Discrete Morse theory and the cohomology ring Robin Forman https://math.rice.edu/~forman/product.ps version of 2000 ## Errata and addenda by Darij Grinberg ## 7. Errata and addenda The following list contains some corrections and comments to Robin Forman's paper "Discrete Morse theory and the cohomology ring". I refer to the preprint version of 2000 of this paper (available from https://math.rice.edu/~forman/product.ps), but some of the errors listed below are also contained in the published version¹. The latter error are marked with an \spadesuit sign. I have only read Sections 1 and 2 of the paper completely; the corrections to the other sections thus are likely to be less than comprehensive. - page 2: In the complex \mathcal{M}^* , the first arrow should be " \leftarrow " instead of " \rightarrow ". - **♠ page 12, §1:**² In "sign chosen so that $\langle a, \partial V(b) \rangle = -1$ ", replace "V(b)" by "V(a)". - page 12, §1: "if a for all simplices $a'' \rightarrow$ "for all simplices a''. - \spadesuit page 12, §1:³ Near the bottom of this page, you claim that every simplex *a* of *M* satisfies exactly one of the ofllowing: - (i) a is the smaller simplex in one V-pair⁴; - (ii) *a* is the larger simplex in one *V*-pair; - (iii) *a* is critical. This is correct, but should perhaps be justified. The nontrivial part of the proof is showing that (i) and (ii) cannot hold at the same time, i.e., that a simplex $a^{(p)} \in M$ cannot be both the smaller simplex in one V-pair $\left\{a^{(p)} < b^{(p+1)}\right\}$ and the larger simplex in another V-pair $\left\{c^{(p-1)} < a^{(p)}\right\}$ at the same time. So let me show this: Assume the contrary. Thus, there exists a simplex $a^{(p)} \in M$ that is both the smaller simplex in one V-pair $\left\{a^{(p)} < b^{(p+1)}\right\}$ and the larger simplex in another V-pair $\left\{c^{(p-1)} < a^{(p)}\right\}$ at the same time. ¹Transactions of the American Mathematical Society **354**, issue 12, pp. 5063–5085. ²This is on page 5071 of the published version. ³This is on page 5071 of the published version. $^{^4}$ By "V-pair", I mean a pair of simplices that belongs to V. Consider this simplex $a^{(p)}$ and these two pairs. Thus, $\left\{a^{(p)} < b^{(p+1)}\right\} \in V$ and $\left\{c^{(p-1)} < a^{(p)}\right\} \in V$. Since a simplex of dimension k is just a (k+1)-element set, we see from $a^{(p)} < b^{(p+1)}$ that the set b contains a as a subset but its size is just 1 larger than the size of a. Therefore, $b = a \cup \{x\}$ for some element $x \notin a$. Consider this x. Similarly, from $c^{(p-1)} < a^{(p)}$, we see that $a = c \cup \{y\}$ for some element $y \notin c$. Consider this y. Note that $a \subseteq b$ (since $a^{(p)} < b^{(p+1)}$) and $y \in \{y\} \subseteq c \cup \{y\} = a$. Now, define a simplex $d := b \setminus \{y\}$. Then, $d \subseteq b$, so that $d \in M$ (since $b \in M$, but M is a simplicial complex). Moreover, $y \in a \subseteq b$, so that the size of the set $b \setminus \{y\}$ is 1 smaller than the size of b. In other words, the size of the set d is 1 smaller than the size of b (since $d = b \setminus \{y\}$). Hence, the simplex d has dimension p (since b has dimension p + 1). Thus, we can write d as $d^{(p)}$. However, $a = c \cup \{y\}$, thus $c = a \setminus \{y\}$ (since $y \notin c$). Hence, $c = \underbrace{a}_{\subseteq b} \setminus \{y\} \subseteq b \setminus \{y\} = d$. In other words, $c^{(p-1)} \subseteq d^{(p)}$ (since $c = c^{(p-1)}$) and $d = d^{(p)}$). Therefore, $c^{(p-1)} < d^{(p)}$. In other words, $d^{(p)} > c^{(p-1)}$. Also, recall that $d \subseteq b$. In other words, $d^{(p)} \subseteq