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Abstract. Let A be the group algebra k[S,| of the n-th symmetric
group S, over a commutative ring k. For any two subsets A and B of
[n], we define the elements

Vpa = ZS: w and Vpa:i= ZS: w
wWESy; WESy;
w(A)=B w(A)CB

of A. We study these elements, showing in particular that their mini-
mal polynomials factor into linear factors (with integer coefficients). We
express the product Vp cVp 4 as a Z-linear combination of Vi y’s.

More generally, for any two set compositions (i.e., ordered set par-
titions) A and B of {1,2,...,n}, we define Vgao € A to be the sum
of all permutations w € S, that send each block of A to the corre-
sponding block of B. This generalizes Vp 4. The factorization property
of minimal polynomials does not extend to the Vg 5, but we describe
the ideal spanned by the Vg o and a further ideal complementary to
it. These two ideals have a “mutually annihilative” relationship, are
free as k-modules, and appear as annihilators of tensor product S,-
representations; they are also closely related to Murphy’s cellular bases,
Specht modules, pattern-avoiding permutations and even some algebras
appearing in quantum information theory.
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Rook theory is the study of permutations w in a symmetric group S, that avoid
certain input-output pairs (given by “boards”, i.e., sets of allowed input-output
pairs). Research done so far — e.g., [GJW75, — has mostly
focused on the enumeration of such permutations (known as “rook placements”).
In this work, we set out in a new direction: Instead of counting the rook placements
for a given board, we study their sum in the symmetric group algebra k [S,] over
a commutative ring k. As with any elements of such a group algebra, we can ask
for their spectral and representation-theoretical properties — what ideals do they
generate? how well do their minimal polynomials factor?

Let us give a quick overview, starting with an example that does not actually
fit into our theory. Let A be the group algebra k[S,]| of a symmetric group Sj.
For any subset T of [n] x [n] (where [n] denotes the set {1,2,...,n} as is usual in
combinatorics), we set

V1= Z w e A.
WESy;
(i,w(i))€T for each i€[n|

In rook-theoretical terms (see, e.g., [BCHR11, §1.2]), this is the sum of the n-rook
placements on the board T.
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For example, if T = {(i,j) € [n] x [n] | i # j}, then V7 is the sum of all derange-
ments in S, and is well-behaved in many ways: It lies in the center of A = k [S,]
(since the set of all derangements is fixed under conjugation), and its minimal poly-
nomial (over a field k) factors into linear factors (this is true for any element in the
center of A, because the center of Q [S,] is split semisimple; this is well-known
folklore).

Even simpler examples are T = {(i,i) | i € [n]} (yielding Vr = id) and T =
[n] x [n] (here, V1 is the sum of all permutations in Sj,).

These examples are far from representative. In general, V1 will rarely belong
to the center of k[S,], nor will its minimal polynomial often factor nicely. For
example, if n =5and T = {(i,j) | j # i+ 1}, then the minimal polynomial of V7
has irreducible factors of degrees 1, 4, 5 and 6 (over Q). Thus, the behavior of Vr
depends starkly on the structure of T.

In this paper, we will study two types of boards T. The first one has the form
“[n] x [n] with a rectangle cut out”. Thus, we will define the so-called rectangular
rook sums

VA= ZS: w and VA= ZS: w in A
wEeSy; weOy;
w(A)=B w(A)CB

for two subsets A and B of [n]. (The V4 here is the Vr for T = ([n] x [1]) \
(A x ([n] \ B)). The Vp 4 are — strictly speaking — redundant, as they equal either
V3.4 or 0 depending on whether |A| = |B| or not. Conversely, however, the Vg 4
can be expressed as sums of Vp 4’s, so the two families of elements are closely
related.) Section [I]is devoted to the study of these elements. We will show that
they span an ideal of 4, that they satisfy an explicit multiplication rule (Theorem
[1.2.2), and that their minimal polynomials factor into linear factors (Corollary [1.4.3).

In Section |2, we will generalize the Vg 4 to a wider family. Namely, we define a
set decomposition of [n] to be a tuple of disjoint subsets of [n] (called blocks) whose
union is [n]. (Empty blocks are allowed.) Now, if A = (A1, Ay,..., Ax) and B =
(B1,Ba, ..., By) are two set decompositions of [n] having the same length, then we
define the element

Vpa = Z w of A.
wESy;
w(A;)=B; for all i

For k = 2, these recover the elements V 4 studied above. In general, V a is VT for
a certain board T that is obtained from [n] x [n] by cutting out multiple rectangles.
While these Vg o lack the multiplication rule and the factoring minimal polyno-
mials of the Vg 4’s (at least we are not aware of a multiplication rule), they have
their own share of interesting properties. In fact, they have already appeared in the
works of Canfield/Williamson [CanWil89] and Murphy [Murphy92, Murphy95],
where they were used to construct bases of A now known as the Murphy cellular
bases.
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Unlike Murphy, we are interested in the V A for all pairs (A, B) of equal-length
set decompositions, not just ones that come from standard bitableaux. We consider
— for any given k € IN — the span Z; of all such elements Vg 5 where A, B are two
set decompositions of [1] having at most k blocks each.

Here is an incomplete survey of our results in Section [2j note that several of
them have been shown before, but we give new proofs. We show (in Theorem
that Z; is an ideal of A and a free k-module whose rank is the number
of 12--- (k+ 1)-avoiding permutations in S,, whereas the residue classes of the
remaining permutations in S, form a basis of the quotient .A/Z;. Moreover, we
construct another ideal Jj of A that has a mutual annihilation relationship with Zj,
meaning that each of the two ideals Z; and J is the annihilator of the other ideal
from both left and right as well as its orthogonal complement with respect to the
standard dot product on A. The simplest way to define Jj (at least for k < n) is as
the two-sided ideal generated by the single element

Vi = ) (-1)"we A
wWESy;
w(i)=i for all ie[n]\U

(this is not how we define J, but is equivalent; see Proposition (f)). This ideal
Ji, 100, is a free k-module, as is the quotient A/ Ji (see Theorem 2.4.T). Note that
the span of the rectangular rook sums Vp 4 studied in Section [1|is precisely the
ideal Z,, and so we conclude that its rank is the number of 123-avoiding permuta-
tions in S, that is, the Catalan number C, (Corollary .

So far we have not assumed anything about the commutative ring k. If, however,
n! is invertible in k, then A = Z; & Jj as k-modules and A = 7 x J as k-algebras.

The ideals Z; and Jj are not entirely new; they can be viewed as spans of sub-
families of the Murphy cellular bases (see Remark [2.4.3). However, all our proofs
are independent of this fact, and use only the most elementary algebra and combi-
natorics.

In Subsection we describe the ideals Z; and 7,,_;_1 as annihilators of certain
left k [S,;]-modules. Namely:

1. The ideal Jj is the annihilator of the tensor power Vk®”, where V;, = kr is a
free k-module of rank k and where S, acts on V;*" by permuting the factors
(Theorem[2.8.1). This is a classical result by de Concini and Procesi [deCPro76),
Theorem 4.2].

2. The ideal Zy is the annihilator of a sign-twiste tensor power N, (n=k=1)

of the natural representation N, = k" of S,,, where S,, acts diagonally on

the tensor power (Theorem which is stated in a slightly different form,
applying the sign-twist to the ideal rather than the module). This is a recent

result by Bowman, Doty and Martin [BoDoMal8, Theorem 7.4 (a)].

1“Sign-twisting” means that the action of any permutation w € S, is additionally scaled by the
sign (—1)% of w.
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Note once again that no requirements are made on k here.

When n! is invertible in k, we can characterize the ideals Z; and J; in a more
mainstream way (Theorem [2.9.1): The ideal Z; consists of those elements a € A
that annihilate all Specht modules S* with £ (1) > k, whereas the ideal Jj consists
of those elements a € A that annihilate all Specht modules S* with £ (A) < k. This
fact is responsible for the appearance of J; in recent work on quantum information
theory [KIStVo25, Theorem 2.2]. Moreover, it can be used to give a new proof for
the classical fact (Corollary that the number of permutations w € S, that
avoid 12- - - (k+ 1) (that is, have no increasing subsequence of length k + 1) equals
the number of pairs of standard tableaux of shape A for partitions A I n satisfying
¢(A) <k

We end each of the two sections with an open question. In Section (1, we propose
an “abstract lift” of the span of the V 4’s. This is a nonunital k-algebra with basis
(AB,A) 4,BCn] of equal size CONSisting of “abstract nablas” A 4, which multiply by the
same rules as the Vp 4’s (see Theorem [1.2.2), but do not satisfy any linear depen-
dencies. This k-algebra has dimension Znn , which is n + 1 times the dimension
of the actual span of the Vp 4’s; but it appears to share some of the properties of
the latter. We know (Theorem that it is associative, and we conjecture that
it is unital when n! is invertible in k (certainly not for general k). Section [2| leads
us to another open question (Question [2.9.5), about a basis of the quotient ring
A/ (I + Tsign (Jy)), closely related to a recent conjecture by Donkin [Donkin24),
Remark 2.4].
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1. Rook sums in the symmetric group algebra

1.1. Definitions

Let n be a nonnegative integer. Let [n] := {1,2,...,n}.

Fix a commutative ring k. (All rings and algebras are understood to be associa-
tive and unital, unless declared otherwise.)

Let S, be the n-th symmetric group, defined as the group of all n! permutations
of [n]. Let A := k[S,] be its group algebra over k.

The antipode of the group algebra A is the k-linear map A — A that sends each
permutation w € S, to w~!. We will denote this map by S. It is well-known (see,
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e.g., [Grinbe25, §3.11.4]) that S is a k-algebra anti-automorphism and an involution
(i.e., satisfies S o S = id).
For any two subsets A and B of [n], we define the elements

vB,A = Z w and ﬁB,A = Z w

WESy; WESy;
w(A)=B w(A)CB

of A. We shall refer to these elements as rectangular rook sums.
For instance, for n = 4, we have

Viaay 14} = g w
WEOy,

w({14})={23}
= 0In (2143) + oln (2413) 4 oln (3142) + oln (3412),

where oln (i1i; . . . iy) means the permutation in S, with one-line notation (iy, iy, ..., ).
Moreover, again for n = 4, we have

?{1,2,3},{1,4} = ; ' w = ; w,
w({1L41)C 12,3} (1) 4 and w(4)£4

which is a sum of altogether 12 permutations.
The following proposition collects some easy properties of rectangular rook sums:

Proposition 1.1.1. Let A and B be two subsets of [n]. Then:
(@) We have Vp 4 = 0if |A| # |B|.
(b) We have V4 = 0if |A| > |B|.

(¢) We have %B,A = Y Vuya.
UCB;
[U|=|A|

(d) We have Vg4 = V)\B, [n)\a-
(e) If |A| = |B|, then V3 4 = Vp 4.
(f) The antipode S satisfies S (Vp 4) = V4 5.
(g) The antipode S satisfies S (63,A> = 6[;4]\,4, [n]\B-
(h) For any u € S;, we have
uVp,a = Vyp),A and u@B,A = Vu(B),A-
(i) For any u € S;;, we have

VAl = Vg -1(4) and Vp,au = 6B,u—l(A)-
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Proof sketch. (a) A permutation w € S, cannot satisfy w (A) = B if |A| # |B|.

(b) A permutation w € S, cannot satisfy w (A) C B if |A| > |B| (since |w (A)| =
A

(c) A permutation w € S, satisfies w (A) C B if and only if it satisfies w (A) = U
for some subset U C B satisfying |U| = |A|. Moreover, this subset U is uniquely
determined (as w (A)).

(d) A permutation w € S, satisfies w (A) = B if and only if it satisfies w ([n] \ A) =
]\ B.

(e) If |A| = |B|, then a permutation w € S, satisfies w (A) = B if and only if it
satisfies w (A) C B (since w (A) has the same size as A and therefore as B as well,
and thus cannot be a proper subset of B).

(f) A permutation w € S, satisfies w(A) = B if and only if its inverse w ™!

satisfies w~! (B) = A.

(g) A permutation w € S, satisfies w(A) C B if and only if its inverse w™!

satisfies w=! ([n] \ B) C [n] \ A.
(h) Let u € S,,. Then, the definition of \Y, B A yields

M%B,A:M Z w = Z uw

WESy; WESy;
w(A)CB w(A)CB
since the condition “w (A) C B”
= ) uw is equivalent to “ (uw) (A) Cu(B)”
5 . N
(uw)zgj)gu(B) (because u is a bijection)
B 2 - here, we have substituted w for uw
- in the sum
weSy;
w(A)Cu(B)
= ﬁu(B),A (by the definition of 6u(B),A> .

Similarly, uVp 4 = V() 4. This proves Proposition (h).

Darij Grinberg



Rook sums in the symmetric group algebra page 8

() Let u € S,,. Then, the definition of V B A yields

Vpau= Y wu= Y wu

WESy; WESy;
w(A)CB w(A)CB
= Y. wi since w (A) = (wu) (u"! (A)
( (@)
(wu)(u_l(A))gB
_ Z here, we have substituted w for wu
a o w in the sum
w(u‘l(A),)CB
= 6B,u*1(A) (by the definition of 6B,u*1(A)) .
Similarly, V a1t = Vp ,-1(4). This proves Proposition (). O

Proposition (c) shows that the elements Vg 4 and \Y, B,A have the same span
as B and A range over the subsets of [n], or even as B ranges over all subsets of [1]
while A is fixed. Later (in Corollary [2.4.2), we will learn more about this span, and
in particular compute its dimension.

1.2. The product rule

Parts (h) and (i) of Proposition show that the span of the elements Vp 4 is an
ideal of A. Hence, this span is a nonunital k-subalgebra of .A. It has an explicit
multiplication rule, which we shall state in three different forms. First, we define
an important family of integers:

Definition 1.2.1. For any two subsets B and C of [n], we define the positive
integer
wpc:=|BNC|!-[B\C|!'-|[C\B|!-|[n]\ (BUC)|! € Z.

Theorem 1.2.2. Let A,B,C,D be four subsets of [n] such that |A| = |B| and
|C| = |D|. Then:

(@) We have
Vp,cVBa =wpc Y. w.
WES,;
lw(A)ND|=|BNC]|
(b) We have
VpcVpa = Wpe Z (_1)‘U|*|BQC| ( | )Vuv-
’ ’ ’ ugD/ |B m C| s
VCA;
U=V
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(c) We have

- VI \e
VpcVea=wpe Y. (—1)VI7IBC ( Vv
= IBNC|

Before we can prove this theorem, we shall show a few lemmas from enumerative
combinatorics. The first lemma explains the appearance of the numbers wp (:

Lemma 1.2.3. Let A, B, C, D be four subsets of [1] such that |A| = |B| and |C| =
|D|. Fix a permutation w € S;. Let Q,, denote the set of all pairs (u,v) € S;, X Sy,
satisfying u (C) = D and v (A) = B and uv = w. Then:

(@) If |lw (A)ND| # |BNC|, then |Qy| = 0.
(b) If jw (A)ND| = |BNC]|, then |Qu| = wp .

Proof. (a) Assume that |w (A) N D| # |[BNC|.

Let (u,v) € Qu. Thus, (1,v) € S, xSy,and u (C) =Dand v (A) = Band uv = w
(by the definition of Q). Now, from w = uv, we obtain w (A) = (uv) (A) =
u(v(A)), so that

w(A) N D, =u (U(A)) Nu(C)=u(B)Nu(C)=u(BNC)
~—~—
—u(v(A)) =u(C) —B

(since u is a permutation). Thus, |w (A) N D| = |u (BN C)| = |BNC| (again since
u is a permutation). This contradicts |w (A) N D| # |BNC|.

Thus, we have found a contradiction for each (1, v) € Q. Hence, there exists no
(u,v) € Qu. Thus, |Qw| = 0. This proves Lemma [1.2.3] (a).

(b) Assume that [w (A) N D| = |BNC|.

Set k := |BNC|. Thus, by assumption, we have |w(A)ND| = |BNC| = k.
Furthermore, set p := |B\ C| and 4 := |C \ B|.

Since w is a permutation, we have |w (A)| = |A| = |B|. Thus,
w(A)\D| = |w(A)| = |w(A)ND| = [B| = |BNC| = [B\C|=p
—_—— N—— —
=|[B| =[BNC|
and
ID\w(A)] = |D| = |w(A)ND[=|C[-[BNC[=[C\B|=g.
~ ———

=[] =IBnc]

Moreover, the set [n] \ (B U C) consists of those elements of [#] that belong to none
of the three disjoint subsets BN C, B\ C and C \ B. Thus,

04\ (BUC)| = [[n]| ~ [BOC| - [B\C| ~ [C\B| =n—k—p g
=n —k =p =q
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Now, we want to compute |Qy|. In other words, we want to count the elements
of Qu. These elements are the pairs (u,v) € S, x S, satisfying u (C) = D and
v(A) = B and uv = w. Clearly, such a pair (#,v) must satisfy v = u~'w (since
uv = w), and thus is uniquely determined by its first entry u. Moreover, the
requirement v (A) = B on this pair is equivalent to u (B) = w (A), because of the
following chain of equivalences:

(0(4) = B) = ((v7'w) (4) =

(since v = u_1w>

Hence, the elements (u,v) of Qy are in one-to-one correspondence with the per-
mutations u € S, satisfying u (C) = D and u (B) = w(A). Let us call such per-
mutations nice. Thus, a nice permutation u € S, must send the subset C to D and
send the subset B to w (A). Hence, it must send the three subsets

BNC, B\ C, C\B
of [n] to the three subsets
w(A)ND, w(A)\ D, D\w(A),

respectively. Moreover, any permutation u € S, that does so is nice (since B =
(BNC)U(B\C) and C = (BNC)U (C\ B)). Thus, we can construct a nice per-
mutation u € S, as follows:

1. Choose the values of u on the k elements of BN C in such a way that these
values all belong to w (A) N D and are distinct. This can be done in k! ways,
since both |[BNC| and |w (A) N D| equal k.

2. Choose the values of u on the p elements of B\ C in such a way that these
values all belong to w (A) \ D and are distinct. This can be done in p! ways,
since both |B\ C| and |w (A) \ D| equal p.

3. Choose the values of u on the g elements of C \ B in such a way that these
values all belong to D \ w (A) and are distinct. This can be done in g! ways,
since both |C \ B| and |D \ w (A)| equal 4.

4. Choose the values of 1 on the remaining n — k — p — g elements of [n] in such
a way that these values are distinct and have not been chosen yet. This can
be done in (n — k — p — q)! ways, since we have n — k — p — g elements of []
left that have not been chosen yet.

This process can be done in k! - p!-q!- (n —k — p — q)! ways. Thus, the number
of nice permutations u € S, is k! - p! - q!- (n —k — p — q)!. But we know that |Qy| is
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the number of nice permutations u € S, (since the elements (1, v) of Qy, are in one-
to-one correspondence with the nice permutations u € S;,). Hence, we conclude
that

Quwl= _k_!" p ! g !“(n—k-p—q)!
N~~~ ~ NI ~ — 2
=IBOCl =jg\c| =|C\B|  =[[n]\(BUC)|
= [BNC|!-[B\C|!-|C\ B|!-|[n]\ (BUC)|!
= Wp,C-
This proves Lemma (b). O

The next lemma is a simple and elementary binomial identity:

Lemma 1.2.4. Let 11,k € IN. Then,
i (_1),_k (n) <r) 1, ifn=k
= r)\kJ )0, else.

Proof. 1t is well-known that each m € Z satisfies

i(_l)i (m) _ {1, if m=0; )
i=0 ! 0,

else.

(Indeed, this is obvious for m < 0, since the left hand side is an empty sum in this
case. In the case m > 0, it is proved in [Grinbel9, Proposition 1.3.28].)

For each r € IN, we have
n\ [r n\ [n—k
() =0 @

(by the trinomial revision formula [Grinbel9, Proposition 1.3.35], applied to a = r
and b = k). Hence,

ner O

i —

(n n—=k
\k)\r—k
(by @))

-5 ()0 = (B 5o (o)

() E (") ®
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(here, we have substituted i for  — k in the sum). But the two sums

Yy ("7) e Ty ("7

i=—k

differ only in their addends for i < 0 (if they differ at all), and all these addends

k) = 0 and thus (—1)’ (n 1— k) = 0) and thus do
H_/—/

. . . n
are 0 (since i < 0 entails < .
i

not affect the sums. Hence, these two sums are equal. In other words,

() -ge ()

:{1 ifn—k=0; (by (@), applied to m = n — k)

else
)1, ifn=k
10, else

(since the equation n — k = 0 is equivalent to n = k). Substituting this into (3), we
obtain

) o ")o1, ifn=k
B O -0 £ -8

k
. (Z)/ ifn==xk; _{1, if n =k
0, olse 0, else
: n k :
(since < k) = <k) = 1 when n = k). This proves Lemma|1.2.4 O]

Lemma 1.2.5. Let k € IN. Let Z be any finite set. Then,
Y (_1)\U|—k <|U|) _ )L if [Z] =k
Ucz k 0, else.

