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Abstract. Let A be the group algebra k [Sn] of the n-th symmetric
group Sn over a commutative ring k. For any two subsets A and B of
[n], we define the elements

∇B,A := ∑
w∈Sn;

w(A)=B

w and ∇̃B,A := ∑
w∈Sn;

w(A)⊆B

w

of A. We study these elements, showing in particular that their mini-
mal polynomials factor into linear factors (with integer coefficients). We
express the product ∇D,C∇B,A as a Z-linear combination of ∇U,V’s.

More generally, for any two set compositions (i.e., ordered set par-
titions) A and B of {1, 2, . . . , n}, we define ∇B,A ∈ A to be the sum
of all permutations w ∈ Sn that send each block of A to the corre-
sponding block of B. This generalizes ∇B,A. The factorization property
of minimal polynomials does not extend to the ∇B,A, but we describe
the ideal spanned by the ∇B,A and a further ideal complementary to
it. These two ideals have a “mutually annihilative” relationship, are
free as k-modules, and appear as annihilators of tensor product Sn-
representations; they are also closely related to Murphy’s cellular bases,
Specht modules, pattern-avoiding permutations and even some algebras
appearing in quantum information theory.
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Rook theory is the study of permutations w in a symmetric group Sn that avoid
certain input-output pairs (given by “boards”, i.e., sets of allowed input-output
pairs). Research done so far – e.g., [GJW75, BCHR11, LoeRem09] – has mostly
focused on the enumeration of such permutations (known as “rook placements”).
In this work, we set out in a new direction: Instead of counting the rook placements
for a given board, we study their sum in the symmetric group algebra k [Sn] over
a commutative ring k. As with any elements of such a group algebra, we can ask
for their spectral and representation-theoretical properties – what ideals do they
generate? how well do their minimal polynomials factor?

Let us give a quick overview, starting with an example that does not actually
fit into our theory. Let A be the group algebra k [Sn] of a symmetric group Sn.
For any subset T of [n]× [n] (where [n] denotes the set {1, 2, . . . , n} as is usual in
combinatorics), we set

∇T := ∑
w∈Sn;

(i,w(i))∈T for each i∈[n]

w ∈ A.

In rook-theoretical terms (see, e.g., [BCHR11, §1.2]), this is the sum of the n-rook
placements on the board T.
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For example, if T = {(i, j) ∈ [n]× [n] | i ̸= j}, then ∇T is the sum of all derange-
ments in Sn, and is well-behaved in many ways: It lies in the center of A = k [Sn]
(since the set of all derangements is fixed under conjugation), and its minimal poly-
nomial (over a field k) factors into linear factors (this is true for any element in the
center of A, because the center of Q [Sn] is split semisimple; this is well-known
folklore).

Even simpler examples are T = {(i, i) | i ∈ [n]} (yielding ∇T = id) and T =
[n]× [n] (here, ∇T is the sum of all permutations in Sn).

These examples are far from representative. In general, ∇T will rarely belong
to the center of k [Sn], nor will its minimal polynomial often factor nicely. For
example, if n = 5 and T = {(i, j) | j ̸= i + 1}, then the minimal polynomial of ∇T
has irreducible factors of degrees 1, 4, 5 and 6 (over Q). Thus, the behavior of ∇T
depends starkly on the structure of T.

In this paper, we will study two types of boards T. The first one has the form
“[n]× [n] with a rectangle cut out”. Thus, we will define the so-called rectangular
rook sums

∇B,A := ∑
w∈Sn;

w(A)=B

w and ∇̃B,A := ∑
w∈Sn;

w(A)⊆B

w in A

for two subsets A and B of [n]. (The ∇̃B,A here is the ∇T for T = ([n]× [n]) \
(A × ([n] \ B)). The ∇B,A are – strictly speaking – redundant, as they equal either
∇̃B,A or 0 depending on whether |A| = |B| or not. Conversely, however, the ∇̃B,A
can be expressed as sums of ∇B,A’s, so the two families of elements are closely
related.) Section 1 is devoted to the study of these elements. We will show that
they span an ideal of A, that they satisfy an explicit multiplication rule (Theorem
1.2.2), and that their minimal polynomials factor into linear factors (Corollary 1.4.3).

In Section 2, we will generalize the ∇B,A to a wider family. Namely, we define a
set decomposition of [n] to be a tuple of disjoint subsets of [n] (called blocks) whose
union is [n]. (Empty blocks are allowed.) Now, if A = (A1, A2, . . . , Ak) and B =
(B1, B2, . . . , Bk) are two set decompositions of [n] having the same length, then we
define the element

∇B,A := ∑
w∈Sn;

w(Ai)=Bi for all i

w of A.

For k = 2, these recover the elements ∇B,A studied above. In general, ∇B,A is ∇T for
a certain board T that is obtained from [n]× [n] by cutting out multiple rectangles.
While these ∇B,A lack the multiplication rule and the factoring minimal polyno-
mials of the ∇B,A’s (at least we are not aware of a multiplication rule), they have
their own share of interesting properties. In fact, they have already appeared in the
works of Canfield/Williamson [CanWil89] and Murphy [Murphy92, Murphy95],
where they were used to construct bases of A now known as the Murphy cellular
bases.
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Unlike Murphy, we are interested in the ∇B,A for all pairs (A, B) of equal-length
set decompositions, not just ones that come from standard bitableaux. We consider
– for any given k ∈ N – the span Ik of all such elements ∇B,A where A, B are two
set decompositions of [n] having at most k blocks each.

Here is an incomplete survey of our results in Section 2; note that several of
them have been shown before, but we give new proofs. We show (in Theorem
2.4.1) that Ik is an ideal of A and a free k-module whose rank is the number
of 12 · · · (k + 1)-avoiding permutations in Sn, whereas the residue classes of the
remaining permutations in Sn form a basis of the quotient A/Ik. Moreover, we
construct another ideal Jk of A that has a mutual annihilation relationship with Ik,
meaning that each of the two ideals Ik and Jk is the annihilator of the other ideal
from both left and right as well as its orthogonal complement with respect to the
standard dot product on A. The simplest way to define Jk (at least for k < n) is as
the two-sided ideal generated by the single element

∇−
X := ∑

w∈Sn;
w(i)=i for all i∈[n]\U

(−1)w w ∈ A

(this is not how we define Jk, but is equivalent; see Proposition 2.2.2 (f)). This ideal
Jk, too, is a free k-module, as is the quotient A/Jk (see Theorem 2.4.1). Note that
the span of the rectangular rook sums ∇B,A studied in Section 1 is precisely the
ideal I2, and so we conclude that its rank is the number of 123-avoiding permuta-
tions in Sn, that is, the Catalan number Cn (Corollary 2.4.2).

So far we have not assumed anything about the commutative ring k. If, however,
n! is invertible in k, then A = Ik ⊕Jk as k-modules and A ∼= Ik ×Jk as k-algebras.

The ideals Ik and Jk are not entirely new; they can be viewed as spans of sub-
families of the Murphy cellular bases (see Remark 2.4.3). However, all our proofs
are independent of this fact, and use only the most elementary algebra and combi-
natorics.

In Subsection 2.8, we describe the ideals Ik and Jn−k−1 as annihilators of certain
left k [Sn]-modules. Namely:

1. The ideal Jk is the annihilator of the tensor power V⊗n
k , where Vk = kk is a

free k-module of rank k and where Sn acts on V⊗n
k by permuting the factors

(Theorem 2.8.1). This is a classical result by de Concini and Procesi [deCPro76,
Theorem 4.2].

2. The ideal Ik is the annihilator of a sign-twisted1 tensor power N⊗(n−k−1)
n

of the natural representation Nn = kn of Sn, where Sn acts diagonally on
the tensor power (Theorem 2.8.3, which is stated in a slightly different form,
applying the sign-twist to the ideal rather than the module). This is a recent
result by Bowman, Doty and Martin [BoDoMa18, Theorem 7.4 (a)].

1“Sign-twisting” means that the action of any permutation w ∈ Sn is additionally scaled by the
sign (−1)w of w.
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Note once again that no requirements are made on k here.
When n! is invertible in k, we can characterize the ideals Ik and Jk in a more

mainstream way (Theorem 2.9.1): The ideal Ik consists of those elements a ∈ A
that annihilate all Specht modules Sλ with ℓ (λ) > k, whereas the ideal Jk consists
of those elements a ∈ A that annihilate all Specht modules Sλ with ℓ (λ) ≤ k. This
fact is responsible for the appearance of Jk in recent work on quantum information
theory [KlStVo25, Theorem 2.2]. Moreover, it can be used to give a new proof for
the classical fact (Corollary 2.9.3) that the number of permutations w ∈ Sn that
avoid 12 · · · (k + 1) (that is, have no increasing subsequence of length k + 1) equals
the number of pairs of standard tableaux of shape λ for partitions λ ⊢ n satisfying
ℓ (λ) ≤ k.

We end each of the two sections with an open question. In Section 1, we propose
an “abstract lift” of the span of the ∇B,A’s. This is a nonunital k-algebra with basis
(∆B,A)A,B⊆[n] of equal size consisting of “abstract nablas” ∆B,A, which multiply by the
same rules as the ∇B,A’s (see Theorem 1.2.2), but do not satisfy any linear depen-

dencies. This k-algebra has dimension
(

2n
n

)
, which is n + 1 times the dimension

of the actual span of the ∇B,A’s; but it appears to share some of the properties of
the latter. We know (Theorem 1.6.1) that it is associative, and we conjecture that
it is unital when n! is invertible in k (certainly not for general k). Section 2 leads
us to another open question (Question 2.9.5), about a basis of the quotient ring
A/

(
Ik + Tsign (Jℓ)

)
, closely related to a recent conjecture by Donkin [Donkin24,

Remark 2.4].
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1. Rook sums in the symmetric group algebra

1.1. Definitions

Let n be a nonnegative integer. Let [n] := {1, 2, . . . , n}.
Fix a commutative ring k. (All rings and algebras are understood to be associa-

tive and unital, unless declared otherwise.)
Let Sn be the n-th symmetric group, defined as the group of all n! permutations

of [n]. Let A := k [Sn] be its group algebra over k.
The antipode of the group algebra A is the k-linear map A → A that sends each

permutation w ∈ Sn to w−1. We will denote this map by S. It is well-known (see,
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e.g., [Grinbe25, §3.11.4]) that S is a k-algebra anti-automorphism and an involution
(i.e., satisfies S ◦ S = id).

For any two subsets A and B of [n], we define the elements

∇B,A := ∑
w∈Sn;

w(A)=B

w and ∇̃B,A := ∑
w∈Sn;

w(A)⊆B

w

of A. We shall refer to these elements as rectangular rook sums.
For instance, for n = 4, we have

∇{2,3},{1,4} = ∑
w∈S4;

w({1,4})={2,3}

w

= oln (2143) + oln (2413) + oln (3142) + oln (3412) ,

where oln (i1i2 . . . in) means the permutation in Sn with one-line notation (i1, i2, . . . , in).
Moreover, again for n = 4, we have

∇̃{1,2,3},{1,4} = ∑
w∈S4;

w({1,4})⊆{1,2,3}

w = ∑
w∈S4;

w(1) ̸=4 and w(4) ̸=4

w,

which is a sum of altogether 12 permutations.
The following proposition collects some easy properties of rectangular rook sums:

Proposition 1.1.1. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ̸= |B|.

(b) We have ∇̃B,A = 0 if |A| > |B|.

(c) We have ∇̃B,A = ∑
U⊆B;

|U|=|A|

∇U,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

(f) The antipode S satisfies S (∇B,A) = ∇A,B.

(g) The antipode S satisfies S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B.

(h) For any u ∈ Sn, we have

u∇B,A = ∇u(B),A and u∇̃B,A = ∇̃u(B),A.

(i) For any u ∈ Sn, we have

∇B,Au = ∇B,u−1(A) and ∇̃B,Au = ∇̃B,u−1(A).
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Proof sketch. (a) A permutation w ∈ Sn cannot satisfy w (A) = B if |A| ̸= |B|.
(b) A permutation w ∈ Sn cannot satisfy w (A) ⊆ B if |A| > |B| (since |w (A)| =

|A|).
(c) A permutation w ∈ Sn satisfies w (A) ⊆ B if and only if it satisfies w (A) = U

for some subset U ⊆ B satisfying |U| = |A|. Moreover, this subset U is uniquely
determined (as w (A)).

(d) A permutation w ∈ Sn satisfies w (A) = B if and only if it satisfies w ([n] \ A) =
[n] \ B.

(e) If |A| = |B|, then a permutation w ∈ Sn satisfies w (A) = B if and only if it
satisfies w (A) ⊆ B (since w (A) has the same size as A and therefore as B as well,
and thus cannot be a proper subset of B).

(f) A permutation w ∈ Sn satisfies w (A) = B if and only if its inverse w−1

satisfies w−1 (B) = A.

(g) A permutation w ∈ Sn satisfies w (A) ⊆ B if and only if its inverse w−1

satisfies w−1 ([n] \ B) ⊆ [n] \ A.

(h) Let u ∈ Sn. Then, the definition of ∇̃B,A yields

u∇̃B,A = u ∑
w∈Sn;

w(A)⊆B

w = ∑
w∈Sn;

w(A)⊆B

uw

= ∑
w∈Sn;

(uw)(A)⊆u(B)

uw

 since the condition “w (A) ⊆ B”
is equivalent to “ (uw) (A) ⊆ u (B) ”

(because u is a bijection)


= ∑

w∈Sn;
w(A)⊆u(B)

w
(

here, we have substituted w for uw
in the sum

)

= ∇̃u(B),A

(
by the definition of ∇̃u(B),A

)
.

Similarly, u∇B,A = ∇u(B),A. This proves Proposition 1.1.1 (h).
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(i) Let u ∈ Sn. Then, the definition of ∇̃B,A yields

∇̃B,Au = ∑
w∈Sn;

w(A)⊆B

wu = ∑
w∈Sn;

w(A)⊆B

wu

= ∑
w∈Sn;

(wu)(u−1(A))⊆B

wu
(

since w (A) = (wu)
(

u−1 (A)
))

= ∑
w∈Sn;

w(u−1(A))⊆B

w
(

here, we have substituted w for wu
in the sum

)

= ∇̃B,u−1(A)

(
by the definition of ∇̃B,u−1(A)

)
.

Similarly, ∇B,Au = ∇B,u−1(A). This proves Proposition 1.1.1 (i).

Proposition 1.1.1 (c) shows that the elements ∇B,A and ∇̃B,A have the same span
as B and A range over the subsets of [n], or even as B ranges over all subsets of [n]
while A is fixed. Later (in Corollary 2.4.2), we will learn more about this span, and
in particular compute its dimension.

1.2. The product rule

Parts (h) and (i) of Proposition 1.1.1 show that the span of the elements ∇B,A is an
ideal of A. Hence, this span is a nonunital k-subalgebra of A. It has an explicit
multiplication rule, which we shall state in three different forms. First, we define
an important family of integers:

Definition 1.2.1. For any two subsets B and C of [n], we define the positive
integer

ωB,C := |B ∩ C|! · |B \ C|! · |C \ B|! · |[n] \ (B ∪ C)|! ∈ Z.

Theorem 1.2.2. Let A, B, C, D be four subsets of [n] such that |A| = |B| and
|C| = |D|. Then:

(a) We have
∇D,C∇B,A = ωB,C ∑

w∈Sn;
|w(A)∩D|=|B∩C|

w.

(b) We have

∇D,C∇B,A = ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V .

Darij Grinberg



Rook sums in the symmetric group algebra page 9

(c) We have

∇D,C∇B,A = ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V .

Before we can prove this theorem, we shall show a few lemmas from enumerative
combinatorics. The first lemma explains the appearance of the numbers ωB,C:

Lemma 1.2.3. Let A, B, C, D be four subsets of [n] such that |A| = |B| and |C| =
|D|. Fix a permutation w ∈ Sn. Let Qw denote the set of all pairs (u, v) ∈ Sn × Sn
satisfying u (C) = D and v (A) = B and uv = w. Then:

(a) If |w (A) ∩ D| ̸= |B ∩ C|, then |Qw| = 0.

(b) If |w (A) ∩ D| = |B ∩ C|, then |Qw| = ωB,C.

Proof. (a) Assume that |w (A) ∩ D| ̸= |B ∩ C|.
Let (u, v) ∈ Qw. Thus, (u, v) ∈ Sn × Sn and u (C) = D and v (A) = B and uv = w

(by the definition of Qw). Now, from w = uv, we obtain w (A) = (uv) (A) =
u (v (A)), so that

w (A)︸ ︷︷ ︸
=u(v(A))

∩ D︸︷︷︸
=u(C)

= u

v (A)︸ ︷︷ ︸
=B

 ∩ u (C) = u (B) ∩ u (C) = u (B ∩ C)

(since u is a permutation). Thus, |w (A) ∩ D| = |u (B ∩ C)| = |B ∩ C| (again since
u is a permutation). This contradicts |w (A) ∩ D| ̸= |B ∩ C|.

Thus, we have found a contradiction for each (u, v) ∈ Qw. Hence, there exists no
(u, v) ∈ Qw. Thus, |Qw| = 0. This proves Lemma 1.2.3 (a).

(b) Assume that |w (A) ∩ D| = |B ∩ C|.
Set k := |B ∩ C|. Thus, by assumption, we have |w (A) ∩ D| = |B ∩ C| = k.

Furthermore, set p := |B \ C| and q := |C \ B|.
Since w is a permutation, we have |w (A)| = |A| = |B|. Thus,

|w (A) \ D| = |w (A)|︸ ︷︷ ︸
=|B|

− |w (A) ∩ D|︸ ︷︷ ︸
=|B∩C|

= |B| − |B ∩ C| = |B \ C| = p

and
|D \ w (A)| = |D|︸︷︷︸

=|C|

− |w (A) ∩ D|︸ ︷︷ ︸
=|B∩C|

= |C| − |B ∩ C| = |C \ B| = q.

Moreover, the set [n] \ (B ∪ C) consists of those elements of [n] that belong to none
of the three disjoint subsets B ∩ C, B \ C and C \ B. Thus,

|[n] \ (B ∪ C)| = |[n]|︸︷︷︸
=n

− |B ∩ C|︸ ︷︷ ︸
=k

− |B \ C|︸ ︷︷ ︸
=p

− |C \ B|︸ ︷︷ ︸
=q

= n − k − p − q.

Darij Grinberg



Rook sums in the symmetric group algebra page 10

Now, we want to compute |Qw|. In other words, we want to count the elements
of Qw. These elements are the pairs (u, v) ∈ Sn × Sn satisfying u (C) = D and
v (A) = B and uv = w. Clearly, such a pair (u, v) must satisfy v = u−1w (since
uv = w), and thus is uniquely determined by its first entry u. Moreover, the
requirement v (A) = B on this pair is equivalent to u (B) = w (A), because of the
following chain of equivalences:

(v (A) = B) ⇐⇒
((

u−1w
)
(A) = B

) (
since v = u−1w

)
⇐⇒

(
u−1 (w (A)) = B

)
⇐⇒ (w (A) = u (B)) ⇐⇒ (u (B) = w (A)) .

Hence, the elements (u, v) of Qw are in one-to-one correspondence with the per-
mutations u ∈ Sn satisfying u (C) = D and u (B) = w (A). Let us call such per-
mutations nice. Thus, a nice permutation u ∈ Sn must send the subset C to D and
send the subset B to w (A). Hence, it must send the three subsets

B ∩ C, B \ C, C \ B

of [n] to the three subsets

w (A) ∩ D, w (A) \ D, D \ w (A) ,

respectively. Moreover, any permutation u ∈ Sn that does so is nice (since B =
(B ∩ C) ∪ (B \ C) and C = (B ∩ C) ∪ (C \ B)). Thus, we can construct a nice per-
mutation u ∈ Sn as follows:

1. Choose the values of u on the k elements of B ∩ C in such a way that these
values all belong to w (A) ∩ D and are distinct. This can be done in k! ways,
since both |B ∩ C| and |w (A) ∩ D| equal k.

2. Choose the values of u on the p elements of B \ C in such a way that these
values all belong to w (A) \ D and are distinct. This can be done in p! ways,
since both |B \ C| and |w (A) \ D| equal p.

3. Choose the values of u on the q elements of C \ B in such a way that these
values all belong to D \ w (A) and are distinct. This can be done in q! ways,
since both |C \ B| and |D \ w (A)| equal q.

4. Choose the values of u on the remaining n − k − p − q elements of [n] in such
a way that these values are distinct and have not been chosen yet. This can
be done in (n − k − p − q)! ways, since we have n − k − p − q elements of [n]
left that have not been chosen yet.

This process can be done in k! · p! · q! · (n − k − p − q)! ways. Thus, the number
of nice permutations u ∈ Sn is k! · p! · q! · (n − k − p − q)!. But we know that |Qw| is
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the number of nice permutations u ∈ Sn (since the elements (u, v) of Qw are in one-
to-one correspondence with the nice permutations u ∈ Sn). Hence, we conclude
that

|Qw| = k︸︷︷︸
=|B∩C|

! · p︸︷︷︸
=|B\C|

! · q︸︷︷︸
=|C\B|

! · (n − k − p − q)︸ ︷︷ ︸
=|[n]\(B∪C)|

!

= |B ∩ C|! · |B \ C|! · |C \ B|! · |[n] \ (B ∪ C)|!
= ωB,C.

This proves Lemma 1.2.3 (b).

The next lemma is a simple and elementary binomial identity:

Lemma 1.2.4. Let n, k ∈ N. Then,

n

∑
r=0

(−1)r−k
(

n
r

)(
r
k

)
=

{
1, if n = k;
0, else.

Proof. It is well-known that each m ∈ Z satisfies

m

∑
i=0

(−1)i
(

m
i

)
=

{
1, if m = 0;
0, else.

(1)

(Indeed, this is obvious for m < 0, since the left hand side is an empty sum in this
case. In the case m ≥ 0, it is proved in [Grinbe19, Proposition 1.3.28].)

For each r ∈ N, we have (
n
r

)(
r
k

)
=

(
n
k

)(
n − k
r − k

)
(2)

(by the trinomial revision formula [Grinbe19, Proposition 1.3.35], applied to a = r
and b = k). Hence,

n

∑
r=0

(−1)r−k
(

n
r

)(
r
k

)
︸ ︷︷ ︸

=

(
n
k

)(
n − k
r − k

)
(by (2))

=
n

∑
r=0

(−1)r−k
(

n
k

)(
n − k
r − k

)
=

(
n
k

) n

∑
r=0

(−1)r−k
(

n − k
r − k

)
=

(
n
k

) n−k

∑
i=−k

(−1)i
(

n − k
i

)
(3)
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(here, we have substituted i for r − k in the sum). But the two sums

n−k

∑
i=−k

(−1)i
(

n − k
i

)
and

n−k

∑
i=0

(−1)i
(

n − k
i

)
differ only in their addends for i < 0 (if they differ at all), and all these addends

are 0 (since i < 0 entails
(

n − k
i

)
= 0 and thus (−1)i

(
n − k

i

)
︸ ︷︷ ︸

=0

= 0) and thus do

not affect the sums. Hence, these two sums are equal. In other words,

n−k

∑
i=−k

(−1)i
(

n − k
i

)
=

n−k

∑
i=0

(−1)i
(

n − k
i

)

=

{
1, if n − k = 0;
0, else

(by (1), applied to m = n − k)

=

{
1, if n = k;
0, else

(since the equation n − k = 0 is equivalent to n = k). Substituting this into (3), we
obtain

n

∑
r=0

(−1)r−k
(

n
r

)(
r
k

)
=

(
n
k

){
1, if n = k;
0, else

=


(

n
k

)
· 1, if n = k;(

n
k

)
· 0, else

=


(

n
k

)
, if n = k;

0, else
=

{
1, if n = k;
0, else

(since
(

n
k

)
=

(
k
k

)
= 1 when n = k). This proves Lemma 1.2.4.

