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Finite group algebras: Basics

∗ Let k be any commutative ring. (Usually Z, Q or a
polynomial ring.)

∗ Let G be a finite group. (We will only use symmetric groups.)

∗ Let k [G ] be the group algebra of G over k. Its elements are
formal k-linear combinations of elements of G . The
multiplication is inherited from G and extended bilinearly.

Example: Let G be the symmetric group S3 on the set
{1, 2, 3}. For i ∈ {1, 2}, let si ∈ S3 be the simple transposition
that swaps i with i + 1. Then, in k [G ] = k [S3], we have

(1 + s1) (1− s1) = 1 + s1 − s1 − s21 = 0

(since s21 = 1);

(1 + s2) (1 + s1 + s1s2) = 1 + s2 + s1 + s2s1 + s1s2 + s2s1s2

=
∑
w∈S3

w .
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Finite group algebras: L (a) and R (a)

∗ For each a ∈ k [G ], we define two k-linear maps

L (a) : k [G ] → k [G ] ,

x 7→ ax (“left multiplication by a”)

and

R (a) : k [G ] → k [G ] ,

x 7→ xa (“right multiplication by a”) .

(So L (a) (x) = ax and R (a) (x) = xa.)

Note: The symbol ∗ denotes important points.

Both L (a) and R (a) are endomorphisms of the free k-module
k [G ]. Thus, they can be viewed as |G | × |G |-matrices.

Hence, L (a) and R (a) are “matrix proxies” for a, allowing to
apply linear algebra to studying a.
(The reason this works is that the mapsa 7→ L (a) and a 7→ (R (a))T

are two injective k-algebra morphisms from k [G ] to the matrix ring

Endk (k [G ]) ∼= k|G |×|G |.)
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Finite group algebras: Minimal polynomials

∗ Each a ∈ k [G ] has a minimal polynomial, i.e., a
minimum-degree monic polynomial P ∈ k [X ] such that
P (a) = 0. It is unique when k is a field.
The minimal polynomial of a is also the minimal polynomial
of the endomorphisms L (a) and R (a).

When k is a field, we can also study the eigenvectors and
eigenvalues of L (a) and R (a).

Theorem 1.1. Assume that k is a field. Let a ∈ k [G ]. Then,
the two linear endomorphisms L (a) and R (a) are conjugate in
Endk (k [G ]) (that is, similar as matrices).
(Thus, they have the same eigenstructure.)

This is surprisingly nontrivial!
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Finite group algebras: The antipode

∗ The antipode of the group algebra k [G ] is defined to be the
k-linear map

S : k [G ] → k [G ] ,

g 7→ g−1 for each g ∈ G .

We shall write a∗ for S (a).

∗ Proposition 1.2. The antipode S is an involution:

a∗∗ = a for all a ∈ k [G ] ,

and a k-algebra anti-automorphism:

(ab)∗ = b∗a∗ for all a, b ∈ k [G ] .
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Finite group algebras: Proof of Theorem 1.1

Lemma 1.3. Assume that k is a field. Let a ∈ k [G ]. Then,
L (a) ∼ L (a∗) in Endk (k [G ]).

Proof: Consider the standard basis (g)g∈G of k [G ]. The
matrices representing the endomorphisms L (a) and L (a∗) in
this basis are mutual transposes. But the Taussky–Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT .

Lemma 1.4. Let a ∈ k [G ]. Then, L (a∗) ∼ R (a) in
Endk (k [G ]).

Proof: We have R (a) = S ◦ L (a∗) ◦ S and S = S−1.

Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.

Remark (Martin Lorenz). Theorem 1.1 generalizes to
arbitrary finite-dimensional Frobenius algebras.
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Symmetric groups: Notations

∗ Let N := {0, 1, 2, . . .}.
∗ Let [k] := {1, 2, . . . , k} for each k ∈ N.
∗ Now, fix a positive integer n, and let Sn be the n-th symmetric

group, i.e., the group of permutations of the set [n].
Multiplication in Sn is composition:

(αβ) (i) = (α ◦ β) (i) = α (β (i))

for all α, β ∈ Sn and i ∈ [n] .

(Warning: SageMath has a different opinion!)
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Symmetric group algebras

What can we say about the group algebra k [Sn] that doesn’t
hold for arbitrary k [G ]?
There is a classical theory (“Young’s seminormal form”) of
the structure of k [Sn] when k has characteristic 0. See:

Murray Bremner, Sara Madariaga, Luiz A. Peresi,
Structure theory for the group algebra of the symmetric
group, ..., Commentationes Mathematicae Universitatis
Carolinae, 2016. (Quick and to the point.)
Daniel Edwin Rutherford, Substitutional Analysis,
Edinburgh 1948. (Dated but careful and quite readable;
perhaps the best treatment.)
Adriano M. Garsia, Ömer Egecioglu, Lectures in
Algebraic Combinatorics, Springer 2020. (Messy but full
of interesting things.)

Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of
characteristic 0, then

k [Sn] ∼=
∏

λ is a partition of n

Mf λ (k)︸ ︷︷ ︸
matrix ring

(as k-algebras) ,

where f λ is the number of standard Young tableaux of shape
λ.

The structure of k [Sn] for 0 < char k ≤ n is far less
straightforward. See, e.g.,

Matthias Künzer, Ties for the integral group ring of the
symmetric group, thesis 1998.

Remark. If k is a field of characteristic 0, then each
a ∈ k [Sn] satisfies a ∼ a∗ in k [Sn].
But not for general k.