Proof. Any subset U C Z has size |U| € {0,1,...,|Z|}. Thus, we can break up the
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sum on the left hand side as follows:

ik (U _ & _ylul—k (U]
o (W5 pom (@)
Ul=r ~

(since |U|=r)

: ()

ucz;
|Ul|=r

N

N
Il
o

J/

-

)

2]

(since there are many
r

r-element subsets U of Z)

-5 (7)o (@ =g (7))
_ {1, if |Z] =k;

0, else

(by Lemma applied to n = |Z|). This proves Lemma [1.2.5 O
Proof of Theorem (a) The definition of a rectangular rook sum shows that

Vpc = Z u and VA= Z v.

Multiplying these two equalities, we find

VpcVea= Y, u Y, v = ) e,

uUESy; vESy; (11,0) €Sy X Sp;

u(C)=D v(A)=B u(C)=D and v(A)=B
= Z ‘Qw| w, 4)
weSy,

where Qy, (for a given permutation w € S,) is defined as the set of all pairs (1, v) €

Darij Grinberg



Rook sums in the symmetric group algebra page 14

Sn X Sy satisfying u (C) = D and v (A) = B and uv = w. Now, (4) becomes

Vp,cVea= ). |Qu|w

wESy,
= Z ’Qw’ w + Z ‘Qw‘ w
wWESy; :WVBC WESy; \;’0'/
|w(A)ﬂD|:|BﬂC| (by Lemma (b)) |ZU(A)QD‘7$|BHC‘ (by Lemma(a))
= Z Wwg,cW = Wa,C Z w.
wES,; WESy;
lw(A)ND|=|BNC| lw(A)ND|=|BNC|
This proves Theorem (a).
(b) We have

Y (—1ylul-ienc (yB’g|C]) Vi

ucDo, S~

VCA:; = Y w

=y we S
w(V)=U

(by the definition of V)

- u
_ (1)l BmC|< -
Py Bncl) &

| V|§1|4; w(V)=U
Ul=|v

- U]
= (—n)lHi=IEne ( w, (5)
wgn g%g, |B N C|
uj=|vy;
w(V)=U

Now, let w € S;, be arbitrary. We shall simplify the sum

Y (—p)ul-lEne] (]B@q)'

ucpo,
VCA;
ul=[vy;
w(V)=U
Indeed, we observe that
e the condition “|U| = |V|” under the summation sign is redundant (since it

follows from w (V) = U because w is a permutation);

e the set V in this sum is uniquely determined by U via the condition “w (V) =
U” (since w is a permutation), and thus can be simply replaced by w~! (U)
instead of being summed over.
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Thus, we can rewrite the sum as follows:

_ul-ene (Ul
I (gt

VCA;
|u|=[Vv|;
w(V)=U

. (_1)|U—BOC<|B|g|C’)

UcCD;
w I (U)CA

_ Y (—pui-iEne] (yB’g|C|)

UCD;
UCw(A)
here, we rewrote the condition “w~1 (U) C A”
under the summation sign as “U C w (A)”

- |
— Y -y BﬂC(
UCw(A)ND ’B N C|
_J1, if lw(A)ND|=|BNC|;

10, else

(6)

(by Lemma applied to Z = w (A) N D and k = |BN C|).
Forget that we fixed w. We thus have proved @ for each w € S;,. Thus, ()
becomes

- ui
(—1lul-IBnc] ( Vv
& e
VCA;
ul=1v

- Ul
_ (1)l Bmc( -
wgn lé%zg, |BﬁC|
u=|v};
w(V)=U

~"

_{1, if [w(A)ND|=|BNC|;

0, else
(by (6))
> 1, if |w(A)ﬂD]:]BﬂC|;w
_weSn 0, else
- Y
WESy;

lw(A)ND|=|BNC]|
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Multiplying this equality by wp ¢, we find

wu|-enc| (U] )
w .C -1 ( VU,V
5 ugj (=1) IBNC]

VCA;
uj=|v|

= WpC Z w=VpcVpa (by Theorem [1.2.2](a)) .

wWESy;
|w(A)ND|=|BNC]|

Thus, Theorem [1.2.2] (b) is proved.
(c) Theorem [1.2.2] (b) yields

- u
Vp,cVp,a = wac Z (_1)\U| BﬁCI( U )VU,V

uch, BN C|
VCA;
uj=|v|
- vi-iBnel (V]
= Wp,C (1) ( Vuyv
Py BAC|
VCA;
uj=v|
(due to the |U| = |V| condition under the summation sign)
1)lVI-1BnC] ( 14 )
= Wa,C vl,I,V
V;A [BNC| U;D
uj=|v|
=Vp

(by Proposmon _ 1.1.7)(0))

1)/VI-1BC] ( 14 )
= wBC VD,V.
V;A BN C|

This proves Theorem [1.2.2] (). O

1.3. The D-filtration

We shall next derive some nilpotency-type consequences from the multiplication
rule.
For the rest of this section, we fix a subset D of [n]. We defineﬂ

Fi = span{ﬁplc | CC[n] with |C|] < k}

for each k € Z. Offourse, Fn 2D Fpog 22 Fo 2 F_1 =0. Itis easy to see that

Jois spanned by Vp 5 = Vg5 = ), w. (Note, however, that |J F is usually a
wESy, keZ

proper subset of k [S,], so that the i do not form a decreasing filtration of k [S].)

?Here and in the following, “span” always means “span, ” (that is, a k-linear span).
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Definition 1.3.1. For any subset C C [n] and any k € IN, we define the integer

_ k
Op,c = wg,C (—1)F 1BnC] ( ) € Z.
) BAC|

|B|=k

Now, we note the following:

Proposition 1.3.2. Let C C [n] satisfy |C| = |D|. Let k € IN. Then,

(Vp,c—9dp,ck) Fk © Fr—1-

Proof. By the definition of Fy, it suffices to show that

(Vb —dpcx) Vp,a € Fion (7)

for each A C [n] with |A| < k.
To prove this, we fix A C [n] with |A| < k. Then, Proposition (0) yields

Voa= Y. Vua= Y. Vga. (8)
UCD; BCD;
|Ul=|A| |B|=|A]

Multiplying this equality by Vp ¢ from the left, we obtain

VbcVpa= Y. VpcVga. )
BCD;
|B|=|A|

However, for each subset B C D satisfying |B| = |A|, we can use Theorem [1.2.2]
(c) to obtain

— \% -

voa |BNC]
_ vi-ienel {1V \e
= wp,C (—1) ( Vpyv
., BAC]
- 14 S
_ wpc (~1)V1-1BC) ( Sov
VCZA, |B NC| N
VA €F k-1
(since VCA and V#A
entail |V|<|A|<k and
thus |V|<k—1)
+ wp,c (—1)AI=1P0C A Vp,A
’ |IBNC] ’
here, we have split off the
addend for V = A from the sum
_ Al ~
= _pylai-enct (] d Fi_1. 10
wpc (—1) BAC| Vp,amod Fy_q (10)
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Recall that |A| < k. Hence, we are in one of the following two cases:
Case 1: We have |A| = k.
Case 2: We have |A| < k.

Let us first consider Case 1. In this case, we have |A| = k. Hence, (9) becomes

VpcVpa= Y, VpcVea
BCD;
|B|=|A|

_ Clal-eac 1Al e
= BCZD wpc (—1) <|B n C|)VD,A (by (10))
|B|=|A|

B k—|BNC| k = , _
= wpc(—1) ( ) VDA (since |A| =k)
Bg); |BNC]| 4]

|Bl=k

J/

-~

=0p,ck
= dp,ckVp,amod Fi_q.
In other words, V D,cﬁ DA — 5D,C,k€ D,A € Fi—1. Inother words, (Vpc —dp cx) \Y, DA €
Fi—1. Hence, (7) is proved in Case 1.

Let us now consider Case 2. In this case, we have |A| < k. Hence, |A| < k-1,
so that VD A € Fk_1. In other words, VD A = 0mod Fi_1. Now, @) becomes

VpcVpa= Y. VpcVga

BCD;

|B|=|A|

_ Al-1Bne| 1A S

- F et (MY 5 e
BCZD |B N C| ——
IB|= |A| =0mod Fy_1

= 0mod Fj_1.

Hence,
(Vp,c—dpck) Vpa=VpcVpa—0dpck Vpa =0-0=0modF ;.
—— N~

=0mod Fy_1 =0mod Fy_1

In other words, (Vp,c —dp,ck) 61), A € Fi_1. Hence, (7) is proved in Case 2.
We have now proved (7) in both Cases 1 and 2. Thus, always holds, and
Proposition is proved. O

Definition 1.3.3. Let & = (ac)ccy); = |p| be @ family of scalars in k indexed by
the | D|-element subsets of [n]. Then, we set

Vpu:i= Z xcVpc € A.

ICl=ID|
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Furthermore, for each k € IN, we set

6Dk = Y, acdpci €k
CClnj;

Cl=[D|

Proposition 1.3.4. Let &« = (“C)Cg[n]; c|=|p| be a family of scalars in k indexed
by the | D|-element subsets of [n]. Let k € IN. Then,

(Vb —0p k) Fik © Fr_1-

Proof. Proposition(1.3.2yields (Vp c — 0p cx) Fi € Fi_1 for each C C [n] satisfying
|C| = |DJ|. Multiply this relation by a¢ and sum up over all C C [n] satisfying
|C| = |D|. The result is Proposition [I.3.4] O
Proposition 1.3.5. Let & = (ac)ccy); |c|=|p| Pe a family of scalars in k indexed
by the | D|-element subsets of [n]. Then, for each integer m > —1, we have

(ﬁ (VD/OC - 5D,D(,k)> -/T"m =0.

k=0

Proof. Induction on m. The base case is obvious, since F_; = 0. The induction step
(from m — 1 to m) uses Proposition as follows:

m m—1
(H (VD,oc - 5D,a,k)> Fm = (H (VD,zx - 5D,a,k)) (VD,oc - 5D,¢x,m) -Fm

k=0 k=0 h
CFmn—1
(by Proposition[1.3.4)

m—1
- (H (VD,IX - (SD,a,k)) Fm-1=0
k=0

m
and thus < IT (Vpa— 5D,a,k)) Fm = 0. Thus, Proposition |1.3.5|is proved. O
k=0

1.4. The triangularity theorem
We can now state our main theorem (still using Definition [1.3.3)):

Theorem 1.4.1. Let D be a subset of [n]. Let a = (ac)ccn); |cj=|p| Pe a family of
scalars in k indexed by the |D|-element subsets of [n]. Then,

D]
(H (VDAX - (SD,a,k)) VD,a =0.

k=0
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Proof. For each subset C of [n] satisfying |C| = |D|, we have Vpc = Vpc (by
Proposition [1.1.1{ (e)) and thus Vp c = Vpc € Fip) (since |C| = |D| < [D|). Thus,
Vpa € F ID| as well (since Vp , is a k-linear combination of such Vp ¢’s). Hence,

D| D|
(H (Ve = 5Df“fk)> VDu = (H (Vpu — 5D,uc,k)> Fip; =0

k=0 k=0
(by Proposition applied to m = |D|). This proves Theorem [1.4.1] O
Using the antipode S of .4, we can obtain a reflected version of Theorem [1.4.1}

Theorem 1.4.2. Let D be a subset of [n]. Let & = (ac)ccy); |c|=|p| be a family of
scalars in k indexed by the |D|-element subsets of [n]. Set

Voc,D = Z lXcVC,D e A
CCln);
C[=[D]

Then,

k=0

|D|
(H (Vap — 5D,zx,k)> Vap =0.

Proof. The antipode S is a k-algebra anti-homomorphism, and sends Vp , to V, p
(since it sends Vp ¢ to V¢ p for each C). Thus, Theorem follows easily by
applying the antipode to Theorem (Note that we don’t have to reverse the
order of factors in the product, since all these factors commute with each other.) [

Corollary 1.4.3. Let B and D be two subsets of [n]. For each k € IN, we set

éppki= ), Opck€Z.

Then,

(12[ <6B,D - gD,B,k)) Vg,p = 0.

k=0
Proof. Define a family a = (ac)ccpy; (cj=|p| Of scalars in k by setting

1, fccB
<" o, ifcgB

Then, Proposition (c) yields

Vep= Y. Vup= Y, Vep= Y, acVep = Vb,
UCB; CCB; CCln);

u|=|D| ICl=ID| IC|=|D|

for each C C [n].
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where V, p is defined as in Theorem Hence, Corollary follows from
Theorem once we realize that the ép , y from Theorem is precisely the

OD,B k- O

Corollary shows that the element Vp p has a minimal polynomial that fac-
tors entirely into linear factors. Moreover, there are at most |D| + 2 factors, and one
of them is X or else there are at most |D| + 1 of them.

I Question 1.4.4. Can we simplify the formula for gD,B,k ?

1.5. A table of minimal polynomials

For any subsets A and B of [n], we let x4 p be the sum (in Z [S,]) of all permutations
w € Sy that satisfy w (A) NB = & (thatis, w (a) ¢ B for all a € A). Then, k4 p is
simply ﬁ[n]\ B, o- Thus, Corollary [1.4.3 shows that the element x4 p has a minimal
polynomial that factors into at most |A| + 2 factors. Note that these factors will
sometimes have multiplicities (e.g., the case of n = 6 and 4 = 3 and b = 2 and
c=1).

Let us collect a table of these minimal polynomials. We observe that the minimal
polynomial of kg 4 depends only on the three numbers a := |A|, b := |B| and
¢ := |ANB]| (since any two pairs (A, B) that agree in these three numbers can be
obtained from each other by the action of some permutation ¢ € S;, and therefore
the corresponding elements xp 4 are conjugate to each other in A). Hence, we can
rename K A as K; p c-

We also note that x,, . = 0if c >aorb > aora-+b > n. Hence, we only need
to consider the cases a,b € [0,n] and a+ b < n and c € [0, min {a,b}].

Moreover, g 4 is the antipode of x4 g (by Proposition (g)), and the antipode
preserves minimal polynomials. Thus, we only need to consider the case a < b.

This being said, here is a table of minpols (= minimal polynomials) of x,;’s
produced by SageMath:

Letn = 1.
For b = 0, the minpol is x — 1.

Letn =2.

For b = 0, the minpol is (x — 2)x.
Fora=1and b =1 and ¢ = 0, the minpol is x — 1.

Fora =1and b =1 and ¢ = 1, the minpol is (x —1)(x +1).

Letn = 3.

For b = 0, the minpol is (x — 6)x.

Fora =1and b =1 and ¢ = 0, the minpol is (x —4)(x — 1)x.
Fora =1and b =1 and ¢ = 1, the minpol is (x —4)x(x + 2).
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Fora =2and b =1 and ¢ = 0, the minpol is (x
Fora =2and b =1 and ¢ = 1, the minpol is (x

Letn = 4.
For b = 0, the minpol is (x — 24)x.

Fora =1and b =1 and ¢ = 0, the minpol is (x — 18)(x —
Fora =1and b =1 and ¢ = 1, the minpol is (x — 18)x(x + 6).
Fora =2and b =1 and ¢ = 0, the minpol is (x —12)(x —

—2)x.
—2)x(x+1).

2)x.

4)x.

Fora =2 and b =1 and c = 1, the minpol is (x — 12)x(x + 4).

Fora =3 and b =1 and ¢ = 1, the minpol is
For a =2 and b = 2 and ¢ = 0, the minpol is
Fora =2 and b = 2 and ¢ = 1, the minpol is

(
(
(
(
Fora =3 and b =1 and ¢ = 0, the minpol is (x
(x
(x
(x
For a =2 and b = 2 and ¢ = 2, the minpol is (x

Letn = 5.
For b = 0, the minpol is (x — 120)x.

Fora=1and b =1 and ¢ = 0, the minpol is (x — 96
Fora=1and b =1 and ¢ = 1, the minpol is (x — 96

—6)x.
—6)x(x+2).
X.

(x +2)x?

x(x +4).

\/\/V\_/

—4
—4
—4

(x = 6)x.
x(x +24).

Fora =2and b =1 and ¢ = 0, the minpol is (x — 72)(x — 12)x.
Fora =2and b =1 and ¢ = 1, the minpol is (x — 72)x(x + 18).
Fora =3 and b =1 and ¢ = 0, the minpol is (x —48)(x — 18)x.

Fora=3and b =1 and ¢ = 1, the minpol is (x — 48
x—24

x(x +12).

Fora =2 and b = 2 and ¢ = 1, the minpol is (x — 36)x(x + 4

)-

For a =2 and b = 2 and ¢ = 0, the minpol is (x — 36)(x — 16)(x — 4)x.
)-
)

Fora =2 and b =2 and ¢ = 2, the minpol is (x — 36)(x — 12)x(x + 24).
Fora =3 and b = 2 and ¢ = 0, the minpol is (x — 12

For a =3 and b = 2 and ¢ = 1, the minpol is (x — 12)(
For a =3 and b = 2 and ¢ = 2, the minpol is (x — 12)(

(
(
(
(
E
Fora =4 and b =1 and ¢ = 0, the minpol is (
(
(
(
(
(
(
(

)
)
)
)
)
8
Fora =4 and b =1 and ¢ = 1, the minpol is (x —24)x(x + 6
)
)
)
)x.
)
)

Letn = 6.
For b = 0, the minpol is (x — 720)x.

Fora =1and b =1 and ¢ = 0, the minpol is (x — 600)(
Fora=1and b =1 and ¢ = 1, the minpol is (x — 600)x
Fora =2 and b =1 and ¢ = 0, the minpol is (x —480)(

x —480)x(x 4 96).
Fora =3 and b = 1 and ¢ = 0, the minpol is (x — 360)(
Fora =3 and b =1 and ¢ = 1, the minpol is (x — 360)x
Fora =4 and b = 1 and ¢ = 0, the minpol is (x — 240)(

(
(
(
Fora =2 and b =1 and ¢ = 1, the minpol is (
(
(
(

X —
X —

—24)x.
(x +120).
4
(x +72).

)x.

4
—48)x.
6

—72)x.
9
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Fora =4 and b =1 and ¢ = 1, the minpol is (x — 240)x(x + 48).
Fora =5and b =1 and ¢ = 0, the minpol is (x — 120)x.

Fora =5and b =1 and ¢ = 1, the minpol is (x — 120)x(x + 24).

For a =2 and b = 2 and ¢ = 0, the minpol is (x —288)(x —72)(x — 8)x.
x(x+12)(x + 36).

For a =2 and b = 2 and ¢ = 2, the minpol is (x — 288)(x —48)x(x + 144)

For a = 3 and b = 2 and ¢ = 0, the minpol is (x — 144)(x — 72) (x — 24)x.

Fora =3 and b =2 and ¢ = 1, the minpol is (x — 144)(x + 16)x

( )

( )

v o)
Fora =2 and b = 2 and ¢ = 1, the minpol is (x — 288)

( )

STV
For a =3 and b = 2 and ¢ = 2, the minpol is (x — 144)(x — 24 x(x +72).

(

(

(

(

(

(

(

( )
( )
( )
( )

For a =4 and b = 2 and ¢ = 0, the minpol is (x — 48)
Fora =4 and b = 2 and ¢ = 1, the minpol is (x — 48
For a =4 and b = 2 and ¢ = 2, the minpol is (x — 48
For a =3 and b = 3 and ¢ = 0, the minpol is (x — 36

)
)(x —8)x(x +24).
)

For a =3 and b = 3 and ¢ = 1, the minpol is (x — 36)
)
)x

)(Cx—12) (x +12).

(

J(Cx—12) (x+4)(x+12).
(x —12)x(x +4)(x +12).
(x+36).

Fora =3 and b = 3 and ¢ = 2, the minpol is (x — 36
For a = 3 and b = 3 and ¢ = 3, the minpol is (x — 36

1.6. Aside: The abstract Nabla-algebra

We take a tangent and address a question that is suggested by Theorem[I.2.2](b) but
takes us out of the symmetric group algebra .A. Namely, let us see what happens if
we take the multiplication rule in Theorem (b) literally while forgetting what
the Vp 4 are.

Theorem 1.6.1. For any two subsets A and B of [n] satisfying | A| = |B|, introduce

n 2 2
a formal symbol Ap 4. Thus, we have introduced altogether } (Z) = ( :)
k=0
symbols Ap 4. Let D be the free k-module with basis (AB,A)A,BQ[H] with |A]=|B|

Define a multiplication on D by

- U]
ApcAp s = wpc (—1)‘U| IBAC] ( Ayy.
u;b BN C|

VCA;
uj=|v|

(Recall Definition which defines the wp ¢ here.) Then, D becomes a nonuni-
tal k-algebra.

Proof omitted due to excessive ugliness.

Question 1.6.2. The above proof idea is clearly in bad taste. There should be a
more conceptual proof that identifies D as some existing (nonunital) k-algebra

2
(what nonunital k-algebra has dimension (nn) over k ?) or at least with a
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| subquotient of a such.

