(
1A
)

.

Thus, we have {
v ∈ Sλ | Jv = 0

}
∼= HomA

(
A/J, Sλ

)
(21)

(because v, w ∈ Fλ
i entails Fiv = 0 and Fiw = 0 and thus Fi (v + w) ⊆ Fiv︸︷︷︸

=0

+ Fiw︸︷︷︸
=0

= 0, so that

Fi (v + w) = 0 and therefore v + w ∈ Fλ
i ).

To show that Fλ
i is closed under the left T -action, we observe that any t ∈ T and v ∈ Fλ

i satisfy
tv ∈ Fλ

i (because v ∈ Fλ
i entails Fiv = 0; but we have Fit ⊆ Fi since Fi is a right T -submodule of

A; thus Fi (tv) = Fit︸︷︷︸
⊆Fi

v ⊆ Fiv = 0 and therefore Fi (tv) = 0, so that tv ∈ Fλ
i ).

An even simpler argument shows that 0 ∈ Fλ
i .
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canonically for each left A-submodule J of A. Now, the definition of Fλ
i yields

Fλ
i =

{
v ∈ Sλ | Fiv = 0

}
∼= HomA

(
A/Fi, Sλ

)
(22)

canonically (by (21)) and similarly

Fλ
i−1

∼= HomA
(
A/Fi−1, Sλ

)
. (23)

However, Lemma 4.6 shows that the contravariant functor HomA
(
−,Sλ

)
from

the category of left A-modules to the category of k-vector spaces is exact. Hence,
applying this contravariant functor to the exact sequence

0 → Fi/Fi−1 → A/Fi−1 → A/Fi → 0

of left A-modules, we obtain an exact sequence

0 → HomA
(
A/Fi, Sλ

)
→ HomA

(
A/Fi−1, Sλ

)
→ HomA

(
Fi/Fi−1, Sλ

)
→ 0

of k-vector spaces. In view of (23) and (22), we can rewrite this latter exact sequence
as

0 → Fλ
i → Fλ

i−1 → HomA
(

Fi/Fi−1, Sλ
)
→ 0.

The arrow Fλ
i → Fλ

i−1 here is the canonical inclusion (since the isomorphisms in
(23) and (22) are the canonical ones), and thus we obtain

HomA
(

Fi/Fi−1, Sλ
)
∼= Fλ

i−1/Fλ
i (24)

from the exactness of our sequence.
However, Corollary 4.2 says that

Fi/Fi−1
∼=

⊕
ν∈Parn

(Sν)
⊕cν

Qi . (25)

Hence,

HomA
(

Fi/Fi−1, Sλ
)
∼= HomA

( ⊕
ν∈Parn

(Sν)
⊕cν

Qi , Sλ

)
∼=

⊕
ν∈Parn

(
HomA

(
Sν,Sλ

))⊕cν
Qi (26)

(since Hom functors respect finite direct sums).
But each ν ∈ Parn satisfies

HomA
(
Sν,Sλ

)
∼=
{

k, if ν = λ;
0, if ν ̸= λ

(by Proposition 4.5)
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and thus

(
HomA

(
Sν,Sλ

))⊕cν
Qi ∼=

({
k, if ν = λ;
0, if ν ̸= λ

)⊕cν
Qi ∼=

{
k⊕cν

Qi , if ν = λ;
0, if ν ̸= λ.

Thus, we can rewrite (26) as

HomA
(

Fi/Fi−1, Sλ
)
∼=

⊕
ν∈Parn

{
k⊕cν

Qi , if ν = λ;
0, if ν ̸= λ

= k⊕cλ
Qi .

Comparing this with (24), we see that

Fλ
i−1/Fλ

i
∼= k⊕cλ

Qi .

Thus, the k-vector space Fλ
i−1/Fλ

i has dimension cλ
Qi

. This proves property 1.
Property 2 follows immediately from property 1 (since Fλ

i−1 = Fλ
i is equivalent to

dim
(

Fλ
i−1/Fλ

i
)
= 0). Hence, our proof of Theorem 4.4 is complete.