From now on, we shall focus on concrete elements in k [Sn].
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The YJM elements: Definition and commutativity

∗ For any distinct elements i1, i2, . . . , ik of [n], let cyci1,i2,...,ik be
the permutation in Sn that cyclically permutes
i1 7→ i2 7→ i3 7→ · · · 7→ ik 7→ i1 and leaves all other elements of
[n] unchanged.

Note. We have cyci = id, whereas cyci ,j is the transposition
ti ,j .

∗ For each k ∈ [n], we define the k-th Young–Jucys–Murphy
(YJM) element

Jk := cyc1,k +cyc2,k + · · ·+ cyck−1,k ∈ k [Sn] .

Note. We have J1 = 0. Also, J∗k = Jk for each k ∈ [n].

∗ Theorem 3.1. The YJM elements J1, J2, . . . , Jn commute:
We have JiJj = JjJi for all i , j .

Proof: Easy computational exercise.
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The YJM elements: Eigenvalues

∗ Theorem 3.2. The minimal polynomial of Jk over Q divides

k−1∏
i=−k+1

(X − i) = (X − k + 1) (X − k + 2) · · · (X + k − 1) .

(For k ≤ 3, some factors here are redundant.)

Thus, the eigenvalues of Jk are −k + 1,−k + 2, . . . , k − 1
(except for 0 when k ≤ 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:
The seminormal basis exists only for char k = 0 (or, more
generally, when n! is invertible in k).
But Theorem 3.2 and the algebraic multiplicities transfer
automatically to all rings k.
Question. Is there a self-contained algebraic/combinatorial
proof of Theorem 3.2 without linear algebra or representation
theory? (Asked on MathOverflow:
https://mathoverflow.net/questions/420318/ .)
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Theorem 3.3. Assume that k is a field of characteristic 0.
Then, there exists a basis (eS ,T ) of k [Sn] indexed by pairs of
standard Young tableaux of the same (partition) shape called
the seminormal basis. This basis has the property that

JkeS,T = cS (k) · eS ,T ,
where cS (k) = j − i if the number k lies in cell (i , j) of S .
Moreover, each Specht module Sλ (= irreducible
representation of Sn) is spanned by part of the seminormal
basis, and thus we find the eigenvalues of Jk on that Sλ.
The seminormal basis exists only for char k = 0 (or, more
generally, when n! is invertible in k).
But Theorem 3.2 and the algebraic multiplicities transfer
automatically to all rings k.

Question. Is there a self-contained algebraic/combinatorial
proof of Theorem 3.2 without linear algebra or representation
theory? (Asked on MathOverflow:
https://mathoverflow.net/questions/420318/ .)
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Symmetric polynomials in the YJM elements, 1

Theorem 3.4. For each k ∈ N, we can evaluate the k-th
elementary symmetric polynomial ek at the YJM elements
J1, J2, . . . , Jn to obtain

ek (J1, J2, . . . , Jn) =
∑
σ∈Sn;

σ has exactly n−k cycles

σ.

Proof: Nice homework exercise (once stripped of the algebra).

There are formulas for other symmetric polynomials applied to
J1, J2, . . . , Jn (see Garsia/Egecioglu).
There is also a general fact:
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Symmetric polynomials in the YJM elements, 2

Theorem 3.5 (Murphy).

{f (J1, J2, . . . , Jn) | f ∈ k [X1,X2, . . . ,Xn] symmetric}
= (center of the group algebra k [Sn]) .

Proof: See any of:
Gadi Moran, The center of Z [Sn+1] ..., 1992.
G. E. Murphy, The Idempotents of the Symmetric Group
..., 1983, Theorem 1.9 (for the case k = Z, but the
general case easily follows).
Ceccherini-Silberstein/Scarabotti/Tolli, Representation
Theory of the Symmetric Groups, 2010, Theorem 4.4.5
(for the case k = Q, but the proof is easily adapted to all
k).
This book also has more on the J1, J2, . . . , Jn (but mind
the errata).
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The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1, 2, . . . , n.
A permutation σ ∈ Sn corresponds to the state in which the
cards are arranged σ (1) , σ (2) , . . . , σ (n) from top to bottom.
A random state is an element

∑
σ∈Sn

aσσ of R [Sn] whose

coefficients aσ ∈ R are nonnegative and add up to 1. This is
interpreted as a distribution on the n! possible states, where
aσ is the probability for the deck to be in state σ.

An R-vector space endomorphism of R [Sn], such as L (a) or
R (a) for some a ∈ R [Sn], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.
For example, if k > 1, then the right multiplication R (Jk) by
the YJM element Jk corresponds to swapping the k-th card
with some card above it (chosen uniformly at random).
Transposing such a matrix means time-reversing the random
shuffle.
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Bottom-to-random and random-to-bottom shuffles: definitions

∗ Another family of elements of k [Sn] are the
k-bottom-to-random shuffles

Bn,k :=
∑
σ∈Sn;

σ−1(1)<σ−1(2)<···<σ−1(n−k)

σ

defined for all k ∈ {0, 1, . . . , n}. Thus,

Bn,n = Bn,n−1 =
∑
σ∈Sn

σ;

Bn,1 =
n∑

i=1

cycn,n−1,...,i ;

Bn,0 = id .

We set Bn := Bn,1.

Bn := Bn,1 is known as the bottom-to-random shuffle or the
Tsetlin library.
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cycn,n−1,...,i ;

Bn,0 = id .