Lemma 1.2.5. Let k ∈ N. Let Z be any finite set. Then,

∑
U⊆Z

(−1)|U|−k
(
|U|
k

)
=

{
1, if |Z| = k;
0, else.

Proof. Any subset U ⊆ Z has size |U| ∈ {0, 1, . . . , |Z|}. Thus, we can break up the
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sum on the left hand side as follows:

∑
U⊆Z

(−1)|U|−k
(
|U|
k

)
=

|Z|

∑
r=0

∑
U⊆Z;
|U|=r

(−1)|U|−k
(
|U|
k

)
︸ ︷︷ ︸

=(−1)r−k

(
r
k

)
(since |U|=r)

=
|Z|

∑
r=0

∑
U⊆Z;
|U|=r

(−1)r−k
(

r
k

)
︸ ︷︷ ︸
=

(
|Z|
r

)
·(−1)r−k

(
r
k

)
(since there are

(
|Z|
r

)
many

r-element subsets U of Z)

=
|Z|

∑
r=0

(
|Z|
r

)
· (−1)r−k

(
r
k

)
=

|Z|

∑
r=0

(−1)r−k
(
|Z|
r

)(
r
k

)
=

{
1, if |Z| = k;
0, else

(by Lemma 1.2.4, applied to n = |Z|). This proves Lemma 1.2.5.

Proof of Theorem 1.2.2. (a) The definition of a rectangular rook sum shows that

∇D,C = ∑
u∈Sn;

u(C)=D

u and ∇B,A = ∑
v∈Sn;

v(A)=B

v.

Multiplying these two equalities, we find

∇D,C∇B,A =

 ∑
u∈Sn;

u(C)=D

u


 ∑

v∈Sn;
v(A)=B

v

 = ∑
(u,v)∈Sn×Sn;

u(C)=D and v(A)=B

uv

= ∑
w∈Sn

|Qw|w, (4)

where Qw (for a given permutation w ∈ Sn) is defined as the set of all pairs (u, v) ∈
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Sn × Sn satisfying u (C) = D and v (A) = B and uv = w. Now, (4) becomes

∇D,C∇B,A = ∑
w∈Sn

|Qw|w

= ∑
w∈Sn;

|w(A)∩D|=|B∩C|

|Qw|︸︷︷︸
=ωB,C

(by Lemma 1.2.3 (b))

w + ∑
w∈Sn;

|w(A)∩D|̸=|B∩C|

|Qw|︸︷︷︸
=0

(by Lemma 1.2.3 (a))

w

= ∑
w∈Sn;

|w(A)∩D|=|B∩C|

ωB,Cw = ωB,C ∑
w∈Sn;

|w(A)∩D|=|B∩C|

w.

This proves Theorem 1.2.2 (a).

(b) We have

∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V︸ ︷︷ ︸

= ∑
w∈Sn;

w(V)=U

w

(by the definition of ∇U,V)

= ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∑

w∈Sn;
w(V)=U

w

= ∑
w∈Sn

 ∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)


w. (5)

Now, let w ∈ Sn be arbitrary. We shall simplify the sum

∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
.

Indeed, we observe that

• the condition “|U| = |V|” under the summation sign is redundant (since it
follows from w (V) = U because w is a permutation);

• the set V in this sum is uniquely determined by U via the condition “w (V) =
U” (since w is a permutation), and thus can be simply replaced by w−1 (U)
instead of being summed over.
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Thus, we can rewrite the sum as follows:

∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)

= ∑
U⊆D;

w−1(U)⊆A

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)

= ∑
U⊆D;

U⊆w(A)

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
(

here, we rewrote the condition “w−1 (U) ⊆ A”
under the summation sign as “U ⊆ w (A) ”

)

= ∑
U⊆w(A)∩D

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)

=

{
1, if |w (A) ∩ D| = |B ∩ C| ;
0, else

(6)

(by Lemma 1.2.5, applied to Z = w (A) ∩ D and k = |B ∩ C|).
Forget that we fixed w. We thus have proved (6) for each w ∈ Sn. Thus, (5)

becomes

∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V

= ∑
w∈Sn

 ∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)


︸ ︷︷ ︸
=

1, if |w (A) ∩ D| = |B ∩ C| ;
0, else

(by (6))

w

= ∑
w∈Sn

{
1, if |w (A) ∩ D| = |B ∩ C| ;
0, else

w

= ∑
w∈Sn;

|w(A)∩D|=|B∩C|

w.
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Multiplying this equality by ωB,C, we find

ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V

= ωB,C ∑
w∈Sn;

|w(A)∩D|=|B∩C|

w = ∇D,C∇B,A (by Theorem 1.2.2 (a)) .

Thus, Theorem 1.2.2 (b) is proved.

(c) Theorem 1.2.2 (b) yields

∇D,C∇B,A = ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V

= ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇U,V

(due to the |U| = |V| condition under the summation sign)

= ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∑

U⊆D;
|U|=|V|

∇U,V

︸ ︷︷ ︸
=∇̃D,V

(by Proposition 1.1.1 (c))

= ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V .

This proves Theorem 1.2.2 (c).

1.3. The D-filtration

We shall next derive some nilpotency-type consequences from the multiplication
rule.

For the rest of this section, we fix a subset D of [n]. We define2

Fk := span
{
∇̃D,C | C ⊆ [n] with |C| ≤ k

}
for each k ∈ Z. Of course, Fn ⊇ Fn−1 ⊇ · · · ⊇ F0 ⊇ F−1 = 0. It is easy to see that
F0 is spanned by ∇̃D,∅ = ∇∅,∅ = ∑

w∈Sn

w. (Note, however, that
⋃

k∈Z

Fk is usually a

proper subset of k [Sn], so that the Fk do not form a decreasing filtration of k [Sn].)

2Here and in the following, “span” always means “spank” (that is, a k-linear span).
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Definition 1.3.1. For any subset C ⊆ [n] and any k ∈ N, we define the integer

δD,C,k := ∑
B⊆D;
|B|=k

ωB,C (−1)k−|B∩C|
(

k
|B ∩ C|

)
∈ Z.

Now, we note the following:

Proposition 1.3.2. Let C ⊆ [n] satisfy |C| = |D|. Let k ∈ N. Then,

(∇D,C − δD,C,k)Fk ⊆ Fk−1.

Proof. By the definition of Fk, it suffices to show that

(∇D,C − δD,C,k) ∇̃D,A ∈ Fk−1 (7)

for each A ⊆ [n] with |A| ≤ k.
To prove this, we fix A ⊆ [n] with |A| ≤ k. Then, Proposition 1.1.1 (c) yields

∇̃D,A = ∑
U⊆D;
|U|=|A|

∇U,A = ∑
B⊆D;
|B|=|A|

∇B,A. (8)

Multiplying this equality by ∇D,C from the left, we obtain

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A. (9)

However, for each subset B ⊆ D satisfying |B| = |A|, we can use Theorem 1.2.2
(c) to obtain

∇D,C∇B,A = ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V

= ∑
V⊆A

ωB,C (−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V

= ∑
V⊆A;
V ̸=A

ωB,C (−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V︸ ︷︷ ︸
∈Fk−1

(since V⊆A and V ̸=A
entail |V|<|A|≤k and

thus |V|≤k−1)

+ ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A(

here, we have split off the
addend for V = A from the sum

)
≡ ωB,C (−1)|A|−|B∩C|

(
|A|

|B ∩ C|

)
∇̃D,A modFk−1. (10)
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Recall that |A| ≤ k. Hence, we are in one of the following two cases:
Case 1: We have |A| = k.
Case 2: We have |A| < k.
Let us first consider Case 1. In this case, we have |A| = k. Hence, (9) becomes

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A

≡ ∑
B⊆D;
|B|=|A|

ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A (by (10))

= ∑
B⊆D;
|B|=k

ωB,C (−1)k−|B∩C|
(

k
|B ∩ C|

)
︸ ︷︷ ︸

=δD,C,k

∇̃D,A (since |A| = k)

= δD,C,k∇̃D,A modFk−1.

In other words, ∇D,C∇̃D,A − δD,C,k∇̃D,A ∈ Fk−1. In other words, (∇D,C − δD,C,k) ∇̃D,A ∈
Fk−1. Hence, (7) is proved in Case 1.

Let us now consider Case 2. In this case, we have |A| < k. Hence, |A| ≤ k − 1,
so that ∇̃D,A ∈ Fk−1. In other words, ∇̃D,A ≡ 0 modFk−1. Now, (9) becomes

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A

≡ ∑
B⊆D;
|B|=|A|

ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A︸ ︷︷ ︸

≡0 modFk−1

(by (10))

≡ 0 modFk−1.

Hence,

(∇D,C − δD,C,k) ∇̃D,A = ∇D,C∇̃D,A︸ ︷︷ ︸
≡0 modFk−1

− δD,C,k ∇̃D,A︸ ︷︷ ︸
≡0 modFk−1

≡ 0 − 0 = 0 modFk−1.

In other words, (∇D,C − δD,C,k) ∇̃D,A ∈ Fk−1. Hence, (7) is proved in Case 2.
We have now proved (7) in both Cases 1 and 2. Thus, (7) always holds, and

Proposition 1.3.2 is proved.

Definition 1.3.3. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed by
the |D|-element subsets of [n]. Then, we set

∇D,α := ∑
C⊆[n];
|C|=|D|

αC∇D,C ∈ A.
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Furthermore, for each k ∈ N, we set

δD,α,k := ∑
C⊆[n];
|C|=|D|

αCδD,C,k ∈ k.

Proposition 1.3.4. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed
by the |D|-element subsets of [n]. Let k ∈ N. Then,

(∇D,α − δD,α,k)Fk ⊆ Fk−1.

Proof. Proposition 1.3.2 yields (∇D,C − δD,C,k)Fk ⊆ Fk−1 for each C ⊆ [n] satisfying
|C| = |D|. Multiply this relation by αC and sum up over all C ⊆ [n] satisfying
|C| = |D|. The result is Proposition 1.3.4.

Proposition 1.3.5. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed
by the |D|-element subsets of [n]. Then, for each integer m ≥ −1, we have(

m

∏
k=0

(∇D,α − δD,α,k)

)
Fm = 0.

Proof. Induction on m. The base case is obvious, since F−1 = 0. The induction step
(from m − 1 to m) uses Proposition 1.3.4 as follows:(

m

∏
k=0

(∇D,α − δD,α,k)

)
Fm =

(
m−1

∏
k=0

(∇D,α − δD,α,k)

)
(∇D,α − δD,α,m)Fm︸ ︷︷ ︸

⊆Fm−1
(by Proposition 1.3.4)

⊆
(

m−1

∏
k=0

(∇D,α − δD,α,k)

)
Fm−1 = 0

and thus
(

m
∏

k=0
(∇D,α − δD,α,k)

)
Fm = 0. Thus, Proposition 1.3.5 is proved.

1.4. The triangularity theorem

We can now state our main theorem (still using Definition 1.3.3):

Theorem 1.4.1. Let D be a subset of [n]. Let α = (αC)C⊆[n]; |C|=|D| be a family of
scalars in k indexed by the |D|-element subsets of [n]. Then,( |D|

∏
k=0

(∇D,α − δD,α,k)

)
∇D,α = 0.
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Proof. For each subset C of [n] satisfying |C| = |D|, we have ∇D,C = ∇̃D,C (by
Proposition 1.1.1 (e)) and thus ∇D,C = ∇̃D,C ∈ F|D| (since |C| = |D| ≤ |D|). Thus,
∇D,α ∈ F|D| as well (since ∇D,α is a k-linear combination of such ∇D,C’s). Hence,( |D|

∏
k=0

(∇D,α − δD,α,k)

)
∇D,α =

( |D|

∏
k=0

(∇D,α − δD,α,k)

)
F|D| = 0

(by Proposition 1.3.5, applied to m = |D|). This proves Theorem 1.4.1.

Using the antipode S of A, we can obtain a reflected version of Theorem 1.4.1:

Theorem 1.4.2. Let D be a subset of [n]. Let α = (αC)C⊆[n]; |C|=|D| be a family of
scalars in k indexed by the |D|-element subsets of [n]. Set

∇α,D := ∑
C⊆[n];
|C|=|D|

αC∇C,D ∈ A.

Then, ( |D|

∏
k=0

(∇α,D − δD,α,k)

)
∇α,D = 0.

Proof. The antipode S is a k-algebra anti-homomorphism, and sends ∇D,α to ∇α,D
(since it sends ∇D,C to ∇C,D for each C). Thus, Theorem 1.4.2 follows easily by
applying the antipode to Theorem 1.4.1. (Note that we don’t have to reverse the
order of factors in the product, since all these factors commute with each other.)

Corollary 1.4.3. Let B and D be two subsets of [n]. For each k ∈ N, we set

δ̃D,B,k := ∑
C⊆B;

|C|=|D|

δD,C,k ∈ Z.

Then, ( |D|

∏
k=0

(
∇̃B,D − δ̃D,B,k

))
∇̃B,D = 0.

Proof. Define a family α = (αC)C⊆[n]; |C|=|D| of scalars in k by setting

αC =

{
1, if C ⊆ B;
0, if C ̸⊆ B

for each C ⊆ [n] .

Then, Proposition 1.1.1 (c) yields

∇̃B,D = ∑
U⊆B;

|U|=|D|

∇U,D = ∑
C⊆B;

|C|=|D|

∇C,D = ∑
C⊆[n];
|C|=|D|

αC∇C,D = ∇α,D,
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where ∇α,D is defined as in Theorem 1.4.2. Hence, Corollary 1.4.3 follows from
Theorem 1.4.2, once we realize that the δD,α,k from Theorem 1.4.2 is precisely the
δ̃D,B,k.

Corollary 1.4.3 shows that the element ∇̃B,D has a minimal polynomial that fac-
tors entirely into linear factors. Moreover, there are at most |D|+ 2 factors, and one
of them is X or else there are at most |D|+ 1 of them.

Question 1.4.4. Can we simplify the formula for δ̃D,B,k ?

1.5. A table of minimal polynomials

For any subsets A and B of [n], we let κA,B be the sum (in Z [Sn]) of all permutations
w ∈ Sn that satisfy w (A) ∩ B = ∅ (that is, w (a) /∈ B for all a ∈ A). Then, κA,B is
simply ∇̃[n]\B, A. Thus, Corollary 1.4.3 shows that the element κA,B has a minimal
polynomial that factors into at most |A| + 2 factors. Note that these factors will
sometimes have multiplicities (e.g., the case of n = 6 and a = 3 and b = 2 and
c = 1).

Let us collect a table of these minimal polynomials. We observe that the minimal
polynomial of κB,A depends only on the three numbers a := |A|, b := |B| and
c := |A ∩ B| (since any two pairs (A, B) that agree in these three numbers can be
obtained from each other by the action of some permutation σ ∈ Sn, and therefore
the corresponding elements κB,A are conjugate to each other in A). Hence, we can
rename κB,A as κa,b,c.

We also note that κa,b,c = 0 if c > a or b > a or a + b > n. Hence, we only need
to consider the cases a, b ∈ [0, n] and a + b ≤ n and c ∈ [0, min {a, b}].

Moreover, κB,A is the antipode of κA,B (by Proposition 1.1.1 (g)), and the antipode
preserves minimal polynomials. Thus, we only need to consider the case a ≤ b.

This being said, here is a table of minpols (= minimal polynomials) of κa,b,c’s
produced by SageMath:

——————————————————
Let n = 1.
For b = 0, the minpol is x − 1.

——————————————————
Let n = 2.
For b = 0, the minpol is (x − 2)x.
For a = 1 and b = 1 and c = 0, the minpol is x − 1.
For a = 1 and b = 1 and c = 1, the minpol is (x − 1)(x + 1).
——————————————————
Let n = 3.
For b = 0, the minpol is (x − 6)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 4)(x − 1)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 4)x(x + 2).
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For a = 2 and b = 1 and c = 0, the minpol is (x − 2)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 2)x(x + 1).

——————————————————
Let n = 4.
For b = 0, the minpol is (x − 24)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 18)(x − 2)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 18)x(x + 6).
For a = 2 and b = 1 and c = 0, the minpol is (x − 12)(x − 4)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 12)x(x + 4).
For a = 3 and b = 1 and c = 0, the minpol is (x − 6)x.
For a = 3 and b = 1 and c = 1, the minpol is (x − 6)x(x + 2).
For a = 2 and b = 2 and c = 0, the minpol is (x − 4)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 4)(x + 2)x2.
For a = 2 and b = 2 and c = 2, the minpol is (x − 4)x(x + 4).

——————————————————
Let n = 5.
For b = 0, the minpol is (x − 120)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 96)(x − 6)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 96)x(x + 24).
For a = 2 and b = 1 and c = 0, the minpol is (x − 72)(x − 12)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 72)x(x + 18).
For a = 3 and b = 1 and c = 0, the minpol is (x − 48)(x − 18)x.
For a = 3 and b = 1 and c = 1, the minpol is (x − 48)x(x + 12).
For a = 4 and b = 1 and c = 0, the minpol is (x − 24)x.
For a = 4 and b = 1 and c = 1, the minpol is (x − 24)x(x + 6).
For a = 2 and b = 2 and c = 0, the minpol is (x − 36)(x − 16)(x − 4)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 36)x(x + 4).
For a = 2 and b = 2 and c = 2, the minpol is (x − 36)(x − 12)x(x + 24).
For a = 3 and b = 2 and c = 0, the minpol is (x − 12)x.
For a = 3 and b = 2 and c = 1, the minpol is (x − 12)(x − 2)x(x + 4).
For a = 3 and b = 2 and c = 2, the minpol is (x − 12)(x − 4)x(x + 8).

——————————————————
Let n = 6.
For b = 0, the minpol is (x − 720)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 600)(x − 24)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 600)x(x + 120).
For a = 2 and b = 1 and c = 0, the minpol is (x − 480)(x − 48)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 480)x(x + 96).
For a = 3 and b = 1 and c = 0, the minpol is (x − 360)(x − 72)x.
For a = 3 and b = 1 and c = 1, the minpol is (x − 360)x(x + 72).
For a = 4 and b = 1 and c = 0, the minpol is (x − 240)(x − 96)x.
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For a = 4 and b = 1 and c = 1, the minpol is (x − 240)x(x + 48).
For a = 5 and b = 1 and c = 0, the minpol is (x − 120)x.
For a = 5 and b = 1 and c = 1, the minpol is (x − 120)x(x + 24).
For a = 2 and b = 2 and c = 0, the minpol is (x − 288)(x − 72)(x − 8)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 288)x(x + 12)(x + 36).
For a = 2 and b = 2 and c = 2, the minpol is (x − 288)(x − 48)x(x + 144).
For a = 3 and b = 2 and c = 0, the minpol is (x − 144)(x − 72)(x − 24)x.
For a = 3 and b = 2 and c = 1, the minpol is (x − 144)(x + 16)x2.
For a = 3 and b = 2 and c = 2, the minpol is (x − 144)(x − 24)x(x + 72).
For a = 4 and b = 2 and c = 0, the minpol is (x − 48)x.
For a = 4 and b = 2 and c = 1, the minpol is (x − 48)(x − 12)x(x + 12).
For a = 4 and b = 2 and c = 2, the minpol is (x − 48)(x − 8)x(x + 24).
For a = 3 and b = 3 and c = 0, the minpol is (x − 36)x.
For a = 3 and b = 3 and c = 1, the minpol is (x − 36)(x − 12)x(x + 4)(x + 12).
For a = 3 and b = 3 and c = 2, the minpol is (x − 36)(x − 12)x(x + 4)(x + 12).
For a = 3 and b = 3 and c = 3, the minpol is (x − 36)x(x + 36).

1.6. Aside: The abstract Nabla-algebra

We take a tangent and address a question that is suggested by Theorem 1.2.2 (b) but
takes us out of the symmetric group algebra A. Namely, let us see what happens if
we take the multiplication rule in Theorem 1.2.2 (b) literally while forgetting what
the ∇B,A are.

Theorem 1.6.1. For any two subsets A and B of [n] satisfying |A| = |B|, introduce

a formal symbol ∆B,A. Thus, we have introduced altogether
n
∑

k=0

(
n
k

)2

=

(
2n
n

)
symbols ∆B,A. Let D be the free k-module with basis (∆B,A)A,B⊆[n] with |A|=|B|.
Define a multiplication on D by

∆D,C∆B,A := ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∆U,V .

(Recall Definition 1.2.1, which defines the ωB,C here.) Then, D becomes a nonuni-
tal k-algebra.

Proof omitted due to excessive ugliness.

Question 1.6.2. The above proof idea is clearly in bad taste. There should be a
more conceptual proof that identifies D as some existing (nonunital) k-algebra

(what nonunital k-algebra has dimension
(

2n
n

)
over k ?) or at least with a
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subquotient of a such.

Example 1.6.3. Let n = 1. Then, the k-module D in Theorem 1.6.1 has basis
(u, v) with u = ∆∅,∅ and v = ∆{1},{1}. The multiplication on D defined ibidem
is given by

uu = uv = vu = u, vv = v.

Thus, the nonunital k-algebra D is isomorphic to the k-algebra k [x] /
(
x2 − x

)
,

and therefore has a unity (namely, v).

Example 1.6.4. Let n = 2. Then, the k-module D in Theorem 1.6.1 has basis
(u, v11, v12, v21, v22, w) with u = ∆∅,∅ and vij = ∆{i},{j} and w = ∆[2],[2]. The
multiplication on D defined ibidem is given by

uu = uw = wu = 2u, uvij = viju = u,

vdcvba = u − vda if b ̸= c;
vdcvba = vda if b = c,

vijw = vi1 + vi2, wvij = v1j + v2j,

ww = 2w.

This nonunital k-algebra D has a unity if and only if 2 is invertible in k. This

unity is
1
4
(v11 + v22 − v12 − v21 + 2w).

Example 1.6.5. Let n = 3. Then, the k-module D has a basis consisting of
(

6
3

)
=

20 vectors of the form ∆B,A with A, B ⊆ [3] satisfying |A| = |B|. Its multiplication
turns it into a nonunital algebra. When 3! is invertible in k, this algebra has a
unity, namely

1
18

3

∑
i=1

∆{i},{i} −
1
36 ∑

i ̸=j
∆{i},{j} +

1
6 ∑

i<j
∆{i,j},{i,j} −

1
12 ∑

i ̸=j ̸=k ̸=i
∆{i,j},{i,k} +

1
6

∆[3],[3].

Question 1.6.6. Does the k-algebra D in Theorem 1.6.1 have a unity if n! is
invertible in k ? (I suspect that the answer is “yes”. This has been checked with
SageMath for all n ≤ 5.)

Question 1.6.7. What does the representation theory of D look like?
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Using SageMath, we computed some data for small n and for k = Q:

n = 2 n = 3 n = 4 n = 5

dimD 6 20 70 252

dim Z (D) 3 4 5 6

dim J (D) 3 5 39 84

Cartan invs

 1 0 0
0 2 1
0 1 1




1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 2




1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 1 0 2 0
0 0 1 0 2


(where Z (D) and J (D) denote the center and the Jacobson radical of D, respec-
tively, and where “Cartan invs” means the matrix of Cartan invariants). This shows
that the algebra D for n ≥ 2 is far from semisimple. For example, for n = 2, it has
(over Q) a 3-dimensional Jacobson radical spanned by the vectors u − v12 − v21,
v12 − v21 and v11 − v22. But D is not “too nilpotent” either; in particular, the
semisimple quotient of D for n = 3 is not commutative.

