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1. Introduction

In 2023 Richard Stanley proposed the following problem (private communication).
Let M denote the monoid freely generated by the two non-commuting variables D
and U. Consider the action of M on the polynomial ring Q [x] in which D acts as
differentiation (%) and U acts as multiplication by x. This action is not free, as it is
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known to satisfy the relation
DU - UD =1, (1)

which is the defining relation of the Weyl algebra (also known as the Heisenberg—Weyl
algebra [BHDPS08]| due to its obvious quantum-physical significance).

Consider two words in M to be equivalent if they act equally on Q [x] (that is,
become equal in the Weyl algebra). It can be shown that equivalent words have the
same number of U’s and the same number of D’s. Thus we can ask: How many
distinct equivalence classes are there for words with k many D’s and n — k many U’s?
We call this number a(n, k). For example, among the six words with two D’s and
two U’s, there is one equivalence: DUUD = UDDU, so that a(4,2) = 5.

We prove explicit formulas for a(n, k) and for } ; a(n, k) originally conjectured by
Stanley (Section [p). Along the way, we study the equivalence from several direc-
tions and give several equivalent descriptions of it. Call a word in M balanced if it
has the same number of U’s as D’s. We show (in Theorem another conjecture
of Stanley) that two words v and w are equivalent if and only if one can be obtained
from another by a series of balanced commutations, i.e., by a sequence of swaps of
adjacent balanced factors. In the example above, the transposition of DU with UD
gives the equivalence. This and several further criteria serve as the linchpin for the
enumerative results.

In much earlier work, Stanley identified a particular class of posets, including
Young’s lattice of integer partitions, which he called differential posets [Stanle88].
Standard and semi-standard Young tableaux are in bijection with certain chains in
Young’s lattice, Y, which can be studied using the standard Down and Up oper-
ators in Y. For example, applying U" to the empty shape & gives a formal sum
of all partitions A of n, each weighted by the number of standard tableaux of that
shape f. Applying D"U" to @ yields (Y)-,(f*)?) @, and a simple inductive argu-
ment shows that D"U"@ = n!g, recovering the basic enumerative identity shown
by the Robinson-Schensted correspondence. The key insight is that these opera-
tors satisfy the fundamental relation of the Weyl algebra, Equation (I, allowing
counting problems to be expressed in terms of these operators. Many enumerative
identities, expressed as generating functions in these operators, can be proved by
solving certain elementary partial differential equations. This study motivated the
current problem, though it is natural enough on its own.

The outline of the paper is as follows. In Section 2] we formally define the monoid
M, the above monoid, the Weyl algebra 1V, and many further related combinatorial
objects. Then we state our main result (Theorem [2.T), which gives several different
criteria for words in the monoid M to be equivalent (i.e., to represent the same
operator in W). E| A second main result (Theorem says that each balanced
word u is equivalent to its “reverse toggle-image” (i.e., to the word obtained from

1We note that one of our criteria in Theorem gives rise to an efficient (linear time) algorithm for
the word problem in the monoid generated by D and U in W, in contrast to the naive “expand
and compare coefficients” approach (which requires quadratic time at best). See Remark [2.2| for
details.
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u by reversing the order of the letters and also replacing each D by U and vice
versa). The proofs of these two results occupy the next three sections.

Section 3| provides some basic formulas for products of D’s and U’s in the Weyl
algebra. In Section |4/ we define a normal form for our words and start working our
way towards the proof of our main result, which we finish in Section

Enumerative results — including the formulas for a(n,k) and for Y ; a(n, k) — are
then obtained in Section [6| The formula for Y a(n, k) (Corollary|[6.7) is surprisingly
intricate, despite involving nothing more complicated than the Fibonacci sequence.
Then we turn our attention to c-Dyck words, where every prefix has at least ¢ times
as many U’s as D’s, finding analogous results for this situation, and exploring
some interesting special cases. Finally, we give an explicit formula for the size of
the Weyl-equivalence class of a word w.

An intriguing digression is pursued in Section [/ Indeed, a search for the se-
quence of the numbers ) ; a(n, k) in the OEIS reveals a sequence [OEIS, A006727]
originating in statistical physics (bond percolation on the directed square lattice).
This sequence, however, agrees with ours only for n < 11, and in fact contains
negative terms later on. We briefly introduce the physical context and explain this
seeming coincidence.

Section 8| continues the study of equivalence of words and relates it to the part
of combinatorics known as rook theory. The equivalence of two words u and v
is revealed to be a stronger version of the rook equivalence of two Ferrers boards
B, and B, induced by these words. This leads to two further “main theorems”
(Theorem and that provide further equivalent conditions for two words
to be equivalent. Their proofs piggyback on work by Navon, Haglund, Cotardo,
Gruica and Ravagnani. We note that our equivalent criteria in Theorem [2.1{can thus
also be seen as equivalent criteria for rook-equivalence of Ferrers boards, although
some care is needed to ensure that the correspondence really is one-to-one (see
Remark [8.4).

In Section [9 we take a closer look at our balanced commutations, and show
that a subset of these commutations actually suffices to connect any two equivalent
words. It is not hard to see that we can generate Weyl equivalence by transpositions
only of irreducible balanced words, i.e., those which themselves cannot be factored
into two or more balanced words. Even better, we show that we only need to
swap irreducible balanced words starting with a U with ones starting with a D
(Theorem [.1)).

In the final Section we discuss other algebras that allow for the same or
similar questions to be asked instead of the Weyl algebra. We generalize our results
to multivariate Weyl algebras, and give a partial result for the down-up algebras of
Benkart and Roby [BenRob98]. The case of Weyl algebras in positive characteristic
appears to be more intricate, and we offer several open questions for exploration.

Remark. A more detailed version of this work, with some proofs expanded, is
available as an ancillary file to this preprint on the arXiv.
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2. Definitions and main results

In this section, we introduce the main notions and notations involved in our main
results, which will be stated at the end of the section.

2.1. The monoid M and the Weyl algebra W

Let M be the free (noncommutative) monoid generated by two symbols D and U.
Its elements are the words with letters D and U, such as DUUDDUDD.

Let k be a field of characteristic 0, and let W be the Weyl algebra over k with
generators D and U and relation DU — UD = 1. This algebra WV acts on the uni-
variate polynomial ring k [x] in a standard way: D acts as the derivative operator

=, whereas U acts as multiplication by x. It is known that this action is faithful,

x
and W has a basi (D'u/ )z‘,jelN as well as a basis (U/ Di)i,jeN. See [ManSchid],
[vanOys13] and several exercises in [Lorenz18] for much there is to know about W
and then some. (The Weyl algebra WV is often denoted by A; (k) or A; (k).)

Let ¢ : M — WV be the canonical monoid morphismﬂ from M to the monoid
(W, -,1) that sends D to D and U to U. Thus, ¢ sends any product of D’s and U’s
to the same product of D’s and U’s, but now computed in W instead of M. This
morphism ¢ is not injective, since (for example) DUUD = UDDU in W (but not
in M). Thus, one may naturally wonder what pairs of words u,v € M have equal
images under ¢. In the parlance of monoid theory, this is asking about the kernel of
the monoid morphism ¢ — that is, the equivalence relation “¢ (1) = ¢ (v)” on M.

We will give several descriptions of this equivalence relation in terms of different
objects, and subsequently study its enumerative properties (such as the number of
equivalence classes of a given word length). We now define some of these objects.

2.2. Words

¢ The word “word” will always mean an element of M (that is, a word built of
D’s and U’s), unless we say otherwise.

A word v € M is said to be a factor of a word w € M if there exist words
u,u’ € M (possibly empty) such that w = uovu’.

A word v € M is said to be a prefix of a word w € M if there exists a word
u' € M (possibly empty) such that w = vi/'.

A word v € M is said to be a suffix of a word w € M if there exists a word
u € M (possibly empty) such that w = uv.

2Here and in the following, IN denotes the set {0,1,2,...}.
3“Morphism” means “homomorphism” throughout this work.
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For example, the word DUD is a prefix of DUDUDD and is a suffix of UDDUD.
Furthermore, the word DUD is a factor of UDUDDD, but neither a prefix nor
a suffix. The word DUD is not a factor of DUUD (since a factor must appear
contiguously). Note that each word w is a factor, a prefix and a suffix of itself.

2.3. Diagonal paths

A notion closely related to words are diagonal paths, which we will now introduce
along with their various features:

e The diagonal lattice means the digraph (i.e., directed graph) with vertex set Z>
and arcs (i,j) — (i+1,j+ 1) (called NE-arcs) and (i,j) — (i+1,j — 1) (called
SE-arcs). Given two vertices 1 and v of the diagonal lattice, we write “u " v”
for “u — v is an NE-arc”, and we write “u \, v” for “u — v is an SE-arc”.

We imagine the diagonal lattice as being drawn in the Cartesian plane, but
its arcs are not parallel to the axes but rather parallel to the two diagonals
(x =y and x = —y). Thus, NE-arcs and SE-arcs look like the arrows " and
\, respectively (whence our notations for them).

* A diagonal path means a walk on the diagonal lattice. Since the diagonal lattice
is acyclic (i.e., has no directed cycles), any such walk is a path.

e If p = (po,p1,.-.,px) is a diagonal path, then

— the vertices of p are po, p1,..., P
— the NE-steps of p are the vertices p; of p for which i < k and p;  pit1;
- the SE-steps of p are the vertices p; of p for which i < k and p; \, pi11.

For example, if p = (po, p1, p2, p3) is a diagonal path with pg 7 p1 \( P2 \
p3, then its vertices are po, p1, p2, p3; its only NE-step is po; and its SE-steps
are p1 and p».

o The height ht (i, ) of a vertex (i,]) of Z? is its y-coordinate j.

e If p = (po,p1,-.-,pk) is a diagonal path, then the initial height of p is the
height ht (pg) of its initial vertex, whereas the final height of p is the height
ht (px) of its final vertex. We say that the path p starts at height ht (py) and
ends at height ht (py).

e If p = (po,p1,-..,px) is any diagonal path, then we associate three Laurent
polynomials (in the indeterminate z) to p:

k
— the height polynomial H(p,z) = Y. zM(Pi);
i=0

— the NE-height polynomial H\g(p,z) = y Zht(pi).
p; is an NE-step of p
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— and the SE-height polynomial Hsg(p,z) = y Zht(pi)
p; is an SE-step of p

 The reading word w (p) of a diagonal path p = (po, p1,--., px) is defined to be
the word wow; - - - wr_1 € M, where

Wi — u, ifpi /7 pivi
l D, if pi \( pit1-

For instance, if p = (po, p1, P2, P3, pa) with po 7 p1 \( P2 \( P3 \¢ Ps, then
w (p) = UDDD.

For example, if p is the diagonal path shown in Figure [1, then the heights of
all vertices of p are shown on Figure 2} in particular, its initial height is 0, its
final height is —1, its height polynomial is H (p,z) = z~! 4+ 3z° + 3z! + 22, its NE-
height polynomial is Hyg (p,z) = 2z° + z!, its SE-height polynomial is Hsg (p,z) =
29 +2z' + 22, and its reading word is w (p) = UDUUDDD.

(0,0)

Figure 1: A diagonal path.

We note that if p is any diagonal path, then

(final height of p) — (initial height of p)
=(#of U'sin w(p)) — (#of D’sin w(p)). (2)

Note that a diagonal path p is uniquely determined by its initial vertex py and its
reading word w (p). In particular, for any word w € M, there is a unique diagonal
path p that starts at (0,0) and has reading word w (p) = w. We will call this path
p the standard path of w. For example, the path shown in Figure [1|is the standard
path of UDUUDDD.

Given a word w € M, we define the Laurent polynomials

H(w,z) = H(p,z) and Hng(w,z) = Hne(p,z) and  Hsg(w,z) = Hsg(p, z),

where p is the standard path of w. We call H(w,z) the height polynomial of w.
Furthermore, we define the final height of our word w to be the final height of its
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heights of SE-steps
1 2 1 0

0 0 1
heights of NE-steps

Figure 2: The heights of the vertices of p. The heights of the NE-steps are written
at the bottom, while those of the SE-steps are written at the top. The last
vertex of p counts neither as an SE-step nor as an NE-step.
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standard path p. Since its initial height is 0 (because it starts at (0,0)), and since it
satisfies w (p) = w, we obtain from (2) the equality

(final height of w)
=#of Usinw)— (#of D’sin w). (3)

We note that the heights of the SE-steps of a diagonal path have come up in the
study of Weyl algebras before (see the last paragraph of [BlaFlall, Section 7.1]).

2.4. The w maps

We furthermore define two useful maps, both of which we call w:

* Let w: M — M be the monoid anti—morphismlﬂ that sends U and D to D
and U. Thus, acting on a word w € M, it reverses the word and togglesﬂ
every letter.

For example, w (UDD) = UUD.

This map w has a simple geometric meaning: It simply reflects the standard
path of the word across a vertical axis (see Figure [3).

p q

reflection
—_—

Figure 3: A path p (left) and its reflection q across a vertical axis (right).

* Let w : W — W be the k-algebra anti—morphismﬁ that sends U and D to
D and U. (This is well-defined, since the operation of swapping U with
D transforms the defining relation DU — UD = 1 of W into the relation
UD — DU = 1, which holds in the opposite algebra of W.)

For example, w (UDD) = UUD (but now in W).

4 A monoid anti-morphism is a map f : M — N between two monoids such that f (1p;) = 1y and
f(ab) = f(b) f (a) for all a,b € M. In other words, it is a monoid morphism from M to the
opposite monoid of N.

>To toggle a letter means to replace it by a D if it is a U, and to replace it by a U if itis a D.