We set Bn := Bn,1.
As a random shuffle, Bn,k (to be precise, R (Bn,k)) takes the
bottom k cards and moves them to random positions.
Its antipode B∗

n,k takes k random cards and moves them to
the bottom positions.
Bn := Bn,1 is known as the bottom-to-random shuffle or the
Tsetlin library.
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Bottom-to-random and random-to-bottom shuffles: facts

Theorem 5.1 (Diaconis, Fill, Pitman). We have

Bn,k+1 = (Bn − k)Bn,k for each k ∈ {0, 1, . . . , n − 1} .

Corollary 5.2. The n + 1 elements Bn,0,Bn,1, . . . ,Bn,n

commute and are polynomials in Bn, namely

Bn,k =
k−1∏
i=0

(Bn − i) for each k ∈ {0, 1, . . . , n} .

Theorem 5.3 (Wallach). The minimal polynomial of Bn

over Q is ∏
i∈{0,1,...,n−2,n}

(X − i) = (X − n)
n−2∏
i=0

(X − i) .

These are not hard to prove in this order. See
https://mathoverflow.net/questions/308536 for the
details.
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Bottom-to-random and random-to-bottom shuffles: more

More can be said: in particular, the multiplicities of the
eigenvalues 0, 1, . . . , n − 2, n of R (Bn) over Q are known.

The antipodes

B∗
n,k :=

∑
σ∈Sn;

σ(1)<σ(2)<···<σ(n−k)

σ

of Bn,k are known as the k-random-to-bottom shuffles and
have the same properties (since S is an algebra
anti-automorphism).

Moreover, there are top-to-random and random-to-top
shuffles defined in the same way but with renaming 1, 2, . . . , n
as n, n − 1, . . . , 1. They are just images of the Bn,k and B∗

n,k

under the automorphism a 7→ w0aw
−1
0 of k [Sn], where w0 is

the permutation with one-line notation (n, n − 1, . . . , 1).
Thus, top vs. bottom is mainly a matter of notation.
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Bottom-to-random and random-to-bottom shuffles: references

Main references:

Nolan R. Wallach, Lie Algebra Cohomology and
Holomorphic Continuation of Generalized Jacquet
Integrals, 1988, Appendix.
Persi Diaconis, James Allen Fill and Jim Pitman, Analysis
of Top to Random Shuffles, 1992.
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Chapter 2

Chapter 2
Random-to-random shuffles

References:
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Random-to-random shuffles: Definition

∗ Here is a further family. For each k ∈ {0, 1, . . . , n}, we let

Rn,k :=
∑
σ∈Sn

noninvn−k (σ) · σ,

where noninvn−k (σ) denotes the number of (n − k)-element
subsets of [n] on which σ is increasing. This is called the
k-random-to-random shuffle.

Note: Rn,0 = id and Rn,n−1 = n
∑
σ∈Sn

σ and Rn,n =
∑
σ∈Sn

σ.

The card-shuffling interpretation of Rn,k is “pick any k cards
from the deck and move them to k randomly chosen
positions”.
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+ 4[2, 3, 1, 4] + 3[2, 3, 4, 1] + 3[2, 4, 1, 3] + 2[2, 4, 3, 1]
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Random-to-random shuffles: Two surprises

∗ Theorem 6.1 (Reiner, Saliola, Welker). The n + 1
elements Rn,0,Rn,1, . . . ,Rn,n commute (but are not
polynomials in Rn,1 in general).

∗ Theorem 6.2 (Dieker, Saliola, Lafrenière). The minimal
polynomial of each Rn,k over Q is a product of X − i ’s for
distinct integers i . For example, the one of Rn,1 divides

n2∏
i=0

(X − i) .

The exact factors can be given in terms of certain statistics on
Young diagrams.
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Random-to-random shuffles: References

Main references: the “classics”

Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.
A.B. Dieker, F.V. Saliola, Spectral analysis of
random-to-random Markov chains, 2018.
Nadia Lafrenière, Valeurs propres des opérateurs de
mélanges symétrisés, thesis, 2019.

and the two recent preprints

Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui
Chiang, Patricia Commins, Veronica Lang, Spectrum of
random-to-random shuffling in the Hecke algebra,
arXiv:2407.08644.
Sarah Brauner, Patricia Commins, Darij Grinberg, Franco
Saliola, The q-deformed random-to-random family in the
Hecke algebra, arXiv:2503.17580.
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Random-to-random shuffles: What we do

The “classical” proofs are complicated, technical and long.
In this talk, I will outline some parts of the two recent
preprints, including a simpler proof of Theorem 6.1 and most
of Theorem 6.2. (The full proof of Theorem 6.2 is still long
and hard.)
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R vs. B

The first step is a formula that is easy to prove
combinatorially:

∗ Proposition 6.3. For each k ∈ {0, 1, . . . , n}, we have

Rn,k =
1

k!
· B∗

n,k Bn,k .

However, the Bn,k do not commute with the B∗
n,k , so this is

not by itself an answer.
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The Hecke algebra, 1

Let q ∈ k be a parameter.
The n-th Hecke algebra (or Iwahori–Hecke algebra) is a
q-deformation of the group algebra k [Sn].
It has generators T1,T2, . . . ,Tn−1 and relations

T 2
i = (q − 1)Ti + q for all i ∈ [n − 1] ;

TiTj = TjTi whenever |i − j | > 1;

TiTi+1Ti = Ti+1TiTi+1 for all i ∈ [n − 2] .

We call this algebra Hn.

For q = 1, this is the group algebra k [Sn] (and the generator
Ti is the simple transposition si = cyci ,i+1).