Proof of Theorem 4.3. In the following, the word “dimension” will always refer to the
dimension of a k-vector space, even if some other module structures are present.
Thus, in particular, the dimension of a T -module X will mean the dimension of X
as a k-vector space.

(a) Let us first assume that k is a field of characteristic 0. We shall later extend
this to the general case.

Theorem 4.4 shows that there exists a filtration

0 = Fλ
fn+1

⊆ Fλ
fn+1−1 ⊆ Fλ

fn+1−2 ⊆ · · · ⊆ Fλ
2 ⊆ Fλ

1 ⊆ Fλ
0 = Sλ (27)

of the Specht module Sλ by left T -submodules with the four properties 1, 2, 3 and
4 stated in Theorem 4.4. Consider this filtration. Fix any basis (v1, v2, . . . , vs) of Sλ

that conforms with this filtration (i.e., a basis that begins with a basis of Fλ
fn+1−1,

then extends it to a basis of Fλ
fn+1−2, then extends it to a basis of Fλ

fn+1−3, and so on),

so that each Fλ
i is spanned by v1, v2, . . . , vj(i) for some j (i) ∈ [0, s]. Note that the

inclusions in (27) yield

0 = j ( fn+1) ≤ j ( fn+1 − 1) ≤ j ( fn+1 − 2) ≤ · · · ≤ j (2) ≤ j (1) ≤ j (0) = s.

Note that each i ∈ [ fn+1] satisfies j (i) = dim
(

Fλ
i
)

and j (i − 1) = dim
(

Fλ
i−1

)
and

thus

j (i − 1)− j (i) = dim
(

Fλ
i−1

)
− dim

(
Fλ

i

)
= dim

(
Fλ

i−1/Fλ
i

)
= cλ

Qi
(28)

(by property 1 of our filtration).
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The operator Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) preserves the filtration (27) (since
this filtration is a filtration by left T -submodules, but ω1t1 + ω2t2 + · · ·+ ωntn ∈
T ). Hence, the matrix M that represents this operator with respect to the basis
(v1, v2, . . . , vs) is block-upper-triangular with blocks of sizes

j (i − 1)− j (i) for all i ∈ [ fn+1]

(because, e.g., the fact that the operator preserves Fλ
i means that the first j (i)

columns of the matrix M have zeroes everywhere below the j (i)-th row). Moreover,
property 4 of our filtration shows that the element ω1t1 + ω2t2 + · · ·+ ωntn ∈ T
acts as multiplication by the scalar

ω1mQi,1 + ω2mQi,2 + · · ·+ ωnmQi,n = ωQi

(
by the definition of ωQi

)
on each subquotient Fλ

i−1/Fλ
i . In other words, for each v ∈ Fλ

i−1, the vector v ∈
Fλ

i−1/Fλ
i satisfies

(ω1t1 + ω2t2 + · · ·+ ωntn) · v = ωQi v, (29)

and therefore

(Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)) (v)
= (ω1t1 + ω2t2 + · · ·+ ωntn) · v

= ωQi v +
(

some element of Fλ
i

)
(by (29))

= ωQi v +
(

some linear combination of v1, v2, . . . , vj(i)

)
(since Fλ

i is spanned by v1, v2, . . . , vj(i)). We can apply this in particular to v = vk

for each k ∈ [j (i − 1)] (since Fλ
i−1 is spanned by v1, v2, . . . , vj(i−1)), and conclude

that

(Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)) (vk)

= ωQi vk +
(

some linear combination of v1, v2, . . . , vj(i)

)
for each k ∈ [j (i − 1)].

