84th Putnam contest 2023 problem B6 with solution

Darij Grinberg

December 2, 2023

0.1. Problem B6

The following is Problem B6 on the 84th Putnam contest 2023 in the form I proposed it (which is slightly easier than what made it on the contest, because the answer is provided).

Problem 1. Let *m* be a positive integer. Let *n* be either 2m or 2m - 1. Let *A* be the $n \times n$ -matrix $(a_{i,j})_{1 \le i \le n, 1 \le j \le n'}$ where $a_{i,j}$ is the number of all pairs (x, y) of nonnegative integers satisfying xi + yj = n. Prove that det $A = (-1)^{m-1} \cdot 2m$. (6377)

	0	3	2	2	2 V	۱.
	3	0	1	0	1	
(For instance, for $m = 3$ and $n = 5$, we have $A =$	2	1	0	0	1	.)
	2	0	0	0	1	
	2	1	1	1	2 /	/

Remark 0.1. This is likely connected to gcd-matrices and Möbius inversion.

Solution to Problem 1. By assumption, n is either 2m or 2m - 1. Hence, m is either n/2 or (n+1)/2. Thus, it easily follows that $0 \le m \le n$ and $m-1 < n \le n$ n/2.

We shall use the *Iverson bracket notation*: If \mathcal{A} is a logical statement, then $[\mathcal{A}]$ shall mean $\begin{cases} 1, & \text{if } \mathcal{A} \text{ is true;} \\ 0, & \text{if } \mathcal{A} \text{ is false.} \end{cases}$

We set $[n] := \{1, 2, ..., n\}$ and $[0, n] := \{0, 1, ..., n\}$.

If *M* is any matrix, then we will use the notation $M_{i,i}$ for the entry of *M* in the *i*-th row and the *j*-th column. Thus, in particular, the entries of our matrix A are $A_{i,j} = a_{i,j}$ for all $i, j \in [n]$.

We shall consider $n \times (n+1)$ -matrices whose rows are indexed by 1, 2, ..., n and whose columns are indexed by $0, 1, \ldots, n$. Likewise, we shall consider $(n + 1) \times n$ -matrices whose rows are indexed by 0, 1, ..., n and whose columns are indexed by 1, 2, ..., n.

If *M* is an $n \times (n + 1)$ -matrix, and $j \in [0, n]$, then $M^{\sim j}$ shall denote the $n \times n$ -matrix obtained from *M* by removing the *j*-th column. Likewise, if *N* is an $(n + 1) \times n$ -matrix, and $i \in [0, n]$, then $N_{\sim i}$ shall denote the $n \times n$ -matrix obtained from *N* by removing the *i*-th column. The Cauchy–Binet formula (or, more precisely, a particular case thereof) says that if *M* is an $n \times (n + 1)$ -matrix and *N* is an $(n + 1) \times n$ -matrix, then

$$\det(MN) = \sum_{k=0}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right).$$
(1)

Now, let *M* be the $n \times (n + 1)$ -matrix $([i | j])_{i \in [n], j \in [0,n]}$ (so that its (i, j)-entry is 1 if i | j and 0 otherwise). Let *N* be the $(n + 1) \times n$ -matrix $([j | n - i])_{i \in [0,n], j \in [n]}$. For example, for n = 8, we have

	(j = 0	j = 1	<i>j</i> = 2	j = 3	j = 4	j = 5	<i>j</i> = 6	j = 7	j = 8
	i = 1	1	1	1	1	1	1	1	1	1
	<i>i</i> = 2	1	0	1	0	1	0	1	0	1
	<i>i</i> = 3	1	0	0	1	0	0	1	0	0
M =	i = 4	1	0	0	0	1	0	0	0	1
	<i>i</i> = 5	1	0	0	0	0	1	0	0	0
	i = 6	1	0	0	0	0	0	1	0	0
	i = 7	1	0	0	0	0	0	0	1	0
	i = 8	1	0	0	0	0	0	0	0	1 /

and

$$N = \begin{pmatrix} j=1 & j=2 & j=3 & j=4 & j=5 & j=6 & j=7 & j=8 \\ i=0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ i=1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ i=2 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ i=3 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ i=4 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ i=5 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ i=6 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ i=7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ i=8 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Now, it is easy to see that

$$A = MN$$

(2)