For general q, it still is a free k-module of rank n!, with a
basis (Tw )w∈Sn indexed by permutations w ∈ Sn. The basis
vectors are defined by Tw := Ti1Ti2 · · ·Tik , where si1si2 · · · sik
is a reduced expression for w . For q = 1, this Tw is just w .
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The Hecke algebra, 2

Much of the theory of k [Sn] exists in a subtler form for Hn.
Sometimes, the added difficulty brings the best proofs to light.

∗ Almost all results of this talk hold for the Hecke algebra
Hn (occasionally requiring assumptions such as “q is not a
root unity” for structural results). The YJM elements must be
q-deformed; integers become q-integers; etc.

Main change: The random-to-random shuffle must now be
defined as

Rn,k :=
1

[k]!q
· B∗

n,k Bn,k .

Noninversions no longer work!
But we will stick to the q = 1 case in this talk.
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The recursion

∗ Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based
on Axelrod-Freed–Brauner–Chiang–Commins–Lang
2024). For any 1 ≤ k ≤ n, we have

Bn Rn,k = (Rn−1,k + ((n + 1− k) + Jn) Rn−1,k−1)︸ ︷︷ ︸
=:Wn,k

Bn.

The proof takes about 5 pages, relying on some more
elementary computations from prior work (ca. 10–15 pages in
total).

This recursion does not actually compute Rn,k . But it says
enough about Rn,k to carry our proofs.

Note also that Rn,k ∈ B∗
n k [Sn] by its definition (when k ≥ 1).

This makes the recursion so useful.
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Commutativity of random-to-random

Theorem 8.1 leads fairly easily to a proof of commutativity
(Theorem 6.1).
Indeed, inducting on n, we observe that the Wn,ks all
commute by the induction hypothesis (and the easy fact that
Jn commutes with everything in k [Sn−1]). Thus, using
Bn Rn,k = Wn,k Bn, we find

Bn Rn,i Rn,j = Wn,i Bn Rn,j = Wn,i Wn,j Bn

= Wn,j Wn,i Bn = Wn,j Bn Rn,i = Bn Rn,j Rn,i .

Remains to get rid of the Bn factor at the front. Recall that
all Rn,i (except for the trivial Rn,0) lie in B∗

n k [Sn]. But we
can WLOG assume that k = Q, and then the equality
Bn B∗

n a = 0 entails B∗
n a = 0 (positivity trick! cf. linear

algebra: Ker
(
ATA

)
= KerA for real matrix A).

Alternatively, the trick can be avoided (see
arXiv:2503.17580).
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The approach to eigenvalues, 1

Now to Theorem 6.2:
The eigenvalues of Rn,k are nonnegative reals, since Rn,k is
represented by a positive semidefinite symmetric matrix
(Proposition 6.3).
But why are they integers?
We have a theory of “split elements” that can help answer
such questions in general. Here is an outline:

∗ An element a of a k-algebra A is said to be split (over k) if
there exist some scalars u1, u2, . . . , un ∈ k (not necessarily

distinct) such that
n∏

i=1
(a− ui ) = 0.

∗ When k is an integral domain and A is a free k-module of
finite rank, this is the same as saying that R (a) has all
eigenvalues in k.
In particular, for k = Z and A = k [Sn], this means that all
eigenvalues of R (a) are ∈ Z. This is what we want to show
for a = Rn,k .
So we must show that Rn,k is split over Z.
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General theory of split elements, 1

We prove several general properties of split elements (nice
exercises on commutative algebra!):

∗ Theorem 9.1. If two commuting elements a, b ∈ A are split,
then both a+ b and ab are split.

∗ Corollary 9.2. A commutative subalgebra of A generated by
split elements consists entirely of split elements.

∗ Theorem 9.3. If b, c , f are elements of A such that f is split
and such that bc = fb and c ∈ Ab, then c is split.

Theorem 9.3 is tailored to our use:

bc = fb c ∈ Ab

Bn Rn,k = Wn,k Bn Rn,k ∈ k [Sn] Bn

.

The splitness of Wn,k follows from the splitness of the
commuting elements Jn, Rn−1,k−1 and Rn−1,k (induction!)
by Corollary 9.2. We need the splitness of the YJM elements,
which was proved (e.g.) by Murphy.
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General theory of split elements, 2

Theorem 9.3 looks baroque, but in fact it easily decomposes
into two particular cases:
Corollary 9.4. If ba is split, then ab is also split.
Corollary 9.5. If a is split and b2 = ab, then b is split.
(Both times, a, b ∈ A are arbitrary.)
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Formulas for eigenvalues, 1

The splitness theory proves easily that all eigenvalues of Rn,k

are integers, but it does not compute them explicitly. Indeed,
it produces “phantom eigenvalues” which do not actually
appear.

With a lot more work (Specht modules, seminormal basis,
Pieri rule, etc.), we have been able to compute the
eigenvalues with their multiplicities fully.

I only have time to state the main result.
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Formulas for eigenvalues, 2

Theorem 10.1. Let n, k ≥ 0. The eigenvalues of R (Rn,k) on k [Sn]
are the elements

Eλ\µ(k) :=
∑

j<(ℓ1<ℓ2<···<ℓk )≤n

k∏
m=1

(ℓm + 1−m + ctλ\µ (ℓm))

for all horizontal strips λ \ µ that satisfy λ ⊢ n and dµ ̸= 0. Here,

dµ denotes the number of desarrangement tableaux of shape µ
(that is, standard tableaux of shape µ whose smallest
non-descent is even);
j is the size of µ;
tλ\µ is the skew tableau of shape λ \ µ obtained by filling in
the boxes of λ \ µ with j + 1, j + 2, . . . , n from top to bottom;
ctλ\µ (p) = y − x if the cell of tλ\µ containing the entry p is
(x , y).

