This note is mostly an auxiliary note for Rep#2. We are going to prove a fact which is used rather often in algebra:

Theorem 1. Let A be a field, and let G be a finite subgroup of the multiplicative group A^\times. Then, G is a cyclic group.

This theorem generalizes the (well-known) fact that the multiplicative group of a finite field is cyclic. Most proofs of this fact can actually be used to prove Theorem 1 in all its generality, so there is not much need to provide another proof here. But yet, let us sketch a proof of Theorem 1 that requires only basic number theory. The downside is that it is very ugly. First, an easy number-theoretical lemma:

Lemma 2. Let i, g and a be three integers such that a is positive, such that $g \mid a$, and such that i is coprime to g. Then, there exists an integer I such that $I \equiv i \mod g$ and such that I is coprime to a.

Proof of Lemma 2. For every integer n, let us denote by $\text{PF } n$ the set of all prime divisors of n. By the unique factorization theorem, for any positive integer n, the set $\text{PF } n$ is finite and satisfies $n = \prod_{p \in \text{PF } n} p^{v_p(n)}$.

Clearly, $a \neq 0$ (since a is positive) and $g \neq 0$ (since $a \neq 0$ and $g \mid a$). Now, $g \mid a$ yields $\text{PF } g \subseteq \text{PF } a$. We have

$$a = \prod_{p \in \text{PF } a} p^{v_p(a)} = \prod_{p \in \text{PF } g} p^{v_p(a)} \cdot \prod_{p \in \text{PF } a \setminus \text{PF } g} p^{v_p(a)} \quad \text{(since } \text{PF } g \subseteq \text{PF } a) .$$

In other words, $a = a_1 a_2$, where $a_1 = \prod_{p \in \text{PF } g} p^{v_p(a)}$ and $a_2 = \prod_{p \in \text{PF } a \setminus \text{PF } g} p^{v_p(a)}$.

The number g is not divisible by any prime $p \in \text{PF } a \setminus \text{PF } g$ (because if g is divisible by a prime p, then $p \in \text{PF } g$, so that p cannot lie in $\text{PF } a \setminus \text{PF } g$). Hence, g is coprime to $p^{v_p(a)}$ for every $p \in \text{PF } a \setminus \text{PF } g$. Consequently, g is coprime to the product $\prod_{p \in \text{PF } a \setminus \text{PF } g} p^{v_p(a)}$. In other words, g is coprime to a_2 (since $\prod_{p \in \text{PF } a \setminus \text{PF } g} p^{v_p(a)} = a_2$). Thus, by Bezout’s Theorem\(^1\), there exist integers ρ_1 and ρ_2 such that $\rho_1 g + \rho_2 a_2 = 1$. Thus, $1 - \rho_1 g = \rho_2 a_2 \equiv 0 \mod a_2$. Now, let $I = i - (i - 1) \rho_1 g$. Then, $I = i - (i - 1) \rho_1 g \equiv i \mod g$. Hence, I is coprime to g (since i is coprime to g). Hence, I is not divisible by any prime $p \in \text{PF } g$. Thus, I is coprime to $p^{v_p(a)}$ for every $p \in \text{PF } g$. Consequently, I is coprime to the product $\prod_{p \in \text{PF } g} p^{v_p(a)}$. In other words, I is coprime to a_1 (since $\prod_{p \in \text{PF } g} p^{v_p(a)} = a_1$). On the other hand, I is coprime to a_2 (since

$$I = i - (i - 1) \rho_1 g = i \frac{(1 - \rho_1 g) + \rho_1 g \equiv \rho_1 g \equiv \rho_1 g + \rho_2 a_2 = 1 \mod a_2}{\equiv 0 \mod a_2}$$

\(^{1}\)Bezout’s theorem states that if λ_1 and λ_2 are two coprime integers, then there exist integers ρ_1 and ρ_2 such that $\rho_1 \lambda_1 + \rho_2 \lambda_2 = 1$.
Hence, I is coprime to a_1a_2 (since I is coprime to a_1 and to a_2). In other words, I is coprime to a (since $a_1a_2 = a$). This proves Lemma 2.