Example 1.6.3. Let n = 1. Then, the k-module D in Theorem has basis
(u,v) withu = Ag gz and v = A (11} The multiplication on D defined ibidem
is given by

Ul = uv = vu = u, VY = 0.

Thus, the nonunital k-algebra D is isomorphic to the k-algebra k [x] / (x* — x),
and therefore has a unity (namely, v).

Example 1.6.4. Let n = 2. Then, the k-module D in Theorem has basis
(M,Z)H,Z)lz,vzl,vzz,ZU) with u = Ag’@ and ?Ji]' = A{i},{j} and w = A[Z],[Z]' The
multiplication on D defined ibidem is given by

uu = uw = wu = 2u, uvj; = v = U,
V3c0py = U — Vg, if b # ¢;
UdcUba = Uda ifb=c,
Z)i]'w = Vi1 + Vi, ZUZ)i]' = Ulj + 02]',
ww = 2w.

This nonunital k-algebra D has a unity if and only if 2 is invertible in k. This

Lo 1
umty 1S Z (011 + Uy — V10 — U271 + 2ZU)

6
Example 1.6.5. Let n = 3. Then, the k-module D has a basis consisting of ( 3) =

20 vectors of the form Ap 4 with A, B C [3] satisfying |A| = |B|. Its multiplication
turns it into a nonunital algebra. When 3! is invertible in k, this algebra has a
unity, namely

13 1 1 1 1
LM T LA T ) — 3y b Dupiik T 28
18 i=1 36 175] 6 i<j 12 i;éj;ék#i 6

Question 1.6.6. Does the k-algebra D in Theorem have a unity if n! is
invertible in k ? (I suspect that the answer is “yes”. This has been checked with
SageMath for all n < 5.)

| Question 1.6.7. What does the representation theory of D look like?
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Using SageMath, we computed some data for small n and for k = Q:
n=2 n=23 n=4 n=>5
dim D 6 20 70 252
dim Z (D) 3 4 5 6
dim ] (D) 3 5 39 84
1 0000
10 (1) (1) 8 (1) 01010
Cartan invs 0 2 001 01
0010
01 010 2 01020
0010 2

(where Z (D) and ] (D) denote the center and the Jacobson radical of D, respec-
tively, and where “Cartan invs” means the matrix of Cartan invariants). This shows
that the algebra D for n > 2 is far from semisimple. For example, for n = 2, it has
(over Q) a 3-dimensional Jacobson radical spanned by the vectors u — v1; — vy,
v1p — U1 and vy — vp. But D is not “too nilpotent” either; in particular, the

semisimple quotient of D for n = 3 is not commutative.

I Question 1.6.8. Does the center of D always have dimension n + 1 when n! is

invertible in k ?
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2. Row-to-row sums in the symmetric group algebra

2.1. Definitions

As we recall, n is a nonnegative integer and k a commutative ring. We work in the
group algebra A = k [S,,] of the symmetric group S,,.

2.1.1. Row-to-row sums and the Vg 5

A set decomposition of a set U shall mean a tuple (U, Uy, ..., Uy) of disjoint subsets
of U such that U UU, U ---U U = U. The subsets Uy, Uy, ..., U are called the
blocks of this set decomposition (U, Uy, ..., Uy). The number k of these blocks is
called the length of this set decomposition. The length of a set decomposition U is
called ¢ (U).

A set composition of a set U shall mean a set decomposition of U whose blocks
are all nonempty. Clearly, any set decomposition of U can be transformed into a
set composition of U by removing all empty blocks.

For instance, ({1,3},3,{2}) is a set decomposition of [3], but not a set compo-
sition (due to the presence of @). It has length 3. Removing the block & from it
yields the set composition ({1,3},{2}) of [3], whose length is 2.

Let SD (n) denote the set of all set decompositions of [n].

Let SC (n) denote the set of all set compositions of [n]. Clearly, SC (n) C SD (n).

If A= (A1,Ay, ..., Ar) and B = (By, By, ..., By) are two set decompositions of
[n] having the same length, then we define the element

VB,A = Z w of A. (11)
wWESy;
w(A;)=B; for all i
This will be called a row-to-row sum. It has been denoted (A — B) in Canfield’s and
Williamson’s work [CanWil89], and also is the g4 = 1 particular case of the “Murphy
element” x,; of the Hecke algebra studied in [Murphy92, §3] and [Murphy95| §4] (if
we encode A and B as row-standard tableaux, not necessarily of partition shape).
For instance, if n = 4 and A = ({3},{1,2},{4}) and B = ({1},{2,4},{3}),
then
VBa = ) w = oln (2413) + oln (4213),
WESy;
w({3})={1};
w({1,2})={24};
w({4})={3}
where oln (iyiy . . . iy ) means the permutation in S, with one-line notation (i1, iy, ..., ).
We observe some easy properties of row-to-row sums:

Proposition 2.1.1. Let A = (A1, Ay, ..., Ax) and B = (By, By, ..., Bi) be two set
decompositions of [n] having the same length. Then:

(@) We have Vg o = 0 unless each i € [k] satisfies |A;| = |B;|.
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(b) The element Vg o does not change if we permute the blocks of A and the
blocks of B using the same permutation. In other words, for any permuta-

tion o € S, we have Vg A = Vs as, Where Ao := (Ag(l), Ag(2)res Aa(k))
and Bo := (B(T(l)/ BU(Z)/ ey B(T(k)) .

(c) The element Vg o does not change if we remove empty blocks from A and
from B, provided that these blocks are in the same positions in both A and
B.

(d) The antipode S of A satisfies S (Vg a) = Vap.

Proof. (a) Assume that not every i € [k] satisfies |A;| = |B;|. Then, there exists
no permutation w € S, that satisfies (w (A;) = B; for all i) (since the injectivity of
such a permutation w would imply |w (A;)| = |A;| and thus |A;| = |w (A;)| = |Bi|

because of w (A;) = B;). Hence, the sum )3 w in (11) is empty and thus

WESy;
w(A;)=B; for all i

equals 0. Therefore, shows that Vg o = 0. This proves Proposition ().
(b) Let 0 € Sk. Then, yields

VA = Y. w and (12)
wESy;
w(A;)=B; for all i
vBU,AU = Z w. (13)
wESy;

w(AtT(z)):BU(l) for all i

But ¢ is a permutation of [k]; thus the condition “w (A;) = B; for all i” is equivalent

to “w (Ag(l-)> = B, for all i”. Hence, the right hand sides of and are
equal. Thus, so are the left hand sides. In other words, Vga = Vg a,. This

proves Proposition (b).

(c) Let A = (A1, Ay,...,Ar) and B = (By, By, ..., By). Assume that both A and
B have an empty block in the same position —i.e., there exists some r € [k] such that
A, = @and B, = @. Consider thisr. Let A’ := (A1, Ay, ..., Ar_1, Ari1, Ario, oo, Ag)
and B’ := (By,By,...,B,_1,B;41,Br12,...,Bi) be the set decompositions obtained
from A and B by removing the empty blocks A, and B,. We must show that
VA = Vp .

Essentially, this is obvious from the definition of Vg o: The empty blocks A, and
B, satisfy w (A,) = B, for any permutation w € S, (since w (@) = &). Hence, the
condition “w (A;) = B; for all i” in is tautologically satisfied for i = r. Thus,
we can replace “for all i” by “for all i # r” in without changing the sum. But
this gives us precisely Vg a/. Hence, Vg a = Vi a/. This proves Proposition 2.1.1]
().
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(d) Recall that S is a k-linear map sending each permutation w € S, to w™'.

Hence, applying S to the equality (1I), we obtain
S (VB,A) = Z w ! = Z w!

WESy,; WES,,;
w(A;)=B, for all i w1 (B;)=A,; for all i

(here, we have rewritten the condition “w (A;) = B;” in the form “w~! (B;) = A;”
(which is equivalent, since w is a permutation)). Thus,

S(Vpa) = ) w ! = Y. w

WESy; WESy;
w1 (B;)=A,; for all i w(B;)=A; for all i

( here, we have substituted w for w~! in the sum, )
1

since the map S, — S;, w — w™ " is a bijection
=Vagp (by the definition of V).
This proves Proposition (d). O

Moreover, these row-to-row sums Vg generalize the rectangular rook sums
V3,4 from Section

Proposition 2.1.2. Let A and B be two subsets of [1]. Define the two set decom-
positions A := (A, [n]\ A) and B := (B, [n] \ B) of [n]. Then, Vga = Vg 4.

Proof. By the definition of Vg A, we have

VBaA = Z w. (14)
wWESy;
w(A)=B;
w([n\A)=[n]\B
However, the condition “w ([n] \ A) = [n] \ B” under the sum here is redundant,

since it follows from “w (A) = B” when w is a permutation. Thus, we can remove
this condition. Hence, simplifies to

Vea= ), w=Vpga

WESy;
w(A)=B
(by the definition of Vp 4). This proves Proposition [2.1.2] O

Remark 2.1.3. The row-to-row sums can also be rewritten using colorings instead
of set (de)compositions. Namely, a coloring of [n] means a map f : [n] — C to
some set C. If C = [k] for some k € N, then such a coloring f can be regarded
as a set decomposition of [n] of length k, where the i-th block is f~! (i) for each
i € [k]. The image f (j) of an element j € [n] under a coloring f : [n] — C is
called the color of j (under f). Now, the row-to-row sum V, ¢ corresponding to
two colorings f and g of [n] is the sum of all permutations w € S, that satisfy
gow = f. (This is a “preservation of colors” condition.)
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Remark 2.1.4. Let u € S, be any permutation. Let A be the set com-
position ({1}, {2}, ..., {n}) of [n], and let B be the set composition
{u)}, {u2)}, ..., {u(n)}) of [n]. Then, Vga = u. Thus, the row-to-row
sums Vg a in general are not as special as their particular cases the rectangular
rook sums Vp 4. In particular, the minimal polynomials of general row-to-row
sums Vp A cannot be factored into linear factors over Z.

The symmetric group S, acts on the set SD (n) = {set decompositions of [n]}
(from the left) by the rule

ZU(Bl,Bz,...,Bk) = (W(Bl), W(Bz), ey ZU(Bk))
forallw € S, and all (By,By,...,Bx) € SD (n).

The subset SC (1) of SD (n) is preserved under this S,-action; thus S, acts on SC (n)
as well.
The action of S, on SD (n) we just defined allows us to rewrite the equality
as follows:
VBa:i= ), w (15)

WESy,;
wA=B

for any two set decompositions A,B € SD (n) satisfying ¢(A) = ¢(B). More
importantly, the row-to-row sums Vg 4 transform in a very simple way under this
action:

Proposition 2.1.5. Let u,v € S, be any permutations. Let A, B € SD (n) be any
two set decompositions satisfying ¢ (A) = ¢ (B). Then,

UVBAUV =V g, 14 (16)
Proof. Set k = ¢ (A) = ¢(B), and write the set decompositions A and B as A =

(Al, Az, .. .,Ak) and B = (Bl, Bz,. ey Bk). Then, uB = (u (Bl) , U (Bz) PR (Bk))
and v A = (071 (A1),07 1 (A2),...,v7 1 (Ay)). Hence, the definition of row-to-
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row sums yields

qu,v—lA = Z w
WESy;
w(vil(Ai))Iu(B,-) for all i
= Z B here, we have substituted uwv
B WES,: for w in the sum

(uwv) (vil(A,-)):u(Bi) for all i

since the condition

-k “(uwo) (01 (A7) = u(By)”
W(Ai)z%f%r all i is equivalent to “w (A;) = B;”
U Z wv = uUVpAD.

wWESy;
w(A;)=B; for all i

.

-~

=Vga

This proves Proposition 2.1.5 O

2.1.2. Antisymmetrizers and the V;

w

The sign of a permutation w € S, shall be denoted by (—1)".
For each subset U of [n], we define the element
V= Y. (-1)"w € A. (17)
wWESy;
w(i)=i for all i€ [n]\U
This is called the antisymmetrizer of U (aka the U-sign-integral in the language of
[Grinbe25) Definition 3.7.1]). Note that V; = 1if |U| < 1. Another way to rephrase
the definition of V; is
Vi= ), (-)we A, (18)
wEeSy
where Si; denotes the symmetric group on the set U (embedded into S, in the
default way: each permutation w € Sy is extended to a permutation of [n] by
letting it fix all elements of [n] \ U).
The antisymmetrizers V; interact nicely with the permutations v € S;:

Proposition 2.1.6. Let v € S, be a permutation. Let U be any subset of [1]. Then,

oV = V- (19)

Proof. The definition of sz(u) yields
oy = L (D (20)
w(i)=i for all i€ [n]\o(U)
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The permutation v € S, is a bijection from [n] to [n], and thus induces a group
isomorphism

Stn) = S

w — vwv‘l.

Of course, this isomorphism is just conjugation by v in the group S,; = S,. But
since it is induced by the bijection v : [n] — [n], we immediately see from functori-
ality that it sends the permutations w € S, satisfying “w (i) =i for alli € [n] \ U”
to the permutations w € S, satisfying “w (i) = i for all i € [n]\ v(U)”. Thus,
the latter permutations are the images of the former permutations under the map

w + vwo~!. Hence, we can substitute vwo~! for w in the sum on the right hand
side of (20). We thus obtain

-1
) (-1)w = Y. (=)™ vwo!
wWESy; wWESy; Y w
w(i)=i for all i€ [n]\o(U) w(i)=iforallie[n)\U = =(=1)
(since conjugation
preserves the sign
of a permutation)

= Y. (—1)" vwov?

wWESy;
w(i)=i for all i€ [n]\U
=0 Y. (-1)wo =0V oL
wESy;

w(i)=i for all ie[n]\U

:V&
(by the definition of V;)

In view of 1} this rewrites as V;(u) = vV&v‘l. In other words, Vv(u)v = UV&.
This proves Proposition 2.1.6] O

The following fact will also be useful:

Proposition 2.1.7. Let U and V be two subsets of [n] such that V. C U. Then,
ViAC VA

Proof. For any two distinct elements p,q € [n], let t,; be the transposition in S,
that swaps p with g. Then, a well-known formula ([Grinbe25, Lemma 3.11.6]) says
that every X C [n] and every x € X satisfy

V=V [1- Lt
yeX\{x}
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Hence, every X C [n] and every x € X satisfy

ye X

[ J/

cA
C Vi A (1)

Now, V' C U shows that the set V' can be obtained from U by removing some
elements (possibly none, if V = U). In other words, V.= U \ {uy,uy,..., Uy} for
some distinct elements 11, uy, ..., u,; € U. Using these elements, we have

VuA € Vi A (by @1))
S Vi (A (by (1))
S V(W i)\ fua))\ ) (by @1))

g .

S Vi@ h\ b\ )\ fu A (by @1))

— VA
(since (((U\{u}) \{u2})\---) \{um} = U\ {us,uz,...,um} = V). This proves
Proposition 2.1.7} 0

2.2. The two ideals

This all was easy. Let us now move towards deeper waters. Recall that the notation
“span” always means a k-linear span.

Definition 2.2.1. Let k € IN. We define two k-submodules Z; and Ji of A by
I :=span{Vga | A,B€SC(n) with ¢ (A) =/ (B) <k}
and

Ji = A-span{V[; | Uis asubsetof [n] having size k +1} - A.

Note that the set {V; | U is a subset of [n] having size k + 1} is empty when
k > n, since no subsets of [n] have size larger than n. The span of an empty set is
the zero submodule {0}.

Proposition 2.2.2. Let k € IN. Then:

(@) Both Zy and Jj are ideals of A. (“Ideal” always means “two-sided ideal”.)
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(b) We have
Ji = A-span{V; | Uis asubsetof [n] having size k +1}
=span {V[; | Uisasubsetof [n] havingsize k+1} - A.
(c) The antipode S satisfies S (Zy) = Zy and S (Jx) = Ji-
(d) We have

Iy =span{Vga | A,Be€SD(n) with¢(A)=/¢(B) <k}.

(e) We have
Jy = A-span{V; | Uis asubsetof [n] having size >k} - A
= A-span{V}; | Uisasubsetof [n] having size > k}
=span {V[; | Uisasubsetof [n] having size >k} - A.
(f) If X is any subset of [n] having size k + 1, then
Jk=A-Vy- A
(g) We have

Iy =span{Vga | A,BeSD(n) with¢(A)=/¢(B) =k}.

Proof. (a) Clearly, Jj is an ideal of A (since Ji has the form J; = AX A for some
k-submodule X C A). It remains to show that so is Zy.
But
Iy =span{Vga | A,Be€SC(n) with ¢ (A) =/¢(B) <k}.

Hence, Zj is a k-submodule of .A. Moreover, shows that for any two set compo-
sitions A, B € SC (n) with ¢ (A) = ¢ (B) < k and any two permutations u,v € S,
we have uVpav = Vg, 14 € Iy (since v 'A and uB are again two set compo-
sitions in SC (1) and satisfy ¢ (v"'A) = ¢(uB) = ¢(A) = ¢(B) < k). By linear-
ity, this shows that AZ;A C Zy (since A is spanned by the permutations w € S,
whereas 7 is spanned by the Vg a for A,B € SC (n) with £(A) = ¢(B) < k). In
other words, Zj is an ideal of A. Thus, the proof of part (a) is complete.
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(b) Since A = span S, we have
A-span{V[; | Uis asubset of [n] having size k + 1}
= span S, -span {V; | U is a subset of [n] having size k + 1}
= span {vV; | v € S, while U is a subset of [n] having size k+ 1}
= span {V;(u)v | v €Sy, while U is a subset of [n] having size k + 1}
(by Proposition [2.1.6])
=span {V,v | v € S,, while U is a subset of [n] having size k+ 1}

here, we have substituted U for v (U), since v € S,
permutes the subsets of [n| having size k + 1

and

span {V[; | Uis asubset of [n] having size k+1} - A
=span {V[; | Uis a subset of [n] having size k + 1} - span S,
=span{Vv | v €S,, while U is a subset of [n] having size k+ 1} .

The right hand sides of these two equalities are equal; hence, so are their left hand
sides. In other words,

A-span{V[; | Uis asubset of [n] having size k +1}
=span {V[; | Uis asubset of [n] having size k+ 1} - A.

Now, the definition of Jj yields

Ji = A-span{V[; | Uisasubsetof [n] having size k+1} - A

:.A~span{V& | Uisa su;sret of [n] having size k—l—l}
(by the preceding sentence)
=A-A-span{V[; | Uisasubsetof [n] having size k + 1}
=A
= A-span{V[; | Uisasubsetof [n] having size k + 1}
=span{V[; | Uisasubsetof [n] havingsize k+1} - A.

Thus, part (b) is proved.

(c) The equality S (Zy) = Zj follows from Proposition (d). It remains to
prove S (Jx) = Ji-

Let X, = span{V{; | U is a subset of [n] having size k +1}. Then, the defini-
tion of J; rewrites as J; = AXA. But we have S (V;) = V|; for each U C [n]
(see, e.g., [Grinbe25, Example 3.11.13 (¢)]). Since the map S is k-linear, we thus con-
clude that S (Xy) = Xj (since Xy = span {V; | U is a subset of [1] having size k+1}).
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Now, from J;, = AX A, we obtain

S() =5 (ANA) =S (AS@S (A (
—A =X, =A

since S is a k-algebra
anti-automorphism

= AX A = Jy.
This completes the proof of part (c).

(d) Any set composition of [n] is a set decomposition of [n]. In other words,
SC (n) € SD (n). Thus,

Ty Cspan{Vga | A,BeSD(n) with¢(A)=/¢(B) <k}.

It remains to prove the converse inclusion. To this purpose, we must show that
if A and B are set decompositions of [n] satisfying ¢ (A) = ¢(B) < k, then the
row-to-row sum Vg A belongs to Zj. So let us show this.

Let A and B be set decompositions of [n] satisfying ¢ (A) = ¢ (B) < k. We must
prove that the row-to-row sum Vg A belongs to Zy.

If any of the blocks of A is empty while the corresponding block of B is not, then
this is clear, since Proposition (a) yields Vpa = 0 € Zy. A similar argument
applies if any of the blocks of B is empty while the corresponding block of A is
not. In the remaining case, the empty blocks of A appear at the same positions
as the empty blocks of B. Removing all these empty blocks from both A and B,
we obtain two set compositions A’, B’ of [n] satisfying ¢ (A’) = ¢(B') < {(A) =
¢ (B) and Vga = Vp as (by Proposition (c)). But the definition of Z yields
Ve ar € Zi (since A/,B’ € SC(n) and ¢ (A") = £(B’) < ¢{(A) = {(B) < k). Thus,
VB,a = Vp ar € Zi. This completes the proof of part (d).