(Indeed, for each $i, j \in [n]$, we have

$$(MN)_{i,j} = \sum_{k=0}^{n} M_{i,k} N_{k,j} \qquad \text{(by the definition of matrix multiplication)}$$
$$= \sum_{k=0}^{n} \underbrace{[i \mid k] [j \mid n-k]}_{=[i|k \text{ and } j|n-k]} \qquad \text{(by the definitions of } M \text{ and } N)$$
$$= \sum_{k=0}^{n} [i \mid k \text{ and } j \mid n-k]$$
$$= (\text{number of } k \in [0, n] \text{ satisfying } i \mid k \text{ and } j \mid n-k)$$
$$= (\text{number of pairs } (x, y) \text{ of nonnegative integers satisfying } xi + yj = n)$$
$$\begin{pmatrix} \text{by a simple bijection, explained in} \\ \text{the footnote following this computation} \end{pmatrix}$$
$$= a_{i,j} \qquad \text{(by the definition of } a_{i,j})$$
$$= A_{i,j}.$$

¹ Thus,
$$MN = A$$
, so that $A = MN$.)

¹Let me justify the equality

(number of $k \in [0, n]$ satisfying $i \mid k$ and $j \mid n - k$) = (number of pairs (x, y) of nonnegative integers satisfying xi + yj = n)

that was used above. Clearly, it suffices to find a bijection

from the set $\mathfrak{A} := \{k \in [0, n] \text{ satisfying } i \mid k \text{ and } j \mid n - k\}$ to the set $\mathfrak{B} := \{\text{pairs } (x, y) \text{ of nonnegative integers satisfying } xi + yj = n\}.$

We can construct such a bijection as follows:

• For each $k \in \mathfrak{A}$, we have $(k/i, (n-k)/j) \in \mathfrak{B}$ (since $k \in \mathfrak{A}$ entails $k \in [0, n]$ and $i \mid k$ and $j \mid n-k$ and therefore $k/i \in \mathbb{N}$ and $(n-k)/j \in \mathbb{N}$, and of course we have (k/i)i + ((n-k)/j)j = k + (n-k) = n). Thus, we can define a map

$$\phi: \mathfrak{A} \to \mathfrak{B},$$

$$k \mapsto (k/i, (n-k)/j).$$

- For each $(x, y) \in \mathfrak{B}$, we have $xi \in \mathfrak{A}$ (in fact, $(x, y) \in \mathfrak{B}$ entails $x, y \in \mathbb{N}$ and xi + yj = n; now we clearly have $i \mid xi$ and $j \mid yj = \underbrace{xi + yj}_{i} xi = n xi$ and finally
 - $xi \in [0, n]$ (since $xi \ge 0$ and $xi \le xi + yj = n$); but these three facts combined yield $xi \in \mathfrak{A}$). Thus, we can define a map

$$\psi:\mathfrak{B}\to\mathfrak{A},\\(x,y)\mapsto xi.$$

• The maps ϕ and ψ are easily seen to be mutually inverse (indeed, $\psi \circ \phi = id$ is obvious; and $\phi \circ \psi = id$ can be proved as follows: if $(x, y) \in \mathfrak{B}$, then xi + yj =

Now, from (2), we obtain

$$\det A = \det (MN) = \sum_{k=0}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right)$$
(3)

(by (1)). It remains to manage the right hand side. We will need several claims:

Claim 1: Let
$$k \in [0, n]$$
 satisfy $k > \frac{n}{2}$. Then,
 $\det \left(M^{\sim k} \right) = (-1)^{k+1}$.

Proof of Claim 1. We have $k > \frac{n}{2}$, so that 2k > n. Hence, the only multiples of k in the set [0, n] are 0 and k. In other words, we have $[k \mid j] = 0$ for all $j \in [0, n]$ other than 0 and k, whereas $[k \mid j] = 1$ holds for j = 0 and for j = k.