Proof of Theorem 1. We first notice that

$$\text{if } \alpha \text{ and } \beta \text{ are two elements of } G, \text{ then there exists } \gamma \in G \text{ such that}$$

$$\alpha \in \langle \gamma \rangle \text{ and } \beta \in \langle \gamma \rangle.$$ \hspace{1cm} (1)

Proof of (1). Let a be the order of α in G, and let b be the order of β in G. Let g be $\gcd(a, b)$. Then, $g \mid a$ and $g \mid b$. Thus, $(a/g) \mid a$ and $(b/g) \mid b$.

The order of α in G is a. Hence, the order of $\alpha^{a/g}$ in G is $\frac{a}{(a/g)} = g$ (since $(a/g) \mid a$). Consequently, the elements $\left(\alpha^{a/g}\right)^0, \left(\alpha^{a/g}\right)^1, \ldots, \left(\alpha^{a/g}\right)^{g-1}$ are pairwise distinct, and we have $\left(\alpha^{a/g}\right)^g = 1$. Now, for every $i \in \{0, 1, \ldots, g-1\}$, we have $\left(\left(\alpha^{a/g}\right)^i\right)^g = \left(\left(\alpha^{a/g}\right)^g\right)^i = 1$, and thus the element $\left(\alpha^{a/g}\right)^i$ is a root of the polynomial $X^g - 1 \in A[X]$. In other words, the elements $\left(\alpha^{a/g}\right)^0, \left(\alpha^{a/g}\right)^1, \ldots, \left(\alpha^{a/g}\right)^{g-1}$ are roots of the polynomial $X^g - 1 \in A[X]$. Since we know that these elements $\left(\alpha^{a/g}\right)^0, \left(\alpha^{a/g}\right)^1, \ldots, \left(\alpha^{a/g}\right)^{g-1}$ are pairwise distinct, we thus see that the elements $\left(\alpha^{a/g}\right)^0, \left(\alpha^{a/g}\right)^1, \ldots, \left(\alpha^{a/g}\right)^{g-1}$ are pairwise distinct roots of the polynomial $X^g - 1 \in A[X]$. But the polynomial $X^g - 1 \in A[X]$ can only have at most g roots (since any nonzero polynomial of degree g over a field can only have at most g roots), so these roots $\left(\alpha^{a/g}\right)^0, \left(\alpha^{a/g}\right)^1, \ldots, \left(\alpha^{a/g}\right)^{g-1}$ must be all the roots of the polynomial $X^g - 1 \in A[X]$. Consequently, the polynomial $X^g - 1$ equals a constant times $X - \left(\alpha^{a/g}\right)^0 \left(X - \left(\alpha^{a/g}\right)^1\right) \ldots \left(X - \left(\alpha^{a/g}\right)^{g-1}\right)$. But the constant just mentioned must be 1 (since the polynomials $X^g - 1$ and $X - \left(\alpha^{a/g}\right)^0 \left(X - \left(\alpha^{a/g}\right)^1\right) \ldots \left(X - \left(\alpha^{a/g}\right)^{g-1}\right)$ have the same leading term); hence, this becomes

$$X^g - 1 = \left(X - \left(\alpha^{a/g}\right)^0\right) \left(X - \left(\alpha^{a/g}\right)^1\right) \ldots \left(X - \left(\alpha^{a/g}\right)^{g-1}\right).$$