Question 1.6.8. Does the center of D always have dimension n + 1 when n! is
invertible in k ?
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2. Row-to-row sums in the symmetric group algebra

2.1. Definitions

As we recall, n is a nonnegative integer and k a commutative ring. We work in the
group algebra A = k [Sn] of the symmetric group Sn.

2.1.1. Row-to-row sums and the ∇B,A

A set decomposition of a set U shall mean a tuple (U1, U2, . . . , Uk) of disjoint subsets
of U such that U1 ∪ U2 ∪ · · · ∪ Uk = U. The subsets U1, U2, . . . , Uk are called the
blocks of this set decomposition (U1, U2, . . . , Uk). The number k of these blocks is
called the length of this set decomposition. The length of a set decomposition U is
called ℓ (U).

A set composition of a set U shall mean a set decomposition of U whose blocks
are all nonempty. Clearly, any set decomposition of U can be transformed into a
set composition of U by removing all empty blocks.

For instance, ({1, 3} ,∅, {2}) is a set decomposition of [3], but not a set compo-
sition (due to the presence of ∅). It has length 3. Removing the block ∅ from it
yields the set composition ({1, 3} , {2}) of [3], whose length is 2.

Let SD (n) denote the set of all set decompositions of [n].
Let SC (n) denote the set of all set compositions of [n]. Clearly, SC (n) ⊆ SD (n).
If A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk) are two set decompositions of

[n] having the same length, then we define the element

∇B,A := ∑
w∈Sn;

w(Ai)=Bi for all i

w of A. (11)

This will be called a row-to-row sum. It has been denoted (A → B) in Canfield’s and
Williamson’s work [CanWil89], and also is the q = 1 particular case of the “Murphy
element” xst of the Hecke algebra studied in [Murphy92, §3] and [Murphy95, §4] (if
we encode A and B as row-standard tableaux, not necessarily of partition shape).

For instance, if n = 4 and A = ({3} , {1, 2} , {4}) and B = ({1} , {2, 4} , {3}),
then

∇B,A = ∑
w∈S4;

w({3})={1};
w({1,2})={2,4};

w({4})={3}

w = oln (2413) + oln (4213) ,

where oln (i1i2 . . . in) means the permutation in Sn with one-line notation (i1, i2, . . . , in).
We observe some easy properties of row-to-row sums:

Proposition 2.1.1. Let A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk) be two set
decompositions of [n] having the same length. Then:

(a) We have ∇B,A = 0 unless each i ∈ [k] satisfies |Ai| = |Bi|.
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(b) The element ∇B,A does not change if we permute the blocks of A and the
blocks of B using the same permutation. In other words, for any permuta-
tion σ ∈ Sk, we have ∇B,A = ∇Bσ,Aσ, where Aσ :=

(
Aσ(1), Aσ(2), . . . , Aσ(k)

)
and Bσ :=

(
Bσ(1), Bσ(2), . . . , Bσ(k)

)
.

(c) The element ∇B,A does not change if we remove empty blocks from A and
from B, provided that these blocks are in the same positions in both A and
B.

(d) The antipode S of A satisfies S (∇B,A) = ∇A,B.

Proof. (a) Assume that not every i ∈ [k] satisfies |Ai| = |Bi|. Then, there exists
no permutation w ∈ Sn that satisfies (w (Ai) = Bi for all i) (since the injectivity of
such a permutation w would imply |w (Ai)| = |Ai| and thus |Ai| = |w (Ai)| = |Bi|
because of w (Ai) = Bi). Hence, the sum ∑

w∈Sn;
w(Ai)=Bi for all i

w in (11) is empty and thus

equals 0. Therefore, (11) shows that ∇B,A = 0. This proves Proposition 2.1.1 (a).

(b) Let σ ∈ Sk. Then, (11) yields

∇B,A = ∑
w∈Sn;

w(Ai)=Bi for all i

w and (12)

∇Bσ,Aσ = ∑
w∈Sn;

w(Aσ(i))=Bσ(i) for all i

w. (13)

But σ is a permutation of [k]; thus the condition “w (Ai) = Bi for all i” is equivalent
to “w

(
Aσ(i)

)
= Bσ(i) for all i”. Hence, the right hand sides of (12) and (13) are

equal. Thus, so are the left hand sides. In other words, ∇B,A = ∇Bσ,Aσ. This
proves Proposition 2.1.1 (b).

(c) Let A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk). Assume that both A and
B have an empty block in the same position – i.e., there exists some r ∈ [k] such that
Ar = ∅ and Br = ∅. Consider this r. Let A′ := (A1, A2, . . . , Ar−1, Ar+1, Ar+2, . . . , Ak)
and B′ := (B1, B2, . . . , Br−1, Br+1, Br+2, . . . , Bk) be the set decompositions obtained
from A and B by removing the empty blocks Ar and Br. We must show that
∇B,A = ∇B′,A′ .

Essentially, this is obvious from the definition of ∇B,A: The empty blocks Ar and
Br satisfy w (Ar) = Br for any permutation w ∈ Sn (since w (∅) = ∅). Hence, the
condition “w (Ai) = Bi for all i” in (11) is tautologically satisfied for i = r. Thus,
we can replace “for all i” by “for all i ̸= r” in (11) without changing the sum. But
this gives us precisely ∇B′,A′ . Hence, ∇B,A = ∇B′,A′ . This proves Proposition 2.1.1
(c).

Darij Grinberg



Rook sums in the symmetric group algebra page 28

(d) Recall that S is a k-linear map sending each permutation w ∈ Sn to w−1.
Hence, applying S to the equality (11), we obtain

S (∇B,A) = ∑
w∈Sn;

w(Ai)=Bi for all i

w−1 = ∑
w∈Sn;

w−1(Bi)=Ai for all i

w−1

(here, we have rewritten the condition “w (Ai) = Bi” in the form “w−1 (Bi) = Ai”
(which is equivalent, since w is a permutation)). Thus,

S (∇B,A) = ∑
w∈Sn;

w−1(Bi)=Ai for all i

w−1 = ∑
w∈Sn;

w(Bi)=Ai for all i

w

(
here, we have substituted w for w−1 in the sum,
since the map Sn → Sn, w 7→ w−1 is a bijection

)
= ∇A,B (by the definition of ∇A,B) .

This proves Proposition 2.1.1 (d).

Moreover, these row-to-row sums ∇B,A generalize the rectangular rook sums
∇B,A from Section 1:

Proposition 2.1.2. Let A and B be two subsets of [n]. Define the two set decom-
positions A := (A, [n] \ A) and B := (B, [n] \ B) of [n]. Then, ∇B,A = ∇B,A.

Proof. By the definition of ∇B,A, we have

∇B,A = ∑
w∈Sn;

w(A)=B;
w([n]\A)=[n]\B

w. (14)

However, the condition “w ([n] \ A) = [n] \ B” under the sum here is redundant,
since it follows from “w (A) = B” when w is a permutation. Thus, we can remove
this condition. Hence, (14) simplifies to

∇B,A = ∑
w∈Sn;

w(A)=B

w = ∇B,A

(by the definition of ∇B,A). This proves Proposition 2.1.2.

Remark 2.1.3. The row-to-row sums can also be rewritten using colorings instead
of set (de)compositions. Namely, a coloring of [n] means a map f : [n] → C to
some set C. If C = [k] for some k ∈ N, then such a coloring f can be regarded
as a set decomposition of [n] of length k, where the i-th block is f−1 (i) for each
i ∈ [k]. The image f (j) of an element j ∈ [n] under a coloring f : [n] → C is
called the color of j (under f ). Now, the row-to-row sum ∇g, f corresponding to
two colorings f and g of [n] is the sum of all permutations w ∈ Sn that satisfy
g ◦ w = f . (This is a “preservation of colors” condition.)
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Remark 2.1.4. Let u ∈ Sn be any permutation. Let A be the set com-
position ({1} , {2} , . . . , {n}) of [n], and let B be the set composition
({u (1)} , {u (2)} , . . . , {u (n)}) of [n]. Then, ∇B,A = u. Thus, the row-to-row
sums ∇B,A in general are not as special as their particular cases the rectangular
rook sums ∇B,A. In particular, the minimal polynomials of general row-to-row
sums ∇B,A cannot be factored into linear factors over Z.

The symmetric group Sn acts on the set SD (n) = {set decompositions of [n]}
(from the left) by the rule

w (B1, B2, . . . , Bk) = (w (B1) , w (B2) , . . . , w (Bk))

for all w ∈ Sn and all (B1, B2, . . . , Bk) ∈ SD (n) .

The subset SC (n) of SD (n) is preserved under this Sn-action; thus Sn acts on SC (n)
as well.

The action of Sn on SD (n) we just defined allows us to rewrite the equality (11)
as follows:

∇B,A := ∑
w∈Sn;
wA=B

w (15)

for any two set decompositions A, B ∈ SD (n) satisfying ℓ (A) = ℓ (B). More
importantly, the row-to-row sums ∇B,A transform in a very simple way under this
action:

Proposition 2.1.5. Let u, v ∈ Sn be any permutations. Let A, B ∈ SD (n) be any
two set decompositions satisfying ℓ (A) = ℓ (B). Then,

u∇B,Av = ∇uB,v−1A. (16)

Proof. Set k = ℓ (A) = ℓ (B), and write the set decompositions A and B as A =
(A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk). Then, uB = (u (B1) , u (B2) , . . . , u (Bk))
and v−1A =

(
v−1 (A1) , v−1 (A2) , . . . , v−1 (Ak)

)
. Hence, the definition of row-to-
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row sums yields

∇uB,v−1A = ∑
w∈Sn;

w(v−1(Ai))=u(Bi) for all i

w

= ∑
w∈Sn;

(uwv)(v−1(Ai))=u(Bi) for all i

uwv
(

here, we have substituted uwv
for w in the sum

)

= ∑
w∈Sn;

w(Ai)=Bi for all i

uwv

 since the condition
“ (uwv)

(
v−1 (Ai)

)
= u (Bi) ”

is equivalent to “w (Ai) = Bi”


= u ∑

w∈Sn;
w(Ai)=Bi for all i

w

︸ ︷︷ ︸
=∇B,A

v = u∇B,Av.

This proves Proposition 2.1.5.

2.1.2. Antisymmetrizers and the ∇−
U

The sign of a permutation w ∈ Sn shall be denoted by (−1)w.
For each subset U of [n], we define the element

∇−
U := ∑

w∈Sn;
w(i)=i for all i∈[n]\U

(−1)w w ∈ A. (17)

This is called the antisymmetrizer of U (aka the U-sign-integral in the language of
[Grinbe25, Definition 3.7.1]). Note that ∇−

U = 1 if |U| ≤ 1. Another way to rephrase
the definition of ∇−

U is
∇−

U := ∑
w∈SU

(−1)w w ∈ A, (18)

where SU denotes the symmetric group on the set U (embedded into Sn in the
default way: each permutation w ∈ SU is extended to a permutation of [n] by
letting it fix all elements of [n] \ U).

The antisymmetrizers ∇−
U interact nicely with the permutations v ∈ Sn:

Proposition 2.1.6. Let v ∈ Sn be a permutation. Let U be any subset of [n]. Then,

v∇−
U = ∇−

v(U)
v. (19)

Proof. The definition of ∇−
v(U)

yields

∇−
v(U)

= ∑
w∈Sn;

w(i)=i for all i∈[n]\v(U)

(−1)w w. (20)
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The permutation v ∈ Sn is a bijection from [n] to [n], and thus induces a group
isomorphism

S[n] → S[n],

w 7→ vwv−1.

Of course, this isomorphism is just conjugation by v in the group S[n] = Sn. But
since it is induced by the bijection v : [n] → [n], we immediately see from functori-
ality that it sends the permutations w ∈ Sn satisfying “w (i) = i for all i ∈ [n] \ U”
to the permutations w ∈ Sn satisfying “w (i) = i for all i ∈ [n] \ v (U)”. Thus,
the latter permutations are the images of the former permutations under the map
w 7→ vwv−1. Hence, we can substitute vwv−1 for w in the sum on the right hand
side of (20). We thus obtain

∑
w∈Sn;

w(i)=i for all i∈[n]\v(U)

(−1)w w = ∑
w∈Sn;

w(i)=i for all i∈[n]\U

(−1)vwv−1︸ ︷︷ ︸
=(−1)w

(since conjugation
preserves the sign
of a permutation)

vwv−1

= ∑
w∈Sn;

w(i)=i for all i∈[n]\U

(−1)w vwv−1

= v ∑
w∈Sn;

w(i)=i for all i∈[n]\U

(−1)w w

︸ ︷︷ ︸
=∇−

U
(by the definition of ∇−

U )

v−1 = v∇−
Uv−1.

In view of (20), this rewrites as ∇−
v(U)

= v∇−
Uv−1. In other words, ∇−

v(U)
v = v∇−

U .
This proves Proposition 2.1.6.

The following fact will also be useful:

Proposition 2.1.7. Let U and V be two subsets of [n] such that V ⊆ U. Then,
∇−

UA ⊆ ∇−
VA.

Proof. For any two distinct elements p, q ∈ [n], let tp,q be the transposition in Sn
that swaps p with q. Then, a well-known formula ([Grinbe25, Lemma 3.11.6]) says
that every X ⊆ [n] and every x ∈ X satisfy

∇−
X = ∇−

X\{x}

1 − ∑
y∈X\{x}

ty,x

 .
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Hence, every X ⊆ [n] and every x ∈ X satisfy

∇−
XA = ∇−

X\{x}

1 − ∑
y∈X\{x}

ty,x

A

︸ ︷︷ ︸
⊆A

⊆ ∇−
X\{x}A. (21)

Now, V ⊆ U shows that the set V can be obtained from U by removing some
elements (possibly none, if V = U). In other words, V = U \ {u1, u2, . . . , um} for
some distinct elements u1, u2, . . . , um ∈ U. Using these elements, we have

∇−
UA ⊆ ∇−

U\{u1}
A (by (21))

⊆ ∇−
(U\{u1})\{u2}

A (by (21))

⊆ ∇−
((U\{u1})\{u2})\{u3}

A (by (21))

⊆ · · ·
⊆ ∇−

(((U\{u1})\{u2})\··· )\{um}A (by (21))

= ∇−
VA

(since (((U \ {u1}) \ {u2}) \ · · · ) \ {um} = U \ {u1, u2, . . . , um} = V). This proves
Proposition 2.1.7.

2.2. The two ideals

This all was easy. Let us now move towards deeper waters. Recall that the notation
“span” always means a k-linear span.

Definition 2.2.1. Let k ∈ N. We define two k-submodules Ik and Jk of A by

Ik := span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and

Jk := A · span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

Note that the set
{
∇−

U | U is a subset of [n] having size k + 1
}

is empty when
k ≥ n, since no subsets of [n] have size larger than n. The span of an empty set is
the zero submodule {0}.

Proposition 2.2.2. Let k ∈ N. Then:

(a) Both Ik and Jk are ideals of A. (“Ideal” always means “two-sided ideal”.)
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(b) We have

Jk = A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

(c) The antipode S satisfies S (Ik) = Ik and S (Jk) = Jk.

(d) We have

Ik = span {∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) ≤ k} .

(e) We have

Jk = A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A

= A · span
{
∇−

U | U is a subset of [n] having size > k
}

= span
{
∇−

U | U is a subset of [n] having size > k
}
· A.

(f) If X is any subset of [n] having size k + 1, then

Jk = A · ∇−
X · A.

(g) We have

Ik = span {∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) = k} .

Proof. (a) Clearly, Jk is an ideal of A (since Jk has the form Jk = AXA for some
k-submodule X ⊆ A). It remains to show that so is Ik.

But
Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k} .

Hence, Ik is a k-submodule of A. Moreover, (16) shows that for any two set compo-
sitions A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k and any two permutations u, v ∈ Sn,
we have u∇B,Av = ∇uB,v−1A ∈ Ik (since v−1A and uB are again two set compo-
sitions in SC (n) and satisfy ℓ

(
v−1A

)
= ℓ (uB) = ℓ (A) = ℓ (B) ≤ k). By linear-

ity, this shows that AIkA ⊆ Ik (since A is spanned by the permutations w ∈ Sn,
whereas Ik is spanned by the ∇B,A for A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k). In
other words, Ik is an ideal of A. Thus, the proof of part (a) is complete.
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(b) Since A = span Sn, we have

A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span Sn · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{

v∇−
U | v ∈ Sn, while U is a subset of [n] having size k + 1

}
= span

{
∇−

v(U)
v | v ∈ Sn, while U is a subset of [n] having size k + 1

}
(by Proposition 2.1.6)

= span
{
∇−

Uv | v ∈ Sn, while U is a subset of [n] having size k + 1
}(

here, we have substituted U for v (U) , since v ∈ Sn
permutes the subsets of [n] having size k + 1

)
and

span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· span Sn

= span
{
∇−

Uv | v ∈ Sn, while U is a subset of [n] having size k + 1
}

.

The right hand sides of these two equalities are equal; hence, so are their left hand
sides. In other words,

A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

Now, the definition of Jk yields

Jk = A · span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A︸ ︷︷ ︸

=A·span{∇−
U | U is a subset of [n] having size k+1}
(by the preceding sentence)

= A · A︸ ︷︷ ︸
=A

· span
{
∇−

U | U is a subset of [n] having size k + 1
}

= A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

Thus, part (b) is proved.

(c) The equality S (Ik) = Ik follows from Proposition 2.1.1 (d). It remains to
prove S (Jk) = Jk.

Let Xk = span
{
∇−

U | U is a subset of [n] having size k + 1
}

. Then, the defini-
tion of Jk rewrites as Jk = AX kA. But we have S

(
∇−

U
)
= ∇−

U for each U ⊆ [n]
(see, e.g., [Grinbe25, Example 3.11.13 (c)]). Since the map S is k-linear, we thus con-
clude that S (Xk) = Xk (since Xk = span

{
∇−

U | U is a subset of [n] having size k + 1
}

).
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Now, from Jk = AX kA, we obtain

S (Jk) = S (AX kA) = S (A)︸ ︷︷ ︸
=A

S (Xk)︸ ︷︷ ︸
=Xk

S (A)︸ ︷︷ ︸
=A

(
since S is a k-algebra
anti-automorphism

)
= AX kA = J k.

This completes the proof of part (c).

(d) Any set composition of [n] is a set decomposition of [n]. In other words,
SC (n) ⊆ SD (n). Thus,

Ik ⊆ span {∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) ≤ k} .

It remains to prove the converse inclusion. To this purpose, we must show that
if A and B are set decompositions of [n] satisfying ℓ (A) = ℓ (B) ≤ k, then the
row-to-row sum ∇B,A belongs to Ik. So let us show this.

Let A and B be set decompositions of [n] satisfying ℓ (A) = ℓ (B) ≤ k. We must
prove that the row-to-row sum ∇B,A belongs to Ik.

If any of the blocks of A is empty while the corresponding block of B is not, then
this is clear, since Proposition 2.1.1 (a) yields ∇B,A = 0 ∈ Ik. A similar argument
applies if any of the blocks of B is empty while the corresponding block of A is
not. In the remaining case, the empty blocks of A appear at the same positions
as the empty blocks of B. Removing all these empty blocks from both A and B,
we obtain two set compositions A′, B′ of [n] satisfying ℓ (A′) = ℓ (B′) ≤ ℓ (A) =
ℓ (B) and ∇B,A = ∇B′,A′ (by Proposition 2.1.1 (c)). But the definition of Ik yields
∇B′,A′ ∈ Ik (since A′, B′ ∈ SC (n) and ℓ (A′) = ℓ (B′) ≤ ℓ (A) = ℓ (B) ≤ k). Thus,
∇B,A = ∇B′,A′ ∈ Ik. This completes the proof of part (d).

(e) The definition of Jk yields

Jk = A · span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A

⊆ A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A

(since any subset of size k + 1 has size > k). Let us now prove the converse inclu-
sion. Since Jk is an ideal of A, it suffices to show that ∇−

U ∈ Jk whenever U is a
subset of [n] having size > k. So let U be a subset of [n] having size > k. Then, U
has size ≥ k + 1. Hence, U has a subset V of size k + 1. Consider this V. Proposi-
tion 2.1.7 yields ∇−

UA ⊆ ∇−
VA. But the definition of Jk shows that ∇−

V ∈ Jk (since
V is a subset of [n] having size k + 1), and thus we have ∇−

VA ⊆ JkA ⊆ Jk (since
Jk is an ideal of A). Hence, ∇−

U = ∇−
U · 1︸︷︷︸

∈A
∈ ∇−

UA ⊆ ∇−
VA ⊆ Jk. So we have

shown that ∇−
U ∈ Jk whenever U is a subset of [n] having size > k. This proves

A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A ⊆ Jk

(since Jk is an ideal of A). Combining this with the inclusion

Jk ⊆ A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A
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(which we have already proved), we obtain

Jk = A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A.

Similarly, we can show

Jk = A · span
{
∇−

U | U is a subset of [n] having size > k
}

and
Jk = span

{
∇−

U | U is a subset of [n] having size > k
}
· A

(using Proposition 2.2.2 (b) as a starting point). Thus, part (e) is proved.

(f) Let X be any subset of [n] having size k + 1. Then, from A = span Sn, we
obtain

A · ∇−
X = span

{
v∇−

X | v ∈ Sn
}
= span

{
∇−

v(X)
v | v ∈ Sn

}
(since Proposition 2.1.6 yields v∇−

X = ∇−
v(X)

v). Hence, again using A = span Sn,
we obtain

A · ∇−
X︸ ︷︷ ︸

=span
{
∇−

v(X)
v | v∈Sn

} · A︸︷︷︸
=span Sn

= span
{
∇−

v(X)
v | v ∈ Sn

}
· span Sn

= span
{
∇−

v(X)
vw | v ∈ Sn and w ∈ Sn

}
= span

{
∇−

v(X)
u | v ∈ Sn and u ∈ Sn

}
(here, we have substituted u for vw)

= span
{
∇−

Uu | U is a subset of [n] having size k + 1, and u ∈ Sn
} here, we have substituted U for v (X) ,

since each subset U of [n] having size k + 1
can be written as v (X) for some v ∈ Sn


= span

{
∇−

U | U is a subset of [n] having size k + 1
}
· span Sn︸ ︷︷ ︸

=A
= span

{
∇−

U | U is a subset of [n] having size k + 1
}
· A

= Jk (by part (b)) .

This proves part (f).

(g) This will follow from part (d), once we have proved the equality

{∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) ≤ k}
= {∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) = k} .
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So let us prove this equality. The right hand side here is clearly a subset of the
left hand side. It remains to show the reverse inclusion (i.e., that the left hand side
is a subset of the right hand side). In other words, it remains to check that each
∇B,A with A, B ∈ SD (n) satisfying ℓ (A) = ℓ (B) ≤ k can be rewritten in the form
∇B′,A′ for some A′, B′ ∈ SD (n) satisfying ℓ (A′) = ℓ (B′) = k. But this is easy: Set
m := ℓ (A) = ℓ (B) ≤ k, and write the set decompositions A and B in the form
A = (A1, A2, . . . , Am) and B = (B1, B2, . . . , Bm); then set

A′ :=

A1, A2, . . . , Am, ∅,∅, . . . ,∅︸ ︷︷ ︸
k−m empty sets

 and

B′ :=

B1, B2, . . . , Bm, ∅,∅, . . . ,∅︸ ︷︷ ︸
k−m empty sets


(this is allowed since m ≤ k). Then, A′ and B′ are set decompositions in SD (n)
satisfying ℓ (A′) = ℓ (B′) = k and ∇B′,A′ = ∇B,A (the latter follows from Proposi-
tion 2.1.1 (c), since A and B can be obtained from A′ and B′ by removing the k − m
empty blocks at the end). Thus, the proof of part (g) is complete.