Thus, the *k*-th row of the matrix *M* has only two entries distinct from 0: namely, a 1 in the 0-st column, and a 1 in the k-th column. Therefore, the *k*-th row of the matrix $M^{\sim k}$ is (1, 0, 0, ..., 0) (since the 1 in the *k*-th column disappears when we remove this column). Expanding det $(M^{\sim k})$ along this row, we thus obtain det $(M^{\sim k}) = (-1)^{k+1} \cdot \det Q$, where Q is the result of removing the 0-th column and the *k*-th row from $M^{\sim k}$. But it is easy to see that the matrix Q is upper-triangular with its diagonal entries all being equal to 1 (since $[i \mid j] = 0$ if i > j, and since $[i \mid j] = 1$ if i = j). Therefore, its determinant is det Q = 1. Thus, det $(M^{\sim k}) = (-1)^{k+1} \cdot \det Q = (-1)^{k+1}$. This proves Claim

1.

Claim 2: Assume that n = 2m. Then,

$$\det\left(M^{\sim(n/2)}\right)=0.$$

Proof of Claim 2. From n = 2m, we see that *n* is even. Thus, $n/2 \in [n]$ (since n/2 = m > 0), so that the matrix M has an (n/2)-th row. Moreover, this (n/2)-th row is not the *n*-th row (since n = 2m > 0 and thus n/2 < n).

Now, it is easy to see that the (n/2)-th row and the *n*-th row of M agree in all their entries except for the ones in the (n/2)-th column (since any $i \in [0, n]$ sat-(1 if $i \in \{0, n/2, n\}$. (1 if $i \subset \int 0 n \mathbf{l}$. is

fies
$$[n/2 \mid j] = \begin{cases} 1, & n \neq c \{0, n \neq 2, n \} \\ 0, & \text{otherwise} \end{cases}$$
 and $[n \mid j] = \begin{cases} 1, & n \neq c \{0, n \neq 2, n \} \\ 0, & \text{otherwise}, \end{cases}$ and

n and thus
$$n - xi = yj$$
, so that $\phi(\psi((x,y))) = \phi(xi) = \left(\frac{xi}{i}, \underbrace{(n-xi)}_{=yj}\right) = \phi(xi)$

(xi/i, yj/j) = (x, y), so that $\phi \circ \psi = id$ is proved). Thus, $\phi : \mathfrak{A} \to \mathfrak{B}$ is a bijection. This is exactly the bijection we need.

these two values disagree only for j = n/2). Since the (n/2)-th column is removed in $M^{\sim (n/2)}$, this entails that the (n/2)-th row and the *n*-th row of the matrix $M^{\sim (n/2)}$ completely agree. Hence, the matrix $M^{\sim (n/2)}$ has two equal rows, and therefore its determinant is 0. In other words, det $(M^{\sim (n/2)}) = 0$. This proves Claim 2.

Claim 3: Let
$$k \in [0, n]$$
. Then, det $(N_{\sim k}) = (-1)^{n(n-1)/2} \cdot \det(M^{\sim (n-k)})$.

Proof of Claim 3. From $M = ([i | j])_{i \in [n], j \in [0,n]}$, we see that the transpose M^T of the matrix M is given by $M^T = ([j | i])_{i \in [0,n], j \in [n]}$. Comparing this with $N = ([j | n - i])_{i \in [0,n], j \in [n]}$, we observe that the matrix N can be obtained from the matrix M^T by reversing the order of the rows, i.e., by permuting the rows using the permutation

$$[0,n] \rightarrow [0,n],$$

 $i \mapsto n-i.$

Hence, the matrix $N_{\sim k}$ is obtained from the matrix $(M^T)_{\sim (n-k)}$ in the exact same way (i.e., by reversing the order of the rows). Therefore,

$$\det(N_{\sim k}) = (-1)^{\sigma} \cdot \det\left(\left(M^{T}\right)_{\sim (n-k)}\right),$$

where σ is a permutation of an *n*-element set that reverses the order of its elements. Basic combinatorics shows that the sign $(-1)^{\sigma}$ of this latter permutation equals $(-1)^{\sigma} = (-1)^{n(n-1)/2}$ (for example, because this permutations has n(n-1)/2 inversions). Thus, we obtain

$$\det(N_{\sim k}) = \underbrace{(-1)^{\sigma}}_{=(-1)^{n(n-1)/2}} \cdot \det\left(\underbrace{(M^{T})_{\sim (n-k)}}_{=(M^{\sim (n-k)})^{T}}\right)$$
$$= (-1)^{n(n-1)/2} \cdot \underbrace{\det\left((M^{\sim (n-k)})^{T}\right)}_{=\det(M^{\sim (n-k)})}_{(\text{since } \det(U^{T}) = \det U}_{\text{for any matrix } U)} = (-1)^{n(n-1)/2} \cdot \det\left(M^{\sim (n-k)}\right).$$

This proves Claim 3.