In other words, $X^g - 1 = \prod_{i=0}^{g-1} \left(X - \left(\alpha^{a/g}\right)^i\right)$. Applying this identity to $X = \beta^{b/g}$, we obtain $\left(\beta^{b/g}\right)^g - 1 = \prod_{i=0}^{g-1} \left(\beta^{b/g} - \left(\alpha^{a/g}\right)^i\right)$. Since $\left(\beta^{b/g}\right)^g - 1 = \beta^b - 1 = 0$ (since b is the order of β, and thus $\beta^b = 1$), this becomes $0 = \prod_{i=0}^{g-1} \left(\beta^{b/g} - \left(\alpha^{a/g}\right)^i\right)$. Hence, there must exist some $i \in \{0, 1, \ldots, g-1\}$ such that $\beta^{b/g} - \left(\alpha^{a/g}\right)^i = 0$ (because if a product of elements of a field is zero, then one of the factors must be zero). Consequently, this $i \in \{0, 1, \ldots, g-1\}$ satisfies $\beta^{b/g} = \left(\alpha^{a/g}\right)^i$. Similarly, there exists some $j \in \{0, 1, \ldots, g-1\}$ satisfying $\alpha^{a/g} = \left(\beta^{b/g}\right)^j$. Thus, $\alpha^{a/g} = \left(\beta^{b/g}\right)_{i=0}^{j=g-1} = \left(\beta^{b/g}\right)^j = \left(\alpha^{a/g}\right)^i$. Hence,
\[
\left((\alpha^{a/g})^j \right)^j = \left(\alpha^{a/g} \right)^{ij}, \text{ so that } 1 = \left(\frac{\alpha^{a/g}}{\alpha^{a/g}} \right)^{ij} = \left(\alpha^{a/g} \right)^{ij-1}. \text{ Since the order of the element } \alpha^{a/g} \text{ is } g, \text{ this yields } g \mid ij - 1, \text{ so that } ij \equiv 1 \text{ mod } g. \text{ Hence, } ij \text{ is coprime to } g, \text{ so that } i \text{ must also be coprime to } g. \text{ Thus, by Lemma 2, there exists an integer } I \text{ such that } I \equiv i \text{ mod } g \text{ and such that } I \text{ is coprime to } a. \text{ Since } I \equiv i \text{ mod } g, \text{ we have } g \mid I - i, \text{ and thus } \left(\alpha^{a/g} \right)^{I-i} = 1 \text{ (since } g \text{ is the order of } \alpha^{a/g}), \text{ so that }
\]

\[
\left(\alpha^{a/g} \right)^I = \left(\alpha^{a/g} \right)^{(I-i)+i} = \underbrace{\left(\alpha^{a/g} \right)^{I-i}}_{=1} \left(\alpha^{a/g} \right)^i = \left(\alpha^{a/g} \right)^i = \beta^{b/g}. \quad (2)
\]

Now, the integers \(a \div g \) and \(b \div g \) are coprime (since gcd \((a \div g, b \div g) = \underbrace{\gcd(a,b) \div g = g \div g = 1} \)); hence, by Bezout’s Theorem, there exist integers \(u \) and \(v \) such that \(u \cdot a \div g + v \cdot b \div g = 1 \). Now, let \(\gamma = \alpha^{Iu} \beta^u \). Then, \(\gamma \in G \) and

\[
\gamma^{b/g} = \left(\alpha^{Iv} \beta^u \right)^{b/g} = \left(\alpha^{Iv} \right)^{b/g} \left(\beta^u \right)^{b/g} = \alpha^{Iv \cdot b/g} \left(\beta^u \right)^{b/g} = \alpha^{Iv \cdot b/g} \left(\alpha^{a/g} \right)^I_u \left(\beta^u \right)^{b/g} = \alpha^{Iv \cdot b/g} \left(\alpha^{a/g} \right)^I_u = \alpha^{Iv \cdot b/g} \alpha^{Iu \cdot a/g} = \alpha^{Iv \cdot b/g + Iv \cdot a/g} = \alpha^I
\]