®A k-algebra anti-morphism is a map f : A — B between two k-algebras such that f is a morphism
of additive groups and a monoid anti-morphism of multiplicative monoids. In other words, it is
a k-algebra morphism from A to the opposite algebra of B.
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Both maps w are involutions, i.e., satisfy wow = id. Moreover, the two w’s
commute with ¢: That is, we have w o ¢ = ¢ o w. In other words, the diagram

MW (4)

o e

commutes. This justifies us calling the two w’s by the same letter.

2.5. Balanced words, commutations and flips

Finally, we define the concept of a balanced word and two equivalence relations on
words:

e A word w € M is said to be balanced if it has the same number of D’s and
U’s. For example, DUUDDU is balanced, whereas DUUUD is not.

¢ Given two words v,w € M, we say that v is obtained from w by a balanced
commutation if and only if we can write v and w as v = pxyq and w = pyxgq,
where p,q € M are two words and where x,y € M are two balanced words.
Roughly speaking, this means that v can be obtained from w by swapping
two balanced factors that abut each other in w.

For instance, from DUDDUUDUUD we can obtain DDUUDUDUUD by a
balanced commutation (swapping the prefix DU with the infix DDUU, both
of which are balanced). By a further balanced commutation, we can turn
DDUUDUDUUD into DDUUDUUDDU (swapping the infix DU with the
suffix UD, both of which are balanced).

We define an equivalence relation % on M by stipulating that two words

w,v € M satisfy w %2 v if and only if v can be obtained from w by a sequence

(possibly empty) of balanced commutations. Thus, our above examples show

that DUDDUUDUUD % DDUuUDUUDDU.

¢ Given two words v,w € M, we say that v is obtained from w by a balanced
flip if and only if we can write v and w as v = pxq and w = pw (x) q, where
p,q € M are two words and where x € M is a balanced word. Roughly
speaking, this means that v can be obtained from w by picking a balanced
factor and applying the involution w to it.

For instance, from DUDDUU we can obtain DDUUDU by a balanced flip
(applying w to the balanced factor UDDU).

;
We define an equivalence relation ~ on M by stipulating that two words

w,v € M satisfy w % if and only if v can be obtained from w by a se-
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quence (possibly empty) of balanced flips. Thus, our above example shows
@
that DUDDUU ~ DDUUDU.

Another example for a balanced transformation and a balanced flip can be seen
on Figure 4

word standard path
uuuubbubbbbuubbD
balanced commutation + balanced commutation
ubpuuduubbubbDD
balanced flip 1 balanced flip
ubpuuuuubbubbDD

Figure 4: A word undergoing a balanced commutation followed by a balanced
flip (left); the corresponding standard paths (right). The factors that are
swapped or transformed are marked by underlines and overlines.

2.6. Main result: Equivalent descriptions of Weyl equivalence

Everything is now in place to state our main result, which gives several (necessary
and sufficient) criteria for when two words u,v € M have the same image under

¢.
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Theorem 2.1. Let u and v be two words in M. Then, the following seven state-
ments are equivalent:

e Si: We have ¢ (u) = ¢ (v).

e S;: The elements ¢ (1) and ¢ (v) act equally on the polynomial ring k [x].
(That is, we have (¢ (1)) (p) = (¢ (v)) (p) for each polynomial p € k[x].
Note that the action of W on k [x] was defined in Subsection 2.1])

e S3: The words u and v have the same final height and satisfy Hng (1,z) =
HNE (U, Z).

e S!: The words u and v have the same final height and satisfy Hgg (1,z) =
HSE (U, Z ) .

e S4: The words u and v have the same final height and satisfy H (u,z) =
H (v,z).

bal
e Ss: We have u ~ v.

fli
e Sg: We have u ~ 0.

o’
In particular, this shows that the two relations % and '~ are the same.

Remark 2.2. Criterion S3 (or S}) can also be turned into an efficient algorithm to
decide whether or not ¢ (1) = ¢ (v), which requires linear time and space in the
length of u and v:

We use an array A with both positive and negative indices. Start at i = 0
and read the word u. When a value of i is reached for the first time, A[i] is
initialized as 0. In particular, A[0] is initialized as 0 right at the beginning. Each
time the letter U is read, increase A[i] by 1 and increase i by 1; else decrease i by
1 (and leave the values of the array unchanged). The final value of i is the final
height of 1, whereas the final entries of the array are the coefficients of Hyg (4, z).
Once u has been read completely, do the same with v (starting at i = 0 again),
but decrease A[i] whenever the letter U occurs. Condition Sj is clearly only
satisfied if the final heights of u and v are the same and the array at the end
consists entirely of zeros. If a value of i is reached in the second part that was
not reached in the first part, or if an entry of the array becomes negative during
the second stage of the algorithm, one can stop immediately: ¢ (1) # ¢ (v) in
this case. The length of the array is thus bounded by the length of u. Even more,
since the sum of the entries of the array is bounded by the length of word u, a
linear total number of bits is sufficient for all entries of the array.

In Section (8, we will add some more equivalent statements to the list in Theo-
rem albeit under the additional assumption that u and v have the same number
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of U’s and the same number of D’s.
The following result is a curious consequence of Theorem [2.1{ (although we will
prove it first and then use it in the proof of Theorem [2.T).

Theorem 2.3. Let u € M be a balanced word. Then, ¢ (1) = ¢ (w (1)) and

u%lw(u).

3. Basic formulas for the Weyl algebra action

The proof of our main result requires significant build-up and preparation. We
begin with a closer look at the Weyl algebra 7V and its action on the polynomial
ring k [x].

Lemma 3.1. The action of the Weyl algebra ¥V on the polynomial ring k [x] is
faithful: That is, if two elements a,b € W satisfy a (p) = b(p) for all p € k[x],
thena = b.

Proof. This is a folklore result, and can be easily derived from facts in the literature.
For instance, [Milicil7, Theorem 5.11] (applied to n = 1) shows that the k-algebra
D (1) of differential operators on the polynomial ring k [x] is isomorphic to the
Weyl algebra k (D, U | DU — UD = 1) = W. The actual proof of [Milicil7, The-
orem 5.11] shows that the k-algebra morphism W — D (1) that sends D and U

d
to =— and the multiplication by x is injective. But this morphism is precisely the

x
action of W on k [x] (except that its target has been restricted to D (1)). Thus, its
injectivity means that the action is faithful. This proves Lemma O

Remark 3.2. The Weyl algebra W acts not only on the polynomial ring k [x],
but also on the rings of Laurent polynomials k [x,x 1], of formal power series
k [[x]], of formal Laurent series k ((x)), and (if k = R or k = C) of infinitely
differentiable functions C* (k). In each case, the action is faithful (since the
polynomial ring k [x] embeds into each of these rings), and thus all our results
still apply.

Even more generally: Any nontrivial representation of WV is faithful. Indeed,
recall that we assumed char k = 0. Thus, the Weyl algebra W is simple (see, e.g.,
[LamO1, Corollary 3.17]), and thus its only proper ideal is 0. But the annihilator
of a nontrivial representation V of W (that is, the set of all w € W satisfying
wV = 0) is a proper ideal of W, and thus must be 0. Hence, V must be faithful.
This gives an alternative proof of Lemma

Each word u € M is mapped by ¢ to an element of the Weyl algebra WV, which in
turn acts on the polynomial ring k [x]. Our next goal is to give an explicit formula
for this action in terms of a diagonal path p that has u as its reading word. For the
sake of simplicity, we extend the action of WV from the polynomial ring k [x] to the
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Laurent polynomial ring k [x, x| (so that we don’t have to worry about possible
negative exponents on a power of x).

Proposition 3.3. Let p = (po, p1,. .., Px) be a diagonal path. Let h; := ht (p;) for
eachi € {0,1,...,k}. Then, for each s € Z, we have

(@ (w(p)) (x°) = ( [1 (s + I — hi+1)> Ea (5)

p; is an SE-step of p

Example 3.4. If the last steps of p are - - - pr_g \¢ Pk—3 /" Pr—2 " Pk-1 \ Pks

then w (p) = --- DUUD and thus any s € IN satisfies
d d d
S — .. S:..._ _S: o 00— Sil
(¢ (w(p))) (x°) =---DUUDx o Qxx/ St X xaixs
—gys—1 N
— J s _ J s+1 s
=S o n XX, =S oy =s(s+1)---x
—yxst1 N—
=(s+1)x8

The two factors s and s + 1 that we have found correspond precisely to the two
SE-steps px_1 and py_4 of p. Of course, further SE-steps in p will contribute
more such factors.

The above example illustrates where Proposition comes from: In general,
we can compute (¢ (w (p))) (x°) in the same way, decomposing ¢ (w (p)) into a
product of D’s and U’s (which correspond, respectively, to SE-steps and NE-steps
of w (p)), and letting each of these D’s and U’s act on the monomial x° sequentially
(starting with the last one). The letter U acts as multiplication by x and thus sends

0 .
x* to x¥*1 whereas the letter D acts as — and thus sends x* to kx*~1. Thus, in total,

the exponent on our monomial x° is inc)rcemented once for each U (that is, for each
NE-step of w (p)) and decremented once for each D (that is, for each SE-step of
w (p)), so that it becomes s + h; — hy at the end (an easy consequence of (2)). The
factors accumulating in front of the monomial are precisely the k’s coming from
the D’s, and thus are precisely the s + hy — h;;1 corresponding to the SE-steps p;
of p, since it is these SE-steps that turn into letters D in ¢ (w (p)) (and the current
degree of the monomial at the time when D is applied is exactly s + hj — h;11). The
final result is precisely the right hand side of ().

This argument can be easily translated into a rigorous proof of Proposition
which can be found in the detailed version of this paper.

The following is a version of Proposition in which the reading word w (p)
additionally undergoes the “toggle-and-reverse” anti-automorphism w:
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Proposition 3.5. Let p = (po, p1, . - -, Px) be a diagonal path. Let h; := ht (p;) for
eachi € {0,1,...,k}. Then, for each s € Z, we have

(@ (¢ (w(p))) (x*) = ( I1 (s +ho — hi)) xSt

p; is an NE-step of p

The proof of this is similar to that of Proposition again, we refer to the
detailed version for the details.
As a consequence of Proposition 3.5, we can easily obtain the following:

Proposition 3.6. Let p = (po, p1,---, px) and q = (4o, 91, - - -, qm) be two diagonal
paths with the same initial height that satisfy ¢ (w (p)) = ¢ (w (q)). Then, the
final heights of p and q are equal, and we have

{ht(p;) | piisan NE-step of p} icet
= {ht(g;) | g;is an NE-step of q}

multiset * (6)

Proof. Let h; := ht(p;) for each i € {0,1,...,k}. Let g; := ht(g;) for each i €
{0,1,...,m}. Note that iy = go (since p and q have the same initial height).

Let s € IN be high enough to be larger than all numbers h; — hg for all NE-steps
pi of p and also larger than all numbers g; — go for all NE-steps g; of q.

Then, Proposition 3.5 yields

(w (P (w(p))) (x*) = ( I (s 4 hg — hi)) xS+~
p; is an NE-step of p
and similarly
(@ (@ (w (@) () = ( T Gts- gl.)> T
g; is an NE-step of q

But the left hand sides of these two equalities are equal, since ¢ (w (p)) = ¢ (W (q))-
Thus, the right hand sides are also equal. In other words, we have

( H (S + hy — h1)> - x5tho—hy

p; is an NE-step of p

= ( 11 (s+ 80— gi)> LS80 8m, (7)

g; is an NE-step of q

The products on both sides of this equality are nonzero (since s is larger than all
numbers h; — hy for all NE-steps p; of p and also larger than all numbers g; — go for
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all NE-steps g; of q). Thus, (7) entails that the exponents s + hy — hy and s + go — gm
are equal, and therefore we conclude that hy — hy = g0 — gm. Since hy = go, this
entails hy = g,;. In other words, the final heights of p and q are equal.

Since the two exponents s + 1y — iy and s + gg — g in (7) are equal, we obtain

IT (s+ho—h;i) = I (s+80—i) (8)

pi is an NE-step of p g; is an NE-step of q

by comparing coefficients in (7). Now forget that we fixed s. We just proved the
equality for each sufficiently high s € IN. But this equality is a polynomial
identity in s, and thus must hold formally (since it holds for each sufficiently high
s € IN). In other words, it must hold in the polynomial ring k [x] if we replace s
by x.

Now recall that hy = go. So (8) still holds as a polynomial identity if we substitute
x for s + hg = s 4+ go on both sides to transform the identity into

[T (x —hi) = [1 (¥ —8i) -

p; is an NE-step of p g; is an NE-step of q
Since k [x] is a unique factorization domain, this yields that

{hi | piis an NE-step of p} et
= {gi | giis an NE-step of q}

multiset

This is exactly (6) since h; = ht(p;) and g; = ht(g;) for all respective i. This
completes the proof of Proposition since we have already shown that the final
heights of p and q are equal. O

Proposition 3.7. Let u and v be two words in M such that ¢ (1) = ¢ (v). Then,
u and v contain the same number of D’s and the same number of U’s.

Proof. Let p = (po, p1,- - -, px) be the standard path of u, and let q = (90,91, ---,q9m)
be the standard path of v. The paths p and q both start at (0,0) (by the definition of
a standard path), and thus have the same initial height (namely, 0). Moreover, their
reading words are w (p) = u and w (q) = v (since p and q are the standard paths
of u and v). Thus, from ¢ (u) = ¢ (v), we obtain ¢ (w (p)) = ¢ (w(q)). Hence,
Proposition 3.6 yields that the final heights of p and q are equal, and that

{ht(p:) | piisan NE-step of p} o iset
= {ht(q:) | ¢:is an NE-step of q} pyptiset
The latter equality yields (in particular) that the number of NE-steps of p equals
the number of NE-steps of q. Since the NE-steps of p are in bijection with the U’s
in w (p) = u, and similarly for q, we can rewrite this as follows: The number of
U’s in u equals the number of U’s in v. In other words, u and v contain the same
number of U’s.