The ideals Jk have been studied several times. In particular, the ideal Jk is
the kernel of the map in [deCPro76, Theorem 4.2] (where our k and n have been
renamed as n and m). Also, the ideal J2 has recently appeared in quantum infor-
mation theory as the ideal Ĩswap

n in [BCEHK23, Lemma 3.4].

2.3. Annihilators and the bilinear form

If B is any subset of A, then we define the two subsets

LAnnB := {a ∈ A | ab = 0 for all b ∈ B} and
RAnnB := {a ∈ A | ba = 0 for all b ∈ B}

of A. We call them the left annihilator and the right annihilator of B, respectively.
These annihilators LAnnB and RAnnB are always k-submodules of A, even when
B is not.

Moreover, we define the k-bilinear form

⟨·, ·⟩ : A×A → k,

which sends the pair (u, v) to

{
1, if u = v;
0, if u ̸= v

for any two permutations u, v ∈ Sn.

This is the standard nondegenerate symmetric bilinear form on A = k [Sn] known
from representation theory. We shall refer to this form as the dot product.
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If B is any subset of A, then we define the subset

B⊥ := {a ∈ A | ⟨a, b⟩ = 0 for all b ∈ B}

of A. This is called the orthogonal complement of B in A. Note that it does not change
if we replace ⟨a, b⟩ by ⟨b, a⟩ in its definition, since the form ⟨·, ·⟩ is symmetric. Note
also that B⊥ is always a k-submodule of A, even when B is not.

Definition 2.3.1. Let k ∈ N.

(a) Let w ∈ Sn be a permutation. We say that w avoids 12 · · · (k + 1) if there
exists no (k + 1)-element subset U of [n] such that the restriction w |U is
increasing (i.e., if there exist no k + 1 elements i1 < i2 < · · · < ik+1 of [n]
such that w (i1) < w (i2) < · · · < w (ik+1)).

(b) We let Avn (k + 1) denote the set of all permutations w ∈ Sn that avoid
12 · · · (k + 1).

This notion of “avoiding 12 · · · (k + 1)” is taken from the theory of pattern avoid-
ance (see, e.g., [Bona22, Chapters 4–5]).

2.4. The main theorem

We now arrive at one of our main results, which will be proved in Subsection 2.6:

Theorem 2.4.1. Let k ∈ N. Then:

(a) We have Ik = J ⊥
k = LAnnJk = RAnnJk.

(b) We have Jk = I⊥
k = LAnn Ik = RAnn Ik.

(c) The k-module Ik is free of rank |Avn (k + 1)|.

(d) The k-module Jk is free of rank |Sn \ Avn (k + 1)|.

(e) The k-module A/Ik is free with basis (w)w∈Sn\Avn(k+1). (Here, w denotes
the projection of w ∈ A onto the quotient A/Ik.)

(f) The k-module A/Jk is free with basis (w)w∈Avn(k+1). (Here, w denotes the
projection of w ∈ A onto the quotient A/Jk.)

(g) Assume that n! is invertible in k. Then, A = Ik ⊕Jk (internal direct sum)
as k-module. Moreover, Ik and Jk are nonunital subalgebras of A that
have unities and satisfy A ∼= Ik ×Jk as k-algebras.3
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Furthermore, the ideals Ik and Jk of A have representation-theoretical meanings:

• They are the annihilators of certain tensor power representations of Sn: see
Theorem 2.8.1 and Theorem 2.8.3.

• If n! is invertible in k (for example, if k is a field of characteristic 0), then they
are furthermore certain subproducts of the Artin–Wedderburn decomposition
of A: see Theorem 2.9.1.

Once Theorem 2.4.1 is proved, we will easily obtain the following corollary re-
garding the k = 2 case:

Corollary 2.4.2.

(a) We have
I2 = span {∇B,A | A, B ⊆ [n]} . (22)

(b) The k-module I2 is free of rank |Avn (3)|, which is the Catalan number Cn.

See Subsection 2.6 for the proof of this corollary.

Remark 2.4.3. The results in this section have a significant overlap with existing
literature, particularly with prior work on the Murphy cellular bases and on
annihilators of Young permutation modules. The latter will be discussed in
Subsection 2.8. Let us briefly outline the former, insofar as it provides alternative
proofs for parts of Theorem 2.4.1. Note that this remark is included for context
only and will only be used in the proof of Theorem 2.9.6.

The Murphy cellular bases first appeared in the paper [CanWil89] by Canfield
and Williamson; then, Murphy ([Murphy92] and [Murphy95]) generalized them
to the Hecke algebra. The easiest way to define them (in A = k [Sn]) is as follows
(following the notations of [Grinbe25, §6.8]): An n-bitableau shall mean a triple
(λ, U, V), where λ is a partition of n and where U and V are two tableaux of
shape λ with entries 1, 2, . . . , n each. Given an n-bitableau (λ, U, V), we define
two elements

∇Row
V,U := ∑

w∈Sn;
wU is row-equivalent to V

w and

∇−Col
V,U := ∑

w∈Sn;
wU is column-equivalent to V

(−1)w w of A.

3The formulation “nonunital subalgebras that have unities” may sound paradoxical. But it is
literally true: A nonunital subalgebra of A can have a unity but still be nonunital as a subal-
gebra because its unity is not the unity of A. This is precisely the situation that the nonunital
subalgebras Ik and Jk find themselves in.

Darij Grinberg



Rook sums in the symmetric group algebra page 40

An n-bitableau (λ, U, V) is said to be standard if both tableaux U and V are
standard. We let SBT (n) be the set of all standard n-bitableaux, while BT (n)
denotes the set of all n-bitableaux (standard or not). Then, both families(

∇Row
V,U

)
(λ,U,V)∈SBT(n)

and
(
∇−Col

V,U

)
(λ,U,V)∈SBT(n)

are bases of A (see [CanWil89, Theorems 3.12, 3.14 and 6.13] or [Grinbe25, The-
orem 6.8.14]). These are the so-called Murphy cellular bases.

These bases have been used to define ideals (left, right, two-sided) of A. In
particular, for any k ∈ N, we can define the four spans

FRow
std,len≤k := span

{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and ℓ (λ) ≤ k
}

;

F−Col
std,len>k := span

{
∇−Col

V,U | (λ, U, V) ∈ SBT (n) and ℓ (λ) > k
}

;

FRow
all,len≤k := span

{
∇Row

V,U | (λ, U, V) ∈ BT (n) and ℓ (λ) ≤ k
}

;

F−Col
all,len>k := span

{
∇−Col

V,U | (λ, U, V) ∈ BT (n) and ℓ (λ) > k
}

.

According to [Grinbe25, Theorem 6.8.47], these are actually just two spans: we
have

FRow
std,len≤k = FRow

all,len≤k =

(
F−Col

std,len>k

)⊥

and

F−Col
std,len>k = F−Col

all,len>k =

(
FRow

std,len≤k

)⊥
,

and furthermore, both spans FRow
std,len≤k = FRow

all,len≤k and F−Col
std,len>k = F−Col

all,len>k are
two-sided ideals of A.

Now, we claim that these ideals FRow
std,len≤k and F−Col

std,len>k are precisely our Ik

and Jk, respectively. Indeed:

• Our ideal Ik is spanned by the row-to-row sums of the form ∇B,A, where
A =

(
A1, A2, . . . , Ap

)
and B =

(
B1, B2, . . . , Bp

)
are set compositions of

[n] satisfying ℓ (A) = ℓ (B) ≤ k. By Proposition 2.1.1 (a), we can restrict
ourselves to those pairs (A, B) of set compositions that satisfy |Ai| = |Bi|
for all i (since all other pairs produce row-to-row sums equal to 0). Such
pairs (A, B) can be encoded as pairs of “weird-shaped” tableaux A, B, both
of shape α, where α =

(
|A1| , |A2| , . . . ,

∣∣Ap
∣∣) is the list of sizes of the blocks

of A (or equivalently B), in the simplest possible way: Let

(i-th row of A) = (list of elements of Ai (in increasing order)) and
(i-th row of B) = (list of elements of Bi (in increasing order))
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for each i ∈ [p]. We can furthermore find a permutation σ ∈ Sp such that∣∣∣Aσ(1)

∣∣∣ ≥ ∣∣∣Aσ(2)

∣∣∣ ≥ · · · ≥
∣∣∣Aσ(p)

∣∣∣. By permuting the blocks of A and of
B using this permutation σ ∈ Sp (so that ∇B,A stays unchanged), we can
furthermore ensure that α is a partition (of length ℓ (α) = p ≤ k). Then,
(α, A, B) is an n-bitableau (although usually not a standard one), and we
have ∇B,A = ∇Row

B,A .

Hence, each nonzero row-to-row sum ∇B,A with A, B ∈ SC (n) satisfying
ℓ (A) = ℓ (B) ≤ k can be rewritten as ∇Row

B,A for some n-bitableau (λ, A, B) ∈
BT (n) with ℓ (λ) ≤ k. Conversely, any ∇Row

B,A can be rewritten as ∇B,A by
reversing the above construction (let A be the set composition of [n] whose
i-th block is the set of all entries of the i-th row of A, and likewise construct
B from B). Thus,

{∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k} \ {0}

=
{
∇Row

B,A | (λ, A, B) ∈ BT (n) with ℓ (λ) ≤ k
}
\ {0} .

Therefore,

Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

= span
{
∇Row

B,A | (λ, A, B) ∈ BT (n) with ℓ (λ) ≤ k
}

= span
{
∇Row

V,U | (λ, U, V) ∈ BT (n) and ℓ (λ) ≤ k
}

= FRow
all,len≤k = FRow

std,len≤k. (23)

• Define a k-submodule Uk of A by

Uk := span
{
∇−

X | X is a subset of [n] with size |X| > k
}

.

Then, [Grinbe25, Proposition 6.8.53] says that

F−Col
std,len>k = AU k = UkA = AU kA.

But Proposition 2.2.2 (e) yields

Jk = A · span
{
∇−

U | U is a subset of [n] having size > k
}︸ ︷︷ ︸

={∇−
X | X is a subset of [n] with size |X|>k}

· A

= A · span
{
∇−

X | X is a subset of [n] with size |X| > k
}︸ ︷︷ ︸

=Uk

· A

= AU kA.

Comparing these two equalities, we find

Jk = F−Col
std,len>k. (24)
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With the equalities (23) and (24) in hand, we can easily derive some parts of
Theorem 2.4.1 from known properties of the Murphy cellular bases. In particular,
(23) shows that

Ik = FRow
std,len≤k = span

{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and ℓ (λ) ≤ k
}

;

thus, Ik is spanned by the family
(
∇Row

V,U

)
(λ,U,V)∈SBT(n) and ℓ(λ)≤k

, which is a

subfamily of the Murphy cellular basis
(
∇Row

V,U

)
(λ,U,V)∈SBT(n)

of A. Hence,

Ik is a direct addend of A as a k-module, and both Ik and A/Ik

are free k-modules, with respective bases
(
∇Row

V,U

)
(λ,U,V)∈SBT(n) and ℓ(λ)≤k

and(
∇Row

V,U

)
(λ,U,V)∈SBT(n) and ℓ(λ)>k

. Likewise, we can get analogous claims about

Jk and A/Jk from (24). Using (23) and (24), we can furthermore rewrite the

equality FRow
std,len≤k =

(
F−Col

std,len>k

)⊥
(which is part of [Grinbe25, Theorem 6.8.47])

as Ik = J ⊥
k , and similarly we obtain Jk = I⊥

k .
However, not all of Theorem 2.4.1 follows this easily from this approach. Any-

way, we shall now take a more elementary point of view.

2.5. Lemmas for the proof of the main theorem

First, however, we prepare for the proof of Theorem 2.4.1. We start with a litany
of lemmas. Our first lemma is a collection of basic properties of the bilinear form
⟨·, ·⟩:

Lemma 2.5.1.

(a) Let coeff1 : A → k be the map that sends each element a of A = k [Sn]
to the coefficient of the identity permutation id ∈ Sn in a. In other words,
coeff1 : A → k is the k-linear map that sends the permutation id ∈ Sn to 1
while sending any non-identity permutation w ∈ Sn to 0.

Then, the bilinear form ⟨·, ·⟩ can be expressed as follows: For any a, b ∈ A,
we have

⟨a, b⟩ = coeff1 (S (a) b) (25)
= coeff1 (bS (a)) (26)
= coeff1 (S (b) a) (27)
= coeff1 (aS (b)) . (28)

(b) The bilinear form ⟨·, ·⟩ is S-invariant: That is, for all a, b ∈ A, we have

⟨a, b⟩ = ⟨S (a) , S (b)⟩ . (29)
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(c) Let B be any subset of A. Then, (S (B))⊥ = S
(
B⊥).

Proof. (a) This is [Grinbe25, Proposition 6.8.17].

(b) Let a, b ∈ A. Then, S (S (a)) = a (since S ◦ S = id). But (25) (applied to S (a)
and S (b) instead of a and b) yields

⟨S (a) , S (b)⟩ = coeff1

S (S (a))︸ ︷︷ ︸
=a

S (b)

 = coeff1 (aS (b)) = ⟨a, b⟩

(by (28)). In other words, ⟨a, b⟩ = ⟨S (a) , S (b)⟩. This proves (29) and thus Lemma
2.5.1 (b).

(c) By the definition of (S (B))⊥, we have

(S (B))⊥ = {a ∈ A | ⟨a, b⟩ = 0 for all b ∈ S (B)}
= {a ∈ A | ⟨a, c⟩ = 0 for all c ∈ S (B)}
= {a ∈ A | ⟨a, S (b)⟩ = 0 for all b ∈ B} (30)

(since S (B) = {S (b) | b ∈ B}). On the other hand,

S
(
B⊥
)
=
{

S (a) | a ∈ B⊥
}

= {S (a) | a ∈ A satisfying ⟨a, b⟩ = 0 for all b ∈ B}(
since B⊥ = {a ∈ A | ⟨a, b⟩ = 0 for all b ∈ B}

)
= {S (a) | a ∈ A satisfying ⟨S (a) , S (b)⟩ = 0 for all b ∈ B}

(since (29) yields ⟨a, b⟩ = ⟨S (a) , S (b)⟩)
= {a | a ∈ A satisfying ⟨a, S (b)⟩ = 0 for all b ∈ B}

(here, we have substituted a for S (a) in our set, since S : A → A is a bijection). In
other words,

S
(
B⊥
)
= {a ∈ A | ⟨a, S (b)⟩ = 0 for all b ∈ B} .

Comparing this with (30), we obtain (S (B))⊥ = S
(
B⊥). This proves Lemma 2.5.1

(c).

The next lemma connects orthogonal spaces with left/right annihilators:

Lemma 2.5.2. Let B be a left ideal of A. Then:

(a) We have B⊥ = LAnn (S (B)).

(b) If S (B) = B, then B⊥ = LAnnB = RAnnB.
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Proof. (a) Define the k-linear map coeff1 : A → k as in Lemma 2.5.1 (a). It is easy
to see that each a ∈ A and each w ∈ Sn satisfy the equality

coeff1

(
aw−1

)
= (the coefficient of w in a) (31)

(indeed, if we write a as ∑
u∈Sn

αuu with αu ∈ k, then both sides of this equality equal

αw).
Let a ∈ LAnn (S (B)). Then, aS (b) = 0 for all b ∈ B. Hence, (28) yields ⟨a, b⟩ =

coeff1

aS (b)︸ ︷︷ ︸
=0

 = coeff1 0 = 0 for all b ∈ B. In other words, a ∈ B⊥. Thus, we

have shown that LAnn (S (B)) ⊆ B⊥.
Conversely, let c ∈ B⊥. Then, ⟨c, b⟩ = 0 for all b ∈ B. Now, let b ∈ B be arbitrary.

Then, for every w ∈ Sn, we have wb ∈ B (since B is a left ideal of A) and therefore
⟨c, wb⟩ = 0 (since c ∈ B⊥), so that

0 = ⟨c, wb⟩ = coeff1 (cS (wb)) (by (28))

= coeff1

(
cS (b)w−1

) since S (wb) = S (b) S (w)︸ ︷︷ ︸
=w−1

= S (b)w−1


= (the coefficient of w in cS (b)) (by (31), applied to a = cS (b)) .

Since this holds for each w ∈ Sn, we thus have shown that all coefficients of cS (b)
equal 0. In other words, cS (b) = 0. Since this holds for each b ∈ B, we conclude
that c ∈ LAnn (S (B)). Thus, we have shown that B⊥ ⊆ LAnn (S (B)). Combining
this with LAnn (S (B)) ⊆ B⊥, we obtain B⊥ = LAnn (S (B)). Thus, Lemma 2.5.2
(a) is proved.

(b) Assume that S (B) = B. Then, Lemma 2.5.2 (a) yields B⊥ = LAnn (S (B)) =
LAnnB (since S (B) = B). Furthermore, Lemma 2.5.1 (c) yields (S (B))⊥ = S

(
B⊥).

In view of S (B) = B, we can rewrite this as B⊥ = S
(
B⊥). However, S is a k-

algebra anti-automorphism. Thus, RAnn (S (B)) = S (LAnnB). In view of S (B) =

B, we can rewrite this as RAnnB = S

LAnnB︸ ︷︷ ︸
=B⊥

 = S
(
B⊥) = B⊥. Thus, B⊥ =

RAnnB. Combined with B⊥ = LAnnB, this completes the proof of Lemma 2.5.2
(b).

Lemma 2.5.3. Let M be a free k-module with a basis (mi)i∈I . Let J and K be two
disjoint subsets of I such that J ∪ K = I. Let N be a k-submodule of M such
that the quotient module M/N has a basis (mi)i∈J . (Here, as usual, m denotes
the projection of any vector m ∈ M onto the quotient M/N .)

Then:
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(a) The k-module N is free of rank |K|.

(b) There exists a k-linear projection π : M → N (that is, a k-linear map
π : M → N such that π |N = id).

Proof. For each k ∈ K, the vector mk ∈ M/N can be written as a k-linear combi-
nation of the family (mi)i∈J (since this family is a basis of M/N ). In other words,
there exist coefficients ck,j for all k ∈ K and j ∈ J such that each k ∈ K satisfies

mk = ∑
j∈J

ck,jmj. (32)

Consider these ck,j. Now, let us set

vk := mk − ∑
j∈J

ck,jmj (33)

for each k ∈ K. This element vk belongs to N (since vk = mk − ∑
j∈J

ck,jmj = mk −

∑
j∈J

ck,jmj = 0 by (32)). Thus, (vk)k∈K is a family of vectors in N . This family is easily

seen to be k-linearly independent4. Moreover, it spans the k-module N (this, too,
is not hard to see5). Thus, the family (vk)k∈K is a basis of N . Therefore, N is free
of rank |K|. This proves Lemma 2.5.3 (a).

4Proof. Let (λk)k∈K ∈ kK be a family of scalars such that ∑
k∈K

λkvk = 0. We must show that all λk

are 0.
We have

0 = ∑
k∈K

λkvk = ∑
k∈K

λk

(
mk − ∑

j∈J
ck,jmj

)
(by (33))

= ∑
k∈K

λkmk − ∑
k∈K

λk ∑
j∈J

ck,jmj

= ∑
k∈K

λkmk − ∑
j∈J

(
∑
k∈K

λkck,j

)
mj. (34)

Note that there is no overlap between the mk’s in the first sum here and the mj’s in the second
sum, since the sets J and K are disjoint. Since the family (mi)i∈I is k-linearly independent (being
a basis of M), we thus conclude from (34) that all the coefficients λk and ∑

k∈K
λkck,j are 0. Hence,

in particular, all λk are 0. Qed.
5Proof. Let w ∈ N . We must show that w ∈ span {vk | k ∈ K}.

First, we expand w ∈ N ⊆ M in the basis (mi)i∈I of M as follows:

w = ∑
i∈I

wimi with wi ∈ k.
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(b) Recall that vk ∈ N for each k ∈ K. Let π : M → N be the k-linear map that
sends each basis element mi of M to{

vi, if i ∈ K;
0, if i ∈ J.

This is well-defined (since (mi)i∈I is a basis of M, and since each i ∈ I belongs to
exactly one of the sets K and J). It is easy to see that this map π sends vk to vk
for each k ∈ K (because applying π to the right hand side of (33) kills all mj with
j ∈ J but sends mk to vk). Thus, by linearity, we obtain π |N = id (since (vk)k∈K is
a basis of N ). Thus, π is a projection. This proves Lemma 2.5.3 (b).

Since the set I is the union of its disjoint subsets J and K, we can break this sum up as follows:

w = ∑
i∈J

wimi + ∑
i∈K

wimi = ∑
j∈J

wjmj + ∑
k∈K

wk mk︸︷︷︸
= ∑

j∈J
ck,jmj+vk

(by (33))

= ∑
j∈J

wjmj + ∑
k∈K

wk

(
∑
j∈J

ck,jmj + vk

)
︸ ︷︷ ︸
= ∑

j∈J
∑

k∈K
wkck,jmj+ ∑

k∈K
wkvk

= ∑
j∈J

wjmj + ∑
j∈J

∑
k∈K

wkck,jmj︸ ︷︷ ︸
= ∑

j∈J

(
wj+ ∑

k∈K
wkck,j

)
mj

+ ∑
k∈K

wkvk

= ∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
mj + ∑

k∈K
wkvk. (35)

Projecting this onto M/N , we obtain

w = ∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
mj + ∑

k∈K
wkvk

= ∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
mj + ∑

k∈K
wk vk︸︷︷︸

=0
(since vk∈N )

= ∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
mj.

Hence,

∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
mj = w = 0 (since w ∈ N ) .

Since the family (mi)i∈J is k-linearly independent (being a basis of N ), we thus conclude that
all the coefficients wj + ∑

k∈K
wkck,j here are 0. Thus, (35) becomes

w = ∑
j∈J

(
wj + ∑

k∈K
wkck,j

)
︸ ︷︷ ︸

=0

mj + ∑
k∈K

wkvk = ∑
k∈K

wkvk ∈ span {vk | k ∈ K} ,

qed.
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Lemma 2.5.4. Let k ∈ N. Then, IkJk = JkIk = 0.

Proof. Let us first show that IkJk = 0. Indeed, we have

Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and
Jk = span

{
∇−

U | U is a subset of [n] having size k + 1
}
· A

(by Proposition 2.2.2 (b)). Thus, in order to prove that IkJk = 0, it suffices to show
that ∇B,A∇−

U = 0 for all set compositions A, B ∈ SC (n) satisfying ℓ (A) = ℓ (B) ≤ k
and all subsets U of [n] having size k + 1. So let us show this. We fix two set
compositions A, B ∈ SC (n) satisfying ℓ (A) = ℓ (B) ≤ k and a subset U of [n]
having size k + 1. We must show that ∇B,A∇−

U = 0.
We have ℓ (A) = ℓ (B) ≤ k < k + 1 = |U| (since U has size k + 1). In other words,

A has fewer blocks than U has elements. Hence, by the pigeonhole principle,
there exist two distinct elements u and v of U that belong to the same block of A.
Pick such u and v. Let τ ∈ SU be the transposition that swaps u and v. Then,
∇−

U = (1 − τ) q for some q ∈ k [SU] (since ⟨τ⟩ = {1, τ} is a subgroup of the group
SU and since the permutation τ is odd6). Consider this q. But (16) (applied to
u = id and v = τ) yields

∇B,Aτ = ∇B,τ−1A = ∇B,A

(since τ−1A = A (because u and v belong to the same block of A, and thus the
transposition τ preserves each block of A)). Hence,

∇B,A ∇−
U︸︷︷︸

=(1−τ)q

= ∇B,A (1 − τ)︸ ︷︷ ︸
=∇B,A−∇B,Aτ

=0
(since ∇B,Aτ=∇B,A)

q = 0.