Moreover, the multiplicity of each such eigenvalue Eλ\µ(k) is dµf λ,

where f λ is the number of standard tableaux of shape λ (unless

there are collisions).
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Formulas for eigenvalues, 3

We have explicit formulas for specific shapes and strips:

E(n)\∅(k) = k!

(
n

k

)2

;

E(n−1,1)\(j,1)(k) = k!

(
n − j − 1

k

)(
n + j

k

)
for all j ∈ [n − 1] .

But there is no such nice formula for E(4,1,1)\(1,1)(1).
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Open questions

Question: Any nicer formulas for the eigenvalues Eλ\µ (k) ?
Question (Reiner): What is the dimension of the subalgebra
of Q [Sn] generated by Rn,0,Rn,1, . . . ,Rn,n ?

n 1 2 3 4 5 6 7 8 9 10 11 12

dim (subalgebra) 1 2 4 7 15 30 54 95 159 257 400 613

(sequence not in the OEIS as of 2025-10-06).

The same numbers hold for the q-deformation!

35 / 66



Chapter 3

Chapter 3
Somewhere-to-below shuffles

References:

Darij Grinberg, Nadia Lafrenière, The one-sided cycle shuffles
in the symmetric group algebra, Algebraic Combinatorics
(2024), arXiv:2212.06274.

Darij Grinberg, Commutator nilpotency for
somewhere-to-below shuffles, arXiv:2309.05340.

Darij Grinberg, The representation theory of
somewhere-to-below shuffles, arXiv:2508.00752.
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Somewhere-to-below shuffles: introduction

Now to something completely different...

∗ In 2021, Nadia Lafrenière defined the somewhere-to-below
shuffles t1, t2, . . . , tn by setting

tℓ := cycℓ+cycℓ,ℓ+1+cycℓ,ℓ+1,ℓ+2+ · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn]

for each ℓ ∈ [n].

∗ Note: tn = id.

As a card shuffle, tℓ takes the ℓ-th card from the top and
moves it further down the deck.

t1 is called the top-to-random shuffle. Upon renaming
1, 2, . . . , n as n, n − 1, . . . , 1, it becomes Bn,1. (So it is
conjugate to Bn,1 by w0.)
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conjugate to Bn,1 by w0.)
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Somewhere-to-below shuffles: non-commutativity

t1, t2, . . . , tn do not commute for n ≥ 3. For n = 3, we have

[t1, t2] = cyc1,2+cyc1,2,3− cyc1,3,2− cyc1,3 .

However, they come pretty close to commuting!

∗ Theorem 20.1 (Lafreniere, G., 2022). There exists a basis
of the k-module k [Sn] in which all of the endomorphisms
R (t1) ,R (t2) , . . . ,R (tn) are represented by upper-triangular
matrices.
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The descent-destroying basis, 1

This basis is not hard to define, but I haven’t seen it before.

∗ For each w ∈ Sn, we let

Desw := {i ∈ [n − 1] | w (i) > w (i + 1)} .

This is called the descent set of w .

∗ For each i ∈ [n − 1], we let si := cyci ,i+1.

∗ For each I ⊆ [n − 1], we let

G (I ) := (the subgroup of Sn generated by the si for i ∈ I ) .

This is called a Young parabolic subgroup of Sn.
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The descent-destroying basis, 2

∗ For each w ∈ Sn, we let

aw :=
∑

σ∈G(Desw)

wσ ∈ k [Sn] .

In other words, aw is obtained by breaking up the word w into
maximal decreasing factors and re-sorting each factor
arbitrarily (without mixing different factors).

∗ The family (aw )w∈Sn is a basis of k [Sn] (by triangularity).

For instance, for n = 3, we have

a[123] = [123] ;

a[132] = [132] + [123] ;

a[213] = [213] + [123] ;

a[231] = [231] + [213] ;

a[312] = [312] + [132] ;

a[321] = [321] + [312] + [231] + [213] + [132] + [123] .
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The descent-destroying basis, 3

∗ Theorem 14.1 (Lafrenière, G.). For any w ∈ Sn and
ℓ ∈ [n], we have

aw tℓ = µw ,ℓaw +
∑
v∈Sn;
v≺w

λw ,ℓ,vav

for some nonnegative integer µw ,ℓ, some integers λw ,ℓ,v and a
certain partial order ≺ on Sn.
Thus, the endomorphisms R (t1) ,R (t2) , . . . ,R (tn) are
upper-triangular with respect to the basis (aw )w∈Sn .
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The descent-destroying basis, 4

Example: For n = 4, we have

a[4312]t2 = a[4312] + a[4321] − a[4231] − a[3241] − a[2143]︸ ︷︷ ︸
subscripts are ≺[4312]

.

Example: For n = 3, the endomorphism R (t1) is represented
by the matrix

a[321] a[231] a[132] a[213] a[312] a[123]

a[321] 3 1 1 1

a[231] 1 −1 1

a[132] 1

a[213] 1

a[312] 1

a[123] 1

(empty cells = zero entries). For instance, the last column
means a[123]t1 = a[123] + a[231].
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Eigenvalues of somewhere-to-below shuffles, 1

Corollary 14.2. The eigenvalues of the endomorphisms
R (t1) ,R (t2) , . . . ,R (tn) and of all their linear combinations

R (λ1t1 + λ2t2 + · · ·+ λntn)

are integers as long as λ1, λ2, . . . , λn are.

How many different eigenvalues do they have?