Claim 4: We have

$$\sum_{k=0}^{m-1} \left(-1\right)^k \det\left(M^{\sim k}\right) = m.$$

Proof of Claim 4. Let M' be the $(n + 1) \times (n + 1)$ -matrix obtained from M by attaching an extra row (1, 1, ..., 1) at the very top of the matrix. Then, the top-most two rows of the matrix M' are equal (since the top row of M already is (1, 1, ..., 1)), so that det (M') = 0. On the other hand, expanding the determinant of M' along the topmost row, we obtain

$$\det(M') = \sum_{k=0}^{n} (-1)^{k} 1 \cdot \det(M^{\sim k}) = \sum_{k=0}^{n} (-1)^{k} \det(M^{\sim k})$$
$$= \sum_{k=0}^{m-1} (-1)^{k} \det(M^{\sim k}) + \sum_{k=m}^{n} (-1)^{k} \det(M^{\sim k})$$
(4)

(since $0 \le m \le n$). However, it is not hard to see that

$$\sum_{k=m}^{n} \left(-1\right)^{k} \det\left(M^{\sim k}\right) = -m,$$
(5)

for example by distinguishing between two cases:

• If n = 2m, then m = n/2 and thus

$$\begin{split} \sum_{k=m}^{n} (-1)^{k} \det \left(M^{\sim k} \right) \\ &= \sum_{k=n/2}^{n} (-1)^{k} \det \left(M^{\sim k} \right) \\ &= (-1)^{n/2} \underbrace{\det \left(M^{\sim (n/2)} \right)}_{\text{(by Claim 2)}} + \sum_{k=n/2+1}^{n} (-1)^{k} \underbrace{\det \left(M^{\sim k} \right)}_{\substack{=(-1)^{k+1} \\ \text{(by Claim 1)}}} \\ &= \underbrace{(-1)^{n/2} 0}_{=0} + \sum_{k=n/2+1}^{n} \underbrace{(-1)^{k} (-1)^{k+1}}_{=-1} = \sum_{k=n/2+1}^{n} (-1) = (n-n/2) (-1) \\ &= -n/2 = -m \qquad (\text{since } m = n/2) \,. \end{split}$$

• If $n \neq 2m$, then n = 2m - 1 (since *n* is either 2m or 2m - 1) and thus

m = (n + 1) / 2 and therefore

$$\sum_{k=m}^{n} (-1)^{k} \det \left(M^{\sim k} \right)$$

$$= \sum_{k=(n+1)/2}^{n} (-1)^{k} \underbrace{\det \left(M^{\sim k} \right)}_{\substack{=(-1)^{k+1} \\ (by \operatorname{Claim} 1, \\ \operatorname{since} k \ge (n+1)/2 > n/2)}}$$

$$= \sum_{k=(n+1)/2}^{n} \underbrace{(-1)^{k} (-1)^{k+1}}_{=-1} = (n - (n+1)/2 + 1) (-1)$$

$$= -(n+1)/2 = -m \qquad (\operatorname{since} m = (n+1)/2).$$

In either case, we have proved (5). Now, (4) becomes

$$\det(M') = \sum_{k=0}^{m-1} (-1)^k \det(M^{\sim k}) + \underbrace{\sum_{k=m}^n (-1)^k \det(M^{\sim k})}_{\substack{=-m \\ (by (5))}}$$
$$= \sum_{k=0}^{m-1} (-1)^k \det(M^{\sim k}) - m.$$

Hence,

$$\sum_{k=0}^{m-1} (-1)^k \det \left(M^{\sim k} \right) - m = \det \left(M' \right) = 0,$$

so that

$$\sum_{k=0}^{m-1} \left(-1\right)^k \det\left(M^{\sim k}\right) = m.$$

1			L
1			L
L,	_	_	

This proves Claim 4. Now, (3) becomes

$$\det A = \sum_{k=0}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right)$$
$$= \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right) + \sum_{k=m}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right)$$
(6)