Thus, the matrix M that represents the operator Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)
with respect to the basis (v1, v2, . . . , vs) is not only block-upper-triangular, but also
has the property that its i-th diagonal block (for each i ∈ [ fn+1], counted from the
end) is the scalar matrix ωQi · Ij(i−1)−j(i) = ωQi · Icλ

Qi
(by (28)). Consequently, the

matrix M is upper-triangular, and its diagonal entries are the elements ωQi for all
i ∈ [ fn+1], with each ωQi appearing cλ

Qi
times (this means that if cλ

Qi
= 0, then ωQi

does not appear at all).
Of course, this allows us to read off the eigenvalues of this matrix M, and

thus of the operator Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) (since the eigenvalues of a tri-
angular matrix are just its diagonal entries). We conclude that the eigenvalues
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of Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) are the elements ωQi for all i ∈ [ fn+1], with each
ωQi appearing with algebraic multiplicity cλ

Qi
. Since Q1, Q2, . . . , Q fn+1 are just the

lacunar subsets of [n − 1], we can rewrite this as follows: The eigenvalues of
Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) are the elements ωI for all lacunar subsets I ⊆ [n − 1],
with each ωI appearing with algebraic multiplicity cλ

I . We can restrict this list to
those lacunar subsets I ⊆ [n − 1] that satisfy cλ

I ̸= 0 (since an eigenvalue ωI that
appears with algebraic multiplicity cλ

I = 0 simply does not appear at all).
This proves Theorem 4.3 (a) in the case when k is a field of characteristic 0. It

remains to extend the proof to the case when k is an arbitrary field. But there is
a standard trick for this: We recast our result as a polynomial identity. Namely,
Theorem 4.3 (a) is saying that

det (x idSλ − Lλ (ω1t1 + ω2t2 + · · ·+ ωntn))︸ ︷︷ ︸
This is the characteristic polynomial of the

endomorphism Lλ(ω1t1+ω2t2+···+ωntn) of Sλ

= ∏
I⊆[n−1] lacunar

(x − ωI)
cλ

I

in the polynomial ring k [x]. This is a polynomial identity in the indeterminates
x, ω1, ω2, . . . , ωn (since the Specht module Sλ has a basis consisting of the standard
polytabloids, and the action of Sn on this basis is independent of the base field k).
Thus, knowing that this identity holds whenever k is a field of characteristic 0, we
can immediately conclude that it holds for all fields k (and even all commutative
rings k). This proves Theorem 4.3 (a) in the general case.

(c) Again, let us first assume that k is a field of characteristic 0. Recall the
filtration (27) constructed in the proof of part (a). As we saw in that proof, the
element ω1t1 + ω2t2 + · · ·+ ωntn ∈ T acts as multiplication by the scalar ωQi on
each subquotient Fλ

i−1/Fλ
i of that filtration. In other words, for each i ∈ [ fn+1], we

have
(ω1t1 + ω2t2 + · · ·+ ωntn) v = ωQi v for each v ∈ Fλ

i−1/Fλ
i ,

that is,

(ω1t1 + ω2t2 + · · ·+ ωntn) v − ωQi v ∈ Fλ
i for each v ∈ Fλ

i−1.

In other words, for each i ∈ [ fn+1], we have(
Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωQi idSλ

)
Fλ

i−1 ⊆ Fλ
i .

Hence, the operator

∏
i∈[ fn+1]

(
Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωQi idSλ

)
∈ Endk

(
Sλ
)

20 sends the whole Sλ to 0 (because its first factor sends Sλ = Fλ
0 down to Fλ

1 , then
its second factor sends Fλ

1 further down to Fλ
2 , then its third factor sends Fλ

2 onward

20This product is well-defined (and does not depend on the order of its factors), since all its factors
(being polynomials in Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)) commute.
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to Fλ
3 , and so on, until the last factor sends Fλ

fn+1−1 down to Fλ
fn+1

= 0). Moreover, for
this to hold, we do not actually need all the fn+1 factors of this product, but rather
only those factors that correspond to the numbers i ∈ [ fn+1] satisfying cλ

Qi
̸= 0

(because if cλ
Qi

= 0, then property 2 of our filtration shows that Fλ
i−1 = Fλ

i , and thus
we don’t need to apply the Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωQi idSλ factor to send
us from Fλ

i−1 down into Fλ
i ). Hence, the operator

∏
i∈[ fn+1];

cλ
Qi
̸=0

(
Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωQi idSλ

)
∈ Endk

(
Sλ
)

sends the whole Sλ to 0 as well. In other words,

∏
i∈[ fn+1];

cλ
Qi
̸=0

(
Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωQi idSλ

)
= 0.