Monomial identities in the Weyl algebra page 17

It remains to see that the words 1 and v contain the same number of D’s. But
shows that

(final height of p) — (initial height of p) = (# of U’s in w (p)) — (# of D’s in w (p))
and
(final height of q) — (initial height of q) = (# of U'sin w(q)) — (# of D’sin w (q)).

The left hand sides of these two equalities are equal (since the paths p and q have
the same initial height and the same final height). Thus, so are the right hand sides:

(#of U'sin w(p))— (#of D’'sin w(p)) = (#of U'sin w(q)) — (#of D’sin w(q)).
In other words,
(#of Usinu)— (#of D'sinu) = (#of U'sinv) — (# of D’s in v)

(since u = w(p) and v = w(q)). Since (# of U’s in u) = (# of U’s in v) (because
u and v contain the same number of U’s), we thus conclude that (# of D’s in u) =

(# of D’s in v). In other words, u and v contain the same number of D’s. Proposi-
tion [3.7]is thus fully proved. O

Lemma 3.8. Let u € M be a balanced word. Let s € Z. Then, (¢ (1)) (x°) =
Ausx® for some Ay s € Z.

Proof. Let p = (po, p1,- - -, px) be the standard path of u. Both the initial height and
the final height of p are O (since u is balanced). Thus, the claim follows easily from
Proposition 3.3 O

Lemma 3.9. Let 2 and b be two balanced words in M. Then, ¢ (a) ¢ (b) =
¢ (b) ¢ (a).

First proof. Lemma shows that the elements ¢ (a) and ¢ (b) of W act on the
W-module k [x] as diagonal matrices. Since diagonal matrices commute, we thus
conclude that the actions of ¢ (a) and ¢ (b) on k [x] commute. Hence, the elements
¢ (a) and ¢ (b) themselves commute (since the YW-module k [x] is faithful). O

Second proof. The following alternative proof has been suggested to us by Jorgen
Backelin. It shows that Lemma 3.9|is a disguised form of a classical result known
already to Dixmier [Dixmie68].

We equip the Weyl algebra VW with a Z-grading by deciding that its generators
U and D be homogeneous of degrees 1 and —1, respectively. The 0-th graded
component Wy of WV is then spanned by the images of the balanced words under
¢. In particular, both ¢ (a) and ¢ (b) belong to W) (since a and b are balanced
words).
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However, a result of Dixmier ([Dixmie68, last equation in §3.2]) says that the k-
algebra W) is generated by the single element ¢ (DU). The proof of this result in
[Dixmie68] is fairly easy: We abbreviate ¢ (D) and ¢ (U) as D and U. First it is
shown that W is spanned by the elements of the form D'UI with i,j € IN, which
are homogeneous of respective degrees j — i. Therefore the 0-th graded component

W) is spanned by the elements of the form D'U" with i € N. But each of the latter
elements can be rewritten as

D'U = (DU) (DU +1) (DU+2)--- (DU +i—1)

(as can be proved by induction on i), which is clearly a polynomial in DU =
¢ (DU). Thus the algebra W) is generated by the single element ¢ (DU).

Now, the algebra W), is commutative (since we have just shown that it is gener-
ated by a single element). Therefore, any two of its elements commute. In partic-
ular, ¢ (a) and ¢ (b) commute (since both ¢ (a) and ¢ (b) belong to W)). In other
words, ¢ (a) ¢ (b) = ¢ (b) ¢ (a). This proves Lemma (3.9 again. O

I Lemma 3.10. Let u,v € M be two words such that u b 0. Then, ¢ (1) = ¢ (v).

Proof. 1t suffices to show that if p,q € M are two words, and if x,y € M are
two balanced words, then ¢ (pxyq) = ¢ (pyxq). But this follows from Lemma
(which yields ¢ (x) ¢ (y) = ¢ (v) ¢ (x)), since ¢ is a monoid morphism. O

4. Some words on words

Next, we take a closer look at some properties of the monoid M of words. We
introduce some more terminology:

* A word w € M is said to be rising if it has at least as many U’s as it has D’s.
* A word w € M is said to be falling if it has at least as many D’s as it has U’s.

Thus, each word w € M is rising or falling or both. Moreover, the balanced
words w € M are exactly the words w € M that are both rising and falling.

e A down-zig means a word of the form UDXU for some k > 2.

¢ A rising word w € M is said to be up-normal if it contains no down-zig as a
factor.

For example, the rising word UUDUDUDD is up-normal, whereas the rising
word UUDDUU is not (since it has the down-zig UDDU = UD?U as a factor).

We could similarly define “up-zigs” and “down-normal words” (by toggling each
letter in down-zigs and up-normal words, respectively), but we will have no need
for them.

For what follows, we need a simple property of products in a monoid:
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Lemma 4.1. Let 2 and b be two elements of a monoid M. Let w € M be any
product of a’s and b’s ending with a b. Then, w can be written in the form
a"tba2b ---a"™b for some nonnegative integers h and rq,7,...,r;. (Note that
these integers are allowed to be 0.)

Proof. Almost immediate. (See the detailed version of this paper.) O
Proposition 4.2. Every up-normal word has the form

D (UD)"U (UD)?U --- (UD)"U D"
for some nonnegative integers a,b,h and ry,7,..., 1, (that is, a power of D, fol-

lowed by a product of several factors of the form (UD)"U, followed by a further
power of D, where all powers are allowed to be empty).

Proof. 1f the word consists entirely of D’s, then this is trivial. Otherwise, we first
remove the initial and the final run of D’s (of length a and b respectively, both of
which can also be 0) from our word. The remaining word is still up-normal, but
starts and ends with a U.

This remaining word therefore has no two consecutive Ds, since any run of Ds
longer than a single D would create a down-zig factor (when combined with the
last U before the run and the first U after it). Thus, each D in this remaining
word has to be preceded by a U (since the word starts with U). This allows us to
decompose this word into a product of UD’s and U’s (for instance, by reading it
from right to left, and pairing each D with the U that necessarily precedes it); this
product ends with a U (since our word ends with a U). Thus, our word can be
written as

(ubp)"uub)=U --- (UD)™"U

for some nonnegative integers hand rq, 1y, ..., 1, (by Lemma applied toa = UD
and b = U). This proves Proposition O

The converse of Proposition 4.2 also holds: Each rising word of the form shown
in Proposition .2 is up-normal. The proof is nearly trivial, but we will not use this
fact in the following.

Next, we observe a near-trivial symmetry of balanced commutations:

Proposition 4.3. Let u and v be two words in M. Then, u % v if and only if

w (u) % w (v).

Proof. The map w transforms a word by reversing it and toggling each lette
Clearly, both of these operations turn balanced factors of our word into balanced

"We recall: To toggle a letter means to replace it by the opposite letter (i.e., to replace a U by a D
ora D by a U).
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factors of the resulting word. Thus, if a word a is obtained from a word b by a
balanced commutation, then w (a) is obtained from w (b) by a balanced commu-
tation as well. The same must therefore hold for multiple balanced commutations

applied in sequence. In other words, if u rg v, then w (u) % w (v). The converse
holds for similar reasons (or can also be obtained by applying the preceding sen-
tence to w (1) and w (v) instead of u and v, since w o w = id). Thus, Proposition 4.3
is proved. O

Our main goal in this section is to prove the following proposition:

Proposition 4.4. Let w € M be a rising word. Then, there exists a unique up-

normal word t € M such that ¢ bal w.

This up-normal word t will be called the up-normal form of w.

In order to prove Proposition we need some lemmas. First, we show some
simple identities that allow us to convert between the three height polynomials
(height, NE-height and SE-height) of a diagonal path:

Lemma 4.5. Let p be any diagonal path starting at height a and ending at height
b. We have

H<p/ ) (1+Z HNE | 2% + ZZ] Z Zj (9)
j>b j>a+1
and
H(p,z) = (1+z ")Hsg(p,2)+ ) 2 — ) 2. (10)
j>a j>b+1

(The infinite sums are formal Laurent series, but only finitely many addends
survive the cancellation.)

Proof. We only prove (9), since the proof of is completely analogous. If the path
p has length 0, then a = b as well as H(p, z) = z* = z and Hng(p, z) = Hse(p, z) =
0. The identity clearly holds in this case. Now proceed by induction, and let p’ be
the diagonal path obtained by removing the last vertex from p. Then H(p,z) =
H(p',z) + 2%, and the final height of p’ is b — 1 if the last step of p is an NE-step,
and b 4 1 otherwise. In the former case, we have Hng(p,z) = Hne(p/,z) + 2071,
and the induction hypothesis gives us

H(p',z) = (1+2)Hne(p2)+ ). Z— ) 7,

j>b—1 j>a+1

from which the desired statement follows by adding z” on both sides (since z/~! +
b = (1+2z)z'71). In the latter case, we have Hyg(p,z) = Hng(p’,z), and the
induction hypothesis gives us

H(p',z) = (1+2z)Hne(p2)+ Y. Z— Y 2.

j=b+1 j2a+1
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Again, we add z% on both sides to obtain the desired identity. This completes the
induction and thus the proof. O

Remark 4.6. Let p and b be as in Lemma By definition, we have

H(p,z) = Hng(p,z) + Hee(p, z) + 2%,

since HNg covers all NE-steps, Hsg covers all SE-steps, and zb the final vertex.
This can also be used to derive from (9).

Recall that the height polynomial H (w, z) of a word w was defined as the height
polynomial H (p,z) of its standard path p. Thus, Lemma can be applied to
words:

Lemma 4.7. Let w € M be a word with final height b. Then,
H(w,z) = (14 z)Hng(w, z) + sz — sz (11)
j>b i>1
and
H(w,z) = (1+z Y Hsg(w,z) + sz - ) 2. (12)
>0 b+

Proof. Let p be the standard path of w. Then, the initial height of p is 0 (since
p starts at (0,0)), whereas the final height of p is the final height of w (by the
definition of the latter), and we have

H(w,z) = H(p,z) and Hng(w,z) = Hne(p,z) and  Hsg(w,z) = Hsg(p, z)

(again by the definitions of the respective left hand sides). Thus, Lemma [4.7]follows
from Lemma [4.5| (applied to a = 0). O

As we said, height polynomials of words are a particular case of height polyno-
mials of diagonal paths. But the general case can easily be reduced to this particular
case:

Lemma 4.8. Let r be a diagonal path. Let j be its initial height, and let w = w (r)
be its reading word. Then, H (r,z) = Z/H (w, z).

Proof. Let p be the standard path of w. Then, r is the image of p under a parallel
translation with vertical component j. Thus, H (r,z) = z/H (p, z). Since H (w, z) is
defined as H (p,z), we can rewrite this as H (r,z) = z/H (w, z). O
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Lemma 4.9. Let u and v be two words. Let

k= #of Usinu)— (#0of D'sin u).

Then,
H(uv,z) = H(u,z) + 2" (H (v,2) — 1); (13)
HNg (uv,z) = HNg (1,2) + ZFHng (v,2); (14)
Hgg (uv,z) = Hsg (u,z) + Z"Heg (v,z2). (15)

Proof. The standard path of uv can be obtained by splicing the standard path of u
together with a translated copy of the standard path of v. The translation increases
the heights of all vertices by k (since the standard path of u ends at height k). Thus,
all three equalities follow. (See the detailed version for more details.) O]

Lemma 4.10. An up-normal word w is uniquely determined by its final height
(i-e., the difference # of U’s — # of D’s) and the height polynomial H(w, z).

Proof. Let f be the final height of w. We shall recover w from f and H (w, z).
From (applied to b = f), we obtain

H(w,z) = (1+z)Hnp(w,z) + Y 2 — Y 2.
izf j=1

All terms in this equality other than Hng(w, z) are determined by H (w,z) and f.
Thus, we can use this equality to determine Hng(w,z) from H (w,z) and f (using
polynomial division by 1 + z).

Now, let p be the standard path of w. Thus, the path p starts at (0,0) and has
reading word w (p) = w. Moreover, the definition of HNg(w, z) yields Hyg(w,z) =
Hne(p,z). Thus, Hne(p, z) can be determined from H (w,z) and f (since we can
determine Hng(w, z) from these inputs).

By Proposition we can write w in the form

w = D*(UD)"U (UD)2U - -- (UD)"™*U D". (16)

Each U here corresponds to an NE-step of the diagonal path p (since w = w (p)).
Thus, p has r; + 1 NE-steps of height —a (corresponding to the r; +1 many U’s in
the (UD)" U factor), followed by r, + 1 NE-steps of height —a + 1 (corresponding
to the r, +1 many U’s in the (UD)"2U factor), and so on. Altogether, we thus
obtain

h .
Hne (p,z) = Z(rl- + 1)2_”1_1.
i=1

Thus, the numbers a, h, and 11,75, ..., 7, can be determined from Hng(p, z). Since
Hng(p, z) can be determined from H (w, z) and f, we thus conclude that the num-
bers a, h, and rq,1y,...,1, can be determined from H (w,z) and f. Knowing these
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numbers, we can now determine b from f (since f is the final height of w, that is,
the # of U’s in w minus the # of D’s in w). Knowing a,b, h, 11,13, ..., 1, we can now
reconstruct w using (16). O

Remark 4.11. The statement of Lemma would be false without the assump-
tion that the final height is known. For example, the up-normal words UDUU
and UUDD both have the height polynomial 2 + 2z + z2.

An analogue of Lemma is true for down-normal words (with a similar
proof).

Lemma 4.12. The height polynomial of a word is invariant under balanced

commutations. In other words: If two words v and w satisfy v bl w, then
H(v,z) = H(w, z).

Proof. Tt suffices to prove that H(v,z) = H(w, z) whenever v can be obtained from w
by a single balanced commutation. (The general case will then follow by induction.)