(e) The definition of J yields

Jr = A-span{V[; | Uisasubsetof [n] havingsize k+1} - A
C A-span{Vy | Uisasubsetof [n] having size >k}-A

(since any subset of size k + 1 has size > k). Let us now prove the converse inclu-
sion. Since Jj is an ideal of A4, it suffices to show that V; € J; whenever U is a
subset of [n] having size > k. So let U be a subset of [n] having size > k. Then, U
has size > k + 1. Hence, U has a subset V of size k 4 1. Consider this V. Proposi-
tionm yields V ;A C V,A. But the definition of Jj shows that V|, € Jj (since
V is a subset of [n] having size k + 1), and thus we have V|, A C 7 A C Ji (since
Ji is an ideal of A). Hence, V|, = V- 1 € V ;A C V,A C Ji. So we have
cA
shown that V; € J; whenever U is a subset of [n] having size > k. This proves

A-span{V; | Uis asubsetof [n] having size >k} A C J;
(since Jy is an ideal of .4). Combining this with the inclusion

Jx € A-span{V; | Uis asubsetof [n] having size >k} - A
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(which we have already proved), we obtain
Ji = A-span{Vy | Uisasubsetof [n] having size >k} - A.
Similarly, we can show

Jr = A-span{V[; | Uisasubsetof [n] having size > k}
and

Ji =span {V}; | Uis asubsetof [n] having size >k} -.A
(using Proposition (b) as a starting point). Thus, part (e) is proved.

(f) Let X be any subset of [n] having size k + 1. Then, from A = span$S,, we
obtain

A-Vy =span{vVy | veSn}zspan{V;(X)v | vESn}

(since Proposition 2.1.6] yields vV, = V;(X)v). Hence, again using A = span Sy,

we obtain

A Vx - A
=span §
_span{ U(X)v | UES,,} !

pan{V_ U|UGS}-spanSn

{Va
—span{ x)0W | veSnandwESn}

= span{Vv(X)u | veSy,and u € Sn}
(here, we have substituted u for vw)
=span {Vu | Uis asubsetof [n] having size k+1,and u € S, }

here, we have substituted U for v (X),
since each subset U of [n] having size k + 1
can be written as v (X) for some v € S,

=span {V[; | Uis a subset of [n] having size k + 1} - span S,
=A
=span{V[; | Uisasubsetof [n] havingsizek+1} - A
= Jk (by part (b)) .
This proves part (f).
(g) This will follow from part (d), once we have proved the equality

{VBa | A,BeSD(n) with/(A) =¢(B) <k}
={Vpa | A,Be€SD (n) with ¢ (A) =¢(B) =k}.

Darij Grinberg



Rook sums in the symmetric group algebra page 37

So let us prove this equality. The right hand side here is clearly a subset of the
left hand side. It remains to show the reverse inclusion (i.e., that the left hand side
is a subset of the right hand side). In other words, it remains to check that each
Vpa with A, B € SD (n) satisfying ¢ (A) = ¢ (B) < k can be rewritten in the form
Vp ar for some A’, B’ € SD (n) satisfying ¢ (A’) = ¢(B’) = k. But this is easy: Set
m = {(A) = {(B) < k, and write the set decompositions A and B in the form
A = (A1,Ay,...,An) and B = (By, By, ..., By); then set

A/ = Al/AZI---/AmI 8,9,...,9 and
N—— —/
k—m empty sets

B := | B,By,...,Bn, ©,9,...,2

k—m empty sets

(this is allowed since m < k). Then, A’ and B’ are set decompositions in SD (n)
satisfying ¢ (A') = ¢ (B’) = k and Vg o = Vpa (the latter follows from Proposi-
tion[2.1.1] (c), since A and B can be obtained from A’ and B’ by removing the k — m
empty blocks at the end). Thus, the proof of part (g) is complete. ]

The ideals J; have been studied several times. In particular, the ideal Jj is
the kernel of the map in [deCPro76, Theorem 4.2] (where our k and n have been
renamed as n and m). Also, the ideal [J, has recently appeared in quantum infor-
mation theory as the ideal Z,"*P in [BCEHK23| Lemma 3.4].

2.3. Annihilators and the bilinear form

If B is any subset of A, then we define the two subsets

LAnnB:={a€ A | ab=0forall b € B} and
RAnnB:={ac€ A | ba=0forallb € B}

of A. We call them the left annihilator and the right annihilator of B, respectively.
These annihilators LAnn B and RAnn B are always k-submodules of A, even when
B is not.

Moreover, we define the k-bilinear form

(,): Ax A=K,

1, ifu=uv
0, ifu#v
This is the standard nondegenerate symmetric bilinear form on A = k [S,| known
from representation theory. We shall refer to this form as the dot product.

which sends the pair (u,v) to { for any two permutations u,v € S,.
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If B is any subset of A, then we define the subset
Bt:={ac A | (ab)=0forallbc B}

of A. This is called the orthogonal complement of B in A. Note that it does not change
if we replace (a,b) by (b, a) in its definition, since the form (-, -) is symmetric. Note
also that B+ is always a k-submodule of A, even when B is not.

Definition 2.3.1. Let k € IN.

(@) Let w € S, be a permutation. We say that w avoids 12--- (k+ 1) if there
exists no (k + 1)-element subset U of [n] such that the restriction w | is
increasing (i.e., if there exist no k + 1 elements iy < ip < --- < ix;q of [n]
such that w (i1) < w (ip) < -+ < w (igs1))-

(b) We let Av, (k+1) denote the set of all permutations w € S, that avoid
12 (k+1).

This notion of “avoiding 12 - - - (k4 1)” is taken from the theory of pattern avoid-
ance (see, e.g., [Bona22, Chapters 4-5]).

2.4. The main theorem

We now arrive at one of our main results, which will be proved in Subsection
Theorem 2.4.1. Let k € IN. Then:

(@) We have Z; = jkl = LAnn J; = RAnn J;.

(b) We have J; = IkL = LAnnZ; = RAnnZ,.

(c) The k-module Zj is free of rank |Av,, (k+1)].

(d) The k-module J is free of rank |S, \ Av, (k+1)].

(e) The k-module A/Zj is free with basis (W) ,cg .\ av,(k+1)- (Here, @ denotes
the projection of w € A onto the quotient A/Zy.)

(f) The k-module A/ Jy is free with basis (W) ¢ ay, (+1)- (Here, @ denotes the
projection of w € A onto the quotient A/ Jy.)

(g) Assume that n! is invertible in k. Then, A = Z; & J; (internal direct sum)
as k-module. Moreover, Z; and Jj are nonunital subalgebras of A that
have unities and satisfy A = 7 x Ji as k-algebrasﬂ
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Furthermore, the ideals Z; and J of A have representation-theoretical meanings:

¢ They are the annihilators of certain tensor power representations of S,: see

Theorem and Theorem

e If n! is invertible in k (for example, if k is a field of characteristic 0), then they
are furthermore certain subproducts of the Artin-Wedderburn decomposition

of A: see Theorem

Once Theorem is proved, we will easily obtain the following corollary re-
garding the k = 2 case:

Corollary 2.4.2.

(a) We have
I, =span{Vpa | A,BC [n]}. (22)

(b) The k-module 7, is free of rank |Av, (3)|, which is the Catalan number C,,.

See Subsection 2.6/ for the proof of this corollary.

Remark 2.4.3. The results in this section have a significant overlap with existing
literature, particularly with prior work on the Murphy cellular bases and on
annihilators of Young permutation modules. The latter will be discussed in
Subsection Let us briefly outline the former, insofar as it provides alternative
proofs for parts of Theorem Note that this remark is included for context
only and will only be used in the proof of Theorem

The Murphy cellular bases first appeared in the paper [CanWil89] by Canfield
and Williamson; then, Murphy ([Murphy92] and [Murphy95]) generalized them
to the Hecke algebra. The easiest way to define them (in A = k [S,]) is as follows
(following the notations of [Grinbe25, §6.8]): An n-bitableau shall mean a triple
(A, U,V), where A is a partition of n and where U and V are two tableaux of
shape A with entries 1,2,...,n each. Given an n-bitableau (A, U, V), we define
two elements

vRow . — ) w and
WESy,;
wlU is row-equivalent to V
Vi o= ) (-1)"w of A.
WESy;

wl is column-equivalent to V

3The formulation “nonunital subalgebras that have unities” may sound paradoxical. But it is
literally true: A nonunital subalgebra of A can have a unity but still be nonunital as a subal-
gebra because its unity is not the unity of \A. This is precisely the situation that the nonunital
subalgebras Z; and Jj find themselves in.
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An n-bitableau (A, U, V) is said to be standard if both tableaux U and V are
standard. We let SBT (1) be the set of all standard n-bitableaux, while BT (n)
denotes the set of all n-bitableaux (standard or not). Then, both families

< EOL‘AO (A,U,V)€SBT (1) and (V;Ef’l) (AU, V)€SBT (n)

are bases of A (see [CanWil89, Theorems 3.12, 3.14 and 6.13] or [Grinbe25, The-
orem 6.8.14]). These are the so-called Murphy cellular bases.

These bases have been used to define ideals (left, right, two-sided) of A. In
particular, for any k € IN, we can define the four spans

TRk 7= span { VEY | (4,U,V) € SBT () and £(1) < k};

S

F-Col .= span {V‘—/Efﬂ (A,U,V) €SBT (n) and ¢ (A) > k} ;

std,len>k *

PR = span {VEY | (LU,V) € BT (n) and £() <k}

a

FaSai=span{Vy & | (AU, V) €BT (n) and £(A) > k}.

According to [Grinbe25, Theorem 6.8.47], these are actually just two spans: we
have

1
Row _ TRow _ — Col
F std,len<k — ¢ alllen<k — (’Fstd,len>k)

and
1
—Col _ 17—Col _ Row
‘Fstd,len>k - Fall,len>k - <‘Fstd,len§k> ’
Row _ TRow —Col _ — Col
and furthermore, both spans .7-"St dlen<k = ]:all,len <k and fst dlensk = Zalllensk ar€

two-sided ideals of A.

; ; Row —Col :
Now, we claim that these ideals F 3", -, and F_ 470 are precisely our Zj

and Jy, respectively. Indeed:

® Our ideal 7 is spanned by the row-to-row sums of the form Vg o, where
A = (A, Ay,...,A,) and B = (By,By,...,B,) are set compositions of
[n] satisfying ¢ (A) = ¢ (B) < k. By Proposition (a), we can restrict
ourselves to those pairs (A, B) of set compositions that satisfy |A;| = |B;]
for all i (since all other pairs produce row-to-row sums equal to 0). Such
pairs (A, B) can be encoded as pairs of “weird-shaped” tableaux A, B, both
of shape &, where &« = (|A1],|Az|, ..., |Ap|) is the list of sizes of the blocks
of A (or equivalently B), in the simplest possible way: Let

(i-th row of A) = (list of elements of A; (in increasing order)) and

(i-th row of B) = (list of elements of B; (in increasing order))

Darij Grinberg



Rook sums in the symmetric group algebra page 41

for each i € [p]. We can furthermore find a permutation o € S, such that
‘Ag(l)‘ > ‘Aa(z)‘ > e 2> ’Aa(p)‘. By permuting the blocks of A and of
B using this permutation o € S, (so that Vg a stays unchanged), we can
furthermore ensure that « is a partition (of length ¢ () = p < k). Then,

(a, A, B) is an n-bitableau (although usually not a standard one), and we
have Vp A = VROW

Hence, each nonzero row-to-row sum Vg o with A,B € SC (n) satisfying
¢ (A) = ¢ (B) < k can be rewritten as V%?X’ for some n-bitableau (A, A, B) €
BT (n) with ¢ (A) < k. Conversely, any V%f’)“’ can be rewritten as VA by
reversing the above construction (let A be the set composition of [n] whose

i-th block is the set of all entries of the i-th row of A, and likewise construct
B from B). Thus,

{Vea | A,BeSC(n) with £(A) =¢(B) <k} \ {0}
= {VE% | (A A,B) € BT (n) with £ (1) <k} \ {0}
Therefore,
=span{Vpa | A,B € SC(n) with¢(A) =/¢(B) <k}
= span {VROW (A, A,B) € BT (n) with ¢ (1) < k}
= span {VROW (AU, V) eBT (n) and £ (A) < k}

Row Row
= F, alllen<k — = F, std,len<k- (23)

* Define a k-submodule Uy of A by
Ui :=span {Vy | X isasubset of [n] withsize |X| > k}.
Then, [Grinbe25, Proposition 6.8.53] says that

F Lol = AU = U A = AU A.

stdlen>k —

But Proposition (e) yields
Jy = A-span{V; | Uisasubsetof [n] having size > k}-A

:{V;( | Xisa subsetT)f [n] with size |X|>k}
= A-span{Vy | Xisasubsetof [n] withsize |X| >k} A

= AU A.
Comparing these two equalities, we find
— Col
Tk = ‘Fstd l(e)n>k (24)
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With the equalities and in hand, we can easily derive some parts of
Theorem from known properties of the Murphy cellular bases. In particular,
shows that

S

T = FROY, o = span {V‘lﬁ"l‘}’ (A,U,V) € SBT (n) and £ (A) < k}}

thus, Zy is spanned by the family (V{{,OLV}’ , which is a

) (AU, V)eSBT(n) and £(A)<k
family of th hy cellul i Row f A H
subfamily of the Murphy cellular basis (vv’u>(/\,U,V)GSBT(n) of A ence,
7, is a direct addend of A as a k-module, and both Z;, and A/Z;

are free k-modules, with respective bases (VI‘}O&“ ) and
=/ (AU, V)€ESBT (1) and £(A)<k

Likewise, we can get analogous claims about

< Row) .
VAU J (AU, V)€SBT(n) and £(A)>k
Je and A/ Jy from (24). Using and (24), we can furthermore rewrite the

L
equality FROW _ = <]-" ool ) (which is part of [Grinbe25, Theorem 6.8.47])

std,len<k — std,len>k
as I = jkL, and similarly we obtain J; = IkL.
However, not all of Theorem follows this easily from this approach. Any-
way, we shall now take a more elementary point of view.

2.5. Lemmas for the proof of the main theorem

First, however, we prepare for the proof of Theorem We start with a litany
of lemmas. Our first lemma is a collection of basic properties of the bilinear form

<.’.>;

Lemma 2.5.1.

(@) Let coeff; : A — k be the map that sends each element a of A = k|[S,]
to the coefficient of the identity permutation id € S, in a. In other words,
coeff; : A — k is the k-linear map that sends the permutation id € S, to 1
while sending any non-identity permutation w € S, to 0.

Then, the bilinear form (-, ) can be expressed as follows: For any a,b € A,

we have
(a,b) = coeff; (S (a)b) (25)
= coeff; (bS (a)) (26)
= coeff; (S (b) a) (27)
= coeff; (aS (D)) . (28)

(b) The bilinear form (-, -) is S-invariant: That is, for all a,b € A, we have

(a,b) = (S(a),S (b)) (29)
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(c) Let B be any subset of A. Then, (S (B))" =S (B*).

Proof. (a) This is [Grinbe25, Proposition 6.8.17].

(b) Let a,b € A. Then, S (S (a)) = a (since So S = id). But (applied to S (a)
and S (b) instead of a and b) yields

~—
=a

(S(a),S (b)) = coeff; (ﬁs (a))S (b)) = coeff (aS (b)) = (a, b)

(by (28)). In other words, (a,b) = (S (a),S (b)). This proves and thus Lemma
2.5.1] (b).

(c) By the definition of (S (B))™*, we have

(S(B) ={acA| (ab)=0forallbeS(B)}
={aec A | (a,c)=0forallce S(B)}
={aeA | (aS(b))=0forallbe B} (30)

s(Bi):{S(a) | aeBi}
S(a) | a € Asatisfying (a,b) =0forallb € B
ymg

(since Bt={acA| (a,b)=0forallbe B})
= {S(a) | a € Asatistying (S(a),S (b)) =0forallb € B}

(since yields (a,b) = (S (a),S ()))
= {a | a € Asatistying (a,S (b)) =0forallb € B}

(here, we have substituted a for S (a) in our set, since S : A — A is a bijection). In
other words,

S(BY) ={acA| (a8(b)=0forallbe B}.

Comparing this with (30), we obtain (S (B))* = $ (B1). This proves Lemma [2.5.1
(). [

The next lemma connects orthogonal spaces with left/right annihilators:
Lemma 2.5.2. Let B be a left ideal of A. Then:

(a) We have B+ = LAnn (S (B)).

(b) If S (B) = B, then B+ = LAnn B = RAnn B.
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Proof. (a) Define the k-linear map coeff; : A — k as in Lemma (a). It is easy
to see that each 4 € A and each w € S, satisfy the equality

coeff; (aw%) = (the coefficient of w in a) (31)

(indeed, if we writea as ), a,u with a;, € k, then both sides of this equality equal
uesSy,

Nyp)-
Let a € LAnn (S (B)). Then, aS (b) = 0 for all b € B. Hence, yields (a,b) =

coeff; (aS (b)) = coeff;0 = 0 for all b € B. In other words, a € BL. Thus, we
——
=0
have shown that LAnn (S (B)) C B-.
Conversely, let ¢ € B+. Then, (c,b) =0forall b € B. Now, let b € BB be arbitrary.
Then, for every w € S,, we have wb € B (since B is a left ideal of A) and therefore
(c,wb) = 0 (since c € B*), so that

0 = (c,wb) = coeff; (cS (wb)) (by (28))
= coeff; <cS (b) w—l) since S (wb) = S (b) S (w) = S (b) w™!
D
—w-1
= (the coefficient of w in ¢S (b)) (by (1), applied to a = ¢S (b)) .

Since this holds for each w € S,;, we thus have shown that all coefficients of ¢S (b)
equal 0. In other words, ¢S (b) = 0. Since this holds for each b € B, we conclude
that ¢ € LAnn (S (B)). Thus, we have shown that B+ C LAnn (S (B)). Combining
this with LAnn (S (B)) C B+, we obtain B+ = LAnn (S (B)). Thus, Lemma ﬂ
(a) is proved.

(b) Assume that S (B) = B. Then, Lemma [2.5.2((a) yields B+ = LAnn( (
LAnn B (since S (B) = B). Furthermore, Lemma[2.5.1|(c) yields (S (B))* = S

In view of S (B) = B, we can rewrite this as B+ = S (B1). However, S is
algebra anti-automorphism. Thus, RAnn (S (B)) = S (LAnn B). In view of S (B)

B))
Bt

I Wv I

B, we can rewrite this as RAnnB = S (LAnn B) = S (B*) = B*. Thus, B+ =
—BL

RAnn B. Combined with B+ = LAnn B, this completes the proof of Lemma

(b). O

Lemma 2.5.3. Let M be a free k-module with a basis (m;);.;. Let | and K be two
disjoint subsets of I such that JUK = . Let N be a k-submodule of M such
that the quotient module M /N has a basis (M;);c I (Here, as usual, m denotes
the projection of any vector m € M onto the quotient M /N.)

Then:
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(@) The k-module N is free of rank |K|.

(b) There exists a k-linear projection 7 : M — N (that is, a k-linear map
7 : M — N such that 7t |y = id).

Proof. For each k € K, the vector 71y € M /N can be written as a k-linear combi-
nation of the family (7;),; (since this family is a basis of M /N). In other words,
there exist coefficients ¢y ; for all k € K'and j € | such that each k € K satisfies

Mg = Y C ;. (32)
jeJ

Consider these ck,j- Now, let us set

O ‘= My — ch,jm]' (33)
i€l

for each k € K. This element v; belongs to A (since 7y = my — ) Ckjmj = Mg —
j€l

]
seen to be k-linearly independentﬁ Moreover, it spans the k-module A (this, too,
is not hard to seeﬂ). Thus, the family (vg),.x is a basis of . Therefore, N is free
of rank |K|. This proves Lemma (a).

]ck,jﬁj = 0 by (32)). Thus, (vk),cx is a family of vectors in AV. This family is easily
S

4Proof. Let (Ax)iek € kK be a family of scalars such that ) Azvx = 0. We must show that all A
keK
are 0.

We have

0= Z Akvk = Z )\k (mk - ch,]-mj) (by )

kek kekK j€J
=Y Mmg— ) Ak ) cim;

keK keK  jej

kekK je] \kekK

Note that there is no overlap between the m;’s in the first sum here and the m;’s in the second

sum, since the sets | and K are disjoint. Since the family (m;),.; is k-linearly independent (being

a basis of M), we thus conclude from 1i that all the coefficients Ay and ) Acy ; are 0. Hence,
kek

in particular, all Ay are 0. Qed.
>Proof. Let w € N'. We must show that w € span {v; | k € K}.
First, we expand w € N' € M in the basis (m;);.; of M as follows:

w= Zwimi with w; € k.
icl
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(b) Recall that v, € N for each k € K. Let r : M — N be the k-linear map that
sends each basis element m; of M to

05, ifi € K;
0, ifie].