Since Q1, Q2, . . . , Q fn+1 are just the lacunar subsets of [n − 1], we can rewrite this as

∏
I⊆[n−1] is lacunar;

cλ
I ̸=0

(Lλ (ω1t1 + ω2t2 + · · ·+ ωntn)− ωI idSλ) = 0.

This proves Theorem 4.3 (c) in the case when k is a field of characteristic 0. Just as in
our proof of part (a), we can derive the general case from this case by a polynomial
identity argument (treating ω1, ω2, . . . , ωn as indeterminates, and now considering
polynomials with values in Endk

(
Sλ
)
, which can be encoded as tuples of usual

polynomials).

(b) Theorem 4.3 (c) shows that the endomorphism Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) ∈
Endk

(
Sλ
)

is annihilated by the polynomial ∏
I⊆[n−1] is lacunar;

cλ
I ̸=0

(x − ωI) ∈ k [x] (mean-

ing that the polynomial vanishes when we substitute the endomorphism for x).
But it is well-known that a linear endomorphism (of a finite-dimensional k-vector
space) that is annihilated by a polynomial of the form ∏ (x − r) with pairwise dis-
tinct scalars r is always diagonalizable. Hence, if the ωI in the above polynomial
are pairwise distinct, then the endomorphism Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) is di-
agonalizable. This proves Theorem 4.3 (b).

5. Final remarks

Thus we have computed the eigenvalues – and their algebraic multiplicities – for
the action of any one-sided cycle shuffle ω1t1 + ω2t2 + · · · + ωntn on any Specht
module Sλ. With a trivial amount of work, we could extend this analysis to
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the action of any element of T (that is, of any noncommutative polynomial in
t1, t2, . . . , tn). This automatically allows us to identify the eigenvalues of such ele-
ments on any Sn-representation V, as long as the decomposition of V into Specht
modules is known.

The proof of our result was achieved in a rather roundabout way: We did no
work in the Specht modules Sλ themselves. Instead, we used a filtration of A
(the Fibonacci filtration) whose subquotients Fi/Fi−1 we were able to decompose
into Specht modules (Theorem 3.3). Then, we “projected” this filtration onto each
Specht module Sλ (Theorem 4.4) and used the semisimplicity of A (actually, the
complete reducibility of Sλ would have sufficed) to triangularize the action of T
on Sλ. This is in contrast to other instances of similar questions, such as the recent
[AFBC+24], where the solution requires significant exploration of the inner life of
Sλ.

Our above method for proving Theorems 4.4 and 4.3 – in which we used the
Fibonacci filtration to triangularize Lλ (ω1t1 + ω2t2 + · · ·+ ωntn) – is partly gener-
alizable:

Proposition 5.1. Let A be a k-algebra, and let T be a k-subalgebra of A. Let

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fm = A (30)

be a filtration of A by (A, T)-subbimodules. Let V be any left A-module. If B is
any (A, T)-subbimodule of A, then we can define a left T-submodule

VB := {v ∈ V | Bv = 0}

of V. Then, we have a filtration

0 = VFm ⊆ VFm−1 ⊆ VFm−2 ⊆ · · · ⊆ VF0 = V (31)

of V by left T-submodules.

(a) Its subquotients VFi−1/VFi can be canonically embedded into
HomA (Fi/Fi−1, V) as left T-modules. Thus, if some element t ∈ T acts
triangularly from the right on the filtration (30) (meaning that it acts as a scalar
on each subquotient Fi/Fi−1), then it also acts triangularly from the left on the
filtration (31).

(b) If k is a field and the algebra A is semisimple, then these embeddings
VFi−1/VFi → HomA (Fi/Fi−1, V) are isomorphisms. Thus, in this case, know-
ing the dimensions of the Hom-spaces HomA (Fi, V) allows us to compute the
multiplicities of eigenvalues for a triangular t ∈ T acting on V.