So let v be obtained from w by a single balanced commutation. Thus v = pxyq
and w = pyxq, where p,q € M are two words and where x,y € M are two
balanced words. Consider these words p, g, x,y. Let a be the final height of p. Since
x and y are balanced words, their final heights are 0, and thus the final heights of

the four words px, py, pxy and pyx equal a as well. Thus, by repeated application
of (13), we find

H(pxyq,z) = H(pxy, z) +2°(H(q,2) = 1)
= H(px,z) +2"(H(y,z) —1) + 2"(H(q,2) — 1)
= H(p,z) +2°(H(x,2) = 1) + 2°(H(y,2) = 1) +2°(H(q,2) = 1)

and similarly

H(pyxq,z) = H(p,z) +z*(H(y,z) — 1) + 2" (H(x,z) — 1) + 2"(H(g,2) — 1).

The right hand sides of these two equalities are visibly equal. Hence, so are their
left hand sides: H(pxyq,z) = H(pyxq,z). In other words, H(v,z) = H(w, z) (since
v = pxyq and w = pyxq), and our proof is complete. O

The above lemmas will be used in showing the uniqueness part of Proposi-
tion Let us now present some lemmas for the existence part.

Lemma 4.13. Let w € M be a balanced word that starts with a U and ends with
a U. Then, we can write w as a concatenation w = pg, where p is a balanced
word starting with a U, and where g is a balanced word starting with a D.

Proof. This readily follows from the “discrete intermediate value theorem”. Indeed,
the standard path of w starts and ends on the x-axis (since w is balanced), but it
starts with an NE-step (since w starts with a U) and ends with an NE-step as well
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(likewise). Hence, it must cross the x-axis at some intermediate point, and the
last such intermediate point must be followed by an SE-step (since the path must
fall below the x-axis in order to return to it via an NE-step). Splitting the path at
this point, we obtain two smaller paths corresponding to the desired factors p and
q. O]

Lemma 4.14. Let w € M be a rising word that is not up-normal. Then, we
can write w in the form w = upqgu, where u and v are two words, where p is a
balanced word starting with a U, and where g is a balanced word starting with
aD.

Proof. Our word w = wyw;y ... wy (like any word in M) corresponds to a unique
standard path p = (po, p1,--.,p¢) that starts at pg = (0,0) and has reading word
w (p) = w. Since w is not up-normal, it contains at least one down-zig as a factor.
We arbitrarily pick one such down-zig, which we denote by w;w; 1 - --w;. By the
definition of a down-zig, we have w; = U and w; ;1 = w;1» =--- =w;_1 = D and
w; = Uand i <j—2and p; > pjy1 (since a down-zig must always have length
> 4). This shows, in particular, that the subpath (pi, Pitls---s p]grl) of p is falling.
See Figure [5| for an illustration.

A copair-subpath is a risingﬂ subpath of p that starts at p; or earlier and ends at
pj+1 or later. Note that a copair-subpath always exists, since w itself is rising. We
pick a copair-subpath q of minimum length.

Then, by minimality, q cannot be shortened without breaking either the “starts
at p; or earlier” condition or the “ends at p;;; or later” condition or the “rising”
condition. Hence, if q starts before p;, then q must be balanced (since we could
otherwise remove the first step from q without breaking any of the conditions).
Likewise, if q ends after p;, 1, then q must be balanced (since we could otherwise
remove the last step from q). In the remaining case (i.e., if q starts at p; and ends
at pj;1) it is also clear that q must be balanced: since q is rising by definition, but
the subpath (pj, pit1,. .., pj+1) of p is falling, q must be both rising and falling, i.e.,
balanced. Thus, we have shown that q is always balanced.

Next, let us show that our minimum-length copair-subpath q must start with an
NE-step. Indeed, if it started with an SE-step, then we could shorten it by removing
this step and obtain an even shorter copair-subpath (it will still start at p; or earlier,
since the step from p; to p;;1 is an NE-step and thus not the first step of q); but
this would contradict the minimum-length property of q. Thus, q must start with
an NE-step. For similar reasons, q must end with an NE-step.

Now, consider the factor w’ of w corresponding to the subpath q of p. This
factor w’ is balanced (since q is balanced) and starts and ends with a U (since our
subpath q starts with and ends with NE-steps). Thus we can apply Lemma to
this factor w’, and factor it as w’ = pg, where p is a balanced word starting with a

8We call a path rising if its reading word is rising (i.e., if the path ends at the same height as it
starts or higher). Likewise we define balanced and falling paths.
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u=g, p=UUDD, gq=DU, v=DDDuUuuuubbu

u=UuubbD, p=UD, g=DDUU, v=UUDDU

u=uubbbubpbuuud, p=UD, g=DU, v=0

Figure 5: Possible decompositions of w = upqov for different choices of the down-
zig wiw;y1 ... wj. The (arbitrarily chosen) down-zig is indicated by red
lines. The minimum-length copair-subpath q contains all these red steps
as well as some extra steps, which are indicated by blue lines.
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U, and where g is a balanced word starting with a D. Hence, the full word w factors
as w = upqu, where u is the prefix of w coming before this factor w’, whereas v is
the suffix of w coming after w’. O

Remark 4.15. The decomposition of the word w in Lemma may not be
unique. See Figure [5

Proof of Proposition[£.4, We equip the set M with the lexicographic order, where
D < U. If the word w is not yet up-normal, then by Lemma we can write
it as w = upqu, where p and g are balanced, p starts with U, and g starts with
D. We then perform a balanced commutation to obtain the word w' = ugpv,
which is lexicographically smaller than w (since the first letter of p, which was

U, has been replaced by the first letter of g, which is D). We have w’ % w by
construction. This procedure can be iterated until we end up with an up-normal

word f that satisfies t = w. Indeed, the procedure cannot go on forever, since each
balanced commutation makes our word lexicographically smaller while preserving
its length. Moreover, the word remains rising throughout this procedure, since a
balanced commutation does not change the total numbers of U’s and D’s in the
word.

Thus, we have proved the existence of an up-normal word t € M such that

bal . . .
t ~ w. It remains to prove its uniqueness.

The condition f 2 w ensures that the words f and w have the same final height
(since balanced commutations do not change the numbers of U’s and D’s, and
thus — by — leave the final height unchanged as well) and the same height
polynomial (since Lemma shows that balanced commutations do not change
the height polynomial). By Lemma the up-normal word f is thus uniquely
determined. O

5. Proofs of the main results

5.1. Proof of Theorem

We first establish a lemma that combines some results of the previous sections.

Lemma 5.1. Let p and q be two diagonal paths with the same initial height and
the same final height. Assume that H (p,z) = H (q,z). Then, w (p) 2w (q)-

Proof. Setu = w (p) and v = w (q).

By assumption, the paths p and q have the same initial height and the same final
height. Call these two heights i and f. Then, their two reading words u and v
have the same final height (namely, f — i). Moreover, Lemma {4.8 yields H (p,z) =
z'H (u,z) and H (q,z) = z'H (v, z). Thus, from our assumption H (p,z) = H (q,z),
we obtain H (1,z) = H (v, z).




Monomial identities in the Weyl algebra page 27

Without loss of generality, we assume f > i. (Indeed, the case f < i can be either
treated analogously, or reduced to the f > i case by reflecting both paths p and q
across a vertical line and observing that the words u and v are thus transformed by
the map w. The latter argument uses Proposition [4.3])

Hence, the words u and v are rising. Thus, Proposition shows that there exist

unique up-normal words ¢, and ¢, such that ¢, bal u and t, bal v. Lemma [4.12| then
shows that H (t,,z) = H (u,z) and H (t,,z) = H (v,z). Thus, H (t,,z) = H (ty,2)
(since H (u,z) = H (v,z)). In other words, the two words t, and t, have the same
height polynomial.

Recall that balanced commutations do not change the # of U’s and the # of D’s
in a word. Thus, they do not change its final height either. Hence, the words ¢, and
t, have the same final height as the words u and v, which as we know is f —i.

Now, we know that the two up-normal words ¢, and t, have the same final

height and the same height polynomial. Hence, Lemma shows that they must

be equal. That s, t, = t,. From t,, bal u and t, bal v, we thus obtain u bal t, =ty bal 0.

In other words, w (p) % w (q)- O

Proof of Theorem Let v = w (u). Then, the word v is balanced (since u is bal-
anced). Let p and q be the standard paths of u and v. The paths p and q both start
and end at height 0, so they have the same initial height and the same final height.

The k-th letter of v from the left is the toggle-imageﬂ of the k-th letter of u from
the right. Therefore, the k-th step of q from the left is the toggle-image of the
k-th step of p from the right (since w (p) = u and w (q) = v). Hence, the path
q is the reflection of the path p across a vertical axis (since both paths start and
end at height 0). Thus, the paths p and q have the same multiset of heights of
vertices (although the order in which these heights appear in q is opposite from
the order in p). Hence, the paths p and q have the same height polynomial (since
the height polynomial of a diagonal path encodes the heights of its vertices). In
other words, H (p,z) = H(q,z). We can thus apply Lemma 5.1 and conclude that

w (p) 5w (q). In other words, u . Therefore, Lemma 3.10|yields ¢ (u) = ¢ (v).
Since v = w (u), these two relations yield the claims of Theorem O

5.2. Two more lemmas

For the proof of Theorem [2.1, we need two more lemmas:

i
I Lemma 5.2. If two words u,v € M satisty u bal v, then u ~ 0.

i
Proof. Recall that ~is an equivalence relation. Hence, it suffices to show that if a

p
word u is obtained from a word v by a balanced commutation, then u 0. So let
us show this.

9The toggle-image of a letter is defined as follows: The toggle-image of U is D; the toggle-image of
Dis U.
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Let a word u be obtained from a word v by a balanced commutation. Thus, we
can write # and v as u = pxyq and v = pyxq, where p,q € M are two words
and where x,y € M are two balanced words (by the definition of a balanced
commutation). Consider these p, g, x, .

Since a concatenation of balanced words is still balanced, the concatenation yx of
y and x is balanced. Thus, the word w (yx) is also balanced (since applying w to a
balanced word yields a balanced word).

Moreover, since w is a monoid anti-morphism, we have w (yx) = w (x) w (y).
Thus, the word w (x) w (y) is balanced. Furthermore, since w o w = id, we have
w (w (yx)) = yx. In other words, w (w (x) w (y)) = yx (since w (yx) = w (x) w (y)).

Now, we can apply a balanced flip to the word u = pxygq, in which we apply
w to the balanced factor x. Thus we obtain a new word u' = pw (x)yq. To this
new word u' = pw (x)yq, we then apply a further balanced flip, in which we
apply w to the balanced factor y. Thus we obtain a new word u” = pw (x) w (y) 4.
Finally, we apply one last balanced flip to this new word u” = pw (x) w (y) g, in
which we apply w to the balanced factor w (x) w (y). This produces the new word

u" =pw(w(x)w(y))q=pyxq=ro.

-~

:yx
Thus we have obtained v from u by a sequence of three balanced flips (via u" and
;
u"). Hence, 1 ~ v. As we said, this proves Lemma O

i
I Lemma 5.3. If two words u,v € M satisfy u ~' v, then ¢ (u) =¢(v).

Proof. 1t clearly suffices to show that if a word u is obtained from a word v by a
balanced flip, then ¢ (1) = ¢ (v).

So let us prove this. Let a word u be obtained from a word v by a balanced flip.
Thus, we can write u and v as u = pxq and v = pw (x) q, where p,q € M are two

words and where x € M is a balanced word. Consider these p, g, x

Theorem 2.3 (applied to x instead of u) yields ¢ (x) = ¢ (w (x)) and x 2 w (x).

Since ¢ is a monoid morphism, we have

¢ (pxq) = ¢ (p) ¢ (x) ¢ (q) and ¢ (pw (x)q) =¢(p)¢(w(x))¢(q)-
(w

)
The right hand sides of these two equalities are equal (since ¢ (x) = ¢ (w (x))).
Hence, so are their left hand sides. In other words, ¢ (pxq) = ¢ (pw (x) q). But this
can be rewritten as ¢ (1) = ¢ (v) (since u = pxq and v = pw( )q). This proves
Lemma 5.3l .

5.3. Proof of Theorem

We are now ready to prove Theorem

Proof of Theorem 2.1, Let p and q be the standard paths of u and v. Then, p and
q are diagonal paths starting in (0,0) and having reading words w (p) = u and
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w (q) = v. In particular, their initial heights are 0. Furthermore, the final heights
of the words u and v are (by their definitions) the final heights of the paths p and q.
Moreover, the height polynomials H (u,z) and H (v, z) are (by their definitions) the
height polynomials H (p,z) and H (q,z), and likewise the NE-height polynomials
HNE (1, z) and HNg (v, z) are the NE-height polynomials Hyg (p, z) and Hng (q, 2).

Having said this, let us now prove the equivalences. It suffices to show that
S = Sand § = S1and §§ = §3 = Sy — &5 = S = &7 and
Sy = Si.

S = Sy: Trivial.
Sy = &1 True since the action of W on k [x] is faithful.

S = S3: Assume that S; holds. Thus, ¢ (1) = ¢ (v). In other words,
p(w(p)) = ¢(w(q)) (since u = w(p) and v = w(q)). Moreover, the paths p
and q have the same initial height (since they both start at (0,0)). Thus, Proposi-
tion |3.6| yields that the final heights of p and q are equal, and that we have

{ht(p:) | piis an NE-step of p}yisicet
= {ht(q:) | ¢iis an NE-step of q} pypiset
The latter equality says that the paths p and q have the same multiset of heights of
NE-steps. Equivalently, HNg (p,z) = Hne (q,2z) (since the NE-height polynomial
of a diagonal path contains the same information as its multiset of heights of NE-
steps). In other words, Hng (4,z) = HNE (v,2) (since the NE-height polynomials
HNg (u,z) and HNg (v, z) are the NE-height polynomials Hng (p, z) and Hng (q, 2)).
Moreover, the final heights of the words u and v are the final heights of the paths
p and q, and thus are equal (since the final heights of p and q are equal). Thus,
statement S3 holds. We have now proved the implication &1 = Ss.