This is well-defined (since (m;),.; is a basis of M, and since each i € I belongs to
exactly one of the sets K and ]). It is easy to see that this map 7t sends v to vy
for each k € K (because applying 7 to the right hand side of kills all m; with
j € ] but sends m to vg). Thus, by linearity, we obtain 77 |y = id (since (vg ), is
a basis of \V). Thus, 7 is a projection. This proves Lemma (b). O

Since the set I is the union of its disjoint subsets | and K, we can break this sum up as follows:

w=Y wmi+ ) wim; =Y wimj+ Y wg J,

ie ieK je kek
] IS =Y comitoy
j€J
(by B3))
= ijmj + Z Wy (Z Ck,j1M; + Uk> = ijm]' + Z Z WyC, j1M; + Z Wi Uk
jeJ keK j€J jeJ je] kekK keK

=Y ¥ wgegimj+ Y, wvg
j€] kek keK

=) (w]'+ > wkck,]-> m;
j€l kek

=) (wi +3 wk%‘) mj+ ) wiog. (35)

jej kekK kek

Projecting this onto M /N, we obtain

w = E (w] + Z ZUka,]'> mj + Z Wy Uk

j€J] keK keK

kekK kekK kekK

=) | wi+ Y wiek |+ Y we T =) | wit ) wiek | )
il -~ g
(since v EN)

Hence,
Z(w]+2wkck,]>n1]:w:o (sincewEN).
jeJ kek

Since the family (7;),; is k-linearly independent (being a basis of N), we thus conclude that

all the coefficients w; + Y- wycy ; here are 0. Thus, becomes
keK

w = Z <w]+ Z wkck,]) m; + Z Wik = Z Wik € span{vk | ke K},

jeJ kek kek kek

=0

ged.

Darij Grinberg



Rook sums in the symmetric group algebra page 47

I Lemma 2.54. Let k € IN. Then, Z; J, = JiZr = 0.
Proof. Let us first show that Z;J; = 0. Indeed, we have
Iy =span{Vga | A,BeSC(n) with¢(A)=1/¢(B) <k}

and
Jr =span {V; | Uis asubsetof [n] having size k+1} - A

(by Proposition (b)). Thus, in order to prove that Z; J; = 0, it suffices to show
that Vg A V; = 0 for all set compositions A, B € SC (n) satisfying £ (A) = £ (B) <k
and all subsets U of [n] having size k + 1. So let us show this. We fix two set
compositions A, B € SC (n) satisfying ¢ (A) = ¢(B) < k and a subset U of [n]
having size k + 1. We must show that Vg AV ; = 0.

We have ¢/ (A) = ¢ (B) <k < k+1 = |U]| (since U has size k + 1). In other words,
A has fewer blocks than U has elements. Hence, by the pigeonhole principle,
there exist two distinct elements u and v of U that belong to the same block of A.
Pick such u and v. Let T € Sy be the transposition that swaps u and v. Then,
Vi = (1—=1)q for some q € k[Sy] (since () = {1,7} is a subgroup of the group
Sy and since the permutation T is oddﬁ). Consider this 4. But (applied to
u =id and v = 7) yields

VBAT = Vg .-1o = VBA

(since T7'A = A (because u and v belong to the same block of A, and thus the
transposition T preserves each block of A)). Hence,

VBaA VL_I = Vpa (1 — ’L') g =0.
N ————
=(1-1)q :VB,AifovB,AT

(since V;AT:VB,A)

This completes our proof of Z;J; = 0.
It remains to prove that J;Zy = 0. This can be done similarly, but can also be
derived from Z; J; = 0 easily: Since S is an algebra anti-automorphism, we have

S (ijk) = S (jk) S (Ik) = JiZLx.

——r ——
=T =T
(by Proposition (0)) (by Proposition ()

Thus, JiZy = S (L1 Jx) = 0 (since Z;J;, = 0). The proof of Lemma is thus
complete. O

®In more details: We have V; = (1—1) V§{*", where V§}*" = Y w. This follows from
VES;
e
[Grinbe25, Proposition 3.7.4 (d)], applied to X = U and i = u and j = v (our 7 is thus the t; ; of
[Grinbe25| Proposition 3.7.4 (d)]).
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The following purely combinatorial lemma is a variant of the Erdos—Szekeres
theorem:

Lemma 2.5.5. Let k € IN. Let v € Av,, (k+ 1). Then, there exists a set decompo-
sition A = (A1, Ay, ..., Ay) of [n] such that all restrictions v |4, v |4,, ..., © |4,
are decreasing.

Proof. Let v be the sequence (v (1),v(2),...,v(n)). Then, v has no increasing
subsequence of length k + 1 (because v € Av, (k+1)). Thus, v has no increas-
ing subsequence of length > k. Hence, the length of any nonempty increasing
subsequence of v must be some i € [k].

For each i € [k], we define a set

Aj:={j € [n] | the longest increasing subsequence of v
ending with v (j) has length i} .

These k sets A1, Ay, ..., Ay are clearly disjoint, and their union is [n] (since the
length of any nonempty increasing subsequence of v must be some i € [k]). In
other words, A := (Aj, Ay, ..., Ax) is a set decomposition of [n]. It remains to
show that all restrictions v |4,, v [4,, ..., ¥ |4, are decreasing.

To do this, we assume the contrary. Thus, there exists some i € [k] such that
v |4, is not decreasing. Consider this i. Then, there exist two elements p < g
of A; such that v(p) < v(g). Consider these p and 4. The longest increasing
subsequence of v ending with v (g) has length i (since ¢ € A;). Now, consider the
longest increasing subsequence of v ending with v (p). This subsequence, too, has
length 7 (since p € A;), and thus can be written as (v (p1) <v(p2) <--- <v(p;))
with p; = p (since it ends with v (p)). By appending v (g) to it, we obtain an
increasing subsequence (v (p1) < v (p2) <--- <v(p;) <v(q)) of v (since p; = p
and thus v (p;) = v(p) < v(q)) that ends with v (g) and has length i + 1. But
this contradicts the fact that the longest increasing subsequence of v ending with
v (q) has length i. This contradiction shows that our assumption was false. Thus,
all restrictions v |4,, v |a,, ..., U |4, are decreasing. This completes the proof of

Lemma O]

In the following few lemmas, we will use the lexicographic order on S,,. This is
a total order on S, defined by setting

(u < v) <= (the smallesti € [n] satisfying u (i) # v (i)
satisfies u (i) < v (i)) for all u,v € Sy,.

Lemma 2.5.6. Let k € IN. Let A = (A, Ay, ..., Ax) be a set decomposition of
[n]. Let v € S, be a permutation such that all restrictions v |4,, v |a,, --., © |4,
are decreasing. Let w € S, be a further permutation such that all i € [k] satisfy
w (A;) = v (A;). Then, w < v in lexicographic order.
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Proof. Intuitively, this is clear: The condition “all i € [k] satisfy w (A;) = v (4;)”
shows that w can be obtained from v by permuting the values of v on A;, permuting
the values of v on A, and so on. But any such permutation (unless it is the identity)
decreases v in lexicographic order (because the restrictions v |4,, v |4,, ..., © |4,
are decreasing, and thus any nontrivial permutation “puts elements in a more
natural order”). Hence, w < v.

Here is a rigorous proof: If w = v, then the claim is obvious. So we WLOG assume that

w # v. Then, there exists some p € [n] such that w (p) # v (p). Consider the smallest such
p. Then,

w(r) =v(r) for each r < p. (36)

Since A is a set decomposition of [1], there exists some i € [k] such that p € A;. Consider
this 1.

We have p € A;, thus w (p) € w (A;) = v (A;) (by assumption). In other words, w (p) =
v (r) for some r € A;. Consider this r.

If we had r < p, then would yield w (r) = v (r) = w (p), which would yield r = p
(since w is injective), which would contradict » < p. Hence, r < p is impossible. Thus,
r>p.

Moreover, w (p) # v (p) and thus v (p) # w (p) = v(r), so that p # r. Combining this
with r > p, we obtain r > p. Since the restriction v |, is decreasing (by assumption), this
entails v (r) < v (p) (since r and p belong to A;). Thus, w (p) = v (r) < v (p).

So we have shown that the smallest p € [n] that satisfies w (p) # v (p) must satisfy
w(p) < v(p). In other words, w < v in lexicographic order. Hence, w < v follows, and

Lemma is proved. O

Lemma 2.5.7. Let k € IN. Then, the quotient k-module A/Zj is spanned by the
famlly (w)wesn\Avn (k+1)"

Proof. Clearly, A/Zj is spanned by the u for u € S,,. Hence, it suffices to prove that

U € span ((w)wesn\Avn(kJrl)) for each u € S,,. (37)

To prove this, we proceed by induction on u in lexicographic order. Thus, we fix
a permutation v € S;;, and we assume (as the induction hypothesis) that holds
for every u < v in lexicographic order. We must now prove for u =v.

If v € Sy \ Avy, (k+1), then this is trivial. Thus, we WLOG assume that v ¢
Sn \ Avy, (k+1). Hence, v € Av, (k + 1). Therefore, by Lemma 2.5.5] there exists a
set decomposition A = (Ay, Ay, ..., Ax) of [n] such that all restrictions v [4,, v |4,
, e, 0 4, are decreasing. Consider this set decomposition A = (Ay, Ay, ..., Ag).
Define a further set decomposition B = (By, By, ..., By) of [n] by B = vA (using the
action of S, on SD (n)), that is, by

B; := v (A)) for each i € [k].
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Thus, v € S, is a permutation satisfying v (A;) = B; for all i. Hence, the row-to-row
sum
VB,A = Z w
WESy;
w(A;)=B; for all i

contains the permutation v as one of its addends. All its remaining addends are
permutations w that satisfy w < v in lexicographic order (by Lemma [2.5.6)). Thus,
all the addends of Vg o except for v are lexicographically smaller than v. Hence,

VB A = v+ (some permutations w < v).
Therefore,
v = Vg A — (some permutations w < v). (38)

But the set decompositions A, B € SD (n) satisfy ¢ (A) = ¢ (B) = k. Hence, Propo-
sition (d) yields Vg o € Zy. Thus, projecting the equality onto the quotient
A/ T, we obtain

9= Vpa — (some permutations w < v)
A
=0
(since Vg a€Ty)

= — (some permutations w < v) € span ((w)zuesn\Avn(kJrl)) .

espan( (W) e, \Avy (k+1) )
(by our induction hypothesis)

In other words, holds for u = v. This completes the induction. Thus, Lemma
is proved. O

Lemma 2.5.8. Let v € S, be a permutation. Let U be a subset of [n] such that
the restriction v | is increasing. Let w € S, be a permutation. Assume that w
agrees with v on all elements outside of U (that is, we have w (i) = v (i) for each
i € [n] \ U). Then, w > v in lexicographic order.

Proof. Essentially, this is because w can be obtained from v by permuting the val-
ues of v on U (since w agrees with v on all elements outside of U), and any such
permutation increases v in lexicographic order (because the restriction v | is in-
creasing).

Here is a rigorous proof: If w = v, then the claim is obvious. So we WLOG assume that

w # v. Then, there exists some p € [n] such that w (p) # v (p). Consider the smallest such
p. Then,

w(r)=o(r) for each r < p. (39)

’In more detail: We must show that any permutation w € S, that satisfies (w (A;) = B; for all i)
and is distinct from v must satisfy w < v in lexicographic order. So let w be such a permuta-
tion. Then, w (A;) = B; = v(A;) for each i € [k]. Hence, Lemma [2.5.6 shows that w < v is
lexicographic order. Since w is distinct from v, we thus obtain w < v.
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From w (p) # v (p), we obtain p ¢ [n] \ U (since w (i) = v (i) for each i € [n] \ U). Thus,
p e u.

But the permutations w and v agree on all elements outside of U. Hence, in partic-
ular, w([n]\U) = v ([n]\U). However, w and v are permutations of [n], so we have

w([n]\U) =[n]\w(U)and v ([n] \ U) = [n] \ v (U), and therefore
(] \w (U) = w([n]\U) = o ([n]\U) = [n] \ v (U).

Since w (U) and v (U) are subsets of [n], we can take complements in this equality, and
conclude that w (U) = v (U).

From p € U, we obtain w (p) € w(U) = v (U). In other words, w (p) = v (r) for some
r € U. Consider this r. If we had r < p, then would yield w (r) = v (r) = w (p), which
would entail r = p (since w is injective), and this would contradict » < p. Thus we cannot
have r < p. Hence, r > p. But we also have w (p) # v (p), hence v (p) # w (p) = v (r)
and thus p # r. Combined with r > p, this shows that » > p. Since the restriction
v |y is increasing, we thus conclude that v (r) > v (p) (since r and p belong to U). Thus,
w(p) =o(r) >0 (p).

So we have shown that the smallest p € [n] that satisfies w (p) # v (p) must satisfy
w(p) > v(p). In other words, w > v in lexicographic order. Hence, w > v follows, and

Lemma is proved. O

Lemma 2.5.9. Let k € IN. Then, the quotient k-module A/ J; is spanned by the

Proof. Clearly, A/ Jy is spanned by the u for u € S,. Hence, it suffices to prove that
U € span <(w)w€Avn(k+1)> for each u € S,,. (40)

To prove this, we proceed by induction on u in reverse lexicographic order. Thus,
we fix a permutation v € S;;, and we assume (as the induction hypothesis) that
holds for every u > v in lexicographic order. We must now prove for u = v.

If v € Av,, (k + 1), then this is trivial. Thus, we WLOG assume thatv ¢ Av,, (k+1).
Hence, v € S, \ Av,, (k+1). Therefore, there exists a (k + 1)-element subset U of
[n] such that the restriction v | is increasing. Consider this U. Thus, the sum

oV = Y. +w
wEeS,;, agrees with v on
all elements outside of U
contains the permutation v as one of its addends. All its remaining addends have
the form +w where the permutation w € S, satisfies w > v in lexicographic order
(because if w € S, agrees with v on all elements outside of U but is distinct from

v, then Lemma yields w > v and therefore w > v). Hence,
vV = v £ (some permutations w > v).

Therefore,
v = vV, £ (some permutations w > v) . (41)
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But the definition of Jj yields vV ; € Ji. Thus, projecting the equality onto
the quotient A/ Jy, we obtain

v= oV, £ (some permutations w > v)

=0
(since vV ;€J%)

= — (some permutations w > v) € span <(w)w€Avn(k+1)> .

espan( (w) weAvy (k+1) )
(by our induction hypothesis)

In other words, holds for u = v. This completes the induction. Thus, Lemma
2.5.9]is proved. L

Lemma 2.5.10. Let k € IN. Let (ay)
satisfying

weAvy(ki1) € KA (k+1) be a family of scalars

Y agw e T
weAvy, (k+1)

Then, ay, =0 for all w € Av,, (k+1).

Proof. Assume the contrary. Thus, there exist some w € Av, (k+ 1) such that
ay 7 0. Let v be the lexicographically smallest such w. Thus, &, # 0, but

ay =0 for every w € Av,, (k+1) satisfying w < v. (42)

As in the proof of Lemma we can construct set decompositions A, B €
SD (n) such that £ (A) = ¢(B) =k and Vg s € Zy and

VB A = v+ (some permutations w < v) (43)

hold. Consider these A and B. The k-bilinear form (-, -) has the property that for
every w € S, and every a € A, the coefficient of w in a is (w, a). Hence, the
equality (43) shows that

<Z), VB,A> =1 (44)

and
(w, Vpa) =0 for each permutation w > v. (45)

From Yy KW € IkL and Vg a € Zi, we conclude that
weAv, (k+1)

< Z Ky, VB,A> =0.

we AV, (k+1)
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Thus,
0= < Y, W, VB,A>
weAvy, (k+1)
= ) aw (W, Vpa)
weAvy (k+1) =0ifw<v  =0if w>v
by @) by @)
=0 i?rw;év
(since w#v entails w<v or w>v)
=y (v, VBA) =y #0,
N——
=1
(by €4
which is absurd. This completes the proof of Lemma [2.5.10 O

Lemma 2.5.11. Let k € N. Let (aw)yes,\ avy(k+1) € KkS\AVn(k+1) pe a family of
scalars satisfying

2 NypyW € JkL.

weSy\Avy (k+1)
Then, a, =0 forallw € S, \ Avy, (k+1).

Proof. Assume the contrary. Thus, there exist some w € S, \ Av,, (k+ 1) such that
ay # 0. Let v be the lexicographically largest such w. Thus, a, # 0, but

ay =0 for every w € S, \ Av,, (k+ 1) satisfying w > v. (46)

As in the proof of Lemma we can construct a (k 4 1)-element subset U of
[n] such that vV, € Ji and

vV, = v £ (some permutations w > v) . (47)

Consider this U. The k-bilinear form (-, -) has the property that for every w € S,
and every a € A, the coefficient of w in a is (w, a). Hence, the equality shows
that

(v, 0Vy) =1 (48)
and
(w, vV;) =0 for each permutation w < v. (49)
From Yy NypyW € jkL and vV ; € Ji, we conclude that
weS, \Avy, (k+1)
< N, Z)V&> =0.
weS, \Avy, (k+1)
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Thus,
0= < ) AW, UV&>
weS, \Avy, (k+1)
= o w, vV,
B T AT
e =0ifw>v  —0if w<o
by @) by @)
=0 i;rw;év
(since w#v entails w<v or w>v)
=, (v, VV ;) = ay # 0,
1
(by @)

which is absurd. This completes the proof of Lemma [2.5.11 O

Lemma 2.5.12. Let k € IN. Then, the k-module A/Z; is free with basis
(w)ZUGSn\AVn(k-Fl)'

Proof. The family (@)cs,\ av, (k+1) SPans this k-module A/Z, as we know from
Lemma It remains to prove that it is k-linearly independent.
Let (0w)yes,\av, (k1) € K5\An(k+1) be a family of scalars satisfying

Y. ayw = 0. (50)
weSy\Avy, (k+1)

We thus need to show that a,, = 0 for all w € S, \ Avy, (k+1).

However, (50) means that Y. apw € Iy. But Lemma2.5.4 yields 7 J; =
weSy\Avy (k+1)

0. Thus, Z; € LAnn J;. However, Proposition (o) yields S (Jx) = Ji. Further-
more, Jy is an ideal of A (by Proposition (a)), hence a left ideal of A. Thus,
Lemma (b) (applied to B = J;) yields J,- = LAnn (J;) = RAnn (Ji). Thus,

Y apw € Ty CLANN J; = Ji-.
weS, \Avy, (k+1)

Lemma [2.5.11| thus yields that a;, = 0 for all w € S, \ Av,, (k+1). This completes
the proof of Lemma [2.5.12 ]

Lemma 2.5.13. Let k € IN. Then, the k-module A/J; is free with basis
(w)weAvn(k—i-l)'

Proof. Analogous to the proof of Lemma 2.5.12) (Of course, use Lemma and
Lemma [2.5.10| instead of Lemma and Lemma 2.5.11| now.) H
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Lemma 2.5.14. Let k € IN. Then,

= ij‘ = LAnn J;, = RAnn J,.

Proof. Proposition (c) yields S(J;) = Ji. Furthermore, J; is an ideal of

A (by Proposmon (@)). Thus, Lemma [2.5.2) (b) (applied to B = J) yields
jk = LAnn J = RAnn Jx- Thus, it remains to prove that 7, = jk .

Lemma - yields Z; Jx = 0. Thus, Z; € LAnn J; = jk . Thus, we only need
to show that jkL C I.

Let a € J-. We must prove that a € ;.

Lemma [2.5.7 shows that the quotient module A/Z; is spanned by the family
(W) wes,\Ava(k11)- Hence, the projection @ € A/Zy can be written as a k-linear
combination of this family. In other words, we can write @ as

a= Z Ky (2]
weSy\Avy (k+1)

k+1)

for some family (ww)yes,\ av, (k1) € KSn\AVa( of scalars. Consider this family.

We can rewrite (51)) as

a— Y. ayw € T € Tt
weSy\Avy, (k+1)
Since a € J,', this yields Y ayw € J-. By Lemma 2.5.11 we thus
weSy\Avy (k+1)
conclude that a;, = 0 for all w € S, \ Av, (k+1). Thus, rewrites as a4 =
Y 0w = 0, so that a € Zj. This completes our proof of Lemma [2.5.14, [

weSy\Avy (k+1)

Lemma 2.5.15. Let k € IN. Then,

Ji = I = LAnnZ; = RAnnZ,.

Proof. Analogous to the proof of Lemma 2.5.14] (Of course, use Lemma and
Lemma [2.5.10| instead of Lemma and Lemma 2.5.11| now.) O

Lemma 2.5.16. Assume that n! is invertible in k. Let Z be an ideal of A. As-
sume that there exists a k-linear projection 77 : A — Z. Then, 7 is a nonunital
subalgebra of A that has a unity.