Proof. This is implicit in our above proofs of Theorems 4.4 and 4.3 (where A, T
and V were taken to be A, T and Sλ, and where the submodules VFi were called
Fλ

i ).
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A. Omitted proofs

In this appendix, we give proofs to some folklore facts about representations of
symmetric groups.

Proof of Proposition 2.1 (sketched). We will use the notations from [Gri25].
Let (e1, e2, . . . , en) be the standard basis of the natural representation Nn = kn.

The symmetric group Sn acts on it by the rule σ · ei = eσ(i) for all σ ∈ Sn and i ∈ [n].
The subrepresentation Dn is then spanned by the single vector e1 + e2 + · · ·+ en =
(1, 1, . . . , 1).

Consider the Young diagram Y ((n − 1, 1)) of the partition (n − 1, 1). This Young
diagram gives rise to a Young module M(n−1,1) := MY((n−1,1)) and a Specht mod-
ule S (n−1,1) := SY((n−1,1)).

The Young module M(n−1,1) has a basis formed by the n-tabloids of shape
Y ((n − 1, 1)). We will use the short notation k for the n-tabloid of shape Y ((n − 1, 1))
that has the entry k in cell (2, 1), as in [Gri25, Example 5.3.16].

The Specht module S (n−1,1) is the submodule of M(n−1,1) spanned by the poly-
tabloids eT = T (2, 1)− T (1, 1), or, equivalently, by the differences k − ℓ for k ̸= ℓ

in [n].
We can identify the Sn-representation M(n−1,1) with the natural representation

Nn by the isomorphism

M(n−1,1) → Nn,

k 7→ ek.

Then, the Specht module S (n−1,1) is spanned by the differences ek − eℓ for k ̸= ℓ

in [n]. Hence, S (n−1,1) is the zero-sum subrepresentation of Nn (called R (kn) in
[Gri25, §4.2.5]).

(a) Let (e∗1 , e∗2 , . . . , e∗n) be the dual basis of the standard basis (e1, e2, . . . , en) of
Nn. Thus, each i ∈ [n] satisfies e∗i ∈ N ∗

n , and each i, j ∈ [n] satisfy e∗i
(
ej
)
= δi,j

(Kronecker delta). Furthermore, σ
(
e∗i
)
= e∗σ(i) for each σ ∈ Sn and i ∈ [n].

Now, consider the k-linear map

Φ : M(n−1,1) → N ∗
n ,

k 7→ e∗k (for all k ∈ [n]) .

This map Φ is invertible (since
(

k
)

k∈[n]
and

(
e∗k
)

k∈[n] are bases of the k-modules

M(n−1,1) and N ∗
n , respectively) and Sn-equivariant (since each k ∈ [n] and σ ∈ Sn

satisfy σ
(

k
)
= σ (k) and σ

(
e∗k
)
= e∗σ(k)). Hence, this map Φ is an isomorphism of

Sn-representations.
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Now, consider the subrepresentation S (n−1,1) = spank

{
k − ℓ | k ̸= ℓ

}
of M(n−1,1).

The image of this subrepresentation under Φ is

Φ
(
S (n−1,1)

)
= spank {e∗k − e∗ℓ | k ̸= ℓ}

(
since S (n−1,1) = spank

{
k − ℓ | k ̸= ℓ

})
= {α1e∗1 + α2e∗2 + · · ·+ αne∗n ∈ N ∗

n | α1 + α2 + · · ·+ αn = 0} because if v1, v2, . . . , vn are any n vectors in a k-module V,
then spank {vk − vℓ | k ̸= ℓ}

= {α1v1 + α2v2 + · · ·+ αnvn ∈ V | α1 + α2 + · · ·+ αn = 0}


= {h ∈ N ∗

n | h (e1 + e2 + · · ·+ en) = 0} since each k-linear map h ∈ N ∗
n can be written uniquely

as α1e∗1 + α2e∗2 + · · ·+ αne∗n, and then it
satisfies α1 + α2 + · · ·+ αn = h (e1 + e2 + · · ·+ en)