S3 = S4: Assume that S; holds. That is, the words u and v have the same final
height and satisfy Hng (4,z) = HNE (v, z). Let b be the final height of u and v. The
equality from Lemma [4.7) yields

H(u,z) = (14z)Hnp(u,2) + Y 2/ = Y 2
= =

and

H(v,z) = (1+z)Hne(o,2) + Y 2 — Y 2.
= =

The right hand sides of these two equalities are equal (since HNg (#,z) = HNg (9, 2)).
Hence, so are the left hand sides. In other words, H (u,z) = H (v,z). Since we also
know that the words u and v have the same final height, we thus conclude that
statement Sy holds. Thus we have proved §3 = S;.

S; = S5: Assume that statement Sy holds. In other words, the words u and v
have the same final height and satisty H (1,z) = H (v, z).
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The final heights of the words u and v are the final heights of their standard
paths p and q (by definition). Thus, the final heights of p and q are equal (since
the final heights of u and v are equal).

Recall that the height polynomials H (u#,z) and H (v,z) are the height polyno-
mials H (p,iand H(q,z). Hence, H (p,z) = H(q,z) (since H (1,z) = H (v,z)).

By Lemma this entails w (p) % w (q) (since the paths p and q have the same

initial height and the same final height). This can be rewritten as u b2 o (since
u=w(p) and v = w(q)). But this is exactly Ss. Thus, the implication S = S5
is proved.

S5 = S¢: This is Lemma
S¢ = S;: This is Lemma 5.3

Sy — 85: Next, we show the equivalence S <= Sé. This is tantamount to
showing the equivalence of the two equalities H (u,z) = H (v,z) and Hsg (u,z) =
Hgg (v, z) under the assumption that the words 1 and v have the same final height.

So let us assume that the words u and v have the same final height. Let b be this
final height. The equality from Lemma [4.7] yields

H(u,z) = (1+z Y)Heg(u,z) + sz - ) 7.
>0 bt

and

H(v,z) = (1+z Y Hsg(v,z) + sz - ) Z.
>0 jzb+

Clearly, the left hand sides of these two equalities are equal if and only if H (1,z) =
H (v,z), whereas the right hand sides are equal if and only if Hsg (#,z) = Hsg (v, z)
(because the Laurent polynomial 1+ z~! is not a zero-divisor and thus can be
cancelled). Thus, the equalities H (u,z) = H (v,z) and Hgg (u,z) = Hsg (v,z) are
equivalent. As we said, this proves the equivalence Sy <= S}. O

6. Enumeration

Two words u,v € M will be called Weyl-equivalent if ¢ (u) = ¢ (v). Obviously,
Weyl equivalence is an equivalence relation. Theorem [2.1| (and, later, Theorem
provides some necessary and sufficient criteria for Weyl equivalence. In particular,
the &1 <= S5 part of Theorem shows that Weyl equivalence is precisely the

. bal
relation ~.
In this section, we prove several enumerative results regarding the equivalence
classes of Weyl equivalence (henceforth just called “equivalence classes”).
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6.1. Counting equivalence classes by numbers of D’s and U'’s

First, we consider equivalence classes of words with a given number of D’s and
U’s. For 0 < k < n, let a(n, k) be the number of equivalence classes of words with
k many D’s and n — k many U’s. One of the simplest properties of these numbers
is the following symmetry:

| Proposition 6.1. We have a(n, k) = a(n,n — k) for any integers 0 < k < n.

Proof. There are many easy ways to see this. For instance, Proposition 4.3 shows
that the monoid anti-automorphism w : M — M sends equivalence classes to

equivalence classes (since Weyl equivalence is the relation l331). But w turns D’s into
U’s and vice versa. Thus, the proposition follows. O

In particular, a(n,0) = a(n,n) = 1 (the only words in these cases are UU - - - U
and DD - - - D respectively).

Our first real result about the a(n, k) is the following recursion.

Lemma 6.2. For n > 2k > 0, we have
a(n,k) =a(n—1,k)+a(n—2,k—1).
Here, a(n — 2, —1) is interpreted as 0 when k = 0.

Proof. Recall that a(n, k) counts the equivalence classes of words with k many D’s
and n — k many U’s. Such words always have more U’s than D’s (since n > 2k), and
thus (in particular) are rising. Thus, any such equivalence class has a unique up-
normal representative (by Proposition 4.4). Therefore, a(n, k) counts the up-normal
words w with k many D’s and n — k many U’s. Recall that every up-normal word
has the form

D (UD)"U (UD)?U --- (UD)"U D" (17)

for nonnegative integers a,b,r1,...,r, (see Proposition 4.2). An up-normal rising
word w can be of the following two types:

Type 1: The standard path corresponding to w has only one vertex of maximum
height. Equivalently, r;, = 0 in (I7). In this case, we can remove the last U
from w to obtain the word

D (UD)"U (UD)"U --- (UD)™U D"

of length n — 1 consisting of k many D’s and n — k — 1 U’s. This word is still
up-normal. Since n —1 > 2k, it is also still rising. It is clear that one can
reverse the procedure: given a rising up-normal word of length n — 1 with k
many D’s and n —k — 1 many U’s, insert a U just before the final run of D’s if
its last letter is D, and at the end otherwise. This gives us a bijection between
equivalence classes counted by a(n — 1,k) and the equivalence classes of the
first type. See Figure [f| for an illustration.
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Type 2: The standard path corresponding to w has at least two distinct vertices of
maximum height. Equivalently, r;, > 0 in (17). In this case, we can remove
the last U and the D right before it to obtain the word

D (UD)"U (UD)2U --- (UD)" U Db,

which is still up-normal and rising. Its length is n — 2, and it has k — 1 many
D’s. Again, the process is easily reversed by inserting DU either before the
final run of D’s if the last letter is D, or at the end. This gives us a bijection
between equivalence classes counted by a(n — 2,k — 1) and the equivalence
classes of the second type. See Figure [7| for an illustration.

Combining the two types, we obtain the desired recursion. O

pppubpuuuubuubuubDD <« DDbubuuuubuububDD

Figure 6: The bijection for words of type 1. The arc that is removed/inserted is
indicated by a dashed red line. Arcs that are shifted by the procedure are
indicated by dotted blue lines.

Second, we prove explicit formulas in two special cases, which together with the
previous lemma characterize the numbers a(n, k) for all n and k.

Lemma 6.3. For k > 0, we have

a(2k, k) = (k+3)252 and a(2k+1,k) = (k+2)2k1.

Proof. We start with the first formula. Recall (from Theorem equivalence
S1 <= &3) that the equivalence class of a word (with given numbers of U’s and
D’s) is uniquely determined by the multiset of heights of NE-steps in its standard
path. Let the minimum and maximum heights of NE-steps be —s and f respectively
(with s > 0 and t > —1, where the case t = —1 means that the path has no NE-
steps). Let h; be the number of NE-steps of height j (for each —s < j < t). Since our
words are balanced (they have k many D’s and k many U’s), the equivalence class
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DDbubuuuupuuupubDD <« DDbubuuuubuuubD

Figure 7: The bijection for words of type 2. The arcs that are removed/inserted are
indicated by dashed red lines. Arcs that are shifted by the procedure are
indicated by dotted blue lines.

has an up-normal representative (by Proposition , and therefore all /;’s need to
be strictly positive. Thus, (h—s,h_gy1,...,h) is a composition of k into s + ¢ 41
positive integers. For each composition of k of length ¢ (of which there are (12:1))’
there are ¢ + 1 possibilities for the pair (s, t) (s can be any integer from 0 to ¢, and
t = ¢ —s —1). This gives us a total of

kok—1 o
Y. (0+1)= (k+3)2
=R\
possibilities.

For the second formula, we can use induction combined with the recursion in
Lemma [6.2} which gives us

a(2k +1,k) = a(2k, k) +a(2k — 1,k —1),

or we can apply a similar combinatorial argument with compositions of k + 1 (the
only difference is the fact that a composition of length ¢ only gives rise to £ possi-
bilities, since the maximum height t of an NE-step can no longer be —1). O

The combination of these two lemmas yields an explicit formula for the bivariate
generating function of a(n, k).

Theorem 6.4. We have
Z Z a(n k)thn _ (1 — 3tx2 + t2x4)(1 — txz)z 18)
iS00cken (1 —tx —t2?) (1 — x — tx?) (1 — 2tx2)2
or equivalently
1—tx?)3
a(n, k)" = ( . (19)
11§J0<I§1/2 (1 —x—tx2)(1 —2tx2)2
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Proof. We start with the second identity (19). Let us write A(x,t) for the bivariate
generating function on the left. Multiplying the recursion in Lemma by tKx"
and summing over all n and k with n > 2k > 0, we obtain

Y 8 amif"=Y Y am-1Lkfx"+ Y Y a(n—2k— 1)

n>10<k<n/2 n>10<k<n/2 n>20<k<n/2

In terms of the generating function A(x, t), this becomes

Alx, 1) =Y a(2k, k)t x?* = xA(x,t) + tx®A(x, t) — Y a(2k k) k1, 2k42.
k=0 k=0

Solving for A(x,t) now yields

1 — tx2

A(x,t) = Tp——

Y a(2k, k)t x. (20)
k>0

In view of Lemma [6.3| (noting also that 2(0,0) = 1), the sum evaluates to

(1 — tx?)?

k. 2k _
Y a(2k k)t x = T2

k>0

(21)

which completes the proof of (19). To prove the first identity, we write

Y. ) a(n, k)t* =Y ) a(n,k)th”—l—z ) a(n,n — k)" kx"

n>00<k<n n>00<k<n/2 n>00<k<n/2

— Y a(2k, k) £k x?k,
k>0

By the symmetry property a(n,n — k) = a(n, k), the first two terms are A(x,t) and
A(tx,1/t) respectively. The final term is precisely again. Now identity
follows upon simplification. O

Corollary 6.5. For all n and k with 0 < k < n/2, we have

a(n,k)zi(k—j—l-l)(n_?_l).

j=0

Proof. Let X(n,k) be the sum on the right side of the equation. It is easy to verify
that £(n,0) = a(n,0) = 1 and X(2k,k) = a(2k, k) = (k + 3)22 as well as Z(2k +
1,k) = a(2k +1,k) = (k +2)251. Since these values together with the recursion in
Lemma [6.2| characterize a(n, k) uniquely, it suffices to verify that

Y(nk)=X(n—1,k)+X(n—-2k—1).
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The latter is a simple consequence of the recursion for the binomial coefficients,
since

k . n—k—2
Z(n—l,k)—];)(k—]—i-l)( ; )

and

=0 ] = -1
0
k
Nlor 2 3 45 6 7 8 9 10
0 1
11 1
2 11 2 1
301 3 3 1
401 4 5 4 1
5/1 5 8 8 5 1
611 6 12 12 12 6 1
711 7 17 20 20 17 7 1
§ /1 8 23 32 28 32 23 8 1
9 |1 9 30 49 48 48 49 30 9 1
10 |1 10 38 72 80 64 80 72 38 10 1

Table 1: Table of the values of a(#, k).

Remark 6.6. The terms in Corollary[6.5](see Table[I|for some explicit values) have
a simple combinatorial interpretation. Recall that the up-normal representative
of any equivalence class can be written as D* (UD)"*U (UD)"2U --- (UD)"™U D"
for some nonnegative integers a,b,h and rq,7,...,1; (see (16)). Counting U'’s
and D’s, we find thata+b+ri+rn+---+r, = kand (r1+1)+ (rn+1)+
-+-4+ (r,+1) = n—k. From these, one obtains a +b = 2k +h —n. Given
h (which is the number of distinct heights of NE-steps in the corresponding
standard path), there are thus 2k +h — n + 1 possibilities for a and b. Moreover,
r1+1,r0+1,...,r,+ 1is a composition of n — k into h positive integers, for which

there are (”;f ;1) possibilities. Thus the total number of equivalence classes must

- (2k+h—n+1)(";f11>:]é(k—]ﬂrl)("_;f_l),

n—k

h=n—2k

where the second expression is obtained from the first by the simple substitution
h =n—k—j. The numbers r1 + 1,72+ 1,...,r;, + 1 are the multiplicities in the
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multiset of heights of NE-steps, while a2 and b determine at which & consecutive
heights the NE-steps occur.

6.2. Counting all equivalence classes of a given length

Corollary 6.7. The total number of equivalence classes of words of length n > 0
is

1 (3n +42)2"/273, if n even,
I;)a(i’l, k) =2F; 14 — {(n + 15)2(11—3)/2’ if n odd,

where F, is the n-th Fibonacci number. See Table

n 0
Zk ll(i’l,k) 1

Table 2: Total number of equivalence classes for n < 10.

3 4 5 6 7 8 9 10
8 15 28 50 90 156 274 466

Proof. Plug t = 1 into and compare coefficients using standard generating
function techniques. O

6.3. c-Dyck words

Let us now turn our attention to restricted words. Fix a constant ¢ > 0, and consider
words with the property that every prefix has at least ¢ times as many U’s as D’s.
These words form a submonoid M, of M. Again, we will be interested in the
number of equivalence classes of words of length n in M.. Note here that not all
words equivalent to a word in M, are necessarily also in M. To give a simple
example, the word UUDUUD is in Mj while the equivalent word UUUDDU is
not.

Let ac(n,k) be the number of equivalence classes of words in the submonoid
M that consist of k D’s and n — k U’s. Note that we must have n — k > ck, or
equivalently n > (c+ 1)k. We first show that we can again focus on up-normal
words.