Proof. Note that Z is an ideal of A, thus a left ideal of A, hence a left A-submodule
of A. Moreover, |S,| = n! is invertible in k. Hence, the standard proof of the
Maschke theorem (via averaging the projection 7 over S;) yields that there exists a
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k-linear projection 7’ : A — T that is a left .A-module homomorphism?| Consider
this 77’.
Lete:= 77/ (1) € Z. Then, we claim that

ue = u for each u € 7. (52)

[Proof of (52): Let u € Z. Then, 7’ (u) = u (since 7’ is a projection). However, 7/
is a left A-module homomorphism. Thus, 77’/ (ul) = u 77’ (1) = ue. Since ul = u,
N’

=e
we can rewrite this as 77’ (1) = ue. Hence, ue = 71’ (u) = u. This proves (52).]

Clearly, 7 is a nonunital subalgebra of A (since Z is an ideal of A). From (52),
we see that this algebra 7 has a right unity (namely, e). A similar argument (using
right instead of left A-modules) yields that Z has a left unity. Thus, a standard
argument shows that 7 has a unity (since any binary operation that has a left
neutral element and a right neutral element has a neutral element). Thus, Lemma

2.5.16|is proved. O

Lemma 2.5.17. Let Z and J be two ideals of A such that Z = LAnn J and J =
LAnnZ. Assume that 7 is a nonunital subalgebra of A that has a unity. Then,
A =71 & J (internal direct sum) as k-module. Moreover, Z and .7 are nonunital
subalgebras of A that have unities and satisfy A = 7 x J as k-algebras.

Proof. Clearly, 7 and J are nonunital subalgebras of A (since any ideal of A is a
nonunital subalgebra).

From 7 = LAnn J, we obtain ZJ = 0. Similarly, 7Z = 0.

We have assumed that 7 is a nonunital subalgebra of A that has a unity. Let 17
denote its unity.

Set g :=1—17. Then, each u € 7 satisfies

gu=01-1)u=u— 1lyqu =u—u=0.
~
(sinceTI is the
unity of 7)

In other words, § € LAnnZ = J. Moreover, each v € J satisfies 170 = 0 (since
17 v €ZJ =0)and thus
ez €J
v=(1—-17)v=v— 170 = 0.
8 ( 7) T

~——
:1—11 =0

8Explicitly, 7’ can be constructed as follows:

' (a)

Y on (cfla) for each a € A.

1
|S”| o€eS,
For a concrete reference, see [Grinbe25, Theorem 4.4.14]. Note that the existence of a k-linear
projection from A onto 7 is equivalent to saying that 7 is a direct addend of A as a k-module;

furthermore, the same holds when each appearance of “k-” is replaced by “left A-".
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Hence, g is a left unity of the algebra J (since g € J). A similar computation

shows that g is a right unity of 7. Hence, g is a unity of 7. We shall thus rename

g as 17 now. Of course, this shows that the nonunital algebra 7 has a unity.
Moreover, each u € Z N J satisfiesu € TN J C J and therefore

u= _u, 1g (since 17 is the unity of J)
€INJCT &7
€eZlJ=0
and thus u = 0. In other words, Z N J = 0. Furthermore, each a € A satisfies
a=1za+ (1—-17)a = 17a + 17a eZT+J.
— S~~~ N~
=g=17 . €T cJ
(since Z is an ideal  (since 7 is an ideal

and 17€7) and 17€7)

This shows that Z + J = A. Combining this with ZN J = 0, we conclude that
A =7 ® J (internal direct sum) as k-module. Hence, the k-linear map

IxJ — A,
(i,j) —i+]
is a k-module isomorphism. This isomorphism furthermore respects the mul-
tiplication (since Z7 = JZ = 0, and thus every (i,j), (i,j/) € T x J satisfy
(i+)@"+/)y=i"+ i + ji  +jj =i’ +jj’), and thus is a nonuni-
~— ~—
(since_lg J=0) (since_g 7=0)
tal k-algebra isomorphism. Hence, it must also respect the unity (since it is an

isomorphism), and thus is a k-algebra isomorphism. We thus conclude that A4 =
71 x J as k-algebras. This completes the proof of Lemma [2.5.17] O

Lemma 2.5.18. Assume that n! is invertible in k. Let | be a subset of S;,. Let Z
and J be two ideals of A such that Z = LAnn J and J = LAnnZ. Assume that
the family (w),,; is a basis of the k-module A/Z. Then, A = 7@ J (internal
direct sum) as k-module. Moreover, Z and J are nonunital subalgebras of A
that have unities and satisfy A = 7 x J as k-algebras.

Proof. Clearly, 7 and J are nonunital subalgebras of A (since any ideal of A is a
nonunital subalgebra).

Let K := S, \ J. Thus, ] and K are two disjoint subsets of S, such that JUK = S,,.
Moreover, (w),,cg, is a basis of the k-module .4, whereas (@), is a basis of the k-
module A/Z. Hence, Lemma (b) (appliedto M = Aand N =Z and I = S,
and (m;);c; = (w),es,) yields that there exists a k-linear projection 7 : A — 7
(that is, a k-linear map 7 : A — Z such that 7 |7 = id). Hence, Lemma
shows that 7 is a nonunital subalgebra of A that has a unity.

Thus, Lemma shows that A = 7@ J (internal direct sum) as k-module,
and furthermore, it shows that 7 and J are nonunital subalgebras of A that have
unities and satisfy A = 7 x J as k-algebras. This proves Lemma O

Darij Grinberg



Rook sums in the symmetric group algebra page 58

2.6. Proof of the main theorem

We can now prove Theorem and Corollary by combining what we have
shown so far:

Proof of Theorem (a) This is just Lemma [2.5.14
(b) This is just Lemma [2.5.15

(c) Lemma(2.5.12)yields that the k-module A/ Z; is free with basis (W) ¢\ av, (k-+1)-
Hence, Lemma [2.5.3] (a) (applied to M = A and N = Zy and I = S, and
J =Sy \Av, (k+1) and K = Av,, (k+1) and (m;);c; = (w),cg ) yields that the
k-module 7 is free of rank |Av,, (k4 1)|. This proves Theorem (0).

(d) This is proved similarly to part (c), but using Lemma [2.5.13|instead of Lemma
2.5.12, (This time, Lemma (a) must be applied to | = Av, (k+1) and K =
Su\ Av, (k+1).)

(e) This is just Lemma [2.5.12

(f) This is just Lemma 2.5.13

(g) Proposition (@) yields that both Z; and J; are ideals of A. Theo-
rem (@) yields Zy = LAnn J. Theorem (b) yields J, = LAnnZ,.
Clearly, S, \ Av,, (k+1) and Av, (k+ 1) are two disjoint subsets of S, such that
(Sy\ Av, (k+1)) UAv, (k+1) = S,. Theorem (e) says that the k-module
A/ Ty is free with basis (W) ,cg,\ av, (k1) Hence, Lemma 2.5.18f (applied to | =
Sp\Avy (k+1) and 7T = 7y and J = Jy) yields that A = Z; & J (internal direct
sum) as k-module, and moreover, Z; and J are nonunital subalgebras of A that
have unities and satisfy A = Z; x Ji as k-algebras. This proves Theorem [2.4.1]
(g). O

Proof of Corollary (a) Proposition (g) (applied to k = 2) yields
I, =span{Vpa | A,B € SD(n) with ¢ (A) =/¢(B) =2}
= span {V(B,[n]\B),(A,[n]\A) | A,BC [”]} (53)

(since the set decompositions A € SD (n) with ¢ (A) = 2 are precisely the pairs
of the form (A, [n]\ A) for A C [n]). But Proposition allows us to rewrite
the Vg ()\B),(4,[n]\4) ON the right hand side here as Vi 4. Thus, rewrites as
I, =span{Vp 4 | A, B C [n]}. This proves part (a).

(b) Theorem (c) (applied to k = 2) shows that the k-module 7, is free of rank

|Av, (3)|. But it is known (see, e.g., [Bona22, Corollary 4.8]) that |Av, (3)| = C,.
Corollary (b) follows from these two observations. O
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2.7. Opposite avoidance

Parts of Theorem can be transformed into “twin” forms by replacing the rele-
vant permutations with their complements (i.e., multiplying them with the permu-

tation with one-line notation (n,n —1,...,1)). To state this, we need an analogue
of Definition

Definition 2.7.1. Let k € IN.

(@) Let w € S, be a permutation. We say that w avoids (k+1)k---1 if there
exists no (k 4 1)-element subset U of [n] such that the restriction w | is
decreasing (i.e., if there exist no k + 1 elements i; < ip < --- < i1 of [n]
such that w (i) > w (i) > -+ > w (fk41))-

(b) We let Av/, (k+ 1) denote the set of all permutations w € S, that avoid
(k+1)k---1.

Proposition 2.7.2. Let wy € S, be the permutation that sends each i € [n] to
n+1—i Letk € Nand w € S,. Then, w € Av), (k+1) if and only if wow €
Avy (k+1).

Proof. Given a subset U of [n], it is clear that the restriction (wow) |y is increasing if
and only if the corresponding restriction w |; is decreasing (since the permutation
wy is strictly decreasing). Hence, wow avoids 12 - - - (k+ 1) if and only if w avoids
(k4+1)k---1. Thus, Proposition follows. O

The set Av/, (k + 1) allows us to easily obtain a “twin” to parts (c)—(f) of Theorem

AT

Corollary 2.7.3. Let k € IN. Then:

(a) The k-module Z; is free of rank |Av}, (k+1)|.
(b) The k-module Jy is free of rank |S, \ Av}, (k+1)].

(c) The k-module A/Zy is free with basis (W),cg,\ av/, (k+1)- (Here, W denotes
the projection of w € A onto the quotient .A/Zy.)

(d) The k-module A/ J is free with basis (W), AV, (k1) (Here, @ denotes the
projection of w € A onto the quotient A/ Jy.)

Proof. (a) Proposition shows that the map

Sy — Sy,
w — Wwow
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restricts to a bijection from Av/, (k + 1) to Av, (k + 1). Hence,

|Avy, (k+1)| = |Avy, (k+1)]. (54)
But Theorem (c) shows that the k-module Z; is free of rank |Av, (k+1)| =
|Av}, (k+1)|. This proves Corollary (a).

(b) Analogous to Corollary (a), but using Theorem (d) instead of The-
orem (c).

(c) Proposition shows that a permutation w € S, satisfies w € Av), (k+ 1) if
and only if wow € Avy, (k+1). Thus, the contrapositive also holds: A permutation
w € Sy, satisfies w ¢ Av), (k+ 1) if and only if wow ¢ Av, (k+1). Therefore, the
map

Su\Av}, (k+1) = Sy \ Avy, (k+1),
W — Wow (55)
is a bijection. The inverse of this map must also send each w to wow (because wy is
an involution, i.e., we have wowy = id). Thus, this inverse is the map

Su\Av, (k+1) = Sy \ Av), (k+1),
W — Wow. (56)
As a consequence, this latter map is a bijection.
Theorem (e) shows that the k-module A/ Zy is free with basis (W) e\ av, (k1+1)-

But 7 is a left ideal of A and thus fixed under left multiplication by wy. Hence,
the map

A/L — AL,
a— woa

is well-defined and is an automorphism of the k-module A/Z; (being invertible
because w3 = id). Applying this map to the basis (), S\Avy(k+1) OF A/ Ly, we thus
obtain a new basis (WoW)cs,\ av, (k+1) Of A/Zk (since the image of a basis under
a k-module isomorphism is again a basis). But the latter basis (W), S\ Avy (k+1)
can be reindexed as (W), S.,\AV/ (k1) Since the map is a bijection. Hence, we
have shown that (@),,cg,\av (k1) IS @ basis of the k-module A/Z;. This proves
part (c).

(d) Analogous to Corollary (c), but using Theorem (f) instead of The-
orem (e). O

2.8. Jir and Z,,_;_; as annihilators of tensor modules

We shall now discuss how the ideals J; and Z; (more precisely, Z,,_r_1, but this
is just a matter of indexing) can be interpreted as annihilators of certain left A-
modules. This breaks no new ground, but rather recovers results by de Concini
and Procesi [deCPro76, Theorem 4.2] and Bowman, Doty and Martin [BoDoMa22];
we hope that our elementary approach makes these results more accessible.
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2.8.1. J as annihilator of V*" (action on places)

Recall that A = k [S,]. Thus, the representations of S, over k are precisely the left
A-modules. If M is any left .A-module, then Ann M shall denote its annihilator,
i.e., the ideal

facA| aM=0}={ac A | am=0forallme M}

of A. Note that if M is a left ideal of A, then this annihilator Ann M is just its left
annihilator LAnn M.

For each k € IN, we consider the free k-module Vi with basis (eq,e,...,e). On
its n-th tensor power Vk®”, the symmetric group S, acts by permuting the tensor
factors:

- (1 ®@V2® - ®Vn) =Vp11) ®Up1(2) @+ @ Uyt
forall c € S, and vq1,0y,...,v, € V;.

Thus, Vk®” is a left A-module for each k € IN. This action of A (or of S,) is called
action on places or action by place permutation.

The k-module V" can also be identified with the k-module of homogeneous
polynomials of degree n in k noncommutative indeterminates x1, xp, . .., X (via the
isomorphism that sends each pure tensor ¢;; ® ¢;, ® - - - ® ¢;, to the noncommutative
monomial x; x;, - --x;,). Under this identification, the action of S, permutes the
order of factors.

Now we shall prove the following result of de Concini and Procesi [deCPro76,
Theorem 4.2]:

Theorem 2.8.1. Let k € IN. Then,

Jr = Ann (V;2").

Proof. We say that two set decompositions A and B of [n] are equal-shaped if they
satisfy ¢ (A) = ¢ (B) and if each block of B has the same size as the correspond-
ing block of A. In other words, two set decompositions (Al,Az,...,Ap) and
(B1,By, ..., By) of [n] are equal-shaped if and only if p = g and |A;] = |B;| for
each i € [p] = [q].

An equivalent characterization of equal-shapedness is the following: Two set
decompositions A and B of [n] are equal-shaped if and only if there exists some
w € Sy such that wA = B. (Indeed, the “if” part is obvious, whereas the “only if”
part is easily shown by choosing a permutation w € S, that sends each block of A
to the respective block of B.)

Recall that SD (n) is the set of all set decompositions of [n]. For each A € SD (n),
we define a k-submodule

Za :=span{Vga | B€SD(n) with £ (A) =/ (B)}
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of A. This k-submodule Zj, is actually a left ideal of A, since yields
wVpA = Vub,A (57)

for all w € S, and B € SD (n) with ¢ (A) = ¢(B). It is easy to see that as a k-
module, 7 has a basis consisting of the elements Vg s, where B ranges over all
those set decompositions of [] that are equal-shaped to A. (Indeed, these elements
span Za because Proposition (a) shows that all other Vg o’s are 0. And they
are linearly independent because they are nonzero and have disjoint supports, i.e.,

because they don’t have any addends in common.)
It is furthermore clear from Proposition (d) that

Ii= ), ZIa. (58)
AeSD(n);
((A)<k

Hence,
Ann (Zy) = () Ann(Zy) (59)
AeSD(n);
0(A)<Kk
(since the annihilator of a sum of A-submodules is the intersection of their indi-
vidual annihilators).
On the other hand, let A = (A1, Ay, ..., An) € SD (n) be a set decomposition.
Then, we can define a diagram D (A) of size n (see [Grinbe25| Definition 5.1.2] for
the notion of a diagram) by setting

m

D(A) = U {G1), (,2), ..., (1A}

i=1

This is almost a Young diagram, except that its shape is the weak composition
(|A1|,|Az|,...,|An|) instead of a partition. We consider the Young module MP(4),
which is a left A-module (i.e., an S,-representation) that (as a k-module) has basis
{n-tabloids of shape D (A)} (see [Grinbe25, §5.3] for the relevant definitions). If T
is an n-tabloid of shape D (A), and if i € [m], then Row (i, T) shall denote the set
of all entries in the i-th row of T. Conversely, if T is an n-tabloid of shape D (A),
and if k € [n], then r (k) shall denote the number of the row of T that contains the
entry k.
It is easy to see that if £ (A) < k, then the k-linear map

WA MD(A) — Vk®n,

T Cre(1) © Erp(2) @ O )

is an injective left A-module morphismﬂ

9Indeed,
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On the other hand, the k-linear map

va: MPA) T,

T =V (Row(1,T), Row(2T), ..., Row(m,T)), A

is a left A-module morphism as wel]ﬂ Next we shall show that this morphism
YA is invertible. Indeed, recall that the k-module Z4 has a basis consisting of the
elements Vg o, where B ranges over all those set decompositions of [n] that are
equal-shaped to A. In other words,

(VBIA)B is a set decomposition of [n] that is equal-shaped to A (60)

is a basis of the k-module Z4. But there is a bijection

{n-tabloids of shape D (A)}
— {set decompositions B of [n] that are equal-shaped to A}

that sends each n-tabloid T to (Row (1,T), Row (2,T), ..., Row (m,T)) (indeed,
the lengths of the rows of D (A) are the sizes of the respective blocks of A, and
thus are exactly the right size to fit the blocks of a set decomposition B that is
equal-shaped to A). Hence, we can reindex our basis of 7 as

~ ~ ~ : 6
(V(Row(l,T), Row(2,T), ..., Row(m,T)), A)Tis an n-tabloid of shape D(A) (61)

Now, the k-linear map ya sends the basis (T)7 . . t1oid of shape D(A) Of MPA) o
the basis of Za (by the definition of y4). Thus, it is invertible (since any k-linear

e this map is a left A-module morphism because any n-tabloid T and any permutation
w € Sy, satisfy ro= (i) = rz (w™! (i) for all i € [n];

e this map is injective because an n-tabloid T of a given shape (in our case, D (A)) is
uniquely determined by the n-tuple (r (1), 7 (2),...,r¢(n)).

19Tndeed, for any n-tabloid T of shape D (A) and any permutation w € S,;, we have

YA (WT) =7A (W) = v(Row(l,ﬁ), Row(Z,ﬁ), e Row(m,ﬁ)), A

Va(Row(1T), Row(2T), ..., Row(mT)), A

)
since Row (i,wT) = w (Row (i, T)) for eachi € [m],

and thus (Row (1,wT), Row (2,wT), ..., Row (m,wT))
=w (Row (1,T), Row (2,T), ..., Row (m,T))
= WV (Row(1T), Row(2T), .., Row(nT)), A (by E7)
=7a(T)
=wya (T).
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map that sends a basis of its domain to a basis of its target must be invertible).
Therefore, it has an inverse 'y;l . Ia — MP®) which is also a left A-module
isomorphism (since 4 is a left A-module morphism).

Composing this inverse with the injective left A-module morphism wp : MPA) —
V" (when £ (A) < k), we obtain the injective left A-module morphism

PA = wp© ’)/Xl A — Vk®n.
Forget that we fixed A. We thus have found an injective left .A-module morphism
IIJA tIA — Vk®n

for each set decomposition A € SD (n) with ¢ (A) < k.
It is easy to see that

V"= ). ¢a(la) (62)
AeSD(n);
0(A)<k
(indeed, each basis vector ¢; ®e;, ® - -+ ®e;, of Vk®” can be written as the image
of an appropriate n-tabloid T under the map wp (where A € SD (n) is the set
decomposition (A1, Ay, ..., A) defined by A;:= {p € [n] | i, = j}), and thus also
as an image under wp o 'ygl = a). Hence,

Ann (VP = ﬂ Ann (YA (Za)) (63)
AeSD(n);
((A)<k

(since the annihilator of a sum of A-submodules is the intersection of their in-
dividual annihilators). But each A € SD (n) satisfying ¢ (A) < k must satisfy
Pa (Za) = Iy as left A-modules (since the left A-module morphism 4 is injec-
tive) and thus Ann (A (Za)) = Ann (Zp). Hence, rewrites as

Ann (VZ") = (] Ann(Za).
AeSD(n);
U(A) <k
Comparing this with (59), we obtain
Ann (V") = Ann (Z;) = LAnn (Zy)

(since Ann M = LAnn M for any left ideal M of A). Since Theorem (b) yields
Jr = LAnn (Zj), we can rewrite this as Ann (V") = Ji. This proves Theorem
281 O

Corollary 2.8.2. Let k € IN. Consider the action of A on V" as a k-algebra
morphism py : A — Endy (V;Z"). Then, the image pi (A) of this map pi has two
bases (o (w))weAvn(k—l—l) and (0x ())peav! (k1) (@s a k-module).
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Proof. We have Kerpy = Ann (V") = Ji by Theorem Hence, by the first
isomorphism theorem, there is a k-algebra isomorphism A/ 7, — px (A) that sends
each residue class 7 to pi (a). Hence, we only need to show that the quotient k-
module A/ Jy has two bases (W) ¢ ay, (k+1) a0 (W) e av! (k11)- But this is Theorem

(f) and Corollary (d). O

Theorem [2.8.1]is [deCPro76, Theorem 4.2], and also appears in [Donkin24, Exam-
ple 2.11]. It is also a particular case of Harterich’s [Harter99, §3]. Indeed, Hérterich
considers a sign-twisted version of the S,-representation V;*"". The sign-twist is the
k-linear map Tijgn : A — A that sends each permutation w € S, to (—1)“ w. This
map is a k-algebra automorphism (see [Grinbe25, Theorem 3.11.5]), so it trans-
forms any S,-representation M into a new S,-representation M*8", which is called
the sign-twist of M (see [Grinbe25| Definition 5.18.2] for the precise definition) and
which satisfies

Ann (MSig“> = Tsign (Ann M) .. (64)

Harterich’s V" (for m = k) is the sign-twist of our S,-representation Vk®” (since
his S,-action on V®" is given by permuting the factors and multiplying with the
sign of the permutation). Thus, the ideal J = anny, V*" from [Harter99, §3] for
m =k and q = 1 is the image of our annihilator Ann (V,*") under Tg;gn (by ).
Therefore, our Theorem entails that this ideal J is spanned by the Tggn (VBa)
for A,B € SC (n) satisfying ¢ (A) = ¢ (B) < k. This is implicitly what [Harter99,
§3] (for m = k and g = 1) is saying as well, although the latter theorem additionally
picks out a basis of J from these spanning elements.