= {h ∈ N ∗

n | h (Dn) = 0} (since Dn = spank {e1 + e2 + · · ·+ en})

∼= (Nn/Dn)
∗

 since the k-linear maps h ∈ N ∗
n satisfying h (Dn) = 0

are in canonical bijection with
the k-linear maps h ∈ (Nn/Dn)

∗


= Z∗

n (since Nn/Dn = Zn) ,

and this is an isomorphism of Sn-representations. On the other hand, however, we
also have Φ

(
S (n−1,1)

)
∼= S (n−1,1) as Sn-representations (since Φ is an isomorphism

of Sn-representations). Thus,

S (n−1,1) ∼= Φ
(
S (n−1,1)

)
∼= Z∗

n as Sn-representations.

Taking duals, we thus obtain(
S (n−1,1)

)∗ ∼= (Z∗
n)

∗ as Sn-representations. (32)

But the k-module Zn = Nn/Dn = kn/ spank {(1, 1, . . . , 1)} has a finite basis
(namely, (e1, e2, . . . , en−1), as can be easily seen from basic linear algebra). Hence,
[Gri25, Proposition 5.19.22 (b)] shows that (Z∗

n)
∗ ∼= Zn as Sn-representations. In

view of this, we can rewrite (32) as follows:(
S (n−1,1)

)∗ ∼= Zn as Sn-representations.

This proves Proposition 2.1 (a).

(b) Assume that n is invertible in k. Then, [Gri25, Proposition 4.2.28 (a)] says
that kn = R (kn) ⊕ D (kn), where we are using the notations of [Gri25]. In our
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notations, this is saying that Nn = S (n−1,1) ⊕Dn (since the submodule S (n−1,1) =

spank

{
k − ℓ | k ̸= ℓ

}
of M(n−1,1) corresponds to the zero-sum subrepresentation

R (kn) = spank {ek − eℓ | k ̸= ℓ} of kn). Hence, S (n−1,1) ∼= Nn/Dn = Zn as Sn-
representations. This proves Proposition 2.1 (b).

Alternatively, we can prove Proposition 2.1 (b) directly: Let

avg :=
1
n
(
1 + 2 + · · ·+ n

)
=

n

∑
j=1

j ∈ M(n−1,1).

The k-linear map

ϱ : Nn → S (n−1,1),

ei 7→ i − avg (for all i ∈ [n])

is well-defined (since each i ∈ [n] satisfies i − avg = i −
n
∑

j=1
j =

1
n

n
∑

j=1

(
i − j

)
︸ ︷︷ ︸
∈S (n−1,1)

∈

S (n−1,1)) and Sn-equivariant (since we can easily see that σ · avg = avg for each σ ∈
Sn). It furthermore sends e1 + e2 + · · ·+ en to 0, and thus vanishes on the submodule
Dn. Hence, it factors through a k-linear map ϱ′ : Nn/Dn → S (n−1,1). This latter
map ϱ′ is easily seen to be invertible (indeed, it sends the basis (e1, e2, . . . , en−1) of
Nn/Dn to the basis

(
1 − avg, 2 − avg, . . . , n − 1 − avg

)
of S (n−1,1)), and thus is an

isomorphism of Sn-representations (since it is Sn-equivariant). Hence, S (n−1,1) ∼=
Nn/Dn = Zn as Sn-representations. Proposition 2.1 (b) is now proved again.

Proof of Proposition 2.3. We shall use the following general facts about induced rep-
resentations ([GR20, Exercise 4.1.2] and [GR20, Exercise 4.1.3], respectively21):

• Transitivity of induction: Let G be a group. Let H be a subgroup of G. Let I be
a subgroup of H. Let U be a representation of I. Then,

IndG
H IndH

I U ∼= IndG
I U. (33)

• Monoidality of induction: Let G1 and G2 be two groups. Let H1 be a subgroup
of G1, and let H2 be a subgroup of G2. Let W1 be a representation of H1, and
let W2 be a representation of H2. Then,

IndG1×G2
H1×H2

(W1 ⊗ W2) ∼=
(

IndG1
H1

W1

)
⊗
(

IndG2
H2

W2

)
. (34)