Lemma 6.8. Let c > 1 be a real constant. An equivalence class of words in M
contains words in M. if and only if it consists of rising words and the unique
up-normal representative is in M..

Proof. A word lies in M, if and only if the associated diagonal path stays abovem

the line y = Ejr—%x. This is because the part of the path corresponding to a prefix

with a U’s and b D’s ends at (a +b,a — b). The condition a > cb translates to

10 Above” means “weakly above”; i.e., the path is allowed to touch this line.
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a—b > 3 Jr% (a +b). In particular, for ¢ > 1, all elements of M, are rising by
definition. We know that for every equivalence class of rising words, there is a
unique up-normal representative (Proposition [4.4).

Now let an equivalence class C be given. All diagonal paths that correspond to a
word in C have to end at the same point (a,b). If b < Ejr—%a, then M, cannot contain
any elements of C, and there is nothing to prove.

So assume that b > < 1a and assume also that there is a word w € C that lies
in M.. Let p be the Correspondmg standard path, and consider any nonnegative
integer s < b. Every vertex of p whose y-coordinate is less than or equal to s
has to have x-coordinate less than or equal to CHs (we can interpret this as oo if

¢ = 1). Therefore, there are at most C+ <35+ 1 arcs in p that have at least one end
at height s or less. Since the multiset of step heights is the same for all words in
C (by Theorem [2.1)), this also holds for the diagonal path q that corresponds to the
up-normal representative. By construction, all steps with an end at height s or less
occur before all others in q, and it follows that the rightmost vertex of q whose
height is s has an x-coordinate of at most £{s, which means that it lies above or on

the line y = +1x For every vertex Whose helght is greater than or equal to b, this
is automatically true since the final vertex (a,b) of q has this property. We have
thus shown that the entire path q lies above the line y = ‘éjr—%x, so the up-normal
representative lies in M. This completes the proof. O

In analogy to Lemma [6.2] the following lemma holds.

Lemma 6.9. For every real constant ¢ > 1 and every pair (1, k) of positive integers
with n —1 > (¢ + 1)k, we have

ac(n, k) =a.(n—1,k)+a.(n—2,k—1). (22)

Proof. Again, we use the characterization that the standard paths corresponding
to words in the submonoid M, have to stay entirely above the line y = gjr—%x.
By Lemma it suffices to consider the unique up-normal representative of any
equivalence class that is counted by a.(#, k). The same bijections as in the proof of
Lemma [6.2] apply; we only need to check that removing the last U (Type 1) or the
last DU (Type 2) yields a new word that is still in in M. Let us consider the two

different types:

Type 1: The only change in the standard path is the final descent, which is shifted
one unit to the left and one unit down (or one unit to the right and one unit up
in the inverse operation). The final descent is entirely above the line y = E%x
provided that its final vertex is. This is guaranteed in both directions by the

assumption that n — 1 > (¢ + 1)k. The procedure is shown in Figure

Type 2: In this case, the only change in the standard path is that the final descent
is moved two units to the left (or to the right when the inverse is applied). As
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for Type 1, it stays entirely above the line y = Ejr—%x in both directions because
of the assumption that n —1 > (c 4 1)k. See Figure 9| for an illustration.

Combining the two types, we obtain the desired recursion again. O

L

uuabuuuupuuubb « uubuuuubuubbD

Figure 8: The bijection for words of type 1. The arc that is removed/inserted is
indicated by a dashed red line. Arcs that are shifted by the procedure are
indicated by dotted blue lines. The line y = f:jr—%x is shown as well: in this

example, ¢ = 2.

Remark 6.10. The recursion is in general false for ¢ < 1. As a counterexam-
ple, note that a;,,(4,2) = 3 (the three elements UUDD, UDUD and UDDU of
M /s, belong to three distinct equivalence classes), while a7 5(3,2) = 1 (the only
element is UDD) and a7,5(2,1) = 1 (the only element is UD).

For positive integer values of ¢, there is in fact a fairly simple explicit formula for
ac(n, k).

Theorem 6.11. If ¢ is a positive integer and 7,k are positive integers with n >
(¢ + 1)k, then we have

ac(n,k):(”_]’z_l)—(c—z)]g(”_;?_l). (23)

Proof. The recursion determines all values of a.(n,k) except for the boundary
cases where n = (¢ + 1)k. However, if n = (c + 1)k, then the last letter of every
valid word in M. has to be a D (otherwise, the condition of the submonoid M. is
not satisfied for the prefix obtained by removing the last letter). This immediately
implies that

ac((c+ 1Dk, k) =ac((c+1)k—1,k—1). (24)
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uubuduuuubpubDbD «~ uubuuuuuubb

Figure 9: The bijection for words of type 2. The arcs that are removed/inserted are
indicated by dashed red lines. Arcs that are shifted by the procedure are
indicated by dotted blue lines. The line y = gjr—%x is shown as well: in this

example, ¢ = 2.

Together with and the trivial initial value a.(0,0) = 1, this determines a.(n, k)
uniquely for all values of n and k (with n > (c+ 1)k > 0), so it suffices to verify that
the expression on the right side of satisfies the recursion as well as (24).
The former is a simple consequence of the recursion for the binomial coefficients.
The latter is (after some trivial cancellations) equivalent to

ck—1 ck—1
(") =0 (i5)
which is readily verified. The theorem follows immediately by induction. OJ

Remark 6.12. In the special case ¢ = 1, we obtain

a1 (n, k) = f (”_’f_l),

=

see Table These partial sums of binomial coefficients are the entries of
Bernoulli’s triangle (see [OEIS, A008949]) and appear famously as numbers of re-
gions in a general-position hyperplane arrangement [Stanle06, Proposition 2.4].
The terms in the sum have a combinatorial interpretation again (compare Re-
mark [6.6). The only difference to the unrestricted case is that the up-normal
representative cannot have an initial segment of D’s and can thus be written
as (UD)"U (UD)"2U --- (UD)™"U D" for some nonnegative integers b, and
r1,72,...,1,. The numbers r1 + 1,7 +1,...,7, + 1, i.e,, the multiplicities in the
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" k 01 2 3 4 5|}
1 |1 1
2 11 1 2
3 |1 2 3
4 11 3 2 6
5|1 4 4 9
6 |1 5 7 4 17
7 |1 6 11 8 26
8 |1 7 16 15 8 47
9 |1 8 22 26 16 73
10 |1 9 29 42 31 16| 128

Table 3: Table of the values of a1(n, k). The final column gives the total number

Yy ar(n, k).

multiset of heights of NE-steps, form a composition of n — k into / positive inte-

gers. Since there are (”ﬁ;l) such compositions, the total number of equivalence

classes must be
”if‘ (n—k—l)_i(n—k—l)
h=n—2k h—1 j=0 j

In this special case, we also have a simple generating function that is similar
to (19). We now have

Al(x, ) =Y ) ay(n, k)t = -ty (25)

150 0<k=rn/2 (1—x—tx2)(1—2tx2)°

This is proved in the same way as (19). First, since a1(n, k) satisfies the same
recursion as a(n, k), one obtains
1— tx?

S i pyre:

Y aq(2k, k) tFx®*
k>0

in the same way as (20). Now,
k _
a1(2kk) =Y (k _ 1) _ k-1
=0\ J
for k > 1 and a1(0,0) = 1, thus

2

1—tx
Y aq(2k, k)t = ,
= 1 —2tx?

and follows.
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Furthermore, we also have an explicit formula for the total number of equiv-
alence classes in this case: the number of equivalence classes of words of length
n > 0 for which every prefix has at least as many U’s as D’s is precisely

Fyuyp —2L0=1)72)
which is [OEIS, A079289]. The final column in Table |3 gives the values of this

sequence up to n = 10. This follows e.g. by plugging t = 1 into the generating
function, in the same way as the formula in Corollary

Remark 6.13. In the special case ¢ = 2, the sum disappears from (23), and we
obtain the remarkably simple formula

ar(n, k) = (n—lﬁ—l).

There is a connection to the famous ballot problem: consider any up-normal
word in the submonoid M, that consists of k D’s and n — k U’s. Remove the
last U and all D’s that follow. Moreover, replace every occurrence of UD by a
single D. The result is a word in M}y, i.e., a 1-Dyck word (every prefix contains
at least as many U’s as D’s) of length n — k — 1 with at most k D’s. Conversely,
any 1-Dyck word of length n — k — 1 with at most kK many D’s can be turned
into an up-normal word in M, with k D’s and n — k U’s: letting r denote the
number of D’s (r < k), replace every D by UD and add UD*~" at the end. So we
have a bijection between equivalence classes in M3 and 1-Dyck words of length

n —k —1 with at most k D’s. Since it is well-known that there are (f) —( jfl)

many 1-Dyck words of length ¢ with exactly j many D’s (1 < j < %), it follows

that
az(n,k)=1+é(<n_§_1> - <n]—i<1—1)> _ (n—]li—l)_

]7

See Table [ for some values of a5(1, k).

6.4. The size of an equivalence class

Given an equivalence relation on a finite set, its equivalence classes are not the only
thing that can be counted. One can also ask how large the equivalence classes are.
The following theorem answers this question.

Theorem 6.14. Let w € M be a word with NE-height polynomial Hng (w,z) =
Y. a;z' and SE-height polynomial Hsg (w,z) = Y b;z'. (Note that a; = b; = 0 for
icZ i€Z

all but finitely many i.) Then, the size of the equivalence class containing w (that
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k
n 01 2 3|
1 |1 1
2 |1 1
3 |1 1 2
4 11 2 3
5|1 3 4
6 |1 4 3 8
7 |1 5 6 12
8 |1 6 10 17
9 |1 7 15 10|33
10 |1 8 21 20|50

Table 4: Table of the values of ay(n,k). The final column gives the total number

Y rax(n, k).

is, the number of words u € M satisfying u £ w) is

11 (ﬂi +biv2 — 1) (b—i +a_io— 1)

50 bita a_io
(”O;Zbo), if w is balanced;
X (”0+bb°_1), if w is rising and non-balanced; (26)
0
(”0+ab()0_1), if w is falling and non-balanced.

Proof. We prove the formula by considering the associated standard paths. Then a;
is the number of NE-arcs from height i to height i 41, and b; is the number of SE-
arcs from height i to height i — 1. Our aim is to show that the number of standard
paths, given all 4; and b;, is given by the formula (26).

We first consider the special case that w is a 1-Dyck word, i.e., a word whose
prefixes are all rising, so that the standard path p stays above the x-axis. In this
case, a; = 0 whenever i < 0, and b; = 0 whenever i < 0, so the formula reduces to

H (ai +bit2 — 1)
i>0 bi+2

We use induction on the maximum height d of vertices in the standard path. For
d = 0, the word and its associated path are empty, so the statement becomes trivial.

Now we proceed with the induction step. Consider only the part p’ of the path
that lies above the line y = 1 (after removing all gaps, see Figure [10). By the
induction hypothesis, the number of possibilities for this path is

I (ﬂi +bit2 — 1)‘

i>1 bi+2
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Given p’, in order to obtain a feasible path p, we always have to add an NE-step
at the beginning, an SE-step at the end if ap = b; (so that the path ends at height
0), and insert a total of ap — 1 copies of an SE-step followed by an NE-step at
vertices of p’ that lie at height 0. There are by + 1 such places (at the beginning
and after each of the b, SE-steps that end at height 0), so the possibilities for p,
given p’, correspond to the weak compositions of 4y — 1 into b, + 1 nonnegative
integers. Since there are (‘Z(’erb2 2~1) such compositions, the desired formula follows,
completing the induction.

Now we consider the general case: every diagonal path can be decomposed into
the part above the x-axis and the part below the x-axis (see Figure [1T). The number
of possibilities for these two parts is

1—[ <ai +bip— 1> <b_i +a_; ,— 1)

50 bito a_i

in view of what has already been shown. It remains to multiply by the number of
ways to combine them: each time the path is at height 0 (but not completed yet),
we have to decide whether to continue with an NE-step (thus a piece of the path
that lies above the x-axis) or an SE-step (thus a piece of the path that lies below
the x-axis). The only exception is the final return to the x-axis in the non-balanced
case: if the path ends above the x-axis, the final step from the x-axis must be an
NE-step; if it ends below the x-axis, it must be an SE-step.

The total number of steps to be chosen in this way is ag + by. In the balanced

case, we have (”(’;gbo

is (”OerbOO*l) (rising) or (“O”L;Z)O_l) (falling), respectively. Combining this with the
number of possibilities for the two parts above and below the x-axis, we reach the
desired formula. O

AR "&"T/\T& /

Figure 10: Decomposition into the part above the line y = 1 (blue, solid) and the
part between y = 0 and y = 1 (red, dashed).

) possibilities. In the non-balanced case, the number of choices

Remark 6.15. The special case of balanced 1-Dyck words (balanced words for
which every prefix is rising) appears in different places in the literature. See
[GJW75, Theorem 6] (in the context of rook theory) or [Flajol80, Proposition 3A
and 3B] (in the context of continued fractions and lattice paths).
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: ,.,ﬁ
. hd e | %4le
!A’ A, ‘i" |
. 1 . . .
. . . .
A e | * e | %4le
.
.

Figure 11: Decomposition into the part above (blue, solid) and below (red, dashed)
the x-axis.

7. Bond percolation

The diagonal lattice interpretation of the Weyl algebra brings forward an intriguing
connection with bond percolation on a directed square lattice. In this section we
explore this connection in depth.

xJ N

~

(0,0) 2 4 t

Figure 12: Acyclic directed square lattice.

Percolation is one of the fundamental problems in statistical physics [Grimme99]
[StaAha94], and is of great theoretical interest in its own right as well as being
applicable to a wide variety of problems in physics, biology, chemistry, and many
other areas of science. Bond percolation, the phenomenon of interest here, was
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introduced in the mathematics literature by Broadbent and Hammersley in 1957
[BroHamb57], and has been studied extensively by mathematicians since then.