We also note that Corollary recovers [Proces21, Theorem 3.3] and also
appears in [BoDoMa22, Corollary 1.4 (i)], in [Donkin24, Example 2.11] and in
[RaSaSul2, Theorem 1]. Implicitly, [BaiRai0l, Lemma 8.1 and the remark after
it] also boils down to our Theorem [2.8.1

The image px (A) of A that was considered in Corollary is called the “k-
swap algebra” in [KIStVo25, §1.3]. Thus, as we saw above, this algebra is isomor-
phic to the quotient algebra A/ Jx.

2.8.2. Tsign (Z,—k—1) as annihilator of N2k (action on entries)

An interesting counterpart to Theorem [2.8.1 was recently proved by Bowman, Doty
and Martin ([BoDoMal8, Theorem 7.4 (a)]; see also [Donkin24, Example 2.13]).
We can prove this using our methods, too. Let us first restate this result in our
language:

Recall that the sign-twist is the k-linear map Tsgn : A — A that sends each
permutation w € S, to (—1)" w. This is a k-algebra automorphism of A.

Consider a free k-module N,, with basis (eq,ez,...,e,), and let the group S, act
on it by permuting the basis vectors (that is, 0 - ¢; = ¢,(;) forall o € S, and i € [n]).
This S,-representation N, is called the natural representation of S,,.

Let k € IN, and consider the k-th tensor power N;?k of this S,-representation
(where S, acts diagonally, i.e., by the formulac - (v RV, ® - - - R V;) = 001 ® 0V ®
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- Qo forallo € S, and all vy, vy, ..., v, € V). This is again an S,-representation,
i.e., a left A-module. The action of A (or S;) on it is called the action on entries (or
diagonal action).

The k-module NZ¥ can also be identified with the k-module of homogeneous
polynomials of degree k in n noncommutative indeterminates x1, x2, ..., x; (via the
isomorphism that sends each pure tensor ¢;, ®e;, ® - - - ®¢; to the noncommuta-
tive monomial x; x;, - - - x; ). Under this identification, the action of S, permutes
the indeterminates (i.e., a permutation o € S, sends each x; to Xo(i)s and acts on
products factor by factor).

Now, [BoDoMal8, Theorem 7.4 (a)] characterizes the annihilator of this left A-
module N2 as follows:

Theorem 2.8.3. Let k € IN. Then,
Tsign (In—k—l) = Ann (N§k> :

Here, we understand Z,, to mean 0 when m < 0 (this is consistent with Definition
2.2.1).

(Once again, this is written in terms of the Murphy cellular basis in [BoDoMal8,
Theorem 7.4 (a)], but boils down to what we just said. The same claim appears in
a different disguise in [Donkin24, Example 2.13].)

The proof of this theorem will be enabled by the following two lemmas:

Lemma 2.8.4. Let ay, ay, ..., a; € [n]. Then,

Z w = Tsign (v[—n}\{m,ﬂzp--rak}) ’

wESy;
w(a;)=a; for all i

Proof. The definition of V[;}\ (41,8, ) yields

- — w
v[n]\{ﬂllﬂzp--,ﬂk} - Z (1) w

wWESy;
w(i)=i for all i€ [n]\([n]\{a1,92,....ar})

- )3 (-)%w = Y. (—1)" w.
WESy; weSy;
w(i)=i for all i€{ay,a,...,a } w(a;)=a; for all i

Applying the k-linear map Tj;gp to this equality, we obtain

— w
Tsign (v[ﬂ]\{m,az,-..,ak}) = Z (_1) Tsign (w) = Z w.
weSy; ) ~ weSy; .
w(a;)=a; for all i (since Tyign(w)=(—1)"w) w(a;)=a; for all i
This proves Lemma O
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Lemma 2.8.5. Let k € IN. For any k-tuple a = (ay,4a2,...,a;) € [1]*, we define
the element
Va:= Z w e A (65)

WESy;
w(a;)=a; for all i

Then,
Tsign (Ju—k—1) = A - span {Va | ae [n]k} :

Here, we understand 7, to mean A when m < 0.

Proof. We are in one of the following two cases:

Case 1: We have k < n.

Case 2: We have k > n.

Let us first consider Case 1. In this case, k < n, so that n —k — 1 € IN. Hence,
Proposition (b) (applied to n — k — 1 instead of k) yields

Tn—k-1=A-span{V[, | Uis asubsetof [n] having size n —k} .
Applying the k-algebra isomorphism Ty;g : A — A to this equality, we find
Tsign (Ju—k—1) = A-span {Tsgn (V[;) | Uis a subset of [n] having size n —k} .

However, if U is a subset of [n] having size n — k, and if we denote the k elements
of [n]\ Uby ay,ay,...,a, then

v(al,az,...,ak) — 2 w (by )

wWESy;
w(a;)=a; for all i

= Tsign (v[;}\{al,az,...,ak}> (by Lemma
= Tsign (V1)
(since the definition of a1, ay, ..., a yields [n] \ {a1,42,...,a;} = U) and thus
Tagn (Vi) = Vieyaom) € {Va | 2 € 1"}
Hence,
{Tsign (V;) | Uis asubsetof [n] having size n —k} C {Va | a€e [n]k} :
Thus,

Tsign (Ju—k—1) = A-span {Tsgn (V[;) | Uis asubset of [n] having size n — k}

-

g{va | ae[n]k}

C .A-span{Va | ac [n]k}. (66)
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On the other hand, each k-tuple a = (ay,ay,...,a;) € [n]* satisfies

Va= Z w = Tiign (V[;]\{ﬂpﬂz,---ﬂk}) (by Lemma [2.8.4))

wESy;
w(a;)=a; for all i

€ {Tign (V) | Uis asubset of [n] having size >n—k—1}
(since [n] \ {a1,ay,...,ax} is a subset of [n] having size > n —k > n — k — 1). Thus,
{Va | a€ [n]k} C {Tsign (V) | Uis asubset of [n] having size >n—k—1}.
Hence,
.A~span{Va | a€ [n]k}
C A-span {Ten (V) | Uis asubset of [n] having size >n —k—1}
= Tsign (A -span {V; | Uis asubsetof [n] having size >n—k—1})
(since Tsgn : A — A is a k-algebra isomorphism) .
In view of
Tn—k—1=A-span{V | Uis asubsetof [n] having size >n—k—1}
(by Proposition (e), applied to n — k — 1 instead of k), we can rewrite this as
.A~span{Va | ae [n]k} C Tsign (Tn—k—1) -
Combining this with (66), we obtain
Tign (Jn k1) = A-span{Va | a € [n]'}.

Thus, Lemma is proved in Case 1.
Now, let us consider Case 2. In this case, we have k > n,sothatn —k—1 < 0
and therefore J,_y_1 = A (by our convention that J,, = A for m < 0). Hence,

Tsign (Jn—k—1) = Tsign (A) = A. On the other hand, the set [n]k contains the k-tuple
ap = (1,2,3,...,n,n,n,...,n) (since k > n), and the corresponding element V,, is
id (because if we apply to a = ap, then the only permutation w € S, under

the sum is id). Hence, id = V,, € span {Va | a€ [n]k}. Thus, the left ideal

A - span {Va | ac[n) } of A contains the element id = 14, whence it must be
the whole A. In other words,

A-span{va | ae [n]k} = A
Comparing this with Tgign (J,—k—1) = A, we obtain
Tgn (k1) = A-span{Va | a € [n]'}.

Thus, Lemma is proved in Case 2. We have now proved Lemma in both
cases. O
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Proof of Theorem 2.8.3) We extend the definition of 7, to negative m by setting
Tm = A when m < 0.

Theorem (a) shows that each m € N satisfies Z,, = LAnn J;,. This equality
also holds for negative m (since 0 = LAnn .A). Thus, each integer m satisfies Z,, =
LAnn J,,. Applying Tsien to both sides of this, we obtain

Tsign (Zn) = Tsign (LAnn J;) = LAnn (Tsign (jm))

(since Tsign is a k-algebra isomorphism). Applying this to m = n — k — 1, we obtain

Tsign (In—kfl) = LAnn (Tsign (jn—kfl)) = Ann (Tsign (jn—kfl))

(since LAnn K = Ann C whenever K is a left ideal of A). It thus remains to show
that

Ann (Tsign (jn—k—l)) = Ann (Nr(?k) : (67)

We let the symmetric group S, act on the set [n]k of all k-tuples of elements of
[n] by the rule
w(ay,ay,...,a5) = (w(ay),w(az),..., w(ag))
k

forallw € S, and (ay,a2,...,a;) € [n]".

k

For any k-tuple a = (ay,ay,...,a;) € [n]", we define the element

Vai= ) w= Y. w e A.

wESy; WESy;

wa=a w(a;)=a; for all i
This is just the element Tgign (V[_n]\ {a182 ...uk}> (by Lemma [2.8.4). Lemma [2.8.5
yields

Tign (Jns-1) = A-span{Va | ac [} = ¥ AV,
acn)k
Hence,
Ann (Tsign (jn—k—l)) = ﬂ Ann (Ava) (63)

ac[n]t

(since the annihilator of a sum of left A-submodules is the intersection of their
annihilators).
On the other hand, let us set e, := ¢;, ®e;, ®--- Ve, € Nﬁz’k for any k-tuple

a = (aj,a,...,a;) € [n]*. Then, the family (ea)ae[n]k is a basis of the k-module
N,‘?k, and thus also generates N,?k as a left A-module. In other words,
NF =Y Ae,.
aen)
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Hence,
Ann (N,?k) — () Ann(Ae,) (69)
ac[n)*
(since the annihilator of a sum of left A-submodules is the intersection of their
annihilators).
We want to show that the left hand sides of and are equal (because

this will yield (67)). Of course, it suffices to show that the right hand sides are
equal. For this purpose, we will show that AV, = Ae, as left A-modules for every

ac [n]k (this will suffice, since isomorphic .A-modules have the same annihilator).

But this is indeed quite easy: Let a = (ay,4ap,...,a;) € [n]k. Then, we can define
a k-linear map

¢: NZF - A4,
ecr Y W for all ¢ € [n]*

WESy;
wa=c

(this is well-defined, since (ec)__ « is a basis of the k-module NZF). 1t is easy to

eln]
see that this map ¢ is S,-equivariant (because every u € S, and ¢ € [n]k satisfy
uec = eygcand u Y, w = Y. w) and thus left A-linear. Moreover, it sends e,

weESy; wESy;
wa=c wa=1c

to Y w = V, (by the definition of V,). Hence, ¢ (Aea) = AV, (since ¢ is left
ey
A-linear).
The map ¢ itself is not usually injective. However, we claim that its restriction to
Ae, is injective. Indeed, recall again that ue. = e,c forall u € S, and ¢ € [n]k. In

particular, ue, = ey, for all u € S,. Hence, the k-module Ae, has a basis (). S,

(where Spa is the orbit of a € [n]* under the S,-action on [n]") The images

of all these basis vectors e, under ¢ are the sums ), w, which are k-linearly

wWESy;
wa=c

independent (since they are sums of disjoint sets of permutations, and each of
them is nonempty because ¢ € S,a guarantees the existence of at least one w € S,
satisfying wa = c¢). Thus, the k-linear map ¢ sends the basis vectors e of Ae, to

1 Proof: We have A = span{u | u € S,}. Thus,

Ae, = (span{u | u € S,})ea =span{ue, | u€S,}
=span{eua | u € Sy} (since ue, = ey, for all u € Sy)
={ec | c€Spa}

=span{e. | c€ Sya}.

Hence, the family (e.) spans the k-module Ae,. Since this family is furthermore k-linearly

cESya
independent (being a subfamily of the basis (e.)

of Ae,.

celnt of N2k), we thus conclude that it is a basis
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k-linearly independent vectors in .A. Consequently, the restriction of this map ¢ to
Ae, is injective.

Hence, ¢ (Aea) = Ae,. In view of ¢ (Ae,) = AV,, we can rewrite this as AV, =
Ae,.

As explained above, this completes the proof of Theorem [2.8.3] O

Corollary 2.8.6. Let k € IN. Consider the action of A on NZ* as a k-algebra
morphism py : A — Endy (NF*). Then, the image px (A) of this map px has two
bases (0 (W))yes,\ avy(n—t) AN (0% (©0))es,\ av, (n—k) (@s @ k-module). Here, we
understand Av,, (m) to be @ when m < 0.

Proof. We have Ker oy = Ann (N*) = Tyign (Z,—x—1) by Theorem Hence, by
the first isomorphism theorem, there is a k-algebra isomorphism A/ Tsign (Z,——1) —
px (A) that sends each residue class @ to pg (a). Hence, we only need to show
that the quotient k-module A/ Tsign (Z,—x—1) has two bases (W) ¢\ v, (n—k) and
(W) wes,\av (n—k)- Upon applying the k-algebra automorphism Tsign of A to this
statement, it takes the following simpler form: The quotient k-module A/Z, 1
has two bases (W) ,c5,\ av,(n—k) AN (W) pes,\av, (n—k) (indeed, the bases still look

the same, because Tsign sends each permutation w € S, to (—1)ww = 4w, and
thus the bases are transformed only by scaling some of the basis vectors by —1).
In order to prove this statement, we only need to apply Theorem (e) and
Corollary (c) to n — k — 1 instead of k (at least when k < n — 1; but the other
case is trivial because in that case, we have Z, 1 = 0 and Av, (n —k) = @ and
AV}, (n — k) = 2). O

Corollary appears in [Donkin24, Example 2.13] and (in a slightly restated
form) in [BoDoMa22, Corollary 1.4 (ii)].

Further related results are found in [DotNym07], [BoDoMal8], [BoDoMa22],
[RaSaSu12], [Donkin24|] and [BaiRai01}, §8].

2.9. The Specht module connection

2.9.1. 7; and J; after Artin—Wedderburn

The following theorem discusses the representation-theoretical significance of the
ideals Zy and J;. We use some basic representation theory, including the concept
of a Specht module (see, e.g., [EGHLSVY11, §5.12] or [Grinbe25, Definition 5.11.1

@1).

In what follows, the notation “A = n” shall always mean “A is a partition of
n”. In particular, the set of all partitions of n shall be denoted by {A | A+ n}
or just {AFmn}. If A is a partition of 1, then the entries of A will be denoted by

A1, A2, A3, ..., whereas the length of A will be written as ¢ (A).

12Note that the Specht module corresponding to a partition A is called Vj in [EGHLSVYTI] §5.12]
and is called S* in [Grinbe25} Definition 5.11.1 (a)]. The definitions are not identical, but they
define isomorphic modules (because of [Grinbe25, Theorem 5.5.13 (b)]).

Darij Grinberg



Rook sums in the symmetric group algebra page 72

Theorem 2.9.1. Assume that n! is invertible in k. For each partition A of n, let sh
denote the corresponding Specht module (a left A-module). For each a € A and
each partition A of n, we let 2, € End (S") denote the action of 4 on the Specht
module S*.

Consider the map

AW : A — []End (8),
Abn
a— (aA)A%n‘

This map AW is known to be a k-algebra isomorphism. (When k is a field,
this follows from the Artin-Wedderburn decomposition of A, since the SA are
the absolutely irreducible A-modules; alternatively, this can be derived from
[Ruther48, §17, Theorem 12]. For a detailed proof, see [Grinbe25, Theorem
5.14.1].)

For each subset U of {A | A I n}, we consider the subproduct [] End (S*) of
Arel

[T End (S%). This is an ideal of H End (S*). The preimage of this subproduct
A
under AW is thus an ideal of A, and will be denoted by Ay;.

Now, let k € IN. Then,

Tk = Apprn | e(0)<k} and Tk = AQin | 00>k

The proof of this theorem will rely on the following general fact:

Lemma 2.9.2. Let M be a k-module. Let 7 and J be two k-submodules of M
such that M =7 + J. Let U4 and V be two k-submodules of M such that Z C U/
and J CVand UNV =0.Then,Z =U and J = V.

Proof. Let u € U. We shall show that u € 7.
Wehaveu e Y C M =7+ J. Thus,u =i+ jforsomei € Zandj € J.
Consider these i and j. From u = i+j, weobtainj = u — i e€U—-UCU.

~—
eu €IcU

Combining this with j € J C V, we obtain j € &/ NV = 0. In other words, j = 0.
Hence,u =i+ j =icl.
jary
Forget that we fixed u. We thus have shown that u € 7 for each u € Y. In other
words, U C Z. Combined with Z C U, this yields 7 = U/. Similarly, we can show
J = V. This proves Lemma O
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Proof of Theorem For each U C {A | A+ n}, we have

Ay =AW! (the subproduct H End (S)‘> of H End <SA>)

AeU Abn
={a e A | the A-th entry of AW (a) is0 forall A ¢ U}
={aecA | ay=0foral A ¢ U}

={acA| a8’ =0forannr¢u} (70)

(since aS* is the image of a) € End (S")).
We shall first prove the following two claims:

Claim 1: We have Ik - A{/\Fn | £(A)<k}:
Claim 2: We have Jx C Ag\py | o(1)>k)-
Proof of Claim 1. Applying toU={AFn | £(A) <k}, we obtain

Afen | o)<k}
= {a € A | aS"* =0 for all A - n that dont satisfy £ (A) < k} .

Hence, in order to prove that 7y C Ay, | ¢(1)<k) it suffices to show that all a € Z;
satisfy aS* = 0 for all partitions A I n that don’t satisfy £ (1) < k. Let us prove
this.

Let A - n be a partition that doesn’t satisfy ¢ (A) < k. Thus, £ (A) > k. We must
prove that all a € 7 satisfy aS* = 0.

Since Z; = span{Vpa | A,B € SC(n) with /(A) = ¢(B) <k}, it suffices to
prove that Vg AS" = 0 for any two set compositions A,B € SC (n) with £(A) =
¢(B) < k. So let us consider two set compositions A,B € SC(n) with ¢ (A) =
¢ (B) < k. We must prove that Vg 45" = 0.

If T is any Young tableau of shape A filled with the entries 1,2,...,n (not neces-
sarily standard), then

e we let R (T) denote the row group of T (that is, the group of all permutations
o € Sy that preserve the rows of T as sets);

e we letay := o € A denote the row symmetrizer of T;
R(T) Y
oc

e we let C (T) denote the column group of T (that is, the group of all permuta-
tions o € S, that preserve the columns of T as sets);

e weletbr:= Y (—1)7c € A denote the column antisymmetrizer of T.
oeC(T)
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Note that ar and br are called Vgrow and V-, ; in [Grinbe25, §5.5.1].

Let T) be the Young tableau of shape A filled with the entries 1,2,...,n in the
order “row by row, starting with the top row and proceeding down the rows”E
We denote the elements ar, and by, of A by a), and by. Thus, [EGHLSVY11),
Theorem 5.12.2] or [Grinbe25, Proposition 5.11.19 (c)] shows that S* = Aa,b, as
left A-moduled™

Hence, S* =2 @b A € Ab,. It thus suffices to show that Vg a.Ab, = 0 (since

CA
Vg aS" = 0 will then follow). In other words, it suffices to show that Vg aowb) = 0
for any w € S,,. But this is not hard:

Let w € S;,. Let T be the Young tableau of shape A obtained from T, by applying
the permutation w to each entry. (This is w — T, in the notations of [Grinbe25,
Definition 5.3.9].) Thus, by = wbyw ! (by [Grinbe25, Proposition 5.5.11], applied
to T) instead of T), so that wb, = brw.