This completes our proof of IkJk = 0.
It remains to prove that JkIk = 0. This can be done similarly, but can also be

derived from IkJk = 0 easily: Since S is an algebra anti-automorphism, we have

S (IkJk) = S (Jk)︸ ︷︷ ︸
=Jk

(by Proposition 2.2.2 (c))

S (Ik)︸ ︷︷ ︸
=Ik

(by Proposition 2.2.2 (c))

= JkIk.

Thus, JkIk = S (IkJk) = 0 (since IkJk = 0). The proof of Lemma 2.5.4 is thus
complete.

6In more details: We have ∇−
U = (1 − τ)∇even

U , where ∇even
U = ∑

w∈SU ;
(−1)w=1

w. This follows from

[Grinbe25, Proposition 3.7.4 (d)], applied to X = U and i = u and j = v (our τ is thus the ti,j of
[Grinbe25, Proposition 3.7.4 (d)]).
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The following purely combinatorial lemma is a variant of the Erdös–Szekeres
theorem:

Lemma 2.5.5. Let k ∈ N. Let v ∈ Avn (k + 1). Then, there exists a set decompo-
sition A = (A1, A2, . . . , Ak) of [n] such that all restrictions v |A1 , v |A2 , . . . , v |Ak
are decreasing.

Proof. Let v be the sequence (v (1) , v (2) , . . . , v (n)). Then, v has no increasing
subsequence of length k + 1 (because v ∈ Avn (k + 1)). Thus, v has no increas-
ing subsequence of length > k. Hence, the length of any nonempty increasing
subsequence of v must be some i ∈ [k].

For each i ∈ [k], we define a set

Ai := {j ∈ [n] | the longest increasing subsequence of v
ending with v (j) has length i} .

These k sets A1, A2, . . . , Ak are clearly disjoint, and their union is [n] (since the
length of any nonempty increasing subsequence of v must be some i ∈ [k]). In
other words, A := (A1, A2, . . . , Ak) is a set decomposition of [n]. It remains to
show that all restrictions v |A1 , v |A2 , . . . , v |Ak are decreasing.

To do this, we assume the contrary. Thus, there exists some i ∈ [k] such that
v |Ai is not decreasing. Consider this i. Then, there exist two elements p < q
of Ai such that v (p) < v (q). Consider these p and q. The longest increasing
subsequence of v ending with v (q) has length i (since q ∈ Ai). Now, consider the
longest increasing subsequence of v ending with v (p). This subsequence, too, has
length i (since p ∈ Ai), and thus can be written as (v (p1) < v (p2) < · · · < v (pi))
with pi = p (since it ends with v (p)). By appending v (q) to it, we obtain an
increasing subsequence (v (p1) < v (p2) < · · · < v (pi) < v (q)) of v (since pi = p
and thus v (pi) = v (p) < v (q)) that ends with v (q) and has length i + 1. But
this contradicts the fact that the longest increasing subsequence of v ending with
v (q) has length i. This contradiction shows that our assumption was false. Thus,
all restrictions v |A1 , v |A2 , . . . , v |Ak are decreasing. This completes the proof of
Lemma 2.5.5.

In the following few lemmas, we will use the lexicographic order on Sn. This is
a total order on Sn, defined by setting

(u < v) ⇐⇒ (the smallest i ∈ [n] satisfying u (i) ̸= v (i)
satisfies u (i) < v (i)) for all u, v ∈ Sn.

Lemma 2.5.6. Let k ∈ N. Let A = (A1, A2, . . . , Ak) be a set decomposition of
[n]. Let v ∈ Sn be a permutation such that all restrictions v |A1 , v |A2 , . . . , v |Ak
are decreasing. Let w ∈ Sn be a further permutation such that all i ∈ [k] satisfy
w (Ai) = v (Ai). Then, w ≤ v in lexicographic order.
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Proof. Intuitively, this is clear: The condition “all i ∈ [k] satisfy w (Ai) = v (Ai)”
shows that w can be obtained from v by permuting the values of v on A1, permuting
the values of v on A2, and so on. But any such permutation (unless it is the identity)
decreases v in lexicographic order (because the restrictions v |A1 , v |A2 , . . . , v |Ak
are decreasing, and thus any nontrivial permutation “puts elements in a more
natural order”). Hence, w ≤ v.

Here is a rigorous proof: If w = v, then the claim is obvious. So we WLOG assume that
w ̸= v. Then, there exists some p ∈ [n] such that w (p) ̸= v (p). Consider the smallest such
p. Then,

w (r) = v (r) for each r < p. (36)

Since A is a set decomposition of [n], there exists some i ∈ [k] such that p ∈ Ai. Consider
this i.

We have p ∈ Ai, thus w (p) ∈ w (Ai) = v (Ai) (by assumption). In other words, w (p) =
v (r) for some r ∈ Ai. Consider this r.

If we had r < p, then (36) would yield w (r) = v (r) = w (p), which would yield r = p
(since w is injective), which would contradict r < p. Hence, r < p is impossible. Thus,
r ≥ p.

Moreover, w (p) ̸= v (p) and thus v (p) ̸= w (p) = v (r), so that p ̸= r. Combining this
with r ≥ p, we obtain r > p. Since the restriction v |Ai is decreasing (by assumption), this
entails v (r) < v (p) (since r and p belong to Ai). Thus, w (p) = v (r) < v (p).

So we have shown that the smallest p ∈ [n] that satisfies w (p) ̸= v (p) must satisfy
w (p) < v (p). In other words, w < v in lexicographic order. Hence, w ≤ v follows, and
Lemma 2.5.6 is proved.

Lemma 2.5.7. Let k ∈ N. Then, the quotient k-module A/Ik is spanned by the
family (w)w∈Sn\Avn(k+1).

Proof. Clearly, A/Ik is spanned by the u for u ∈ Sn. Hence, it suffices to prove that

u ∈ span
(
(w)w∈Sn\Avn(k+1)

)
for each u ∈ Sn. (37)

To prove this, we proceed by induction on u in lexicographic order. Thus, we fix
a permutation v ∈ Sn, and we assume (as the induction hypothesis) that (37) holds
for every u < v in lexicographic order. We must now prove (37) for u = v.

If v ∈ Sn \ Avn (k + 1), then this is trivial. Thus, we WLOG assume that v /∈
Sn \ Avn (k + 1). Hence, v ∈ Avn (k + 1). Therefore, by Lemma 2.5.5, there exists a
set decomposition A = (A1, A2, . . . , Ak) of [n] such that all restrictions v |A1 , v |A2
, . . . , v |Ak are decreasing. Consider this set decomposition A = (A1, A2, . . . , Ak).
Define a further set decomposition B = (B1, B2, . . . , Bk) of [n] by B = vA (using the
action of Sn on SD (n)), that is, by

Bi := v (Ai) for each i ∈ [k] .
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Thus, v ∈ Sn is a permutation satisfying v (Ai) = Bi for all i. Hence, the row-to-row
sum

∇B,A = ∑
w∈Sn;

w(Ai)=Bi for all i

w

contains the permutation v as one of its addends. All its remaining addends are
permutations w that satisfy w < v in lexicographic order (by Lemma 2.5.67). Thus,
all the addends of ∇B,A except for v are lexicographically smaller than v. Hence,

∇B,A = v + (some permutations w < v) .

Therefore,
v = ∇B,A − (some permutations w < v) . (38)

But the set decompositions A, B ∈ SD (n) satisfy ℓ (A) = ℓ (B) = k. Hence, Propo-
sition 2.2.2 (d) yields ∇B,A ∈ Ik. Thus, projecting the equality (38) onto the quotient
A/Ik, we obtain

v = ∇B,A︸ ︷︷ ︸
=0

(since ∇B,A∈Ik)

− (some permutations w < v)

= − (some permutations w < v)︸ ︷︷ ︸
∈span((w)w∈Sn\Avn(k+1))

(by our induction hypothesis)

∈ span
(
(w)w∈Sn\Avn(k+1)

)
.

In other words, (37) holds for u = v. This completes the induction. Thus, Lemma
2.5.7 is proved.

Lemma 2.5.8. Let v ∈ Sn be a permutation. Let U be a subset of [n] such that
the restriction v |U is increasing. Let w ∈ Sn be a permutation. Assume that w
agrees with v on all elements outside of U (that is, we have w (i) = v (i) for each
i ∈ [n] \ U). Then, w ≥ v in lexicographic order.

Proof. Essentially, this is because w can be obtained from v by permuting the val-
ues of v on U (since w agrees with v on all elements outside of U), and any such
permutation increases v in lexicographic order (because the restriction v |U is in-
creasing).

Here is a rigorous proof: If w = v, then the claim is obvious. So we WLOG assume that
w ̸= v. Then, there exists some p ∈ [n] such that w (p) ̸= v (p). Consider the smallest such
p. Then,

w (r) = v (r) for each r < p. (39)

7In more detail: We must show that any permutation w ∈ Sn that satisfies (w (Ai) = Bi for all i)
and is distinct from v must satisfy w < v in lexicographic order. So let w be such a permuta-
tion. Then, w (Ai) = Bi = v (Ai) for each i ∈ [k]. Hence, Lemma 2.5.6 shows that w ≤ v is
lexicographic order. Since w is distinct from v, we thus obtain w < v.
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From w (p) ̸= v (p), we obtain p /∈ [n] \ U (since w (i) = v (i) for each i ∈ [n] \ U). Thus,
p ∈ U.

But the permutations w and v agree on all elements outside of U. Hence, in partic-
ular, w ([n] \ U) = v ([n] \ U). However, w and v are permutations of [n], so we have
w ([n] \ U) = [n] \ w (U) and v ([n] \ U) = [n] \ v (U), and therefore

[n] \ w (U) = w ([n] \ U) = v ([n] \ U) = [n] \ v (U) .

Since w (U) and v (U) are subsets of [n], we can take complements in this equality, and
conclude that w (U) = v (U).

From p ∈ U, we obtain w (p) ∈ w (U) = v (U). In other words, w (p) = v (r) for some
r ∈ U. Consider this r. If we had r < p, then (39) would yield w (r) = v (r) = w (p), which
would entail r = p (since w is injective), and this would contradict r < p. Thus we cannot
have r < p. Hence, r ≥ p. But we also have w (p) ̸= v (p), hence v (p) ̸= w (p) = v (r)
and thus p ̸= r. Combined with r ≥ p, this shows that r > p. Since the restriction
v |U is increasing, we thus conclude that v (r) > v (p) (since r and p belong to U). Thus,
w (p) = v (r) > v (p).

So we have shown that the smallest p ∈ [n] that satisfies w (p) ̸= v (p) must satisfy
w (p) > v (p). In other words, w > v in lexicographic order. Hence, w ≥ v follows, and
Lemma 2.5.8 is proved.

Lemma 2.5.9. Let k ∈ N. Then, the quotient k-module A/Jk is spanned by the
family (w)w∈Avn(k+1).

Proof. Clearly, A/Jk is spanned by the u for u ∈ Sn. Hence, it suffices to prove that

u ∈ span
(
(w)w∈Avn(k+1)

)
for each u ∈ Sn. (40)

To prove this, we proceed by induction on u in reverse lexicographic order. Thus,
we fix a permutation v ∈ Sn, and we assume (as the induction hypothesis) that (40)
holds for every u > v in lexicographic order. We must now prove (40) for u = v.

If v ∈ Avn (k + 1), then this is trivial. Thus, we WLOG assume that v /∈ Avn (k + 1).
Hence, v ∈ Sn \ Avn (k + 1). Therefore, there exists a (k + 1)-element subset U of
[n] such that the restriction v |U is increasing. Consider this U. Thus, the sum

v∇−
U = ∑

w∈Sn agrees with v on
all elements outside of U

±w

contains the permutation v as one of its addends. All its remaining addends have
the form ±w where the permutation w ∈ Sn satisfies w > v in lexicographic order
(because if w ∈ Sn agrees with v on all elements outside of U but is distinct from
v, then Lemma 2.5.8 yields w ≥ v and therefore w > v). Hence,

v∇−
U = v ± (some permutations w > v) .

Therefore,
v = v∇−

U ± (some permutations w > v) . (41)
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But the definition of Jk yields v∇−
U ∈ Jk. Thus, projecting the equality (41) onto

the quotient A/Jk, we obtain

v = v∇−
U︸︷︷︸

=0
(since v∇−

U∈Jk)

± (some permutations w > v)

= − (some permutations w > v)︸ ︷︷ ︸
∈span((w)w∈Avn(k+1))

(by our induction hypothesis)

∈ span
(
(w)w∈Avn(k+1)

)
.

In other words, (40) holds for u = v. This completes the induction. Thus, Lemma
2.5.9 is proved.

Lemma 2.5.10. Let k ∈ N. Let (αw)w∈Avn(k+1) ∈ kAvn(k+1) be a family of scalars
satisfying

∑
w∈Avn(k+1)

αww ∈ I⊥
k .

Then, αw = 0 for all w ∈ Avn (k + 1).

Proof. Assume the contrary. Thus, there exist some w ∈ Avn (k + 1) such that
αw ̸= 0. Let v be the lexicographically smallest such w. Thus, αv ̸= 0, but

αw = 0 for every w ∈ Avn (k + 1) satisfying w < v. (42)

As in the proof of Lemma 2.5.7, we can construct set decompositions A, B ∈
SD (n) such that ℓ (A) = ℓ (B) = k and ∇B,A ∈ Ik and

∇B,A = v + (some permutations w < v) (43)

hold. Consider these A and B. The k-bilinear form ⟨·, ·⟩ has the property that for
every w ∈ Sn and every a ∈ A, the coefficient of w in a is ⟨w, a⟩. Hence, the
equality (43) shows that

⟨v, ∇B,A⟩ = 1 (44)

and
⟨w, ∇B,A⟩ = 0 for each permutation w > v. (45)

From ∑
w∈Avn(k+1)

αww ∈ I⊥
k and ∇B,A ∈ Ik, we conclude that

〈
∑

w∈Avn(k+1)
αww, ∇B,A

〉
= 0.
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Thus,

0 =

〈
∑

w∈Avn(k+1)
αww, ∇B,A

〉
= ∑

w∈Avn(k+1)
αw︸︷︷︸

=0 if w<v
(by (42))

⟨w, ∇B,A⟩︸ ︷︷ ︸
=0 if w>v
(by (45))︸ ︷︷ ︸

=0 if w ̸=v
(since w ̸=v entails w<v or w>v)

= αv ⟨v, ∇B,A⟩︸ ︷︷ ︸
=1

(by (44))

= αv ̸= 0,

which is absurd. This completes the proof of Lemma 2.5.10.

Lemma 2.5.11. Let k ∈ N. Let (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) be a family of
scalars satisfying

∑
w∈Sn\Avn(k+1)

αww ∈ J ⊥
k .

Then, αw = 0 for all w ∈ Sn \ Avn (k + 1).

Proof. Assume the contrary. Thus, there exist some w ∈ Sn \ Avn (k + 1) such that
αw ̸= 0. Let v be the lexicographically largest such w. Thus, αv ̸= 0, but

αw = 0 for every w ∈ Sn \ Avn (k + 1) satisfying w > v. (46)

As in the proof of Lemma 2.5.9, we can construct a (k + 1)-element subset U of
[n] such that v∇−

U ∈ Jk and

v∇−
U = v ± (some permutations w > v) . (47)

Consider this U. The k-bilinear form ⟨·, ·⟩ has the property that for every w ∈ Sn
and every a ∈ A, the coefficient of w in a is ⟨w, a⟩. Hence, the equality (47) shows
that 〈

v, v∇−
U
〉
= 1 (48)

and 〈
w, v∇−

U
〉
= 0 for each permutation w < v. (49)

From ∑
w∈Sn\Avn(k+1)

αww ∈ J ⊥
k and v∇−

U ∈ Jk, we conclude that

〈
∑

w∈Sn\Avn(k+1)
αww, v∇−

U

〉
= 0.
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Thus,

0 =

〈
∑

w∈Sn\Avn(k+1)
αww, v∇−

U

〉
= ∑

w∈Sn\Avn(k+1)
αw︸︷︷︸

=0 if w>v
(by (46))

〈
w, v∇−

U
〉︸ ︷︷ ︸

=0 if w<v
(by (49))︸ ︷︷ ︸

=0 if w ̸=v
(since w ̸=v entails w<v or w>v)

= αv
〈
v, v∇−

U
〉︸ ︷︷ ︸

=1
(by (48))

= αv ̸= 0,

which is absurd. This completes the proof of Lemma 2.5.11.

Lemma 2.5.12. Let k ∈ N. Then, the k-module A/Ik is free with basis
(w)w∈Sn\Avn(k+1).

Proof. The family (w)w∈Sn\Avn(k+1) spans this k-module A/Ik, as we know from
Lemma 2.5.7. It remains to prove that it is k-linearly independent.

Let (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) be a family of scalars satisfying

∑
w∈Sn\Avn(k+1)

αww = 0. (50)

We thus need to show that αw = 0 for all w ∈ Sn \ Avn (k + 1).
However, (50) means that ∑

w∈Sn\Avn(k+1)
αww ∈ Ik. But Lemma 2.5.4 yields IkJk =

0. Thus, Ik ⊆ LAnnJk. However, Proposition 2.2.2 (c) yields S (Jk) = Jk. Further-
more, Jk is an ideal of A (by Proposition 2.2.2 (a)), hence a left ideal of A. Thus,
Lemma 2.5.2 (b) (applied to B = Jk) yields J ⊥

k = LAnn (Jk) = RAnn (Jk). Thus,

∑
w∈Sn\Avn(k+1)

αww ∈ Ik ⊆ LAnnJk = J ⊥
k .

Lemma 2.5.11 thus yields that αw = 0 for all w ∈ Sn \ Avn (k + 1). This completes
the proof of Lemma 2.5.12.

Lemma 2.5.13. Let k ∈ N. Then, the k-module A/Jk is free with basis
(w)w∈Avn(k+1).

Proof. Analogous to the proof of Lemma 2.5.12. (Of course, use Lemma 2.5.9 and
Lemma 2.5.10 instead of Lemma 2.5.7 and Lemma 2.5.11 now.)
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Lemma 2.5.14. Let k ∈ N. Then,

Ik = J ⊥
k = LAnnJk = RAnnJk.

Proof. Proposition 2.2.2 (c) yields S (Jk) = Jk. Furthermore, Jk is an ideal of
A (by Proposition 2.2.2 (a)). Thus, Lemma 2.5.2 (b) (applied to B = Jk) yields
J ⊥

k = LAnnJk = RAnnJk. Thus, it remains to prove that Ik = J ⊥
k .

Lemma 2.5.4 yields IkJk = 0. Thus, Ik ⊆ LAnnJk = J ⊥
k . Thus, we only need

to show that J ⊥
k ⊆ Ik.

Let a ∈ J ⊥
k . We must prove that a ∈ Ik.

Lemma 2.5.7 shows that the quotient module A/Ik is spanned by the family
(w)w∈Sn\Avn(k+1). Hence, the projection a ∈ A/Ik can be written as a k-linear
combination of this family. In other words, we can write a as

a = ∑
w∈Sn\Avn(k+1)

αww (51)

for some family (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) of scalars. Consider this family.
We can rewrite (51) as

a − ∑
w∈Sn\Avn(k+1)

αww ∈ Ik ⊆ J ⊥
k .

Since a ∈ J ⊥
k , this yields ∑

w∈Sn\Avn(k+1)
αww ∈ J ⊥

k . By Lemma 2.5.11, we thus

conclude that αw = 0 for all w ∈ Sn \ Avn (k + 1). Thus, (51) rewrites as a =
∑

w∈Sn\Avn(k+1)
0w = 0, so that a ∈ Ik. This completes our proof of Lemma 2.5.14.

Lemma 2.5.15. Let k ∈ N. Then,

Jk = I⊥
k = LAnn Ik = RAnn Ik.

Proof. Analogous to the proof of Lemma 2.5.14. (Of course, use Lemma 2.5.9 and
Lemma 2.5.10 instead of Lemma 2.5.7 and Lemma 2.5.11 now.)

Lemma 2.5.16. Assume that n! is invertible in k. Let I be an ideal of A. As-
sume that there exists a k-linear projection π : A → I . Then, I is a nonunital
subalgebra of A that has a unity.

Proof. Note that I is an ideal of A, thus a left ideal of A, hence a left A-submodule
of A. Moreover, |Sn| = n! is invertible in k. Hence, the standard proof of the
Maschke theorem (via averaging the projection π over Sn) yields that there exists a
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k-linear projection π′ : A → I that is a left A-module homomorphism8. Consider
this π′.

Let e := π′ (1) ∈ I . Then, we claim that

ue = u for each u ∈ I . (52)

[Proof of (52): Let u ∈ I . Then, π′ (u) = u (since π′ is a projection). However, π′

is a left A-module homomorphism. Thus, π′ (u1) = u π′ (1)︸ ︷︷ ︸
=e

= ue. Since u1 = u,

we can rewrite this as π′ (u) = ue. Hence, ue = π′ (u) = u. This proves (52).]

Clearly, I is a nonunital subalgebra of A (since I is an ideal of A). From (52),
we see that this algebra I has a right unity (namely, e). A similar argument (using
right instead of left A-modules) yields that I has a left unity. Thus, a standard
argument shows that I has a unity (since any binary operation that has a left
neutral element and a right neutral element has a neutral element). Thus, Lemma
2.5.16 is proved.

Lemma 2.5.17. Let I and J be two ideals of A such that I = LAnnJ and J =
LAnn I . Assume that I is a nonunital subalgebra of A that has a unity. Then,
A = I ⊕J (internal direct sum) as k-module. Moreover, I and J are nonunital
subalgebras of A that have unities and satisfy A ∼= I × J as k-algebras.

Proof. Clearly, I and J are nonunital subalgebras of A (since any ideal of A is a
nonunital subalgebra).

From I = LAnnJ , we obtain IJ = 0. Similarly, J I = 0.
We have assumed that I is a nonunital subalgebra of A that has a unity. Let 1I

denote its unity.
Set g := 1 − 1I . Then, each u ∈ I satisfies

gu = (1 − 1I) u = u − 1Iu︸︷︷︸
=u

(since 1I is the
unity of I)

= u − u = 0.

In other words, g ∈ LAnn I = J . Moreover, each v ∈ J satisfies 1Iv = 0 (since
1I︸︷︷︸
∈I

v︸︷︷︸
∈J

∈ IJ = 0) and thus

g︸︷︷︸
=1−1I

v = (1 − 1I) v = v − 1Iv︸︷︷︸
=0

= v.

8Explicitly, π′ can be constructed as follows:

π′ (a) =
1

|Sn| ∑
σ∈Sn

σπ
(

σ−1a
)

for each a ∈ A.

For a concrete reference, see [Grinbe25, Theorem 4.4.14]. Note that the existence of a k-linear
projection from A onto I is equivalent to saying that I is a direct addend of A as a k-module;
furthermore, the same holds when each appearance of “k-” is replaced by “left A-”.
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Hence, g is a left unity of the algebra J (since g ∈ J ). A similar computation
shows that g is a right unity of J . Hence, g is a unity of J . We shall thus rename
g as 1J now. Of course, this shows that the nonunital algebra J has a unity.

Moreover, each u ∈ I ∩ J satisfies u ∈ I ∩ J ⊆ J and therefore

u = u︸︷︷︸
∈I∩J⊆I

1J︸︷︷︸
∈J

(since 1J is the unity of J )

∈ IJ = 0

and thus u = 0. In other words, I ∩ J = 0. Furthermore, each a ∈ A satisfies

a = 1I a + (1 − 1I)︸ ︷︷ ︸
=g=1J

a = 1I a︸︷︷︸
∈I

(since I is an ideal
and 1I∈I)

+ 1J a︸︷︷︸
∈J

(since J is an ideal
and 1J ∈J )

∈ I + J .