(since \(Iv \cdot b/g + Iv \cdot a/g = I(v \cdot a/g + v \cdot b/g) = I \)). Since \(I \) is coprime to \(a \), there exist integers \(x \) and \(y \) such that \(xI + ya = 1 \) (according to Bezout’s theorem). Thus,

\[
\alpha = \alpha^1 = \alpha^{Ix + ay} \quad \text{(since } 1 = xI + ya = Ix + ay) \]

\[
= \alpha^{Ix} \underbrace{\alpha^{ay}}_{= \alpha^{ay}} = \left(\frac{\alpha^I}{\alpha^{b/g}} \right)^x \left(\frac{\alpha^a}{\alpha^{b/g}} \right)^y = \left(\gamma^{b/g} \right)^x \left(\gamma^{b/g} \right)^y = \left(\gamma^{b/g} \right)^x \in \langle \gamma \rangle.
\]

On the other hand, since \(\gamma = \alpha^{Iv} \beta^u \), we have

\[
\gamma^{a/g} = \left(\alpha^{Iv} \beta^u \right)^{a/g} = \left(\alpha^{Iv} \right)^{a/g} \beta^{au \div (a/g)} = \left(\alpha^{Iv} \right)^{a/g} \beta^{au \div (a/g)} = \left(\alpha^{a/g} \right)^I_u \beta^{au \div (a/g)} \beta^{au \div (a/g)} = \beta \cdot v \cdot (b/g) + u \cdot (a/g) = \beta \cdot v \cdot (b/g) + u \cdot (a/g)
\]

\[
= \beta \cdot \beta \cdot \left(\beta^{v \cdot (b/g)} \right)^u = \beta \cdot \beta \cdot \left(\beta^{v \cdot (b/g)} \right)^u = \beta \cdot \beta
\]

and therefore \(\beta = \gamma^{a/g} \in \langle \gamma \rangle. \)
Altogether, we have proven that $\gamma \in G$, that $\alpha \in \langle \gamma \rangle$ and that $\beta \in \langle \gamma \rangle$. This proves (1).

Now, let us finally prove Theorem 1: Clearly, there exists a subset P of the group G such that $G = \langle P \rangle$ (in fact, the whole group G is an example of such a subset P). Let U be such a subset with the smallest number of elements.\(^2\) Then, U is a subset of the group G such that $G = \langle U \rangle$, but there is no subset U' of G with less elements than U that satisfies $G = \langle U' \rangle$.

We let $k = |U|$, and we write the set U as $U = \{u_1, u_2, ..., u_k\}$, where $u_1, u_2, ..., u_k$ are the k (pairwise distinct) elements of U. Assume now that $k > 1$. Then, u_1 and u_2 are well-defined. Now, there exists an element $\gamma \in G$ such that $u_1 \in \langle \gamma \rangle$ and $u_2 \in \langle \gamma \rangle$ (by (1), applied to $\alpha = u_1$ and $\beta = u_2$), and therefore $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ for every $i \in \{1, 2, ..., k\}$ \(^3\). Hence, $\langle u_1, u_2, ..., u_k \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle$, so that

$$G = \langle U \rangle = \langle \{u_1, u_2, ..., u_k\} \rangle = \langle u_1, u_2, ..., u_k \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle = \langle \{\gamma, u_3, u_4, ..., u_k\} \rangle = \langle U' \rangle,$$

where U' denotes the subset $\{\gamma, u_3, u_4, ..., u_k\}$ of G. But clearly, also $G \supseteq \langle U' \rangle$. Thus, $G = \langle U' \rangle$. Besides, the subset U' of G has less elements than U (because $U' = \{\gamma, u_3, u_4, ..., u_k\}$ has at most $k - 1$ elements, while U has $|U| = k$ elements). This contradicts to the fact that there is no subset U' of G with less elements than U that satisfies $G = \langle U' \rangle$. This contradiction shows that our assumption $k > 1$ was wrong. Hence, $k \leq 1$, so that $k = 1$ or $k = 0$. If $k = 0$, then $|U| = k = 0$ and thus $U = \emptyset$, which leads to $G = \langle \emptyset \rangle = 1$, so that G is a cyclic group. If $k = 1$, then $|U| = k = 1$, so that $U = \{u\}$ for some $u \in G$, and therefore $G = \langle U \rangle = \langle \{u\} \rangle = \langle u \rangle$ is a cyclic group. Hence, in both cases, G is a cyclic group. This proves Theorem 1.