b^{(p+1)}$. Hence, $d^{(p)} < b^{(p+1)}$. We shall now show that a = d. Recall that V is the set of all pairs $\left\{u^{(k)} < v^{(k+1)}\right\}$ of simplices in M satisfying $f(u) \geq f(v)$. Hence, we have $f(c) \geq f(a)$ (since $\left\{c^{(p-1)} < a^{(p)}\right\} \in V$) and $f(a) \geq f(b)$ (since $\left\{a^{(p)} < b^{(p+1)}\right\} \in V$). In other words, we have $f(a) \leq f(c)$ and $f(b) \leq f(a)$. Now, we are in one of the following two cases: Case 1: We have $f(d) \leq f(c)$. Case 2: We have f(d) > f(c). Let us first consider Case 1. In this case, we have $f(d) \leq f(c)$. Since f is a discrete Morse function, the set $$\left\{ v^{(p)} > c^{(p-1)} \mid f(v) \le f(c) \right\}$$ has size ≤ 1 (by the definition of a discrete Morse function). Hence, any two elements of this set must be equal. Since both simplices $a^{(p)}$ and $d^{(p)}$ belong to this set (because $a^{(p)} > c^{(p-1)}$ and $f(a) \leq f(c)$ and $d^{(p)} > c^{(p-1)}$ and $f(d) \leq f(c)$), we thus conclude that these two simplices $a^{(p)}$ and $d^{(p)}$ are equal. In other words, a = d. Thus, we have proved a = d in Case 1. Let us now consider Case 2. In this case, we have f(d) > f(c). Hence, $f(d) > f(c) \ge f(a) \ge f(b)$, so that $f(d) \ge f(b)$. Since *f* is a discrete Morse function, the set $$\left\{ v^{(p)} < b^{(p+1)} \mid f(v) \ge f(b) \right\}$$ has size ≤ 1 (by the definition of a discrete Morse function). Hence, any two elements of this set must be equal. Since both simplices $a^{(p)}$ and $d^{(p)}$ belong to this set (because $a^{(p)} < b^{(p+1)}$ and f(a) > f(b) and $d^{(p)} < b^{(p+1)}$ and f(d) > f(b), we thus conclude that these two simplices $a^{(p)}$ and $d^{(p)}$ are equal. In other words, a = d. Thus, we have proved a = d in Case 2. We now have shown that a = d in both Cases 1 and 2. Thus, a = d always holds. However, $y \notin d$ (since $d = b \setminus \{y\}$). But this contradicts $y \in a = d$. This contradiction shows that our assumption was false, qed. - \spadesuit page 13, definition of m(s) for an upper gradient step:⁵ After "m(s) = $-\langle a_0, \partial b_0 \rangle \langle \partial b_0, a_1 \rangle''$, I would add "= $\langle \partial V a_0, a_1 \rangle$ " (since this is tacitly being used later on). - \spadesuit page 13, definition of m(s) for a lower gradient step:⁶ After "m(s) = $-\langle \partial a_0, b_0 \rangle \langle b_0, \partial a_1 \rangle''$, I would add "= $\langle V \partial a_0, a_1 \rangle$ " (since this is tacitly being used later on). This equality follows from the fact that (if we WLOG assume that b_0 is oriented so that $V(b_0) = a_1$) we have $\langle b_0, \partial a_1 \rangle = \langle b_0, \partial V b_0 \rangle = a_1$ -1 and $\langle \partial a_0, b_0 \rangle = \langle V \partial a_0, V b_0 \rangle = \langle V \partial a_0, a_1 \rangle$. - page 15: The first two words on this page should be "critical simplices", not "gradient paths". - \spadesuit page 15, Lemma 1.3 (i): Add a comma before " s_{r-1} ". - ♠ page 15, Lemma 1.3 (ii):⁸ Remove the word "nontrivial". - \spadesuit page 16:9 "straighforward" \rightarrow "straightforward". - ♠ page 16:¹⁰ The sentence following Theorem 1.4 should be part of Theorem 1.4 (in particular, it should be italicized). - ♠ page 18:¹¹ You say: "The general case is not much harder.". Let me elaborate on this: ⁵This is on page 5071 of the published version. ⁶This is on page 5072 of the published version. ⁷This is on page 5072 of the published version. ⁸This is on page 5072 of the published version. ⁹This is on page 5073 of the published version. ¹⁰This is on page 5073 of the published version. ¹¹This is on page 5075 of the published version. We have $\Phi^{\infty} = \Phi^{N}$. Recall also that $\partial \circ \Phi = \Phi \circ \partial$; in other words, the operator Φ commutes with ∂ . Hence, any power Φ^{i} of Φ also commutes with ∂ . In other words, we have $$\partial \circ \Phi^i = \Phi^i \circ \partial$$ for each $i \in \mathbb{N}$. (1) For any two operators $\alpha, \beta: C_*(M, \mathbb{Z}) \to C_*(M, \mathbb{Z})$, we shall write $\alpha \simeq \beta$ (and say that α and β are *chain-homotopic*) if and only if there exists an operator $K: C_*(M, \mathbb{Z}) \to C_{*+1}(M, \mathbb{Z})$ satisfying $\beta - \alpha = \partial \circ K + K \circ \partial$. The relation \simeq is an equivalence relation (this is a fundamental result and easy to check). Now, for any $i \in \mathbb{N}$, we have $$\begin{split} &\partial \circ \left(\Phi^i \circ V \right) + \left(\Phi^i \circ V \right) \circ \partial \\ &= \underbrace{\partial \circ \Phi^i}_{(\text{by } (1))} \circ V + \Phi^i \circ V \circ \partial \\ &= \Phi^i \circ \partial \circ V + \Phi^i \circ V \circ \partial = \Phi^i \circ \underbrace{\left(\partial \circ V + V \circ \partial \right)}_{(\text{since } \Phi = 1 + \partial \circ V + V \circ \partial)} \\ &= \Phi^i \circ (\Phi - 1) = \underbrace{\Phi^i \circ \Phi}_{=\Phi^{i+1}} - \underbrace{\Phi^i \circ 1}_{=\Phi^i} \qquad \left(\text{since } \Phi^i \text{ is a linear map} \right) \\ &= \Phi^{i+1} - \Phi^i. \end{split}$$ In other words, for any $i \in \mathbb{N}$, we have $\Phi^{i+1} - \Phi^i = \partial \circ (\Phi^i \circ V) + (\Phi^i \circ V) \circ \partial$. Hence, for any $i \in \mathbb{N}$, we have $\Phi^i \simeq \Phi^{i+1}$ (since $\Phi^{i+1} - \Phi^i = \partial \circ K + K \circ \partial$ for $K := \Phi^i \circ V$). In other words, we have the following chain of relations: $$\Phi^0 \sim \Phi^1 \sim \Phi^2 \sim \Phi^3 \sim \cdots$$ Since the relation \simeq is an equivalence relation, we thus find $\Phi^0 \simeq \Phi^N$. In other words, $1 \simeq \Phi^\infty$ (since $\Phi^0 = 1$ and $\Phi^N = \Phi^\infty$). In other words, there exists an operator $K: C_*(M, \mathbb{Z}) \to C_{*+1}(M, \mathbb{Z})$ satisfying $\Phi^\infty - 1 = \partial \circ K + K \circ \partial$, qed. - page 20, §3: "to be the dual" \rightarrow "be the dual". - page 21: "The proof easily adapted" \rightarrow "The proof can be easily adapted". - **♦ page 21:**¹² Again, in the complex between Theorem 3.2 and Theorem 3.3, the first arrow should be "←" instead of " \rightarrow ". ¹²This is on page 5077 of the published version. - page 23: Remove the period at the end of the last displayed equation on this page. - page 24, Theorem 3.9: Add "for" before "i = 1, 2, ..., k". - page 25: In the first displayed equation on this page, the " \mathcal{L} " on the right hand side should be an " \mathcal{L} " (normal font, not calligraphic). - **♠ page 25:**¹³ In the fourth displayed equation on this page, the comma in " $b_1^* \otimes b_2^*$, $\otimes \cdots \otimes b_\ell^*$ " should be removed. - page 27, §5: "Then $4.2" \rightarrow$ "Then Corollary 4.2". - page 28, Example 2: On the right hand side of the last displayed equation on this page, I think you are missing a factor of B^* . - page 29, Example 3: Remove the period at the end of the cocomplex: - \spadesuit page 29, Example 3:¹⁴ Replace " L_P " by " L_p ". - \spadesuit page 30, Example 4:15 "vertices v of $G'' \to$ "vertices v of M''. - \spadesuit page 30, Example 4:¹⁶ Is C supposed to mean the abelian group \mathbb{Z} ? ¹³This is on page 5080 of the published version. ¹⁴This is on page 5083 of the published version. ¹⁵This is on page 5083 of the published version. ¹⁶This is on page 5083 of the published version.