This shows that I + J = A. Combining this with I ∩ J = 0, we conclude that
A = I ⊕ J (internal direct sum) as k-module. Hence, the k-linear map

I × J → A,
(i, j) 7→ i + j

is a k-module isomorphism. This isomorphism furthermore respects the mul-
tiplication (since IJ = J I = 0, and thus every (i, j) , (i′, j′) ∈ I × J satisfy
(i + j) (i′ + j′) = ii′ + ij′︸︷︷︸

=0
(since IJ=0)

+ ji′︸︷︷︸
=0

(since J I=0)

+ jj′ = ii′ + jj′), and thus is a nonuni-

tal k-algebra isomorphism. Hence, it must also respect the unity (since it is an
isomorphism), and thus is a k-algebra isomorphism. We thus conclude that A ∼=
I × J as k-algebras. This completes the proof of Lemma 2.5.17.

Lemma 2.5.18. Assume that n! is invertible in k. Let J be a subset of Sn. Let I
and J be two ideals of A such that I = LAnnJ and J = LAnn I . Assume that
the family (w)w∈J is a basis of the k-module A/I . Then, A = I ⊕ J (internal
direct sum) as k-module. Moreover, I and J are nonunital subalgebras of A
that have unities and satisfy A ∼= I × J as k-algebras.

Proof. Clearly, I and J are nonunital subalgebras of A (since any ideal of A is a
nonunital subalgebra).

Let K := Sn \ J. Thus, J and K are two disjoint subsets of Sn such that J ∪ K = Sn.
Moreover, (w)w∈Sn

is a basis of the k-module A, whereas (w)w∈J is a basis of the k-
module A/I . Hence, Lemma 2.5.3 (b) (applied to M = A and N = I and I = Sn
and (mi)i∈I = (w)w∈Sn

) yields that there exists a k-linear projection π : A → I
(that is, a k-linear map π : A → I such that π |I = id). Hence, Lemma 2.5.16
shows that I is a nonunital subalgebra of A that has a unity.

Thus, Lemma 2.5.17 shows that A = I ⊕ J (internal direct sum) as k-module,
and furthermore, it shows that I and J are nonunital subalgebras of A that have
unities and satisfy A ∼= I × J as k-algebras. This proves Lemma 2.5.18.
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2.6. Proof of the main theorem

We can now prove Theorem 2.4.1 and Corollary 2.4.2 by combining what we have
shown so far:

Proof of Theorem 2.4.1. (a) This is just Lemma 2.5.14.

(b) This is just Lemma 2.5.15.

(c) Lemma 2.5.12 yields that the k-module A/Ik is free with basis (w)w∈Sn\Avn(k+1).
Hence, Lemma 2.5.3 (a) (applied to M = A and N = Ik and I = Sn and
J = Sn \ Avn (k + 1) and K = Avn (k + 1) and (mi)i∈I = (w)w∈Sn

) yields that the
k-module Ik is free of rank |Avn (k + 1)|. This proves Theorem 2.4.1 (c).

(d) This is proved similarly to part (c), but using Lemma 2.5.13 instead of Lemma
2.5.12. (This time, Lemma 2.5.3 (a) must be applied to J = Avn (k + 1) and K =
Sn \ Avn (k + 1).)

(e) This is just Lemma 2.5.12.

(f) This is just Lemma 2.5.13.

(g) Proposition 2.2.2 (a) yields that both Ik and Jk are ideals of A. Theo-
rem 2.4.1 (a) yields Ik = LAnnJk. Theorem 2.4.1 (b) yields Jk = LAnn Ik.
Clearly, Sn \ Avn (k + 1) and Avn (k + 1) are two disjoint subsets of Sn such that
(Sn \ Avn (k + 1)) ∪ Avn (k + 1) = Sn. Theorem 2.4.1 (e) says that the k-module
A/Ik is free with basis (w)w∈Sn\Avn(k+1). Hence, Lemma 2.5.18 (applied to J =

Sn \ Avn (k + 1) and I = Ik and J = Jk) yields that A = Ik ⊕ Jk (internal direct
sum) as k-module, and moreover, Ik and Jk are nonunital subalgebras of A that
have unities and satisfy A ∼= Ik × Jk as k-algebras. This proves Theorem 2.4.1
(g).

Proof of Corollary 2.4.2. (a) Proposition 2.2.2 (g) (applied to k = 2) yields

I2 = span {∇B,A | A, B ∈ SD (n) with ℓ (A) = ℓ (B) = 2}

= span
{
∇(B,[n]\B),(A,[n]\A) | A, B ⊆ [n]

}
(53)

(since the set decompositions A ∈ SD (n) with ℓ (A) = 2 are precisely the pairs
of the form (A, [n] \ A) for A ⊆ [n]). But Proposition 2.1.2 allows us to rewrite
the ∇(B,[n]\B),(A,[n]\A) on the right hand side here as ∇B,A. Thus, (53) rewrites as
I2 = span {∇B,A | A, B ⊆ [n]}. This proves part (a).

(b) Theorem 2.4.1 (c) (applied to k = 2) shows that the k-module I2 is free of rank
|Avn (3)|. But it is known (see, e.g., [Bona22, Corollary 4.8]) that |Avn (3)| = Cn.
Corollary 2.4.2 (b) follows from these two observations.

Darij Grinberg



Rook sums in the symmetric group algebra page 59

2.7. Opposite avoidance

Parts of Theorem 2.4.1 can be transformed into “twin” forms by replacing the rele-
vant permutations with their complements (i.e., multiplying them with the permu-
tation with one-line notation (n, n − 1, . . . , 1)). To state this, we need an analogue
of Definition 2.3.1:

Definition 2.7.1. Let k ∈ N.

(a) Let w ∈ Sn be a permutation. We say that w avoids (k + 1) k · · · 1 if there
exists no (k + 1)-element subset U of [n] such that the restriction w |U is
decreasing (i.e., if there exist no k + 1 elements i1 < i2 < · · · < ik+1 of [n]
such that w (i1) > w (i2) > · · · > w (ik+1)).

(b) We let Av′
n (k + 1) denote the set of all permutations w ∈ Sn that avoid

(k + 1) k · · · 1.

Proposition 2.7.2. Let w0 ∈ Sn be the permutation that sends each i ∈ [n] to
n + 1 − i. Let k ∈ N and w ∈ Sn. Then, w ∈ Av′

n (k + 1) if and only if w0w ∈
Avn (k + 1).

Proof. Given a subset U of [n], it is clear that the restriction (w0w) |U is increasing if
and only if the corresponding restriction w |U is decreasing (since the permutation
w0 is strictly decreasing). Hence, w0w avoids 12 · · · (k + 1) if and only if w avoids
(k + 1) k · · · 1. Thus, Proposition 2.7.2 follows.

The set Av′
n (k + 1) allows us to easily obtain a “twin” to parts (c)–(f) of Theorem

2.4.1:

Corollary 2.7.3. Let k ∈ N. Then:

(a) The k-module Ik is free of rank
∣∣Av′

n (k + 1)
∣∣.

(b) The k-module Jk is free of rank
∣∣Sn \ Av′

n (k + 1)
∣∣.

(c) The k-module A/Ik is free with basis (w)w∈Sn\Av′
n(k+1). (Here, w denotes

the projection of w ∈ A onto the quotient A/Ik.)

(d) The k-module A/Jk is free with basis (w)w∈Av′
n(k+1). (Here, w denotes the

projection of w ∈ A onto the quotient A/Jk.)

Proof. (a) Proposition 2.7.2 shows that the map

Sn → Sn,
w 7→ w0w
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restricts to a bijection from Av′
n (k + 1) to Avn (k + 1). Hence,

|Avn (k + 1)| =
∣∣Av′

n (k + 1)
∣∣ . (54)

But Theorem 2.4.1 (c) shows that the k-module Ik is free of rank |Avn (k + 1)| =∣∣Av′
n (k + 1)

∣∣. This proves Corollary 2.7.3 (a).

(b) Analogous to Corollary 2.7.3 (a), but using Theorem 2.4.1 (d) instead of The-
orem 2.4.1 (c).

(c) Proposition 2.7.2 shows that a permutation w ∈ Sn satisfies w ∈ Av′
n (k + 1) if

and only if w0w ∈ Avn (k + 1). Thus, the contrapositive also holds: A permutation
w ∈ Sn satisfies w /∈ Av′

n (k + 1) if and only if w0w /∈ Avn (k + 1). Therefore, the
map

Sn \ Av′
n (k + 1) → Sn \ Avn (k + 1) ,

w 7→ w0w (55)

is a bijection. The inverse of this map must also send each w to w0w (because w0 is
an involution, i.e., we have w0w0 = id). Thus, this inverse is the map

Sn \ Avn (k + 1) → Sn \ Av′
n (k + 1) ,

w 7→ w0w. (56)

As a consequence, this latter map is a bijection.
Theorem 2.4.1 (e) shows that the k-module A/Ik is free with basis (w)w∈Sn\Avn(k+1).

But Ik is a left ideal of A and thus fixed under left multiplication by w0. Hence,
the map

A/Ik → A/Ik,
a 7→ w0a

is well-defined and is an automorphism of the k-module A/Ik (being invertible
because w2

0 = id). Applying this map to the basis (w)w∈Sn\Avn(k+1) of A/Ik, we thus
obtain a new basis (w0w)w∈Sn\Avn(k+1) of A/Ik (since the image of a basis under
a k-module isomorphism is again a basis). But the latter basis (w0w)w∈Sn\Avn(k+1)
can be reindexed as (w)w∈Sn\Av′

n(k+1), since the map (56) is a bijection. Hence, we
have shown that (w)w∈Sn\Av′

n(k+1) is a basis of the k-module A/Ik. This proves
part (c).

(d) Analogous to Corollary 2.7.3 (c), but using Theorem 2.4.1 (f) instead of The-
orem 2.4.1 (e).

2.8. Jk and In−k−1 as annihilators of tensor modules

We shall now discuss how the ideals Jk and Ik (more precisely, In−k−1, but this
is just a matter of indexing) can be interpreted as annihilators of certain left A-
modules. This breaks no new ground, but rather recovers results by de Concini
and Procesi [deCPro76, Theorem 4.2] and Bowman, Doty and Martin [BoDoMa22];
we hope that our elementary approach makes these results more accessible.
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2.8.1. Jk as annihilator of V⊗n
k (action on places)

Recall that A = k [Sn]. Thus, the representations of Sn over k are precisely the left
A-modules. If M is any left A-module, then Ann M shall denote its annihilator,
i.e., the ideal

{a ∈ A | aM = 0} = {a ∈ A | am = 0 for all m ∈ M}

of A. Note that if M is a left ideal of A, then this annihilator Ann M is just its left
annihilator LAnn M.

For each k ∈ N, we consider the free k-module Vk with basis (e1, e2, . . . , ek). On
its n-th tensor power V⊗n

k , the symmetric group Sn acts by permuting the tensor
factors:

σ · (v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(n)

for all σ ∈ Sn and v1, v2, . . . , vn ∈ Vk.

Thus, V⊗n
k is a left A-module for each k ∈ N. This action of A (or of Sn) is called

action on places or action by place permutation.
The k-module V⊗n

k can also be identified with the k-module of homogeneous
polynomials of degree n in k noncommutative indeterminates x1, x2, . . . , xk (via the
isomorphism that sends each pure tensor ei1 ⊗ ei2 ⊗ · · · ⊗ ein to the noncommutative
monomial xi1 xi2 · · · xin). Under this identification, the action of Sn permutes the
order of factors.

Now we shall prove the following result of de Concini and Procesi [deCPro76,
Theorem 4.2]:

Theorem 2.8.1. Let k ∈ N. Then,

Jk = Ann
(
V⊗n

k
)

.

Proof. We say that two set decompositions A and B of [n] are equal-shaped if they
satisfy ℓ (A) = ℓ (B) and if each block of B has the same size as the correspond-
ing block of A. In other words, two set decompositions

(
A1, A2, . . . , Ap

)
and(

B1, B2, . . . , Bq
)

of [n] are equal-shaped if and only if p = q and |Ai| = |Bi| for
each i ∈ [p] = [q].

An equivalent characterization of equal-shapedness is the following: Two set
decompositions A and B of [n] are equal-shaped if and only if there exists some
w ∈ Sn such that wA = B. (Indeed, the “if” part is obvious, whereas the “only if”
part is easily shown by choosing a permutation w ∈ Sn that sends each block of A
to the respective block of B.)

Recall that SD (n) is the set of all set decompositions of [n]. For each A ∈ SD (n),
we define a k-submodule

IA := span {∇B,A | B ∈ SD (n) with ℓ (A) = ℓ (B)}
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of A. This k-submodule IA is actually a left ideal of A, since (16) yields

w∇B,A = ∇wB,A (57)

for all w ∈ Sn and B ∈ SD (n) with ℓ (A) = ℓ (B). It is easy to see that as a k-
module, IA has a basis consisting of the elements ∇B,A, where B ranges over all
those set decompositions of [n] that are equal-shaped to A. (Indeed, these elements
span IA because Proposition 2.1.1 (a) shows that all other ∇B,A’s are 0. And they
are linearly independent because they are nonzero and have disjoint supports, i.e.,
because they don’t have any addends in common.)

It is furthermore clear from Proposition 2.2.2 (d) that

Ik = ∑
A∈SD(n);
ℓ(A)≤k

IA. (58)

Hence,
Ann (Ik) =

⋂
A∈SD(n);
ℓ(A)≤k

Ann (IA) (59)

(since the annihilator of a sum of A-submodules is the intersection of their indi-
vidual annihilators).

On the other hand, let A = (A1, A2, . . . , Am) ∈ SD (n) be a set decomposition.
Then, we can define a diagram D (A) of size n (see [Grinbe25, Definition 5.1.2] for
the notion of a diagram) by setting

D (A) :=
m⋃

i=1

{(i, 1) , (i, 2) , . . . , (i, |Ai|)} .

This is almost a Young diagram, except that its shape is the weak composition
(|A1| , |A2| , . . . , |Am|) instead of a partition. We consider the Young module MD(A),
which is a left A-module (i.e., an Sn-representation) that (as a k-module) has basis
{n-tabloids of shape D (A)} (see [Grinbe25, §5.3] for the relevant definitions). If T
is an n-tabloid of shape D (A), and if i ∈ [m], then Row

(
i, T
)

shall denote the set
of all entries in the i-th row of T. Conversely, if T is an n-tabloid of shape D (A),
and if k ∈ [n], then rT (k) shall denote the number of the row of T that contains the
entry k.

It is easy to see that if ℓ (A) ≤ k, then the k-linear map

ωA : MD(A) → V⊗n
k ,

T 7→ erT(1)
⊗ erT(2)

⊗ · · · ⊗ erT(n)

is an injective left A-module morphism9.

9Indeed,

Darij Grinberg



Rook sums in the symmetric group algebra page 63

On the other hand, the k-linear map

γA : MD(A) → IA,

T 7→ ∇(Row(1,T), Row(2,T), ..., Row(m,T)), A

is a left A-module morphism as well10. Next we shall show that this morphism
γA is invertible. Indeed, recall that the k-module IA has a basis consisting of the
elements ∇B,A, where B ranges over all those set decompositions of [n] that are
equal-shaped to A. In other words,

(∇B,A)B is a set decomposition of [n] that is equal-shaped to A (60)

is a basis of the k-module IA. But there is a bijection

{n-tabloids of shape D (A)}
→ {set decompositions B of [n] that are equal-shaped to A}

that sends each n-tabloid T to
(
Row

(
1, T

)
, Row

(
2, T

)
, . . . , Row

(
m, T

))
(indeed,

the lengths of the rows of D (A) are the sizes of the respective blocks of A, and
thus are exactly the right size to fit the blocks of a set decomposition B that is
equal-shaped to A). Hence, we can reindex our basis (60) of IA as(

∇(Row(1,T), Row(2,T), ..., Row(m,T)), A

)
T is an n-tabloid of shape D(A)

. (61)

Now, the k-linear map γA sends the basis
(
T
)

T is an n-tabloid of shape D(A)
of MD(A) to

the basis (61) of IA (by the definition of γA). Thus, it is invertible (since any k-linear

• this map is a left A-module morphism because any n-tabloid T and any permutation
w ∈ Sn satisfy rwT (i) = rT

(
w−1 (i)

)
for all i ∈ [n];

• this map is injective because an n-tabloid T of a given shape (in our case, D (A)) is
uniquely determined by the n-tuple

(
rT (1) , rT (2) , . . . , rT (n)

)
.

10Indeed, for any n-tabloid T of shape D (A) and any permutation w ∈ Sn, we have

γA
(
wT
)
= γA

(
wT
)
= ∇(Row(1,wT), Row(2,wT), ..., Row(m,wT)), A

= ∇w(Row(1,T), Row(2,T), ..., Row(m,T)), A since Row
(
i, wT

)
= w

(
Row

(
i, T
))

for each i ∈ [m] ,

and thus
(
Row

(
1, wT

)
, Row

(
2, wT

)
, . . . , Row

(
m, wT

))
= w

(
Row

(
1, T

)
, Row

(
2, T

)
, . . . , Row

(
m, T

))


= w∇(Row(1,T), Row(2,T), ..., Row(m,T)), A︸ ︷︷ ︸
=γA(T)

(by (57))

= wγA
(
T
)

.
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map that sends a basis of its domain to a basis of its target must be invertible).
Therefore, it has an inverse γ−1

A : IA → MD(A), which is also a left A-module
isomorphism (since γA is a left A-module morphism).

Composing this inverse with the injective left A-module morphism ωA : MD(A) →
V⊗n

k (when ℓ (A) ≤ k), we obtain the injective left A-module morphism

ψA := ωA ◦ γ−1
A : IA → V⊗n

k .

Forget that we fixed A. We thus have found an injective left A-module morphism

ψA : IA → V⊗n
k

for each set decomposition A ∈ SD (n) with ℓ (A) ≤ k.
It is easy to see that

V⊗n
k = ∑

A∈SD(n);
ℓ(A)≤k

ψA (IA) (62)

(indeed, each basis vector ei1 ⊗ ei2 ⊗ · · · ⊗ ein of V⊗n
k can be written as the image

of an appropriate n-tabloid T under the map ωA (where A ∈ SD (n) is the set
decomposition (A1, A2, . . . , Ak) defined by Aj :=

{
p ∈ [n] | ip = j

}
), and thus also

as an image under ωA ◦ γ−1
A = ψA). Hence,

Ann
(
V⊗n

k
)
=

⋂
A∈SD(n);
ℓ(A)≤k

Ann (ψA (IA)) (63)

(since the annihilator of a sum of A-submodules is the intersection of their in-
dividual annihilators). But each A ∈ SD (n) satisfying ℓ (A) ≤ k must satisfy
ψA (IA) ∼= IA as left A-modules (since the left A-module morphism ψA is injec-
tive) and thus Ann (ψA (IA)) = Ann (IA). Hence, (63) rewrites as

Ann
(
V⊗n

k
)
=

⋂
A∈SD(n);
ℓ(A)≤k

Ann (IA) .

Comparing this with (59), we obtain

Ann
(
V⊗n

k
)
= Ann (Ik) = LAnn (Ik)

(since Ann M = LAnn M for any left ideal M of A). Since Theorem 2.4.1 (b) yields
Jk = LAnn (Ik), we can rewrite this as Ann

(
V⊗n

k

)
= Jk. This proves Theorem

2.8.1.

Corollary 2.8.2. Let k ∈ N. Consider the action of A on V⊗n
k as a k-algebra

morphism ρk : A → Endk
(
V⊗n

k

)
. Then, the image ρk (A) of this map ρk has two

bases (ρk (w))w∈Avn(k+1) and (ρk (w))w∈Av′
n(k+1) (as a k-module).
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Proof. We have Ker ρk = Ann
(
V⊗n

k

)
= Jk by Theorem 2.8.1. Hence, by the first

isomorphism theorem, there is a k-algebra isomorphism A/Jk → ρk (A) that sends
each residue class a to ρk (a). Hence, we only need to show that the quotient k-
module A/Jk has two bases (w)w∈Avn(k+1) and (w)w∈Av′

n(k+1). But this is Theorem
2.4.1 (f) and Corollary 2.7.3 (d).

Theorem 2.8.1 is [deCPro76, Theorem 4.2], and also appears in [Donkin24, Exam-
ple 2.11]. It is also a particular case of Härterich’s [Harter99, §3]. Indeed, Härterich
considers a sign-twisted version of the Sn-representation V⊗n

k . The sign-twist is the
k-linear map Tsign : A → A that sends each permutation w ∈ Sn to (−1)w w. This
map is a k-algebra automorphism (see [Grinbe25, Theorem 3.11.5]), so it trans-
forms any Sn-representation M into a new Sn-representation Msign, which is called
the sign-twist of M (see [Grinbe25, Definition 5.18.2] for the precise definition) and
which satisfies

Ann
(

Msign
)
= Tsign (Ann M) . (64)

Härterich’s V⊗n (for m = k) is the sign-twist of our Sn-representation V⊗n
k (since

his Sn-action on V⊗n is given by permuting the factors and multiplying with the
sign of the permutation). Thus, the ideal J = annHn V⊗n from [Harter99, §3] for
m = k and q = 1 is the image of our annihilator Ann

(
V⊗n

k

)
under Tsign (by (64)).

Therefore, our Theorem 2.8.1 entails that this ideal J is spanned by the Tsign (∇B,A)
for A, B ∈ SC (n) satisfying ℓ (A) = ℓ (B) ≤ k. This is implicitly what [Harter99,
§3] (for m = k and q = 1) is saying as well, although the latter theorem additionally
picks out a basis of J from these spanning elements.

We also note that Corollary 2.8.2 recovers [Proces21, Theorem 3.3] and also
appears in [BoDoMa22, Corollary 1.4 (i)], in [Donkin24, Example 2.11] and in
[RaSaSu12, Theorem 1]. Implicitly, [BaiRai01, Lemma 8.1 and the remark after
it] also boils down to our Theorem 2.8.1.

The image ρk (A) of A that was considered in Corollary 2.8.2 is called the “k-
swap algebra” in [KlStVo25, §1.3]. Thus, as we saw above, this algebra is isomor-
phic to the quotient algebra A/Jk.

2.8.2. Tsign (In−k−1) as annihilator of N⊗k
n (action on entries)

An interesting counterpart to Theorem 2.8.1 was recently proved by Bowman, Doty
and Martin ([BoDoMa18, Theorem 7.4 (a)]; see also [Donkin24, Example 2.13]).
We can prove this using our methods, too. Let us first restate this result in our
language:

Recall that the sign-twist is the k-linear map Tsign : A → A that sends each
permutation w ∈ Sn to (−1)w w. This is a k-algebra automorphism of A.

Consider a free k-module Nn with basis (e1, e2, . . . , en), and let the group Sn act
on it by permuting the basis vectors (that is, σ · ei = eσ(i) for all σ ∈ Sn and i ∈ [n]).
This Sn-representation Nn is called the natural representation of Sn.

Let k ∈ N, and consider the k-th tensor power N⊗k
n of this Sn-representation

(where Sn acts diagonally, i.e., by the formula σ · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = σv1 ⊗ σv2 ⊗
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· · · ⊗σvk for all σ ∈ Sn and all v1, v2, . . . , vk ∈ V). This is again an Sn-representation,
i.e., a left A-module. The action of A (or Sn) on it is called the action on entries (or
diagonal action).