Now, set G1 := Sn1+n2+···+ni and H1 := Sn1 × Sn2 × · · · × Sni and W1 := U1 ⊗
U2 ⊗ · · · ⊗Ui (a representation of H1) and G2 := Sni+1+ni+2+···+nk and H2 := Sni+1 ×
21The facts are stated in [GR20] only for k = C, but the proofs work equally well for any k.
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Sni+2 × · · · × Snk and W2 := Ui+1 ⊗ Ui+2 ⊗ · · · ⊗ Uk (a representation of H2). Then,
by the definition of induction products, we have

U1 ∗ U2 ∗ · · · ∗ Ui = Ind
Sn1+n2+···+ni
Sn1×Sn2×···×Sni

(U1 ⊗ U2 ⊗ · · · ⊗ Ui) = IndG1
H1

W1

(by the definitions of G1 and H1 and W1) and likewise

Ui+1 ∗ Ui+2 ∗ · · · ∗ Uk = IndG2
H2

W2.

Thus,

(U1 ∗ U2 ∗ · · · ∗ Ui)︸ ︷︷ ︸
=Ind

G1
H1

W1

∗ (Ui+1 ∗ Ui+2 ∗ · · · ∗ Uk)︸ ︷︷ ︸
=IndG2

H2
W2

=
(

IndG1
H1

W1

)
∗
(

IndG2
H2

W2

)
= Ind

Sn1+n2+···+nk
Sn1+n2+···+ni×Sni+1+ni+2+···+nk

((
IndG1

H1
W1

)
⊗
(

IndG2
H2

W2

))
(by the definition of an induction product)

= Ind
Sn1+n2+···+nk
G1×G2

((
IndG1

H1
W1

)
⊗
(

IndG2
H2

W2

))
︸ ︷︷ ︸

∼=Ind
G1×G2
H1×H2

(W1⊗W2)

(by (34))

(
by the definitions

of G1 and G2

)

∼= Ind
Sn1+n2+···+nk
G1×G2

(
IndG1×G2

H1×H2
(W1 ⊗ W2)

)
∼= Ind

Sn1+n2+···+nk
H1×H2

(W1 ⊗ W2) (by an application of (33))

∼= Ind
Sn1+n2+···+nk
Sn1×Sn2×···×Snk

(U1 ⊗ U2 ⊗ · · · ⊗ Uk)

(since the definitions of H1 and H2 yield

H1 × H2 = (Sn1 × Sn2 × · · · × Sni)×
(
Sni+1 × Sni+2 × · · · × Snk

)
∼= Sn1 × Sn2 × · · · × Snk

and

W1 ⊗ W2 = (U1 ⊗ U2 ⊗ · · · ⊗ Ui)⊗ (Ui+1 ⊗ Ui+2 ⊗ · · · ⊗ Uk)
∼= U1 ⊗ U2 ⊗ · · · ⊗ Uk,

and both of these isomorphisms are canonical and “fit together” in that the latter
isomorphism respects the action of the former groups22). In view of

U1 ∗ U2 ∗ · · · ∗ Uk = Ind
Sn1+n2+···+nk
Sn1×Sn2×···×Snk

(U1 ⊗ U2 ⊗ · · · ⊗ Uk)

22Alternatively, you can argue directly: Both Ind
Sn1+n2+···+nk
H1×H2

(W1 ⊗ W2) and
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(by the definition of the induction product), we can rewrite this as

(U1 ∗ U2 ∗ · · · ∗ Ui) ∗ (Ui+1 ∗ Ui+2 ∗ · · · ∗ Uk) ∼= U1 ∗ U2 ∗ · · · ∗ Uk.

This proves Proposition 2.3.

Proof of Proposition 4.5. The following proof works more generally when k is a com-
mutative ring in which n! is invertible.