R (t1) ∼= R (Bn,1) has only n eigenvalues: 0, 1, . . . , n − 2, n, as
we have seen before. The other R (tℓ)’s have even fewer.

But their linear combinations R (λ1t1 + λ2t2 + · · ·+ λntn)
can have many more. How many?
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Lacunar sets and Fibonacci numbers

∗ A set S of integers is called lacunar if it contains no two
consecutive integers (i.e., we have s + 1 /∈ S for all s ∈ S).

∗ Theorem 15.1 (combinatorial interpretation of Fibonacci
numbers, folklore). The number of lacunar subsets of
[n − 1] is the Fibonacci number fn+1.
(Recall: f0 = 0, f1 = 1, fn = fn−1 + fn−2.)

∗ Theorem 15.2. When λ1, λ2, . . . , λn ∈ C are generic, the
endomorphism R (λ1t1 + λ2t2 + · · ·+ λntn) is diagonalizable
and has fn+1 distinct eigenvalues.

Note that fn+1 ≪ n!.
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The Fibonacci filtration, 1

∗ We prove this by finding a filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

of the k-module k [Sn] such that each R (tℓ) acts as a scalar
on each of its quotients Fi/Fi−1. In matrix terms, this means
bringing R (tℓ) to a block-triangular form, with the diagonal
blocks being “scalar times I” matrices.

It is only natural that the quotients should correspond to the
lacunar subsets of [n − 1].

Let us approach the construction of this filtration.
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The Fibonacci filtration, 2

∗ For each I ⊆ [n], we set

sum I :=
∑
i∈I

i

and

Î := {0} ∪ I ∪ {n + 1} (“enclosure” of I )

and

I ′ := [n − 1] \ (I ∪ (I − 1)) (“non-shadow” of I )

and

F (I ) :=
{
q ∈ k [Sn] | qsi = q for all i ∈ I ′

}
⊆ k [Sn] .

In probabilistic terms, F (I ) consists of those random states of
the deck that do not change if we swap the i-th and (i + 1)-st
cards from the top as long as neither i nor i + 1 is in I . To
put it informally: F (I ) consists of those random states that
are “fully shuffled” between any two consecutive Î -positions.
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The Fibonacci filtration, 3

Example: If n = 11 and I = {3, 6, 7}, then

Î := {0} ∪ I ∪ {n + 1} = {0, 3, 6, 7, 12}

and
I ′ := [n − 1] \ (I ∪ (I − 1)) = {1, 4, 8, 9, 10}

and

F (I ) = {q ∈ k [S11] | qs1 = qs4 = qs8 = qs9 = qs10 = q} .

Illustrating this:

0 1 2 3 4 5 6 7 8 9 10 11 12

(black = I ; grey = I − 1; blue = Î \ I ;
lightblue = n; white = I ′).
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The Fibonacci filtration, 4

∗ For any ℓ ∈ [n], we let mI ,ℓ be the distance from ℓ to the

next-higher element of Î . In other words,

mI ,ℓ :=
(
smallest element of Î that is ≥ ℓ

)
−ℓ ∈ {0, 1, . . . , n} .

In our above example,

(mI ,1, mI ,2, . . . , mI ,11) = (2, 1, 0, 2, 1, 0, 0, 4, 3, 2, 1) .

0 1 2 3 4 5 6 7 8 9 10 11 12

2 1 0 2 1 0 0 4 3 2 1 0

We note that, for any ℓ ∈ [n], we have the equivalence

mI ,ℓ = 0 ⇐⇒ ℓ ∈ Î ⇐⇒ ℓ ∈ I .
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The Fibonacci filtration, 5

∗ Crucial Lemma 16.1. Let I ⊆ [n] and ℓ ∈ [n]. Then,

qtℓ ∈ mI ,ℓq+
∑
J⊆[n];

sum J<sum I

F (J)

︸ ︷︷ ︸
Think of these as

“lower-order terms”

for each q ∈ F (I ) .

Proof: Expand qtℓ by the definition of tℓ, and break up the
resulting sum into smaller bunches using the interval
decomposition

[ℓ, n] = [ℓ, ik − 1]⊔ [ik , ik+1 − 1]⊔ [ik+1, ik+2 − 1]⊔ · · · ⊔ [ip, n]

(where ik < ik+1 < · · · < ip are the elements of I larger or
equal to ℓ). The [ℓ, ik − 1] bunch gives the mI ,ℓq term; the
others live in appropriate F (J)’s.
See arXiv:2212.06274 for the details.
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The Fibonacci filtration, 6

∗ Thus, we obtain a filtration of k [Sn] if we label the subsets I
of [n] in the order of increasing sum I and add up the
respective F (I )s.
On each subquotient of this filtration, tℓ acts as a scalar mI ,ℓ.

Unfortunately, this filtration has 2n, not fn+1 terms.

∗ Fortunately, that’s because many of its terms are redundant.
The ones that aren’t correspond precisely to the I ’s that are
lacunar subsets of [n − 1]:

Lemma 16.2. Let k ∈ N. Then,∑
J⊆[n];

sum J<k

F (J) =
∑

J⊆[n−1] is lacunar;
sum J<k

F (J) .

Proof: If J ⊆ [n] contains n or fails to be lacunar, then F (J)
is a submodule of some F (K ) with sumK < sum J.
(Exercise!)
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The Fibonacci filtration, 7

Now, we let Q1,Q2, . . . ,Qfn+1 be the fn+1 lacunar subsets of
[n − 1], listed in such an order that

sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum
(
Qfn+1

)
.