The first column of the tableau T contains ¢ (A) entries, and thus contains more
than k entries (since ¢ (A) > k). Hence, at least two entries of this column belong
to the same block of A (by the pigeonhole principle, since A has only ¢ (A) < k
blocks). Pick two such entries. Let T € S, be the transposition that swaps these
two entries. This transposition T thus preserves the blocks of A (since it swaps two
numbers from the same block), and therefore preserves Vg a from the right (i.e.,
satisfies Vg AT = Vp a) because of . On the other hand, this transposition T
swaps two entries in the first column of T, and thus belongs to the column group
C (T) of T. Hence, by = (1 — 1) # for some 1 € A (since (t) = {1, 7} is a subgroup
of the column group C (T), and since the permutation 7 is odd; see [Grinbe25|
Proposition 5.5.9 (b)] for details). Thus,

VB,A ZUb)\ = VB,A bT w = VB,A (1 — T) nw = 0.
~— ~— N—— ——
=brw =1-1)y =VBA—VBAT
=0
(since VB AT=V3g,A)

This completes our proof of Vg 45" = 0. Thus, as explained above, we have proved
Claim 1. O

Proof of Claim 2. This is fairly similar to the above proof of Claim 1. Here are the
main milestones of the proof:

1]2]3]4]
5]6
l4Gpecifically, this follows from [EGHLSVY11, Theorem 5.12.2] after observing that the a) and b,

1 1
in [EGHLSVY11], Theorem 5.12.2] are our ————— —_—
R (T)| IC(T)|

defined, since |R (T)| and |C (T)| are divisors of n! and thus invertible in k). Alternatively, this
follows by applying [Grinbe25, Theorem 5.5.13 (b)] to T = T, and noticing that ayb, = arbr =
VRowTVC 7 = Fr in the notations of [Grinbe25, Theorem 5.5.13 (b)] and that the number nt
defined in [Grinbe25, Theorem 5.5.13 (b)] is invertible in k (since it is a divisor of n!).

BFor instance, if A = (4,2),then T) =

a, and b, (the fractions here are well-
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Let A - n be a partition that satisfies £ (A) < k. We must prove that all a € Jj
satisfy aS* = 0.

Recall that Jy = A-span {V; | U is a subset of [n] having size k + 1} (by Propo-
sition (b)). Hence, it suffices to show that V&SA = 0 whenever U is a subset

of [n] having size k + 1 (because then, A V;S* = 0 will automatically follow).
~——

=0

So let us fix a subset U of [n] having size k + 1. Consider the Young tableau
T) and the elements a), and b, defined as in the above proof of Claim 1. Then,
S* = Aa,b,. Hence, in order to prove that V&SA = 0, it suffices to show that
VAa) = 0. For this, in turn, it suffices to show that V;wa, = 0 for each w € S,,.

So let w € S, be arbitrary. Let T be the Young tableau of shape A obtained from
T) by applying the permutation w to each entry. Then, ar = wa Awt (by [Grinbe25,
Proposition 5.5.11]), so that wa) = arw.

But the pigeonhole principle shows that there are two distinct elements of U that
belong to the same row of our tableau T (since the set U has k 4 1 elements, but
the tableau T has only £ (A) < k rows). Let T be the transposition that swaps these
two elements. Then, V;7 = —V; (by [Grinbe25, Proposition 3.7.4 (c)]), but also
ar = (14 1) 5 for some € A (since (1) = {1, 7} is a subgroup of the row group
R (T); see [Grinbe25| Proposition 5.5.8 (b)] for details). Thus,

Vjway, =V, ar w= V;(1+71) nw=0.

-

=arw :(1+T)17 :vl}+v&r

(since VET:—VZI)
As we explained above, this completes the proof of Claim 2. O

However, if X and Y are two disjoint subsets of {A | A - n}, then AxN Ay =0

(since the subproducts [] End (S*) and [] End (S*) of I] End (S") have inter-
reX AEY Abn
section 0). Thus,

Aparn | ey<iy VAR | o)k =0
Meanwhile, Claim 1 and Claim 2 yield

T € Aparn | e0)<k) and Tk © Aarn | 0(0)>k)-

Furthermore, Theorem [2.4.1] (g) yields A = Z; & J; (internal direct sum), so that
A = I + Ji. Thus, Lemma 2.9.2] (applied to M = Aand Z = Zj and J = Ji and
U= Apin | cy<ky and V = Ag | ga)>ky) yields

T = Aparn | 0(0)<k) and Tk = Apabn | 0(1)>k}-
This proves Theorem [2.9.1] O

Note that part of Theorem for k = 3 appears in [BCEHK23, Proposition
3.5 (a)]. Moreover, [KIStVo25, Theorem 2.2] can also be viewed as a corollary of
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Theorem (indeed, we already saw that the k-swap algebra from [KIStVo25)|
Theorem 2.2] is isomorphic to our A/ Jy, which according to Theorem is in

turn isomorphic to [T End (S%)).
AbFn;
() <k

2.9.2. Application: Counting avoiding permutations

As a consequence of Theorem we recover a classical enumerative result
that is commonly proved using the RSK correspondence (see, e.g., [Bona22, (7.2)],
[Stanle23, Corollary 7.23.12]):

Corollary 2.9.3. For each partition A of n, let f* be the number of standard
tableaux of shape A. Let k € IN. Then, the number of all permutations w € S,
thatavoid 12--- (k+1)is ¥ ()= & ()%

A Abn;

n;

((A)<k M<k

Proof. Let k = Q. Let us use the notations of Theorem Then, the standard
basis theorem for Specht modules (see, e.g., [Grinbe25, Lemma 5.9.17]) says that

dim (SA) = (71)

for each partition A of n.
However, Theorem shows that

Ik = Aparn | c(n)<ky = H End (S)‘> as k-vector spaces
Abn;
() <k
(since Agary | ¢(r)<ky Was defined as the preimage of A];I End (S*) under the
n;
A<k

isomorphism AW). Thus,

Abn; AbFn;
L(A)<k L(A)<k :(dim(S)‘)f:(f/\)

dim (Zy) =dim [ J] End (SA) = ) dim (End <S)‘>>/: Z (f)‘>2.

On the other hand, Theorem (c) yields
dim (Zy) = |Av, (k+1)].

Comparing these two equalities, we find |Av, (k+1)] = ¥ ( f)‘)z. In other
Abn;
() <k
words, the number of all permutations w € S, thatavoid 12--- (k+1)is ¥ ( f)‘)z.
Abn;
A<k
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It remains to prove that this sum also equals Y. ( f)‘)z. But this is easy: The

Abn;
A<k

bijection {A Fn} — {AF n} that sends each partition A to its transpose A! swaps
the roles of £ (A) and A4 (that is, we have £ (A') = Ay and Ay = £(A)). Thus, the

sums Y, (f /\)2 and Y ( f)‘)2 are the same up to reindexing using this bijection.
Abn;

Abn;
(0 <k A<k
Hence, Corollary is proved. O

2.9.3. A/ (Ik + Tsign (\76))

Corollary is not the end of the line. There is a more general result ([Schens60,
Theorem 3], [Stanle”1, Proposition 17.5]) saying the following:

Theorem 2.9.4. Let k,/ € IN. Then, the number of all permutations w € S, that
avoid 12---(k+1)and ({+1)£¢---1is ) (f/\)z.

Abn;
L(A)<k and A</

Proof. From [Schens60, Theorem 3] or [Stanle71, Proposition 17.5], we know that
for any ¢,d € IN, we have

(the number of permutations w € S, such that
the longest increasing subsequence of w has length ¢
and the longest decreasing subsequence of w has length d)
= f)‘>2.
Abn;
¢(A)=d and A=c
Summing this over all c € {0,1,...,¢} and all d € {0,1,...,k}, we obtain

(the number of permutations w € S, such that
the longest increasing subsequence of w has length < /¢
and the longest decreasing subsequence of w has length < k)
= r fA)Z.
Aln;
L(A)<k and A <{

But the permutations counted on the left hand side are just the permutations in
w € Sy that avoid 12--- (¢ +1) and (k+1)¢---1. Upon multiplying them by wy
from the left, they become the permutations w € S, that avoid 12---(k+1) and
({+1)¢---1 (by Proposition 2.7.2). Thus, the number of the latter permutations is

Y ( fA)z. This proves Theorem [2.9.4 ]

Abn;
C(A)<kand A</
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We may thus wonder:
I Question 2.9.5. Can Theorem be proved using the ideals Z; and Jj ?

One way to approach this is as follows. Let Tgn : A — A be the k-algebra
automorphism of A sending each permutation w € S, to (—1)“w. If n! is in-
vertible in k, then Z; N Tgign (Zy) is a free k-submodule of A having dimension

Y ( f)‘)z. Thus, we could answer Question 2.9.5| by finding a k-module

Abn;
L(A)<kand A</

basis of Z; N Tsign (Zy) indexed by permutations that avoid 12+ - - (k+ 1) and (£ +1) - - - 1.
However, such a basis cannot be independent on char k like our above basis of Zj
was, since (for instance) the subspace 7 N Tsign (Zy) for n = 3 has dimension 4
when k = Q but dimension 5 when k = [F,. While this does not strictly rule
out a proof using this subspace, it suggests that new methods are required, since
the techniques we have used to prove Theorem above cannot create a de-
pendence on the characteristic of k. The dimension of the quotient k-module
A/ (T + Teign (Jr)) can depend on chark as well (for n = 3and k = ¢ = 2, it
equals 4 when k = Q but equals 5 when k = ).

However, the “mixed” quotient Zy/ (Zi N Tsign (J7)) = (Zi + Tsign (J¢)) / Tsign (T¢)
behaves better. Equivalently, the quotient A/ (Zy + Tsign (J¢)) has a basis of size
Av), (£ 4+1)\ Av, (k+1) for all k:

Theorem 2.9.6. Let k, £ € IN. Then, the family (W) sy 741\ av, (k+1) 1S @ basis of
the k-module A/ (Zy + Tsign (J7))-

We shall now outline a proof of this theorem (which might not be new; it is
probably a particular case of Donkin’s [Donkin24, Corollary 2.12]). However, the
proof itself relies on Theorem so it produces no new proof of Theorem [2.9.4
Thus, Question remains open.

Outline of the proof of Theorem The proof consists of two steps: (a) showing
that the family (@) v (p41)\ v, (k+1) SPans the k-module A/ (Zx + Tsign (J¢)), and

(b) showing that this k-module is free of rank |Av; (¢+1)\ Av, (k+1)|. Once
these two claims are proved, we will be easily able to conclude the proof using
[Grinbe25, Lemma 5.21.9].

We begin with step (a). Thus, we set out to prove that the family (W) oy’ (711)\ Av,, (k1)

spans the k-module A/ (Zy + Tsign (J¢)). In other words, we must prove that

U € span ((E)AV;(ZH)\AV”(,(H» for each u € S,,. (72)

To prove this, we proceed by induction on u as in lexicographic order, as in the
proof of above. Thus, we let v € S, be arbitrary, and we assume that holds
for all u < v; we must then prove that holds for u = v. We distinguish between
three cases:
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1. If v € Av), (£ + 1) \ Avy, (k + 1), then this claim is obvious.

2. If v € Av,, (k4 1), then this claim is proved just as in our above proof of (37),
since Zy C Zy + Tsign (J1)-

3. Ifv ¢ Av), (£ +1), then we proceed as follows: Set v/ := wpv. Then, v ¢
Av), (£ +1) entails v ¢ Av, (¢ +1) (by Proposition 2.7.2). Hence, the argu-
ment made in the proof of (but applied to ¢ and ¢’ instead of k and v)
shows that

v/ = —(some permutations w > v') in A/ J,.

Multiplying by wg on the left, we transform this into

wov' = —(some permutations wow with w > v’)

= —(some permutations w’ < wyv’) in A/ Jy

(because multiplying by wy on the left flips the lexicographic order: if x > y
in S,, then wox < woy). Since wyv' = v (because v = wyv but wy is an
involution), we can rewrite this as

v = —(some permutations w’' < v) in A/ J,.

Applying the k-algebra automorphism Ty;e, (or, rather, the k-algebra isomor-
phism A/ J; — A/ Tsign (J) it induces) to this equality, we obtain

0 = —(some permutations w’ < v) in A/ Tsign (T0)

(we have suppressed the signs (—1)° and (—1)w/ here, since we are deal-
ing with a linear combination anyway). Thus, this equality also holds in
A/ (I + Tsign (J;)). From here, we easily obtain (72) using the induction
hypothesis.

Thus, is proved, and we conclude that the family (@) 5, (£41)\ Avy (k+1) SPans

the k-module A/ (Zy + Tsign (J7))-

Now we come to step (b) of our plan: showing that this k-module is free of rank
|AV), (04 1)\ Av, (k+1)|.

Here we will need the Murphy cellular bases (see Remark [2.4.3). Namely, apply-
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ing to ¢ instead of k, we obtain J;, = F_, Col Thus,

std,len>/¢"

Tsign (jf) = Tsign (fstdagivg)

span {Tsign (V%‘{}') | (A, U, V) e€SBT(n) and £ () > E}

— span {vsgf{,r | (\,U,V) €SBT (n) and £()) > e}
here, Tr denotes the transpose of a tableau T,
and we have used Tiign (Vléoz}’ ) = Vléivﬁr
(which is proved in [Grinbe25, Proposition 6.8.12])
= span {Vléol‘f (A,U,V) € SBT (n) and ¢ (A') > E}
(here, we have substituted (A!, Ur, Vr) for (A, U,V))
= span {V%OLV}’ (A, U, V) € SBT (n) and A > E}

(since £ (A') = A for each partition A). Adding this to

T = Filner = span { VE | (A, UV) € SBT (n) and £(1) <k},

S

we find
Ty + Tsign (J2)
= span {VI‘}O&V (A, U, V) eSBT (n) and (£ (A) <kor Ay > 6)}
— span {V{}f’{{ (A,U,V) € SBT (n) and A € X}

where

X:={AFn | £(A) <korAs > (}.
This clearly shows that 7j + Tgign (J¢) is a direct addend of A as a k-module (since
it is spanned by a subfamily of the row Murphy basis), and is free of rank
2
(#of (A,U,V) €SBT (n) suchthat A € X) = ) _ (fA> ,
reX
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whereas the quotient k-module A/ (Z; + Tsign (J¢)) is free of rank

(M= L (M= () - T (Y

Abn; Abn; Abn; Abn;

A¢X L(A)>k and A</ M<L L(A)<k and A <¢
&\,_/ ~ J/
=|Avy ((+1)] =| Avyy (k+1)NAV, ((+1) |

(by Corollary (by Theorem

applied to ¢ instead of k)
= |Av, (£ +1)| — |[Avy, (k+ 1) NAv), (£ +1)]
=|Av} (£+1)]
(by G&4))
= |Av), (£ +1)| — |Av, (k+1) N Av), (£ 41)]
— |AV, (£+1)\ Av, (k+1)].

Finally, we are ready for everything to come together. We have shown that the
k-module A/ (Zj + Tegn (Jy)) is free of rank |Av; (£+1)\ Av, (k+1)|. Hence,
[Grinbe25, Lemma 5.21.9] shows that every family of |Av}, (¢ +1)\ Av, (k+1)
vectors that spans this k-module must be a basis of this k-module. Hence, the
family (W) ayr (141)\ Av, (k+1) 18 @ basis of this k-module (since we know that it spans
it). This completes the proof of Theorem [2.9.6, O

2.9.4. Tsign (Z,——1) after Artin—-Wedderburn

We end with a brief excursion into some related work by Hamaker and Rhoades
[HamRho?25].
Letk € N. For any two k-tuples a = (a1, 4z, ..., a;) € [n]*and b = (b1, by, ..., by) €
[n]*, we define the element
Vi i= Y. w e A. (73)

wWESy;
w(a;)=>b; for all i

Note that the V, in Lemma can thus be rewritten as V, 5. If we equip the set
[n]* with the left S,-action given by
w(ay,ay,...,a5) = (w(ay),w(a),..., w(ag))
forall w € S, and (a1,4ay, ..., a;) € [n]*

(as we have already done in the proof of Theorem , then we can rewrite the
definition (73) of Vy, , as

Vbai= ), we A (74)
wESy,;
wa=b
Thus,
Vba=0 unless b = wa for some w € S,,. (75)

Now, Lemma [2.8.5| can be restated as follows:
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Proposition 2.9.7. Let k € IN. Then,

Tsign (Tnk-1) = Span {vb,a | a,be [”]k} :

Here, we understand 7, to mean A when m < 0.

Proof. 1t is easy to see that wVy, = Vyp, for any w € S, and any a,b € [n]k.
Applying this to b = a, we obtain
wVa = Vuya,a (76)
forany w € S, and any a € [n]* (since V, = V).
But Lemma yields
Tsign (jnfkfl) = N A . " span {Va ’ ac [n]k}

—span{w | weES, }
=span{w | w € S,} - spam{Va1 | a€e [n]k}
= span{wva | ac[n)f andw e Sn}
= span {Vwa,a | ac[n)f andw e Sn} (by (76))
= span {Vb,a | a,b € [1]* such that b = wa for some w € Sn}
—span{Vya | abe[n]}  (by @)
This proves Proposition 2.9.7 [
We conclude with the following coda to Theorem 2.9.1}

Theorem 2.9.8. Assume that 7! is invertible in k. Let k € IN. Let all notations be
as in Theorem Then,

Tsign (jnfkfl) = A{Al—n | A >n—k}-

Here, A; denotes the first entry of A.

To prove this, we need a general fact about how Tyjgn interacts with the Artin-
Wedderburn isomorphism AW:

Proposition 2.9.9. Assume that n! is invertible in k. Let all notations be as in
Theorem Let X be a subset of {A Fn}. Let A’ denote the transpose (i.e.,
conjugate) of any partition A. Then,

Tsign (AX) - Axf;

where X' denotes the subset {A! | A€ X} = {Abn | Al € X} of {A+n}.
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Proof of Proposition Let A be a partition of n. It is well-known (e.g., [Grinbe25,
Theorem 5.18.13]) that the sign-twist of the Specht module S” satisfies (S")™®" =

. sign ) o ) .
S, Thus, in turn, §* = (SAt> (since each S;-representation V satisfies (VSIgn) SIEN —

V). Hence, for any a € A, we have the equivalence

(a5* =0) = (a (s4)™" = 0)
— (Tsign (a) SN = o) (77)
(because the definition of (S e reveals that a (SNL)Sign = Tsign (a) SM as k-
modules). Now, yields
Ax = {ae.A | aS)‘:0fora11/\¢X}
- {a € A | Tsgn (a) SN =0 forall A ¢ X} (by (7))
= {a € A | Tsign (a) S* =0 for all A ¢ Xt}

here, we have substituted A for Af,
since X! = {A' | A € X}

= Tign | {2 € A | as* =0 forani 2 ¢ X'}

sign
:AXt
(by (70), applied to U=X")
_ 71
- Tsign ("AXt) .

Since Tign is an isomorphism, we thus conclude that Tgjgn (Ax) = Ax:. This proves
Proposition [2.9.9] O

Proof of Theorem The case k > n is left to the reader (both sides are 0). In the
case k < n, we have n —k —1 € N, so that we can apply Theorem ton—k—-1
instead of k. Thus, from the last equality of Theorem we find

Tn—k-1=AQrn | 1) >n-k=13 = AfAbn | 0(A)=n—k}- (78)

Now, let us use the notations of Proposition Applying Proposition to
X={AbFmn| £(A) >n—k}, we obtain

Tsign (A{)U—n | Z(/\)Zn—k}) = ‘A{/\}—n | 6(A)>n—k}!

= A | () >n—k)

since X! = {AFn | A e X}
for each X C {A - n}

= Abn | Ayzn—k}s
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because it is well-known (see, e.g., [Grinbe25, Theorem 5.1.10 (c)]) that every parti-
tion A satisfies £ (A') = A1. In light of (78), we can rewrite this as

Tsign (Tn—k-1) = A{arn | A;2n—k)-
Theorem is thus proved. O
Combining Theorem with Proposition we conclude that

span{Vb,a | a,be [n]k} = Afprn | Ayzn—k) (79)

for any k € IN, under the assumption that n! is invertible in k. This is essen-
tially [HamRho25, Theorem 3.5]. (“Essentially” because the Loc (&,,C) from
[HamRho25] is not span {Vb,a | a,be [n]k} but rather span {Vb,a | a,be [n) injective},
where a k-tuple is said to be injective if its k entries are distinct.) The same result
appears in [ElFrPill, Theorem 7] (where, again, the “k-cosets” are the Vy, , for in-

jective k-tuples a,b € [n]k). Note that the condition “A; > n — k” on a partition A of
n is equivalent to “A > (n —k, 1k) in lexicographic order”, and this is the condition
used in [ElFrPill, Theorem 7].

It is perhaps also worth mentioning that [EveZoh20, Lemma 3] is saying that if k
is a field of characteristic 0, and if [ € [n], then

1
Afin | a<y = («‘Wm A) , (80)

where Vm is the sum of all permutations w € S, that fix the elements [ 41,1 +

2,...,n. This can be derived from Theorem Theorem (a) and Proposition
2.2.2/ (f) using Proposition 2.9.9| (and the fact that V{;) = Tiign Vm)). We leave the
details to the reader.
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