The prototype setting for bond percolation is a directed square lattice, whose
vertices (called sites in this context) are the points in the Cartesian ¢-x-plane with
integer coordinates such that t > 0 and t + x is even. See Figure Here t is
commonly thought of as the time (or stage) of the percolation process. We regard
the lattice as originally consisting of dry sites except for the origin, which is the
source of fluid and wet at stage 0. There are two bonds (i.e., arcs) leading from
each site (¢, x); they terminate at the sites (t+1,x+1) and (t+1,x —1). (In our
language, they are the NE-arcs and the SE-arcs.) All bonds have probability p of
being open to the passage of fluid and probability 1 — p of being closed. Fluid
flows from a wet site along an unblocked bond to wet another site (in the forward
direction, i.e., from source to target). Thus a site is wetted if there is a path of
unblocked directed bonds (and wet sites) from the origin to that site. See Figure
for an illustration of all possible scenarios of the percolation process from the origin
(0,0) to the site (2,0) in two time steps. Clusters are sets of connected bonds, where
two bonds are said to be adjacent if they have a vertex in common. Sometimes, a wall
parallel to the t-axis (“growth direction”) is present to restrict the lateral growth of
the percolation clusters. In particular, we consider the situation where the t-axis
itself is the wall, so that the bonds leading to sites with x < 0 are always closed
[EGJT96]]. See Figure

The mean size S(p) of the clusters is a quantity that has captured a lot of interest:

S(p)= )., Cltxp),

sites (,x)

where C(t,x;p) is the probability that there is an open path from the origin to
the site (t,x). For example, we may readily calculate that C(2,0;p) = 2p* — p*
for percolation (without a wall) from Figure We may also easily calculate that
C(2,0;p) = p? for percolation (with a wall). For large t and x, however, calculating
the probability C(t,x; p) becomes a tedious matter and is usually done with the
help of a computer. There is a vast body of literature in statistical physics regarding
the implementation of the computational procedure, commonly referred to as a
transfer matrix method. See [Blease77] for the setup in physics. The main idea is
the following: The state of time step t is a specification of which sites in column ¢
of the directed square lattice are wet and which sites are dry. Essentially the state
vector of a given column is completely determined by that of the previous column
and only one state vector need be held in the computer at any stage and all other
state vectors overwritten, although some care is necessary for the execution.

The low-density series expansion of S(p) for bond percolation (both with and
without a wall) may be performed to order p" (for varying values of n) by calculat-
ing C(t,x; p) to order p" of all sites which may be reached in a walk of n or fewer
steps from the origin, i.e., summing up C(¢,x; p) of all those reachable sites before
or at column 7. So for example, when a wall is not present, to obtain S(p) to order
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Figure 13: Directed bond percolation from the origin to the site (2,0). Open (closed)
bonds are indicated by solid (dashed) lines. Filled (hollow) circles denote
wet (dry) sites.

(0,0) 2 4 t

Figure 14: Acyclic directed square lattice with a wall at x = 0.
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p, we compute
C(0,0;p) +C(LLp)+C(A,~-Lp)=1+p+p=1+2p.

To obtain S(p) to order p?, we compute

C(0,0;p) +C(1,1;p) + C(1,-1;p) + C(2,2;p) + C(2,0; p) + C(2,-2; p)
=14+p+p+p*+ @ —p")+p*=1+2p+4p>—p*,

which gives 1+ 2p + 4p?> when kept to order p?>. And when a wall is present, to
obtain S(p) to order p, we compute

C(0,0;p) +C(1,L;,p) =1+ p.
To obtain S(p) to order p?, we compute
C(0,0;p) +C(1,1;p) +C(2,2;p) + C(2,0;p) =1+ p+p* +p* =1+ p+2p*.

The coefficients of the series expansion of S(p) (without a wall/with a wall) are
respectively given in [OEIS, A006727] and [OEIS, A056532]. We note in particular
that negative terms appear starting from n = 50 for [OEIS, A006727] and from
n = 39 for [OEIS, A056532], as for large n, the negative higher-order terms from
columns before column 7 might dominate the positive p" term from column n.

Compared with our results from earlier, we see that a(n) := Y, a(n, k) (see Table
2) gives the total number of equivalence classes of diagonal paths from the origin to
all sites in column # on a directed square lattice without a wall in Figure [12] while
a1(n) := Y ra1(n, k) (see Table [3) gives the analogous number for a directed square
lattice with a wall in Figure It is thus not entirely surprising that a(n) agrees
with [OEIS, A006727] up to n = 11, and that a1(n) agrees with [OEIS, A056532]
up to n = 8. After all, recall from Lemma [6.2| that the a(n, k) satisfy the recursion
a(n,k) = a(n—1,k) +a(n—2,k—1). Due to the transfer matrix method that
was explained briefly earlier, this recursive feature appears again in calculating the
bond percolation on a directed square lattice. To derive C(¢,x;p), the probability
that there is an open path from the origin to the site (f,x), we only need to keep
track of the corresponding C values on the one square to the left of the site (¢, x),
consisting of sites (t —2,x),(t —1,x+1),(t —1,x —1), (¢, x).

Nevertheless, the Weyl algebra problem and the bond percolation problem are
different in nature: One is deterministic while the other is probabilistic, and more
importantly, the contribution to the nth term only comes from the nth column for
one but might involve some columns before column # for the other. In detail,
the coefficient of p" term in the low-density series expansion of S(p) is calculated
by summing up C(t,x; p) of all those reachable sites before or at column 7, not
just at column n. (In our earlier calculation for S(p), summing up column 2 sites
contributes a higher-order term —p* in addition to 4p?. For larger n, the difference
is more evident.)
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8. The rook theory connection

Theorem 2.1 classifies equalities between products of D’s and U’s in the Weyl al-
gebra JW. Another approach to this classification problem is to expand any such
product in one of the bases (D'U/ )z',je]N and (W Di)z.’].e]N of W; the uniqueness of
this expansion then allows us to compare two such products by comparing their
respective coefficients.

It turns out that this expansion can be done in explicit combinatorial terms using
rook theory. We do not give a detailed introduction to this subject (see [BCHR11]]
and [ManSch16, §2.4.4] for that), but quickly recall the basics we need.

A cell means a pair (i, j) of two positive integers. Each cell (i, j) will be drawn as
a 1 x 1-square, situated in the Cartesian plane with center at the point (i, ), with

its sides parallel to the axes. A board means a finite set of cells. For instance, the
board {(1,1), (2,2), (3,1), (4,2), (6,1), (6,2)} looks as follows:

(27)

A rook placement of a board B is a subset S of B such that no two cells in S lie in
the same row or column. If B is a board, and if k € IN, then the rook number ry (B)
is the number of k-element rook placements of B. For instance, if B is the board in
([27), then its rook numbers are o (B) = 1 and r1 (B) = |B| = 6 and r, (B) = 8 and
. (B) =0 for all k > 2.

Two boards B and C are said to be rook-equivalent if they share the same rook
numbers (i.e., if ¢ (B) = r¢ (C) for all k € IN).

If w is a word in M, then the Ferrers board By, is a special board defined as follows:
It is a contiguous set of cells, whose bottom and right boundaries are straight lines,
whereas the rest of its boundary is a jagged path that (when walked from southwest
to northeast) takes a north-step for each D in w and an east-step for each U in w
(reading the word w from left to right). For instance, if w = UDDUDUUDUD,
then By, looks as follows:

D
u




Monomial identities in the Weyl algebra page 49

(where the D and U labels are signaling the correspondence between the letters of
w and the steps of the jagged boundary)H

Now a classical result of Navon (originally [Navon73, §2], but see [BCHR11,
Theorem 20] or [ManSch16, Theorem 6.11 for h = 1] or [Varvak04, Theorem 3.2]
for a modern treatment'?) says the following:

Theorem 8.1. Let w € M be any word that contains » many D’s and m many
U’s. Then, in W, we have

min{m,n}

¢(w)= Y, 1 (By)U" D",
k=0

As a consequence, we obtain the following:

Theorem 8.2. Let u and v be two words in M that have the same number of D’s
and the same number of U’s. Then, the following statements are equivalent: the
statements S1, Sr, S3, 8&, Sy, S5 and Sg from Theorem and the additional
statement

* R;i: The boards B, and B, are rook-equivalent.

Proof. It suffices to prove the equivalence &1 <= R;.

Let n be the # of D’s in u (or, equivalently, in v), and let m be the # of U’s in u
(o1, equivalently, in v). Then, the board B, has < n nonempty rows (since u has
n many D’s). Hence, any rook placement of B, has size < n (since otherwise, it
would contain two cells in the same row, by the pigeonhole principle). In other
words, 7 (B,) = 0 for all k > n. Similarly, ¢ (B,) = 0 for all k > m. Combining
these two observations, we obtain

rx (By) =0 for all k > min {m,n}. (28)

Similarly,
x (By) =0 for all k > min {m,n}. (29)

Comparing these two equalities, we conclude that
1y (By) = 1% (Bo) for all k > min {m,n}. (30)

Recall that the family (U Di)l.]. cn is a basis of W (by [EGHetcl1, Proposition
2.7.1 (i)]), therefore k-linearly independent.

HNote that the U at the beginning of w, and the D at the end, do not affect the Ferrers board.

12See also [BHDPS08] for a brief introduction with physics in mind, and [BlaFla11] for combinato-
rial applications. The sources differ slightly in their notation, but are easily seen to be equivalent
(e.g., by reflecting the Ferrers boards across a diagonal line).
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Now, we have the following chain of equivalences:

S1 = (¢(u) =9 (v))

min{m,n} min{m,n}
<:>< Y re (B,) UM kpn=k = Y rk(Bv)umkD”k>
k=0 k=0

(here, we rewrote ¢ (1) and ¢ (v) using Theorem
<= (r¢ (By) =71¢(By) forallk € {0,1,...,min{m,n}})

(since the family (Uj Di> is k-linearly independent)

ijeN
<= (r¢ (By) =1¢(By) forall k € N) (by (B0))
<= (the boards B, and B, are rook-equivalent) <= Rj.

This completes the proof of S; <= R; and thus the proof of Theorem O

The implication R; = &; in Theorem has been implicitly observed in
[BCHR1I1 bottom of p. 40]. Note that this implication really requires the assump-
tion about equal numbers of D’s and of U’s in Theorem since (e.g.) the Ferrers
boards Bpyupu and Bppyy are rook-equivalent without ¢ (DUUDU) equalling
¢ (DDUU). For an even starker example, if w € M is any word, then the Ferrers
boards By, and B, () are rook-equivalent (being each other’s reflection across a di-
agonal), but ¢ (w) is usually not ¢ (w (w)). We note that this reasoning leads to a
new proof of Theorem

Theorem 8.2/ connects our study of the kernel of ¢ to a classical question, namely:
When are two Ferrers boards rook-equivalent? A classical result of Foata and
Schiitzenberger ([FoaSch70, Theorem 6] or [BCHR11|, Theorem 7]) shows that each
Ferrers board is rook-equivalent to a unique “increasing Ferrers board”. These “in-
creasing Ferrers boards” are somewhat similar to our up-normal words, but not
quite in bijection, since (as we said) the rook equivalence of B, and B, implies
¢ (u) = ¢ (v) only when we know that u and v have the same number of U’s and
the same number of D’s.

Interestingly, Foata and Schiitzenberger have their own kind of moves that they
use to normalize a Ferrers board modulo rook equivalence: the “(k, k’)-transforms”
(see [FoaSch70, Definition 8 bis on page 9]). These appear to be close relatives of
our balanced flips.

A recent preprint by Cotardo, Gruica and Ravagnani [CoGrRa23] proves another
set of equivalent criteria for the rook-equivalence of two Ferrers boards [CoGrRa23),
Corollary 3.2]. It lists six equivalent conditions, one of which (condition 6) is rook-
equivalence, whereas another (condition 1) is equivalent to our statement S (albeit
this equivalence takes some work to prove). The other four conditions are not
found in our lists so far. In the following, we state two of these four conditions (4
and 5), as they are rather surprising and reveal an unexpected connection to the
theory of finite fields. (Arguably, at least one of them has been foreseen, to some
extent, in Haglund’s [Haglun98].)
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First, we introduce the necessary notations. For any finite field F, any non-
negative integers n and k, and any board B C {1,2,.. .,n}z, we define Py (B/F)
to be the number of n x n-matrices A € F**" of rank k such that all entries of
A in cells outside of B are zero. This is called P (B) in [Haglun98, Definition
1], where F = F;; but we include F in the notation since P, (B/F) depends on
F. It is easy to see, however, that P, (B/F) does not depend on n, as long as
n is large enough that B C {1,2,.. .,n}z. In [CoGrRa23], our P, (B/F) is called

Wi (Matgxm (B)), where F = [F;, and where n and m are chosen large enough that
BC{1,2,...,n} x{1,2,...,m}. Now, we claim the following:

Theorem 8.3. Let u and v be two words in M that have the same number of
D’s and the same number of U’s. Then, the following statements are equivalent:
the statements S, Sy, Sz, S5, Ss, S5 and S from Theorem the statement R4
from Theorem and the following two additional statements:

* R;: For any finite field F and any k € IN, we have Py (B, /F) = Py (B,/F).
* Rj: For any finite field F, we have P; (B,/F) = P; (B,/F).