Here is an easy consequence of Theorem 1:

Lemma 3. Let A be a field. Let n be a positive integer, and for every $i \in \{1, 2, ..., n\}$, let ξ_i be a root of unity in A. Then, there exists some root of unity ζ of A and a sequence $(k_1, k_2, ..., k_n)$ of nonnegative integers such that $(\xi_i = \zeta^{k_i}$ for every $i \in \{1, 2, ..., n\})$ and $\gcd(k_1, k_2, ..., k_n) = 1$.

Proof of Lemma 3. Let G be the subgroup $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ of the multiplicative group A^\times. Then, the map

$$\Phi : \langle \xi_1 \rangle \times \langle \xi_2 \rangle \times \cdots \times \langle \xi_n \rangle \to \langle \xi_1, \xi_2, ..., \xi_n \rangle \quad \text{defined by} \quad (x_1, x_2, ..., x_n) \mapsto x_1 x_2 \cdots x_n$$

is surjective (because every element of $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ has the form $\prod_{i=1}^{n} \xi_i^{f_i}$ for some n-tuple $(f_1, f_2, ..., f_n)$ of integer, and thus is $\Phi \left(\langle \xi_1^{f_1}, \xi_2^{f_2}, ..., \xi_n^{f_n} \rangle \right)$, and the set $\langle \xi_1 \rangle \times \langle \xi_2 \rangle \times \cdots \times \langle \xi_n \rangle$ is finite (since the set $\langle \xi_i \rangle$ is finite for every $i \in \{1, 2, ..., n\}$, because ξ_i is a root of unity). Hence, the set $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ is finite. Thus, $G = \langle \xi_1, \xi_2, ..., \xi_n \rangle$ is a finite subgroup of

\(^2\) Indeed, such a U exists, because the set of all subsets of the group G is finite (since G itself is finite).

\(^3\) In fact, three cases are possible: either $i = 1$, or $i = 2$, or $i \geq 3$. If $i = 1$, then $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ follows from $u_1 \in \langle \gamma \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle$. If $i = 2$, then $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ follows from $u_2 \in \langle \gamma \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle$. Finally, if $i \geq 3$, then $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ is trivial. Thus, $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ holds in all cases.
Hence, by Theorem 1, this group G is cyclic, so that there exists some $\tau \in G$ such that $G = \langle \tau \rangle$. Now, if u is the order of τ in the group G, then $\langle \tau \rangle = \{\tau^0, \tau^1, \ldots, \tau^{u-1}\}$. Hence, for every $i \in \{1, 2, \ldots, n\}$, there exists some nonnegative integer ℓ_i such that $\xi_i = \tau^{\ell_i}$ (since $\xi_i \in G = \langle \tau \rangle = \{\tau^0, \tau^1, \ldots, \tau^{u-1}\}$). Now, let $\ell = \gcd(\ell_1, \ell_2, \ldots, \ell_n)$. Let $\zeta = \tau^\ell$, and let $k_i = \ell_i / \ell$ for every $i \in \{1, 2, \ldots, n\}$. Then, $\ell_i = \ell k_i$ for every $i \in \{1, 2, \ldots, n\}$.

Now we know that ζ is a root of unity (since $\zeta \in G$, and thus Lagrange’s theorem yields $\zeta | G | = 1$), and for every $i \in \{1, 2, \ldots, n\}$ we have $\xi_i = \tau^{\ell_i} = \tau^{\ell k_i} = \left(\tau^\ell \right)^{k_i} = \zeta^{k_i}$.

Finally, recall that $k_i = \ell_i / \ell$ for every $i \in \{1, 2, \ldots, n\}$. Thus, $\gcd(k_1, k_2, \ldots, k_n) = \gcd(\ell_1 / \ell, \ell_2 / \ell, \ldots, \ell_n / \ell) = \gcd(\ell_1, \ell_2, \ldots, \ell_n) / \ell = 1$. Thus, Lemma 3 is proven.