The k-module N⊗k
n can also be identified with the k-module of homogeneous

polynomials of degree k in n noncommutative indeterminates x1, x2, . . . , xn (via the
isomorphism that sends each pure tensor ei1 ⊗ ei2 ⊗ · · · ⊗ eik to the noncommuta-
tive monomial xi1 xi2 · · · xik). Under this identification, the action of Sn permutes
the indeterminates (i.e., a permutation σ ∈ Sn sends each xi to xσ(i), and acts on
products factor by factor).

Now, [BoDoMa18, Theorem 7.4 (a)] characterizes the annihilator of this left A-
module N⊗k

n as follows:

Theorem 2.8.3. Let k ∈ N. Then,

Tsign (In−k−1) = Ann
(

N⊗k
n

)
.

Here, we understand Im to mean 0 when m < 0 (this is consistent with Definition
2.2.1).

(Once again, this is written in terms of the Murphy cellular basis in [BoDoMa18,
Theorem 7.4 (a)], but boils down to what we just said. The same claim appears in
a different disguise in [Donkin24, Example 2.13].)

The proof of this theorem will be enabled by the following two lemmas:

Lemma 2.8.4. Let a1, a2, . . . , ak ∈ [n]. Then,

∑
w∈Sn;

w(ai)=ai for all i

w = Tsign

(
∇−

[n]\{a1,a2,...,ak}

)
.

Proof. The definition of ∇−
[n]\{a1,a2,...,ak}

yields

∇−
[n]\{a1,a2,...,ak}

= ∑
w∈Sn;

w(i)=i for all i∈[n]\([n]\{a1,a2,...,ak})

(−1)w w

= ∑
w∈Sn;

w(i)=i for all i∈{a1,a2,...,ak}

(−1)w w = ∑
w∈Sn;

w(ai)=ai for all i

(−1)w w.

Applying the k-linear map Tsign to this equality, we obtain

Tsign

(
∇−

[n]\{a1,a2,...,ak}

)
= ∑

w∈Sn;
w(ai)=ai for all i

(−1)w Tsign (w)︸ ︷︷ ︸
=w

(since Tsign(w)=(−1)ww)

= ∑
w∈Sn;

w(ai)=ai for all i

w.

This proves Lemma 2.8.4.
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Lemma 2.8.5. Let k ∈ N. For any k-tuple a = (a1, a2, . . . , ak) ∈ [n]k, we define
the element

∇a := ∑
w∈Sn;

w(ai)=ai for all i

w ∈ A. (65)

Then,
Tsign (Jn−k−1) = A · span

{
∇a | a ∈ [n]k

}
.

Here, we understand Jm to mean A when m < 0.

Proof. We are in one of the following two cases:
Case 1: We have k < n.
Case 2: We have k ≥ n.
Let us first consider Case 1. In this case, k < n, so that n − k − 1 ∈ N. Hence,

Proposition 2.2.2 (b) (applied to n − k − 1 instead of k) yields

Jn−k−1 = A · span
{
∇−

U | U is a subset of [n] having size n − k
}

.

Applying the k-algebra isomorphism Tsign : A → A to this equality, we find

Tsign (Jn−k−1) = A · span
{

Tsign
(
∇−

U
)

| U is a subset of [n] having size n − k
}

.

However, if U is a subset of [n] having size n − k, and if we denote the k elements
of [n] \ U by a1, a2, . . . , ak, then

∇(a1,a2,...,ak)
= ∑

w∈Sn;
w(ai)=ai for all i

w (by (65))

= Tsign

(
∇−

[n]\{a1,a2,...,ak}

)
(by Lemma 2.8.4)

= Tsign
(
∇−

U
)

(since the definition of a1, a2, . . . , ak yields [n] \ {a1, a2, . . . , ak} = U) and thus

Tsign
(
∇−

U
)
= ∇(a1,a2,...,ak)

∈
{
∇a | a ∈ [n]k

}
.

Hence,{
Tsign

(
∇−

U
)

| U is a subset of [n] having size n − k
}
⊆
{
∇a | a ∈ [n]k

}
.

Thus,

Tsign (Jn−k−1) = A · span
{

Tsign
(
∇−

U
)

| U is a subset of [n] having size n − k
}︸ ︷︷ ︸

⊆
{
∇a | a∈[n]k

}
⊆ A · span

{
∇a | a ∈ [n]k

}
. (66)

Darij Grinberg



Rook sums in the symmetric group algebra page 68

On the other hand, each k-tuple a = (a1, a2, . . . , ak) ∈ [n]k satisfies

∇a = ∑
w∈Sn;

w(ai)=ai for all i

w = Tsign

(
∇−

[n]\{a1,a2,...,ak}

)
(by Lemma 2.8.4)

∈
{

Tsign
(
∇−

U
)

| U is a subset of [n] having size > n − k − 1
}

(since [n] \ {a1, a2, . . . , ak} is a subset of [n] having size ≥ n − k > n − k − 1). Thus,{
∇a | a ∈ [n]k

}
⊆
{

Tsign
(
∇−

U
)

| U is a subset of [n] having size > n − k − 1
}

.

Hence,

A · span
{
∇a | a ∈ [n]k

}
⊆ A · span

{
Tsign

(
∇−

U
)

| U is a subset of [n] having size > n − k − 1
}

= Tsign
(
A · span

{
∇−

U | U is a subset of [n] having size > n − k − 1
})(

since Tsign : A → A is a k-algebra isomorphism
)

.

In view of

Jn−k−1 = A · span
{
∇−

U | U is a subset of [n] having size > n − k − 1
}

(by Proposition 2.2.2 (e), applied to n − k − 1 instead of k), we can rewrite this as

A · span
{
∇a | a ∈ [n]k

}
⊆ Tsign (Jn−k−1) .

Combining this with (66), we obtain

Tsign (Jn−k−1) = A · span
{
∇a | a ∈ [n]k

}
.

Thus, Lemma 2.8.5 is proved in Case 1.
Now, let us consider Case 2. In this case, we have k ≥ n, so that n − k − 1 < 0

and therefore Jn−k−1 = A (by our convention that Jm = A for m < 0). Hence,
Tsign (Jn−k−1) = Tsign (A) = A. On the other hand, the set [n]k contains the k-tuple
a0 := (1, 2, 3, . . . , n, n, n, . . . , n) (since k ≥ n), and the corresponding element ∇a0 is
id (because if we apply (65) to a = a0, then the only permutation w ∈ Sn under
the sum is id). Hence, id = ∇a0 ∈ span

{
∇a | a ∈ [n]k

}
. Thus, the left ideal

A · span
{
∇a | a ∈ [n]k

}
of A contains the element id = 1A, whence it must be

the whole A. In other words,

A · span
{
∇a | a ∈ [n]k

}
= A.

Comparing this with Tsign (Jn−k−1) = A, we obtain

Tsign (Jn−k−1) = A · span
{
∇a | a ∈ [n]k

}
.

Thus, Lemma 2.8.5 is proved in Case 2. We have now proved Lemma 2.8.5 in both
cases.
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Proof of Theorem 2.8.3. We extend the definition of Jm to negative m by setting
Jm := A when m < 0.

Theorem 2.4.1 (a) shows that each m ∈ N satisfies Im = LAnnJm. This equality
also holds for negative m (since 0 = LAnnA). Thus, each integer m satisfies Im =
LAnnJm. Applying Tsign to both sides of this, we obtain

Tsign (Im) = Tsign (LAnnJm) = LAnn
(
Tsign (Jm)

)
(since Tsign is a k-algebra isomorphism). Applying this to m = n − k − 1, we obtain

Tsign (In−k−1) = LAnn
(
Tsign (Jn−k−1)

)
= Ann

(
Tsign (Jn−k−1)

)
(since LAnnK = AnnK whenever K is a left ideal of A). It thus remains to show
that

Ann
(
Tsign (Jn−k−1)

)
= Ann

(
N⊗k

n

)
. (67)

We let the symmetric group Sn act on the set [n]k of all k-tuples of elements of
[n] by the rule

w (a1, a2, . . . , ak) := (w (a1) , w (a2) , . . . , w (ak))

for all w ∈ Sn and (a1, a2, . . . , ak) ∈ [n]k .

For any k-tuple a = (a1, a2, . . . , ak) ∈ [n]k, we define the element

∇a := ∑
w∈Sn;
wa=a

w = ∑
w∈Sn;

w(ai)=ai for all i

w ∈ A.

This is just the element Tsign

(
∇−

[n]\{a1,a2,...,ak}

)
(by Lemma 2.8.4). Lemma 2.8.5

yields
Tsign (Jn−k−1) = A · span

{
∇a | a ∈ [n]k

}
= ∑

a∈[n]k
A∇a.

Hence,
Ann

(
Tsign (Jn−k−1)

)
=

⋂
a∈[n]k

Ann (A∇a) (68)

(since the annihilator of a sum of left A-submodules is the intersection of their
annihilators).

On the other hand, let us set ea := ea1 ⊗ ea2 ⊗ · · · ⊗ eak ∈ N⊗k
n for any k-tuple

a = (a1, a2, . . . , ak) ∈ [n]k. Then, the family (ea)a∈[n]k is a basis of the k-module

N⊗k
n , and thus also generates N⊗k

n as a left A-module. In other words,

N⊗k
n = ∑

a∈[n]k
Aea.
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Hence,
Ann

(
N⊗k

n

)
=

⋂
a∈[n]k

Ann (Aea) (69)

(since the annihilator of a sum of left A-submodules is the intersection of their
annihilators).

We want to show that the left hand sides of (68) and (69) are equal (because
this will yield (67)). Of course, it suffices to show that the right hand sides are
equal. For this purpose, we will show that A∇a ∼= Aea as left A-modules for every
a ∈ [n]k (this will suffice, since isomorphic A-modules have the same annihilator).

But this is indeed quite easy: Let a = (a1, a2, . . . , ak) ∈ [n]k. Then, we can define
a k-linear map

ϕ : N⊗k
n → A,

ec 7→ ∑
w∈Sn;
wa=c

w for all c ∈ [n]k

(this is well-defined, since (ec)c∈[n]k is a basis of the k-module N⊗k
n ). It is easy to

see that this map ϕ is Sn-equivariant (because every u ∈ Sn and c ∈ [n]k satisfy
uec = euc and u ∑

w∈Sn;
wa=c

w = ∑
w∈Sn;
wa=uc

w) and thus left A-linear. Moreover, it sends ea

to ∑
w∈Sn;
wa=a

w = ∇a (by the definition of ∇a). Hence, ϕ (Aea) = A∇a (since ϕ is left

A-linear).
The map ϕ itself is not usually injective. However, we claim that its restriction to

Aea is injective. Indeed, recall again that uec = euc for all u ∈ Sn and c ∈ [n]k. In
particular, uea = eua for all u ∈ Sn. Hence, the k-module Aea has a basis (ec)c∈Sna

(where Sna is the orbit of a ∈ [n]k under the Sn-action on [n]k) 11. The images
of all these basis vectors ec under ϕ are the sums ∑

w∈Sn;
wa=c

w, which are k-linearly

independent (since they are sums of disjoint sets of permutations, and each of
them is nonempty because c ∈ Sna guarantees the existence of at least one w ∈ Sn
satisfying wa = c). Thus, the k-linear map ϕ sends the basis vectors ec of Aea to

11Proof: We have A = span {u | u ∈ Sn}. Thus,

Aea = (span {u | u ∈ Sn}) ea = span {uea | u ∈ Sn}
= span {eua | u ∈ Sn}︸ ︷︷ ︸

={ec | c∈Sna}

(since uea = eua for all u ∈ Sn)

= span {ec | c ∈ Sna} .

Hence, the family (ec)c∈Sna spans the k-module Aea. Since this family is furthermore k-linearly
independent (being a subfamily of the basis (ec)c∈[n]k of N⊗k

n ), we thus conclude that it is a basis
of Aea.
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k-linearly independent vectors in A. Consequently, the restriction of this map ϕ to
Aea is injective.

Hence, ϕ (Aea) ∼= Aea. In view of ϕ (Aea) = A∇a, we can rewrite this as A∇a ∼=
Aea.

As explained above, this completes the proof of Theorem 2.8.3.

Corollary 2.8.6. Let k ∈ N. Consider the action of A on N⊗k
n as a k-algebra

morphism ρk : A → Endk
(

N⊗k
n
)
. Then, the image ρk (A) of this map ρk has two

bases (ρk (w))w∈Sn\Avn(n−k) and (ρk (w))w∈Sn\Av′
n(n−k) (as a k-module). Here, we

understand Avn (m) to be ∅ when m < 0.

Proof. We have Ker ρk = Ann
(

N⊗k
n
)
= Tsign (In−k−1) by Theorem 2.8.3. Hence, by

the first isomorphism theorem, there is a k-algebra isomorphism A/Tsign (In−k−1) →
ρk (A) that sends each residue class a to ρk (a). Hence, we only need to show
that the quotient k-module A/Tsign (In−k−1) has two bases (w)w∈Sn\Avn(n−k) and
(w)w∈Sn\Av′

n(n−k). Upon applying the k-algebra automorphism Tsign of A to this
statement, it takes the following simpler form: The quotient k-module A/In−k−1
has two bases (w)w∈Sn\Avn(n−k) and (w)w∈Sn\Av′

n(n−k) (indeed, the bases still look
the same, because Tsign sends each permutation w ∈ Sn to (−1)w w = ±w, and
thus the bases are transformed only by scaling some of the basis vectors by −1).
In order to prove this statement, we only need to apply Theorem 2.4.1 (e) and
Corollary 2.7.3 (c) to n − k − 1 instead of k (at least when k ≤ n − 1; but the other
case is trivial because in that case, we have In−k−1 = 0 and Avn (n − k) = ∅ and
Av′

n (n − k) = ∅).

Corollary 2.8.6 appears in [Donkin24, Example 2.13] and (in a slightly restated
form) in [BoDoMa22, Corollary 1.4 (ii)].

Further related results are found in [DotNym07], [BoDoMa18], [BoDoMa22],
[RaSaSu12], [Donkin24] and [BaiRai01, §8].

2.9. The Specht module connection

2.9.1. Ik and Jk after Artin–Wedderburn

The following theorem discusses the representation-theoretical significance of the
ideals Ik and Jk. We use some basic representation theory, including the concept
of a Specht module (see, e.g., [EGHLSVY11, §5.12] or [Grinbe25, Definition 5.11.1
(a)]12).

In what follows, the notation “λ ⊢ n” shall always mean “λ is a partition of
n”. In particular, the set of all partitions of n shall be denoted by {λ | λ ⊢ n}
or just {λ ⊢ n}. If λ is a partition of n, then the entries of λ will be denoted by
λ1, λ2, λ3, . . ., whereas the length of λ will be written as ℓ (λ).
12Note that the Specht module corresponding to a partition λ is called Vλ in [EGHLSVY11, §5.12]

and is called Sλ in [Grinbe25, Definition 5.11.1 (a)]. The definitions are not identical, but they
define isomorphic modules (because of [Grinbe25, Theorem 5.5.13 (b)]).
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Theorem 2.9.1. Assume that n! is invertible in k. For each partition λ of n, let Sλ

denote the corresponding Specht module (a left A-module). For each a ∈ A and
each partition λ of n, we let aλ ∈ End

(
Sλ
)

denote the action of a on the Specht
module Sλ.

Consider the map

AW : A → ∏
λ⊢n

End
(

Sλ
)

,

a 7→ (aλ)λ⊢n .

This map AW is known to be a k-algebra isomorphism. (When k is a field,
this follows from the Artin–Wedderburn decomposition of A, since the Sλ are
the absolutely irreducible A-modules; alternatively, this can be derived from
[Ruther48, §17, Theorem 12]. For a detailed proof, see [Grinbe25, Theorem
5.14.1].)

For each subset U of {λ | λ ⊢ n}, we consider the subproduct ∏
λ∈U

End
(
Sλ
)

of

∏
λ⊢n

End
(
Sλ
)
. This is an ideal of ∏

λ⊢n
End

(
Sλ
)
. The preimage of this subproduct

under AW is thus an ideal of A, and will be denoted by AU.
Now, let k ∈ N. Then,

Ik = A{λ⊢n | ℓ(λ)≤k} and Jk = A{λ⊢n | ℓ(λ)>k}.

The proof of this theorem will rely on the following general fact:

Lemma 2.9.2. Let M be a k-module. Let I and J be two k-submodules of M
such that M = I +J . Let U and V be two k-submodules of M such that I ⊆ U
and J ⊆ V and U ∩ V = 0. Then, I = U and J = V .

Proof. Let u ∈ U . We shall show that u ∈ I .
We have u ∈ U ⊆ M = I + J . Thus, u = i + j for some i ∈ I and j ∈ J .

Consider these i and j. From u = i + j, we obtain j = u︸︷︷︸
∈U

− i︸︷︷︸
∈I⊆U

∈ U − U ⊆ U .

Combining this with j ∈ J ⊆ V , we obtain j ∈ U ∩ V = 0. In other words, j = 0.
Hence, u = i + j︸︷︷︸

=0

= i ∈ I .

Forget that we fixed u. We thus have shown that u ∈ I for each u ∈ U . In other
words, U ⊆ I . Combined with I ⊆ U , this yields I = U . Similarly, we can show
J = V . This proves Lemma 2.9.2.
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Proof of Theorem 2.9.1. For each U ⊆ {λ | λ ⊢ n}, we have

AU = AW−1

(
the subproduct ∏

λ∈U
End

(
Sλ
)

of ∏
λ⊢n

End
(

Sλ
))

= {a ∈ A | the λ-th entry of AW (a) is 0 for all λ /∈ U}
= {a ∈ A | aλ = 0 for all λ /∈ U}

=
{

a ∈ A | aSλ = 0 for all λ /∈ U
}

(70)

(since aSλ is the image of aλ ∈ End
(
Sλ
)
).

We shall first prove the following two claims:

Claim 1: We have Ik ⊆ A{λ⊢n | ℓ(λ)≤k}.

Claim 2: We have Jk ⊆ A{λ⊢n | ℓ(λ)>k}.

Proof of Claim 1. Applying (70) to U = {λ ⊢ n | ℓ (λ) ≤ k}, we obtain

A{λ⊢n | ℓ(λ)≤k}

=
{

a ∈ A | aSλ = 0 for all λ ⊢ n that don’t satisfy ℓ (λ) ≤ k
}

.

Hence, in order to prove that Ik ⊆ A{λ⊢n | ℓ(λ)≤k}, it suffices to show that all a ∈ Ik

satisfy aSλ = 0 for all partitions λ ⊢ n that don’t satisfy ℓ (λ) ≤ k. Let us prove
this.

Let λ ⊢ n be a partition that doesn’t satisfy ℓ (λ) ≤ k. Thus, ℓ (λ) > k. We must
prove that all a ∈ Ik satisfy aSλ = 0.

Since Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}, it suffices to
prove that ∇B,ASλ = 0 for any two set compositions A, B ∈ SC (n) with ℓ (A) =
ℓ (B) ≤ k. So let us consider two set compositions A, B ∈ SC (n) with ℓ (A) =
ℓ (B) ≤ k. We must prove that ∇B,ASλ = 0.

If T is any Young tableau of shape λ filled with the entries 1, 2, . . . , n (not neces-
sarily standard), then

• we let R (T) denote the row group of T (that is, the group of all permutations
σ ∈ Sn that preserve the rows of T as sets);

• we let aT := ∑
σ∈R(T)

σ ∈ A denote the row symmetrizer of T;

• we let C (T) denote the column group of T (that is, the group of all permuta-
tions σ ∈ Sn that preserve the columns of T as sets);

• we let bT := ∑
σ∈C(T)

(−1)σ σ ∈ A denote the column antisymmetrizer of T.
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Note that aT and bT are called ∇Row T and ∇−
Col T in [Grinbe25, §5.5.1].

Let Tλ be the Young tableau of shape λ filled with the entries 1, 2, . . . , n in the
order “row by row, starting with the top row and proceeding down the rows”.13

We denote the elements aTλ
and bTλ

of A by aλ and bλ. Thus, [EGHLSVY11,
Theorem 5.12.2] or [Grinbe25, Proposition 5.11.19 (c)] shows that Sλ ∼= Aaλbλ as
left A-modules14.

Hence, Sλ ∼= Aaλ︸︷︷︸
⊆A

bλ ⊆ Abλ. It thus suffices to show that ∇B,AAbλ = 0 (since

∇B,ASλ = 0 will then follow). In other words, it suffices to show that ∇B,Awbλ = 0
for any w ∈ Sn. But this is not hard:

Let w ∈ Sn. Let T be the Young tableau of shape λ obtained from Tλ by applying
the permutation w to each entry. (This is w ⇀ Tλ in the notations of [Grinbe25,
Definition 5.3.9].) Thus, bT = wbλw−1 (by [Grinbe25, Proposition 5.5.11], applied
to Tλ instead of T), so that wbλ = bTw.

The first column of the tableau T contains ℓ (λ) entries, and thus contains more
than k entries (since ℓ (λ) > k). Hence, at least two entries of this column belong
to the same block of A (by the pigeonhole principle, since A has only ℓ (A) ≤ k
blocks). Pick two such entries. Let τ ∈ Sn be the transposition that swaps these
two entries. This transposition τ thus preserves the blocks of A (since it swaps two
numbers from the same block), and therefore preserves ∇B,A from the right (i.e.,
satisfies ∇B,Aτ = ∇B,A) because of (16). On the other hand, this transposition τ
swaps two entries in the first column of T, and thus belongs to the column group
C (T) of T. Hence, bT = (1 − τ) η for some η ∈ A (since ⟨τ⟩ = {1, τ} is a subgroup
of the column group C (T), and since the permutation τ is odd; see [Grinbe25,
Proposition 5.5.9 (b)] for details). Thus,

∇B,A wbλ︸︷︷︸
=bTw

= ∇B,A bT︸︷︷︸
=(1−τ)η

w = ∇B,A (1 − τ)︸ ︷︷ ︸
=∇B,A−∇B,Aτ

=0
(since ∇B,Aτ=∇B,A)

ηw = 0.

This completes our proof of ∇B,ASλ = 0. Thus, as explained above, we have proved
Claim 1.

Proof of Claim 2. This is fairly similar to the above proof of Claim 1. Here are the
main milestones of the proof:

13For instance, if λ = (4, 2), then Tλ = 1 2 3 4

5 6
.

14Specifically, this follows from [EGHLSVY11, Theorem 5.12.2] after observing that the aλ and bλ

in [EGHLSVY11, Theorem 5.12.2] are our
1

|R (T)|aλ and
1

|C (T)|bλ (the fractions here are well-

defined, since |R (T)| and |C (T)| are divisors of n! and thus invertible in k). Alternatively, this
follows by applying [Grinbe25, Theorem 5.5.13 (b)] to T = Tλ and noticing that aλbλ = aTbT =
∇Row T∇−

Col T = FT in the notations of [Grinbe25, Theorem 5.5.13 (b)] and that the number hλ

defined in [Grinbe25, Theorem 5.5.13 (b)] is invertible in k (since it is a divisor of n!).
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Let λ ⊢ n be a partition that satisfies ℓ (λ) ≤ k. We must prove that all a ∈ Jk
satisfy aSλ = 0.

Recall that Jk = A· span
{
∇−

U | U is a subset of [n] having size k + 1
}

(by Propo-
sition 2.2.2 (b)). Hence, it suffices to show that ∇−

USλ = 0 whenever U is a subset
of [n] having size k + 1 (because then, A∇−

USλ︸ ︷︷ ︸
=0

= 0 will automatically follow).