Then, for each i ∈ [0, fn+1], define a k-submodule

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi ) of k [Sn]

(so that F0 = 0). The resulting filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

(which we call the Fibonacci filtration of k [Sn]) satisfies the
properties we need:
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The Fibonacci filtration, 8

Theorem 16.3. For each i ∈ [fn+1] and ℓ ∈ [n], we have

Fi · (tℓ −mQi ,ℓ) ⊆ Fi−1

(so that R (tℓ) acts on Fi/Fi−1 as multiplication by mQi ,ℓ).
Proof: Lemma 16.1 + Lemma 16.2.
Lemma 16.4. The quotients Fi/Fi−1 are nontrivial for all
i ∈ [fn+1].
Proof: See below.

∗ Corollary 16.5. Let k be a field, and let λ1, λ2, . . . , λn ∈ k.
Then, the eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn) are the
linear combinations

λ1mI ,1 + λ2mI ,2 + · · ·+ λnmI ,n for I ⊆ [n − 1] lacunar.

Theorem 15.2 easily follows by some linear algebra.
More generally, this holds not just for linear combinations
λ1t1 + λ2t2 + · · ·+ λntn but for any noncommutative
polynomials in t1, t2, . . . , tn.
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Back to the basis, 1

The descent-destroying basis (aw )w∈Sn is compatible with our
filtration:

∗ Theorem 17.1. For each I ⊆ [n], the family
(aw )w∈Sn; I ′⊆Desw is a basis of the k-module F (I ).

∗ If w ∈ Sn is any permutation, then the Q-index of w is
defined to be the smallest i ∈ [fn+1] such that Q ′

i ⊆ Desw .
We call this Q-index Qindw .

Proposition 17.2. Let w ∈ Sn and i ∈ [fn+1]. Then,
Qindw = i if and only if Q ′

i ⊆ Desw ⊆ [n − 1] \ Qi .

53 / 66



Back to the basis, 1

The descent-destroying basis (aw )w∈Sn is compatible with our
filtration:

∗ Theorem 17.1. For each I ⊆ [n], the family
(aw )w∈Sn; I ′⊆Desw is a basis of the k-module F (I ).

∗ If w ∈ Sn is any permutation, then the Q-index of w is
defined to be the smallest i ∈ [fn+1] such that Q ′

i ⊆ Desw .
We call this Q-index Qindw .

Proposition 17.2. Let w ∈ Sn and i ∈ [fn+1]. Then,
Qindw = i if and only if Q ′

i ⊆ Desw ⊆ [n − 1] \ Qi .

53 / 66



Back to the basis, 2

Note: The numbering Q1,Q2, . . . ,Qfn+1 of the lacunar
subsets of [n − 1] is not unique; we just picked one. The
Q-index i = Qindw of a w ∈ Sn depends on this numbering.
However, the corresponding lacunar set Qi does not, since
Proposition 17.2 determines it canonically (it is the unique
lacunar L ⊆ [n − 1] satisfying L′ ⊆ Desw ⊆ [n − 1] \ L).
Thus, think of this set Qi as the “real” index of w . We just
found i easier to work with.
(“Morally”, the Fibonacci filtration should be indexed by a
poset; then you need not choose any numbering.)
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Back to the basis, 3

∗ Theorem 17.3. For each i ∈ [0, fn+1], the k-module Fi is free
with basis (aw )w∈Sn; Qindw≤i .

∗ Corollary 17.4. For each i ∈ [fn+1], the k-module Fi/Fi−1 is
free with basis (aw )w∈Sn; Qindw=i .

This yields Lemma 9.4 and also leads to Theorem 7.1, made
precise as follows:

∗ Theorem 17.5 (Lafrenière, G.). For any w ∈ Sn and
ℓ ∈ [n], we have

aw tℓ = µw ,ℓaw +
∑
v∈Sn;

Qind v<Qindw

λw ,ℓ,vav

for some nonnegative integer µw ,ℓ and some integers λw ,ℓ,v .
Thus, the endomorphisms R (t1) ,R (t2) , . . . ,R (tn) are
upper-triangular with respect to the basis (aw )w∈Sn as long as
the permutations w ∈ Sn are ordered by increasing Q-index.
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The multiplicities, 1

In Corollary 9.5, we found the eigenvalues of the
endomorphism R (λ1t1 + λ2t2 + · · ·+ λntn). With Corollary
17.4, we can also find their algebraic multiplicities. To state a
formula for them, we need a definition:

∗ For each i ∈ [fn+1], we set

δi := (the number of all w ∈ Sn satisfying Qindw = i) .

∗ Corollary 18.1 (informal version). Assume that k is a field.
Let λ1, λ2, . . . , λn ∈ k. Then, the endomorphism
R (λ1t1 + λ2t2 + · · ·+ λntn) has eigenvalues

λI := λ1mI ,1 + λ2mI ,2 + · · ·+ λnmI ,n

for all lacunar I ⊆ [n − 1]

with respective multiplicities δi ,

where i ∈ [fn+1] is such that I = Qi .

(If some λI happen to coincide, then their algebraic
multiplicities must be added together.)
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The multiplicities, 2

Can we compute the δi explicitly? Yes!

∗ Theorem 18.2. Let i ∈ [fn+1]. Then:

(a) Write the set Qi in the form Qi = {i1 < i2 < · · · < ip},
and set i0 = 1 and ip+1 = n + 1. Let jk = ik − ik−1 for
each k ∈ [p + 1]. Then,

δi =

(
n

j1, j2, . . . , jp+1

)
︸ ︷︷ ︸

multinomial
coefficient

·
p+1∏
k=2

(jk − 1) .