(since $0 \le m \le n$). However, it is easy to see that

$$\sum_{k=m}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right) = \sum_{k=n-m+1}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right), \tag{7}$$

for instance by distinguishing between two cases:

• If n = 2m, then m = n/2 and thus

$$\sum_{k=m}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right)$$

$$= \sum_{k=n/2}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right)$$

$$= \underbrace{\det\left(M^{\sim (n/2)}\right)}_{\text{(by Claim 2)}} \cdot \det\left(N_{\sim (n/2)}\right) + \sum_{k=n/2+1}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right)$$

$$= \sum_{k=n/2+1}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right) = \sum_{k=n-m+1}^{n} \det\left(M^{\sim k}\right) \cdot \det\left(N_{\sim k}\right)$$

(since n/2 = n - m (because $n - m_{=n/2} = n - n/2 = n/2$)), so that (7) holds.

- noius.
- If $n \neq 2m$, then n = 2m 1 (since *n* is either 2m or 2m 1) and thus m = n m + 1, so that (7) holds tautologically (since the summation bounds on both sides are equal).

In either case, we have proved (7). Now, (6) becomes

$$\det A = \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right) + \sum_{\substack{k=m \\ m \to m+1}}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(N_{\sim k} \right)}$$

$$= \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \underbrace{\det \left(N_{\sim k} \right)}_{=(-1)^{n(n-1)/2} \cdot \det \left(M^{\sim (n-k)} \right)}_{\text{(by Claim 3)}}$$

$$+ \sum_{\substack{k=n-m+1 \\ k=n-m+1}}^{n} \det \left(M^{\sim k} \right) \cdot \underbrace{\det \left(M^{\sim (n-k)} \right)}_{\text{(by Claim 3)}}$$

$$= (-1)^{n(n-1)/2} \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \det \left(M^{\sim (n-k)} \right)$$

$$+ (-1)^{n(n-1)/2} \sum_{\substack{k=0 \\ k=n-m+1}}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(M^{\sim (n-k)} \right)$$

$$= (-1)^{n(n-1)/2} \sum_{\substack{k=0 \\ k=n-m+1}}^{n} \det \left(M^{\sim k} \right) \cdot \det \left(M^{\sim (n-k)} \right)$$

$$+ (-1)^{n(n-1)/2} \sum_{\substack{k=0 \\ k=0}}^{n-1} \det \left(M^{\sim (n-k)} \right) \cdot \det \left(M^{\sim (n-k)} \right)$$

$$+ (-1)^{n(n-1)/2} \sum_{\substack{k=0 \\ k=0}}^{m-1} \det \left(M^{\sim (n-k)} \right) \cdot \det \left(M^{\sim k} \right)$$

(here, we have substituted n - k for k in the second sum)

$$= (-1)^{n(n-1)/2} \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \det \left(M^{\sim (n-k)} \right) + (-1)^{n(n-1)/2} \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \det \left(M^{\sim (n-k)} \right) = 2 \cdot (-1)^{n(n-1)/2} \sum_{k=0}^{m-1} \det \left(M^{\sim k} \right) \cdot \underbrace{\det \left(M^{\sim (n-k)} \right)}_{= (-1)^{(n-k)+1}}$$

(by Claim 1, applied to n-k instead of k (since $k \le m-1 < n/2$ and thus n-k > n-n/2 = n/2))

$$= 2 \cdot (-1)^{n(n-1)/2} \sum_{k=0}^{m-1} \det\left(M^{\sim k}\right) \cdot \underbrace{(-1)^{(n-k)+1}}_{=(-1)^{n+1}(-1)^k}$$

$$= 2 \cdot \underbrace{(-1)^{n(n-1)/2} (-1)^{n+1}}_{=(-1)^{m-1}} \underbrace{\sum_{k=0}^{m-1} (-1)^{k} \det \left(M^{\sim k}\right)}_{\text{(by Claim 4)}}$$

(by easy modulo-2 computations)
$$= 2 \cdot (-1)^{m-1} \cdot m = (-1)^{m-1} \cdot 2m.$$

This solves the problem.