We shall use the notations of [Gri25, Chapter 5]. Pick any n-tableau P of shape λ
and any n-tableau Q of shape µ. Consider the corresponding Young symmetrizers
EP and EQ (as defined in [Gri25, Definition 5.11.1]). From [Gri25, (228)], we have
Sλ ∼= AEP and Sµ ∼= AEQ. Hence, HomA

(
Sλ,Sµ

) ∼= HomA
(
AEP,AEQ

)
(since

HomA is functorial).
From [Gri25, Lemma 5.11.13], we know that the coefficient of the permutation

id ∈ Sn in EP is 1. Thus, the single element EP is k-linearly independent. Hence,
kEP

∼= k as k-module.

However, [Gri25, Theorem 5.11.3] shows that E2
P =

n!
f λ

EP. This shows that the

element ẼP :=
f λ

n!
EP ∈ A is idempotent (since Ẽ2

P =

(
f λ

n!
EP

)2

=

(
f λ

n!

)2

E2
P︸︷︷︸

=
n!
f λ

EP

=

f λ

n!
EP = ẼP). Moreover, ẼP is a nonzero scalar multiple of EP (since the scalar

f λ

n!
is clearly nonzero). Thus, AEP = AẼP.

But [EGH+11, Lemma 5.13.4] says that if A is a k-algebra and e ∈ A is an
idempotent, then HomA (Ae, M) ∼= eM for any left A-module M. Applying this to
A = A and e = ẼP and M = AEQ, we find

HomA
(
AẼP,AEQ

)
∼= ẼPAEQ = EPAEQ

(since ẼP is a nonzero scalar multiple of EP). Altogether,

HomA
(
Sλ,Sµ

)
∼= HomA

AEP︸︷︷︸
=AẼP

,AEQ

 = HomA
(
AẼP,AEQ

)
∼= EPAEQ. (35)

Ind
Sn1+n2+···+nk
Sn1×Sn2×···×Snk

(U1 ⊗ U2 ⊗ · · · ⊗ Uk) can be written as

k
[
Sn1+n2+···+nk

]
⊗ (U1 ⊗ U2 ⊗ · · · ⊗ Uk)

modulo the relation

σ (σ1 ∗ σ2 ∗ · · · ∗ σk)⊗ (u1 ⊗ u2 ⊗ · · · ⊗ uk)− σ ⊗ (σ1u1 ⊗ σ2u2 ⊗ · · · ⊗ σkuk)

for all σ ∈ Sn1+n2+···+nk and σi ∈ Sni and ui ∈ Ui.
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Now, if λ ̸= µ, then [Gri25, Proposition 5.11.15] (applied to S = P and T = Q)
shows that EPaEQ = 0 for all a ∈ A, and thus EPAEQ = 0. Hence, if λ ̸= µ, then
(35) becomes

HomA
(
Sλ,Sµ

)
∼= EPAEQ = 0. (36)

This proves Proposition 4.5 in the case when λ ̸= µ.
Thus, we now WLOG assume that λ = µ. Hence, µ = λ and thus Sµ = Sλ ∼=

AEP. Hence, the same argument that we used to prove (35) can be applied to λ
and P instead of µ and Q. This results in

HomA
(
Sλ,Sλ

)
∼= EPAEP. (37)

However, [Gri25, Proposition 5.11.5] (applied to T = P) shows that each a ∈ A
satisfies EPaEP = κEP for some κ ∈ k. In other words, each a ∈ A satisfies
EPaEP ∈ kEP. In other words, EPAEP ⊆ kEP. On the other hand, each κ ∈ k
satisfies

κEP =
κ f λ

n!
· n!

f λ
EP︸ ︷︷ ︸

=E2
P=EP1EP

∈EPAEP

∈ κ f λ

n!
EPAEP ⊆ EPAEP.

Thus, kEP ⊆ EPAEP. Combining this with EPAEP ⊆ kEP, we obtain

EPAEP = kEP.

Hence, (37) becomes

HomA
(
Sλ,Sλ

)
∼= EPAEP = kEP

∼= k.

In other words, HomA
(
Sλ,Sµ

) ∼= k if λ = µ. Thus, Proposition 4.5 is proved in
the case λ = µ as well.
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