(b) We have δi | n!.
Note. This reminds of the hook-length formula for standard
tableaux, but is much simpler.
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Variants

Most of what we said about the somewhere-to-below shuffles
tℓ can be extended to their antipodes t∗ℓ (the
“below-to-somewhere shuffles”). For instance:

Theorem 19.1. There exists a basis of the k-module k [Sn] in
which all of the endomorphisms R (t∗1) ,R (St∗2) , . . . ,R (t∗n)
are represented by upper-triangular matrices.

We can also use left instead of right multiplication:

Theorem 19.2. There exists a basis of the k-module k [Sn] in
which all of the endomorphisms L (t1) , L (t2) , . . . , L (tn) are
represented by upper-triangular matrices.

These follow from Theorem 14.1 using dual bases and
transpose matrices. No new combinatorics required!
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Commutators, 1

The simultaneous trigonalizability of the endomorphisms
R (t1) ,R (t2) , . . . ,R (tn) yields that their pairwise
commutators are nilpotent. Hence, the pairwise commutators
[ti , tj ] are also nilpotent.

Question. How small an exponent works in [ti , tj ]
∗ = 0 ?

∗ Theorem 20.1. We have [ti , tj ]
j−i+1 = 0 for any

1 ≤ i ≤ j ≤ n.

∗ Theorem 20.2. We have [ti , tj ]
⌈(n−j)/2⌉+1 = 0 for any

i , j ∈ [n].

Depending on i and j , one of the exponents is better than the
other.
Conjecture. The better one is optimal! (Checked for all
n ≤ 12.)
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Commutators, 2

∗ Stronger results hold, replacing powers by products.

∗ Several other curious facts hold: For example,

ti+1ti = (ti − 1) ti and ti+2 (ti − 1) = (ti − 1) (ti+1 − 1)

and

tn−1 [ti , tn−1] = 0 and [ti , tn−1] [tj , tn−1] = 0

for all i and j .

All this is completely elementary but surprisingly hard to prove
(dozens of pages of manipulations with sums and cycles). The
proofs can be found in arXiv:2309.05340.

What is “really” going on? No idea...
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Representations, 1

Two natural questions:

1 The F (I ) and the Fi are left ideals of k [Sn]; how do they
decompose into Specht modules?

2 How do t1, t2, . . . , tn act on a given Specht module?

We can answer these.

The answer uses symmetric functions, specifically:

Let sλ be the Schur function for a partition λ.

Let hm = s(m) be the m-th complete homogeneous symmetric
function for each m ≥ 0.

Let zm = s(m−1,1) = hm−1h1 − hm for each m > 1.
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Representations, 2

For each lacunar subset I of [n − 1], we define a symmetric
function

zI := hi1−1

k∏
j=2

zij−ij−1
(over Z) ,

where i1, i2, . . . , ik are the elements of I ∪{n + 1} in increasing
order (so that ik = n + 1 and I = {i1 < i2 < · · · < ik−1}).
This is a skew Schur function corresponding to a disjoint
union of hooks: e.g., if n = 11 and I = {3, 6, 8}, then it is

i1 − 1

i2 − i1 − 1

1
i3 − i2 − 1

1
i4 − i3 − 1

1
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Representations, 3

For each lacunar I ⊆ [n − 1] and each partition λ of n, we let
c Iλ be the coefficient of sλ in the Schur expansion of zI .
This is a Littlewood–Richardson coefficient (since zI is a skew
Schur function), thus ∈ N.
Theorem 21.1. Let ν be a partition. Let λ1, λ2, . . . , λn ∈ k.
Then, the shuffle λ1t1 + λ2t2 + · · ·+ λntn acts on the Specht
module Sν as a linear map with eigenvalues

λ1mI ,1 + λ2mI ,2 + · · ·+ λnmI ,n

for all lacunar I ⊆ [n − 1] satisfying c Iν ̸= 0,

and the multiplicity of each such eigenvalue is c Iν in the
generic case.
If all these linear combinations are distinct, then this linear
map is diagonalizable.
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Representations, 4

Theorem 21.2 (lazy version). Let k be a field of
characteristic 0. Let i ∈ [fn+1]. As a representation of Sn, the
quotient module Fi/Fi−1 has Frobenius characteristic zQi

.

Theorem 21.2 (careful version, true in every
characteristic). Let i ∈ [fn+1]. Consider the lacunar subset
Qi of [n − 1]. Let i1, i2, . . . , ik be the elements of Qi ∪ {n + 1}
in increasing order. Then, as representations of Sn, we have

Fi/Fi−1
∼= Hi1−1 ∗ Zi2−i1 ∗ Zi3−i2 ∗ · · · ∗ Zik−ik−1

,

where ∗ means induction product (that is,

U ∗ V = Ind
Si+j

Si×Sj
(U ⊗ V )), and where Hm is the trivial

1-dimensional representation of Sm, whereas Zm is the
reflection representation of Sm (that is, km modulo the span
of (1, 1, . . . , 1)).

Proofs appear in arXiv:2508.00752.
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Conjectures and questions

Question. What can be said about the k-subalgebra
k [t1, t2, . . . , tn] of k [Sn] ? Note:

n 1 2 3 4 5 6 7 8

dim (Q [t1, t2, . . . , tn]) 1 2 4 9 23 66 212 761

(this sequence is not in the OEIS as of 2025-10-08).

Question. Do the results about commutators and
representations generalize to the Hecke algebra?
(The Fibonacci filtration and descent-destroying basis
definitely do. Proofs forthcoming...)
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