So let us fix a subset U of [n] having size k + 1. Consider the Young tableau
Tλ and the elements aλ and bλ defined as in the above proof of Claim 1. Then,
Sλ ∼= Aaλbλ. Hence, in order to prove that ∇−

USλ = 0, it suffices to show that
∇−

UAaλ = 0. For this, in turn, it suffices to show that ∇−
Uwaλ = 0 for each w ∈ Sn.

So let w ∈ Sn be arbitrary. Let T be the Young tableau of shape λ obtained from
Tλ by applying the permutation w to each entry. Then, aT = waλw−1 (by [Grinbe25,
Proposition 5.5.11]), so that waλ = aTw.

But the pigeonhole principle shows that there are two distinct elements of U that
belong to the same row of our tableau T (since the set U has k + 1 elements, but
the tableau T has only ℓ (λ) ≤ k rows). Let τ be the transposition that swaps these
two elements. Then, ∇−

Uτ = −∇−
U (by [Grinbe25, Proposition 3.7.4 (c)]), but also

aT = (1 + τ) η for some η ∈ A (since ⟨τ⟩ = {1, τ} is a subgroup of the row group
R (T); see [Grinbe25, Proposition 5.5.8 (b)] for details). Thus,

∇−
U waλ︸︷︷︸

=aTw

= ∇−
U aT︸︷︷︸

=(1+τ)η

w = ∇−
U (1 + τ)︸ ︷︷ ︸

=∇−
U+∇−

U τ
=0

(since ∇−
U τ=−∇−

U )

ηw = 0.

As we explained above, this completes the proof of Claim 2.

However, if X and Y are two disjoint subsets of {λ | λ ⊢ n}, then AX ∩AY = 0
(since the subproducts ∏

λ∈X
End

(
Sλ
)

and ∏
λ∈Y

End
(
Sλ
)

of ∏
λ⊢n

End
(
Sλ
)

have inter-

section 0). Thus,
A{λ⊢n | ℓ(λ)≤k} ∩A{λ⊢n | ℓ(λ)>k} = 0.

Meanwhile, Claim 1 and Claim 2 yield

Ik ⊆ A{λ⊢n | ℓ(λ)≤k} and Jk ⊆ A{λ⊢n | ℓ(λ)>k}.

Furthermore, Theorem 2.4.1 (g) yields A = Ik ⊕ Jk (internal direct sum), so that
A = Ik + Jk. Thus, Lemma 2.9.2 (applied to M = A and I = Ik and J = Jk and
U = A{λ⊢n | ℓ(λ)≤k} and V = A{λ⊢n | ℓ(λ)>k}) yields

Ik = A{λ⊢n | ℓ(λ)≤k} and Jk = A{λ⊢n | ℓ(λ)>k}.

This proves Theorem 2.9.1.

Note that part of Theorem 2.9.1 for k = 3 appears in [BCEHK23, Proposition
3.5 (a)]. Moreover, [KlStVo25, Theorem 2.2] can also be viewed as a corollary of
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Theorem 2.9.1 (indeed, we already saw that the k-swap algebra from [KlStVo25,
Theorem 2.2] is isomorphic to our A/Jk, which according to Theorem 2.9.1 is in
turn isomorphic to ∏

λ⊢n;
ℓ(λ)≤k

End
(
Sλ
)
).

2.9.2. Application: Counting avoiding permutations

As a consequence of Theorem 2.9.1, we recover a classical enumerative result
that is commonly proved using the RSK correspondence (see, e.g., [Bona22, (7.2)],
[Stanle23, Corollary 7.23.12]):

Corollary 2.9.3. For each partition λ of n, let f λ be the number of standard
tableaux of shape λ. Let k ∈ N. Then, the number of all permutations w ∈ Sn

that avoid 12 · · · (k + 1) is ∑
λ⊢n;

ℓ(λ)≤k

(
f λ
)2

= ∑
λ⊢n;
λ1≤k

(
f λ
)2.

Proof. Let k = Q. Let us use the notations of Theorem 2.9.1. Then, the standard
basis theorem for Specht modules (see, e.g., [Grinbe25, Lemma 5.9.17]) says that

dim
(

Sλ
)
= f λ (71)

for each partition λ of n.
However, Theorem 2.9.1 shows that

Ik = A{λ⊢n | ℓ(λ)≤k}
∼= ∏

λ⊢n;
ℓ(λ)≤k

End
(

Sλ
)

as k-vector spaces

(since A{λ⊢n | ℓ(λ)≤k} was defined as the preimage of ∏
λ⊢n;

ℓ(λ)≤k

End
(
Sλ
)

under the

isomorphism AW). Thus,

dim (Ik) = dim

 ∏
λ⊢n;

ℓ(λ)≤k

End
(

Sλ
) = ∑

λ⊢n;
ℓ(λ)≤k

dim
(

End
(

Sλ
))

︸ ︷︷ ︸
=(dim(Sλ))

2
=( f λ)

2

(by (71))

= ∑
λ⊢n;

ℓ(λ)≤k

(
f λ
)2

.

On the other hand, Theorem 2.4.1 (c) yields

dim (Ik) = |Avn (k + 1)| .

Comparing these two equalities, we find |Avn (k + 1)| = ∑
λ⊢n;

ℓ(λ)≤k

(
f λ
)2. In other

words, the number of all permutations w ∈ Sn that avoid 12 · · · (k + 1) is ∑
λ⊢n;

ℓ(λ)≤k

(
f λ
)2.
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It remains to prove that this sum also equals ∑
λ⊢n;
λ1≤k

(
f λ
)2. But this is easy: The

bijection {λ ⊢ n} → {λ ⊢ n} that sends each partition λ to its transpose λt swaps
the roles of ℓ (λ) and λ1 (that is, we have ℓ

(
λt) = λ1 and λt

1 = ℓ (λ)). Thus, the

sums ∑
λ⊢n;

ℓ(λ)≤k

(
f λ
)2 and ∑

λ⊢n;
λ1≤k

(
f λ
)2 are the same up to reindexing using this bijection.

Hence, Corollary 2.9.3 is proved.

2.9.3. A/
(
Ik + Tsign (Jℓ)

)
Corollary 2.9.3 is not the end of the line. There is a more general result ([Schens60,
Theorem 3], [Stanle71, Proposition 17.5]) saying the following:

Theorem 2.9.4. Let k, ℓ ∈ N. Then, the number of all permutations w ∈ Sn that
avoid 12 · · · (k + 1) and (ℓ+ 1) ℓ · · · 1 is ∑

λ⊢n;
ℓ(λ)≤k and λ1≤ℓ

(
f λ
)2.

Proof. From [Schens60, Theorem 3] or [Stanle71, Proposition 17.5], we know that
for any c, d ∈ N, we have

(the number of permutations w ∈ Sn such that
the longest increasing subsequence of w has length c
and the longest decreasing subsequence of w has length d)

= ∑
λ⊢n;

ℓ(λ)=d and λ1=c

(
f λ
)2

.

Summing this over all c ∈ {0, 1, . . . , ℓ} and all d ∈ {0, 1, . . . , k}, we obtain

(the number of permutations w ∈ Sn such that
the longest increasing subsequence of w has length ≤ ℓ

and the longest decreasing subsequence of w has length ≤ k)

= ∑
λ⊢n;

ℓ(λ)≤k and λ1≤ℓ

(
f λ
)2

.

But the permutations counted on the left hand side are just the permutations in
w ∈ Sn that avoid 12 · · · (ℓ+ 1) and (k + 1) ℓ · · · 1. Upon multiplying them by w0
from the left, they become the permutations w ∈ Sn that avoid 12 · · · (k + 1) and
(ℓ+ 1) ℓ · · · 1 (by Proposition 2.7.2). Thus, the number of the latter permutations is

∑
λ⊢n;

ℓ(λ)≤k and λ1≤ℓ

(
f λ
)2. This proves Theorem 2.9.4.
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We may thus wonder:

Question 2.9.5. Can Theorem 2.9.4 be proved using the ideals Ik and Jk ?

One way to approach this is as follows. Let Tsign : A → A be the k-algebra
automorphism of A sending each permutation w ∈ Sn to (−1)w w. If n! is in-
vertible in k, then Ik ∩ Tsign (Iℓ) is a free k-submodule of A having dimension

∑
λ⊢n;

ℓ(λ)≤k and λ1≤ℓ

(
f λ
)2. Thus, we could answer Question 2.9.5 by finding a k-module

basis of Ik ∩Tsign (Iℓ) indexed by permutations that avoid 12 · · · (k + 1) and (ℓ+ 1) ℓ · · · 1.
However, such a basis cannot be independent on char k like our above basis of Ik
was, since (for instance) the subspace I2 ∩ Tsign (I2) for n = 3 has dimension 4
when k = Q but dimension 5 when k = F2. While this does not strictly rule
out a proof using this subspace, it suggests that new methods are required, since
the techniques we have used to prove Theorem 2.4.1 above cannot create a de-
pendence on the characteristic of k. The dimension of the quotient k-module
A/

(
Jk + Tsign (Jℓ)

)
can depend on char k as well (for n = 3 and k = ℓ = 2, it

equals 4 when k = Q but equals 5 when k = F2).
However, the “mixed” quotient Ik/

(
Ik ∩ Tsign (Jℓ)

) ∼= (Ik + Tsign (Jℓ)
)

/Tsign (Jℓ)
behaves better. Equivalently, the quotient A/

(
Ik + Tsign (Jℓ)

)
has a basis of size

Av′
n (ℓ+ 1) \ Avn (k + 1) for all k:

Theorem 2.9.6. Let k, ℓ ∈ N. Then, the family (w)Av′
n(ℓ+1)\Avn(k+1) is a basis of

the k-module A/
(
Ik + Tsign (Jℓ)

)
.

We shall now outline a proof of this theorem (which might not be new; it is
probably a particular case of Donkin’s [Donkin24, Corollary 2.12]). However, the
proof itself relies on Theorem 2.9.4, so it produces no new proof of Theorem 2.9.4.
Thus, Question 2.9.5 remains open.

Outline of the proof of Theorem 2.9.6. The proof consists of two steps: (a) showing
that the family (w)Av′

n(ℓ+1)\Avn(k+1) spans the k-module A/
(
Ik + Tsign (Jℓ)

)
, and

(b) showing that this k-module is free of rank
∣∣Av′

n (ℓ+ 1) \ Avn (k + 1)
∣∣. Once

these two claims are proved, we will be easily able to conclude the proof using
[Grinbe25, Lemma 5.21.9].

We begin with step (a). Thus, we set out to prove that the family (w)Av′
n(ℓ+1)\Avn(k+1)

spans the k-module A/
(
Ik + Tsign (Jℓ)

)
. In other words, we must prove that

u ∈ span
(
(w)Av′

n(ℓ+1)\Avn(k+1)

)
for each u ∈ Sn. (72)

To prove this, we proceed by induction on u as in lexicographic order, as in the
proof of (37) above. Thus, we let v ∈ Sn be arbitrary, and we assume that (72) holds
for all u < v; we must then prove that (72) holds for u = v. We distinguish between
three cases:
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1. If v ∈ Av′
n (ℓ+ 1) \ Avn (k + 1), then this claim is obvious.

2. If v ∈ Avn (k + 1), then this claim is proved just as in our above proof of (37),
since Ik ⊆ Ik + Tsign (Jℓ).

3. If v /∈ Av′
n (ℓ+ 1), then we proceed as follows: Set v′ := w0v. Then, v /∈

Av′
n (ℓ+ 1) entails v′ /∈ Avn (ℓ+ 1) (by Proposition 2.7.2). Hence, the argu-

ment made in the proof of (40) (but applied to ℓ and v′ instead of k and v)
shows that

v′ = −(some permutations w > v′) in A/Jℓ.

Multiplying by w0 on the left, we transform this into

w0v′ = −(some permutations w0w with w > v′)

= −(some permutations w′ < w0v′) in A/Jℓ

(because multiplying by w0 on the left flips the lexicographic order: if x > y
in Sn, then w0x < w0y). Since w0v′ = v (because v′ = w0v but w0 is an
involution), we can rewrite this as

v = −(some permutations w′ < v) in A/Jℓ.

Applying the k-algebra automorphism Tsign (or, rather, the k-algebra isomor-
phism A/Jℓ → A/Tsign (Jℓ) it induces) to this equality, we obtain

v = −(some permutations w′ < v) in A/Tsign (Jℓ)

(we have suppressed the signs (−1)v and (−1)w′
here, since we are deal-

ing with a linear combination anyway). Thus, this equality also holds in
A/

(
Ik + Tsign (Jℓ)

)
. From here, we easily obtain (72) using the induction

hypothesis.

Thus, (72) is proved, and we conclude that the family (w)Av′
n(ℓ+1)\Avn(k+1) spans

the k-module A/
(
Ik + Tsign (Jℓ)

)
.

Now we come to step (b) of our plan: showing that this k-module is free of rank∣∣Av′
n (ℓ+ 1) \ Avn (k + 1)

∣∣.
Here we will need the Murphy cellular bases (see Remark 2.4.3). Namely, apply-
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ing (24) to ℓ instead of k, we obtain Jℓ = F−Col
std,len>ℓ. Thus,

Tsign (Jℓ) = Tsign

(
F−Col

std,len>ℓ

)
= span

{
Tsign

(
∇Row

V,U

)
| (λ, U, V) ∈ SBT (n) and ℓ (λ) > ℓ

}
= span

{
∇Row

Vr,Ur | (λ, U, V) ∈ SBT (n) and ℓ (λ) > ℓ
}

 here, Tr denotes the transpose of a tableau T,

and we have used Tsign

(
∇Row

V,U

)
= ∇Row

Vr,Ur

(which is proved in [Grinbe25, Proposition 6.8.12])


= span

{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and ℓ
(
λt) > ℓ

}
(
here, we have substituted

(
λt, Ur, Vr

)
for (λ, U, V)

)
= span

{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and λ1 > ℓ
}

(since ℓ
(
λt) = λ1 for each partition λ). Adding this to

Ik = FRow
std,len≤k = span

{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and ℓ (λ) ≤ k
}

,

we find

Ik + Tsign (Jℓ)

= span
{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and (ℓ (λ) ≤ k or λ1 > ℓ)
}

= span
{
∇Row

V,U | (λ, U, V) ∈ SBT (n) and λ ∈ X
}

,

where
X := {λ ⊢ n | ℓ (λ) ≤ k or λ1 > ℓ} .

This clearly shows that Ik + Tsign (Jℓ) is a direct addend of A as a k-module (since
it is spanned by a subfamily of the row Murphy basis), and is free of rank

(# of (λ, U, V) ∈ SBT (n) such that λ ∈ X) = ∑
λ∈X

(
f λ
)2

,
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whereas the quotient k-module A/
(
Ik + Tsign (Jℓ)

)
is free of rank

∑
λ⊢n;
λ/∈X

(
f λ
)2

= ∑
λ⊢n;

ℓ(λ)>k and λ1≤ℓ

(
f λ
)2

= ∑
λ⊢n;
λ1≤ℓ

(
f λ
)2

︸ ︷︷ ︸
=|Avn(ℓ+1)|

(by Corollary 2.9.3,
applied to ℓ instead of k)

− ∑
λ⊢n;

ℓ(λ)≤k and λ1≤ℓ

(
f λ
)2

︸ ︷︷ ︸
=|Avn(k+1)∩Av′

n(ℓ+1)|
(by Theorem 2.9.4)

= |Avn (ℓ+ 1)|︸ ︷︷ ︸
=|Av′

n(ℓ+1)|
(by (54))

−
∣∣Avn (k + 1) ∩ Av′

n (ℓ+ 1)
∣∣

=
∣∣Av′

n (ℓ+ 1)
∣∣− ∣∣Avn (k + 1) ∩ Av′

n (ℓ+ 1)
∣∣

=
∣∣Av′

n (ℓ+ 1) \ Avn (k + 1)
∣∣ .

Finally, we are ready for everything to come together. We have shown that the
k-module A/

(
Ik + Tsign (Jℓ)

)
is free of rank

∣∣Av′
n (ℓ+ 1) \ Avn (k + 1)

∣∣. Hence,
[Grinbe25, Lemma 5.21.9] shows that every family of

∣∣Av′
n (ℓ+ 1) \ Avn (k + 1)

∣∣
vectors that spans this k-module must be a basis of this k-module. Hence, the
family (w)Av′

n(ℓ+1)\Avn(k+1) is a basis of this k-module (since we know that it spans
it). This completes the proof of Theorem 2.9.6.

2.9.4. Tsign (In−k−1) after Artin–Wedderburn

We end with a brief excursion into some related work by Hamaker and Rhoades
[HamRho25].

Let k ∈ N. For any two k-tuples a = (a1, a2, . . . , ak) ∈ [n]k and b = (b1, b2, . . . , bk) ∈
[n]k, we define the element

∇b,a := ∑
w∈Sn;

w(ai)=bi for all i

w ∈ A. (73)

Note that the ∇a in Lemma 2.8.5 can thus be rewritten as ∇a,a. If we equip the set
[n]k with the left Sn-action given by

w (a1, a2, . . . , ak) := (w (a1) , w (a2) , . . . , w (ak))

for all w ∈ Sn and (a1, a2, . . . , ak) ∈ [n]k

(as we have already done in the proof of Theorem 2.8.3), then we can rewrite the
definition (73) of ∇b,a as

∇b,a := ∑
w∈Sn;
wa=b

w ∈ A. (74)

Thus,
∇b,a = 0 unless b = wa for some w ∈ Sn. (75)

Now, Lemma 2.8.5 can be restated as follows:
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Proposition 2.9.7. Let k ∈ N. Then,

Tsign (Jn−k−1) = span
{
∇b,a | a, b ∈ [n]k

}
.

Here, we understand Jm to mean A when m < 0.

Proof. It is easy to see that w∇b,a = ∇wb,a for any w ∈ Sn and any a, b ∈ [n]k.
Applying this to b = a, we obtain

w∇a = ∇wa,a (76)

for any w ∈ Sn and any a ∈ [n]k (since ∇a = ∇a,a).
But Lemma 2.8.5 yields

Tsign (Jn−k−1) = A︸︷︷︸
=span{w | w∈Sn}

· span
{
∇a | a ∈ [n]k

}
= span {w | w ∈ Sn} · span

{
∇a | a ∈ [n]k

}
= span

{
w∇a | a ∈ [n]k and w ∈ Sn

}
= span

{
∇wa,a | a ∈ [n]k and w ∈ Sn

}
(by (76))

= span
{
∇b,a | a, b ∈ [n]k such that b = wa for some w ∈ Sn

}
= span

{
∇b,a | a, b ∈ [n]k

}
(by (75)) .

This proves Proposition 2.9.7.

We conclude with the following coda to Theorem 2.9.1:

Theorem 2.9.8. Assume that n! is invertible in k. Let k ∈ N. Let all notations be
as in Theorem 2.9.1. Then,

Tsign (Jn−k−1) = A{λ⊢n | λ1≥n−k}.

Here, λ1 denotes the first entry of λ.

To prove this, we need a general fact about how Tsign interacts with the Artin–
Wedderburn isomorphism AW:

Proposition 2.9.9. Assume that n! is invertible in k. Let all notations be as in
Theorem 2.9.1. Let X be a subset of {λ ⊢ n}. Let λt denote the transpose (i.e.,
conjugate) of any partition λ. Then,

Tsign (AX) = AXt ,

where Xt denotes the subset
{

λt | λ ∈ X
}
=
{

λ ⊢ n | λt ∈ X
}

of {λ ⊢ n}.
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Proof of Proposition 2.9.9. Let λ be a partition of n. It is well-known (e.g., [Grinbe25,
Theorem 5.18.13]) that the sign-twist of the Specht module Sλ satisfies

(
Sλ
)sign ∼=

Sλt
. Thus, in turn, Sλ ∼=

(
Sλt
)sign

(since each Sn-representation V satisfies
(
Vsign)sign

=

V). Hence, for any a ∈ A, we have the equivalence(
aSλ = 0

)
⇐⇒

(
a
(

Sλt
)sign

= 0
)

⇐⇒
(

Tsign (a) Sλt
= 0

)
(77)

(because the definition of
(

Sλt
)sign

reveals that a
(

Sλt
)sign

= Tsign (a) Sλt
as k-

modules). Now, (70) yields

AX =
{

a ∈ A | aSλ = 0 for all λ /∈ X
}

=
{

a ∈ A | Tsign (a) Sλt
= 0 for all λ /∈ X

}
(by (77))

=
{

a ∈ A | Tsign (a) Sλ = 0 for all λ /∈ Xt
}

(
here, we have substituted λ for λt,

since Xt =
{

λt | λ ∈ X
} )

= T−1
sign


{

a ∈ A | aSλ = 0 for all λ /∈ Xt
}

︸ ︷︷ ︸
=AXt

(by (70), applied to U=Xt)


= T−1

sign (AXt) .

Since Tsign is an isomorphism, we thus conclude that Tsign (AX) = AXt . This proves
Proposition 2.9.9.

Proof of Theorem 2.9.8. The case k ≥ n is left to the reader (both sides are 0). In the
case k < n, we have n − k − 1 ∈ N, so that we can apply Theorem 2.9.1 to n − k − 1
instead of k. Thus, from the last equality of Theorem 2.9.1, we find

Jn−k−1 = A{λ⊢n | ℓ(λ)>n−k−1} = A{λ⊢n | ℓ(λ)≥n−k}. (78)

Now, let us use the notations of Proposition 2.9.9. Applying Proposition 2.9.9 to
X = {λ ⊢ n | ℓ (λ) ≥ n − k}, we obtain

Tsign

(
A{λ⊢n | ℓ(λ)≥n−k}

)
= A{λ⊢n | ℓ(λ)≥n−k}t

= A{λ⊢n | ℓ(λt)≥n−k}

(
since Xt =

{
λ ⊢ n | λt ∈ X

}
for each X ⊆ {λ ⊢ n}

)
= A{λ⊢n | λ1≥n−k},
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because it is well-known (see, e.g., [Grinbe25, Theorem 5.1.10 (c)]) that every parti-
tion λ satisfies ℓ

(
λt) = λ1. In light of (78), we can rewrite this as

Tsign (Jn−k−1) = A{λ⊢n | λ1≥n−k}.

Theorem 2.9.8 is thus proved.

Combining Theorem 2.9.8 with Proposition 2.9.7, we conclude that

span
{
∇b,a | a, b ∈ [n]k

}
= A{λ⊢n | λ1≥n−k} (79)

for any k ∈ N, under the assumption that n! is invertible in k. This is essen-
tially [HamRho25, Theorem 3.5]. (“Essentially” because the Lock (Sn, C) from
[HamRho25] is not span

{
∇b,a | a, b ∈ [n]k

}
but rather span

{
∇b,a | a, b ∈ [n]k injective

}
,

where a k-tuple is said to be injective if its k entries are distinct.) The same result
appears in [ElFrPi11, Theorem 7] (where, again, the “k-cosets” are the ∇b,a for in-
jective k-tuples a, b ∈ [n]k). Note that the condition “λ1 ≥ n − k” on a partition λ of
n is equivalent to “λ ≥

(
n − k, 1k) in lexicographic order”, and this is the condition

used in [ElFrPi11, Theorem 7].
It is perhaps also worth mentioning that [EveZoh20, Lemma 3] is saying that if k

is a field of characteristic 0, and if l ∈ [n], then

A{λ⊢n | λ1<l} =
(
A∇[l]A

)⊥
, (80)

where ∇[l] is the sum of all permutations w ∈ Sn that fix the elements l + 1, l +
2, . . . , n. This can be derived from Theorem 2.9.1, Theorem 2.4.1 (a) and Proposition
2.2.2 (f) using Proposition 2.9.9 (and the fact that ∇[l] = Tsign

(
∇−

[l]

)
). We leave the

details to the reader.
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