Proof. Let F and F' be the Ferrers boards B, and B,. Then, our statements R1, R,
and R3 are (respectively) the conditions 6, 5 and 4 of [CoGrRa23| Corollary 3.2].
Thus, the former three statements are equivalent (since [CoGrRa23, Corollary 3.2]
shows that the latter three conditions are equivalent). Combined with Theorem
this proves Theorem O

Remark 8.4. Any word w € M satisfies By, = By, = Byp. That is, the Ferrers
board By, of a word w € M does not change if we insert a U at the beginning of w
or a D at the end of w. Thus, we can use Theorem [8.3|to tell whether two Ferrers
boards are rook-equivalent: Namely, we write the two Ferrers boards as B, and
B,, where u and v are two words with the same number of U’s and the same
number of D’s (this can be ensured by inserting an appropriate number of U’s at
the beginning and an appropriate number of D’s at the end of either word), and
then Theorem 8.3 provides us several equivalent criteria for the rook-equivalence
of B, and B,.

9. Balanced commutations revisited: irreducible
balanced words

In our definition of balanced commutations (which underlay the definition of the

. . 1 .
equivalence relation ]23), we allowed two arbitrary balanced factors of our word to
trade places, as long as they were adjacent in the word. Now, one may wonder
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whether we can get by with a smaller set of allowed swaps: Is there a more restric-
tive subset of balanced commutations that generates the same equivalence relation
bal,

The answer is “yes”, and in fact there are likely several reasonable choices. We
here present one, which is not minimal but still far more parsimonious than the set
of all balanced commutations.

To define it, we begin with a simple notion: A balanced word w is said to be
irreducible if it is nonempty and cannot be written as a concatenation w = uv of two
nonempty balanced words u and v. For instance, the balanced word DDUDUU is
irreducible, whereas the balanced word DUUUDD is not (since it is the concate-
nation DU - UUDD). In terms of diagonal paths, this notion can be restated as
follows: Given a nontrivial diagonal path p with initial height 0 and final height 0,
its reading word w (p) is irreducible if and only if p intersects the x-axis only in its
tirst and last vertices.

Given two words v,w € M, we say that v is obtained from w by an irreducible
balanced commutation if and only if we can write v and w as v = pxyq and w = pyxq,
where p,q € M are two arbitrary words and where x,y € M are two irreducible
balanced words with different first letters. Clearly, this condition implies that v is
obtained from w by a balanced commutation, but the converse is not true. For ex-
ample, the word UUDDDUUD is obtained from UDDUUUDD by an irreducible
balanced commutation (swapping the DDUU with the UD in the middle), but the
word UUDDUDDU is not (indeed, it is obtained by swapping the balanced factors
UDDU and UUDD, but these factors don’t have different first letters, and the first
of them is not irreducible).

We define an equivalence relation ~ on M by stipulating that two words w, v €

M satisfy w ™ v if and only if v can be obtained from w by a sequence (possibly
empty) of irreducible balanced commutations. Even though not every balanced
commutation is irreducible, we claim the following:

Theorem 9.1. The relations = and bal are the same. That is, if a word v can

be obtained from a word w by a sequence of balanced commutations, then we

can also obtain v from w by a (possibly longer) sequence of irreducible balanced
y alp y long q

commutations.

The proof of this theorem needs a few lemmas. The first one is nearly obvious:

Lemma 9.2. Any balanced word w € M can be decomposed into a product
w = 010y - - - vy of irreducible balanced words vy, v, ..., v € M. (If w is empty,
we will have k = 0 here.)

Proof. This is shown in the same way as the existence of a factorization of a positive
integer into primes:

Let w € M be a balanced word. If w is irreducible or empty, then we are done. If
not, then w can be written as a product of two shorter nonempty balanced words.
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If these two shorter words are irreducible, then we are done. If not, then at least
one of them can itself be written as a product of two shorter nonempty balanced
words, so that w becomes a product of three nonempty balanced words. Thus,
we obtain longer and longer factorizations of w into shorter and shorter nonempty
balanced words. Obviously, this process will eventually have to stop, and at that
point we will have a factorization of w into irreducible balanced words in front of
us. [

The decomposition in Lemma 9.2 is furthermore unique (and this is easy to see
using diagonal paths), but we do not need this.

Next we introduce some shorthand terminology: A UIB word will mean an irre-
ducible balanced word that begins with a U. A DIB word will mean an irreducible
balanced word that begins with a D. Note that any irreducible balanced word is
nonempty, and thus is either UIB or DIB (but not both). The following is another
easy observation:

Lemma 9.3. (a) Any UIB word ends with a D.
(b) Any DIB word ends with a U.
(o) If u € M is a UIB word, then w (u) is a UIB word as well.
(d) If u € M is a DIB word, then w (1) is a DIB word as well.

Proof. (a) Let w be a UIB word. We need to prove that w ends with a D.

Assume the contrary. Thus, w ends with a U. But w also starts with a U (since w
is UIB) and is balanced (for the same reason). Hence, Lemma shows that we
can write w as a concatenation w = pq, where p and g are two nonempty balanced
words. Hence, w is not irreducible, despite being a UIB word. This contradiction
shows that our assumption was false. Lemma [9.3| (a) is thus proved.

(b) This is analogous to part (a); we just need to interchange the roles of U and
D.

(c) Let u € M be a UIB word. Then, u ends with a D (by part (a)). Hence, w (u)
starts with a U (since the anti-automorphism w reverses a word and replaces each
D by a U and each U by a D). Moreover, u is irreducible balanced (since u is UIB).
Therefore, w (u) is irreducible balanced as well (indeed, the irreducibility follows
from the fact that any factorization of w (1) into two nonempty balanced factors
could be turned back into a factorization of u by applying w again). Hence, w (u)
is a UIB word (since w (u) starts with a U). This proves Lemma (9.3 (c).

(d) This is analogous to part (c); we just need to interchange the roles of U and
D. O

It is not hard to see that each UIB word has the form UsD where s is a balanced
1-Dyck word (i.e., a balanced word whose each prefix is rising). Likewise, each DIB
word has the form DtU where ¢ is a balanced anti-1-Dyck word (i.e., a balanced
word whose each prefix is falling). Obviously, UIB words can be distinguished
from DIB words by their first letter.

Now we claim the following variant of Lemma
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Lemma 9.4. Let w € M be a balanced word that starts with a U and ends with
a U. Then, we can write w as a concatenation w = spqt, where s, p,q,t € M are
four balanced words such that p is UIB and g is DIB.

Proof. Lemma shows that we can write w as a concatenation w = p’gq’, where
p is a balanced word starting with a U, and where ¢’ is a balanced word starting
with a D. Consider these p’ and g’

Lemma 9.2 shows that p’ can be decomposed into a product p’ = p1p; - - - p of ir-
reducible balanced words p1, pa, ..., px € M. Likewise, g’ can be decomposed into
a product g = pry1pPkso - - pe of irreducible balanced words pyi1, Pkio, ..., Pr €
M. Consider these decompositions. Thus, p1, p2, ..., ps are £ irreducible balanced
words such that p’ = p1pa - - pr and ¢’ = prr1pka2 - - - pe- Hence,

P'q = (p1p2- - p) (PesaPrsa -+~ Pe) = pip2- - pe-

The word p; is nonempty (since it is irreducible) and is a prefix of p’ (since
p' = p1p2 - - pr)- Thus, it starts with a U (since p’ starts with a U). Similarly, py 1
starts with a D.

Now, consider the smallest number i € {1,2,..., ¢} for which the word p; starts
with a D. (Such an i exists, since py1 starts with a D.) Then, i cannot be 1 (since p;
starts with a U, not with a D), and thus must be > 2. Hence, i —1 € {1,2,...,/}.
The word p;_; cannot start with a D (because then, i would not be the smallest
number for which p; starts with a D), and thus must start with a U. Hence, the
word p;_1 is UIB (since it is irreducible balanced). Meanwhile, the word p; is DIB
(since it is irreducible balanced and starts with a D). All the words py, p2, ..., pe are
balanced; hence, their concatenations p1ps - - - pi—» and p;1pi42 - - - p¢ are balanced
as well (since any concatenation of balanced words is balanced).

Now,

w=p'q =pip2-pe=(pr1p2---pi2) picy  Pi (PiviPis2pe).

(.

balanced word UIB word DIB word  balanced word

Hence, we can write w as a concatenation w = spqt, where s, p,q,t € M are four
balanced words such that p is UIB and g is DIB (namely, we take s = p1p2---pi_»
and p = p;_1 and g = p; and t = p;1piy2 - - - ps). This proves Lemma 9.4 O

This, in turn, allows us to improve Lemma as follows:

Lemma 9.5. Let w € M be a rising word that is not up-normal. Then, we can
write w in the form w = upqu, where u and v are two words, where p is a UIB
word, and where g is a DIB word.

Proof. Proceed as in the above proof of Lemma to find a factor w’ of w that is
balanced and starts and ends with a U. Then, apply Lemma to w’ instead of
w. Thus, w' is written as a concatenation w’ = spgt, where s, p,q,t € M are four
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balanced words such that p is UIB and ¢ is DIB. Let u be the prefix of w coming
before the factor w’, and v be the suffix of w coming after w’. Then, w = Uw'sc =

us _pq _tv  is the factorization we are looking for. O
~—~— I~
=u =0

Next, we prove an analogue of Proposition

Lemma 9.6. Let w € M be a rising word. Then, there exists a unique up-normal
irr

word t € M such that t ~ w.

Proof. The existence of t can be proved in the same way as the existence part of
Proposition .4 but using Lemma [9.5|instead of Lemma (since UIB words start
with a U, while DIB words start with a D).

The uniqueness of ¢ follows from the uniqueness of t in Proposition since the

. i . . bal
relation t ~ w implies ¢ = w. O]

The following is an analogue of Proposition

Proposition 9.7. Let u and v be two words in M. Then, u ™ v if and only if
w (1) ~ w (v).
Proof. This is similar to the proof of Proposition with a slight twist: We need
to show that if 2 and b are two irreducible balanced words that have different first
letters, then their images w (a) and w (b) are again two irreducible balanced words

that have different first letters. But this follows from parts (c) and (d) of Lemma
9.3 O

We have an analogue of Lemma [5.T| as well:

irr

Lemma 9.8. Let p and q be two diagonal paths with the same initial height and
the same final height. Assume that H (p,z) = H(q,z). Then, w (p) ~ w (q).

Proof. Analogous to the proof of Lemma 5.1} but using Proposition 9.7]and Lemma
instead of Proposition 4.3|and Proposition (Use the obvious fact that u ~ v

implies u v v.) O
We can now prove Theorem

Proof of Theorem Let us modify Theorem[2.T|by adding the following extra state-
ment:

irr
o Si: We have u ~ v.
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Clearly, this statement SZ implies Ss, since u ~ v implies u % v. But the implica-
tion Sy = S: holds as well, and can be proved just as the implication Sy = Ss
in Theorem was proved (but using Lemma instead of Lemma . Hence,
the statement SZ is equivalent to all the seven statements Si, Sy, S3, S5, Su, S5, S

from Theorem In particular, S} is equivalent to Ss. In other words, u ~ v is

equivalent to u bal v. In other words, the relations ~ and bal are the same. This
proves Theorem O

10. Other algebras

Everything we have done so far concerned the “rank-1” Weyl algebra
W=k(D,U | DU-UD =1).

But the main question we addressed — to classify equal products of generators —
can be posed for any k-algebra given by generators and relations. In particular,
several analogues and variants of V¥ are natural candidates for a similar study.
In this section, we briefly discuss some of them, giving some answers and posing
some questions. (There are many more - see, e.g., [Gaddis23|] for a recent survey.)

10.1. Multivariate Weyl algebras

For any n € N, there is an “n-Weyl algebra” WV, defined as the k-algebra given by
2n generators Dy, D», ..., Dy, Uy, Uy, ..., U, and relations

D;U; = U;D; for all i # j;
D;U; = U;D; +1 for all i;
D;D; = D;D; for all , j;
u;u; = u;u; for all i, ;.

It is isomorphic to the k-algebra of differential operators on the polynomial ring
k[xq,x2,..., %]

However, this algebra W, can also be seen as the n-fold tensor poweﬁ wen
of the original Weyl algebra W, via the k-algebra isomorphism W, — W®" that
sends each generator D;to 1 ® 1 ® - - ®1®D®1®1® - ® 1 and each generator

i—1 times n—i times
Ut l®1l® - -®1leoU®1®1®---®1. From this point of view, products of
i—1‘t;mes n—i\trimes

generators of W, are just elements of the form ¢ (w1) @ ¢ (wp) ® -+ - @ ¢ (wy) €
W where wy,ws,...,w, € M are some words. Which of these products are
equal? The answer turns out to boil down to the answer for n = 1 (which we know

from Theorems and [8.3):

13 All tensor products and tensor powers in this paper are taken over the field k.




Monomial identities in the Weyl algebra page 57

Theorem 10.1. Let uqy,uy,...,u,,v1,0s,...,0, be 2n words in M. Then,

$(u1) @ (u2) -+ @ (n) = ¢ (v1) @ P (v2) @ - @ ¢ (V) In W

if and only if

eachi e {1,2,...,n} satisfies ¢ (u;) = ¢ (v;).

In other words, we don’t get any “new” equalities by tensoring n copies of W.

The “it” part of Theorem is obvious, while the “only if” part of the theo-
rem follows immediately from two lemmas. The first is a general fact from linear
algebra ([Conrad24, Theorem 5.15]):

Lemma 10.2. Let V3, V), ..., V, be any k-vector spaces. For each i € {1,2,...,n},
let x; and y; be two nonzero vectors in V;. Then,

x1®x2®"’®xn:y1®y2®"'®yninV1®V2®---®Vn

if and only if there exist some scalars A1, Ay, ..., A, € ksuch that AjAp--- A, =1
and such that
eachi € {1,2,...,n} satisfies x; = Ajy;.

The next lemma ensures that the conditions of Lemma are met in the appro-
priate case:

Lemma 10.3. (a) For any w € M, we have ¢ (w) # 0.
(b) If u,v € M and A € k satisfy ¢ (u) = A¢ (v), then A =1 and ¢ (1) = ¢ (v).

First proof. The family (U/ Di)i].  1s a basis of W (by [EGHetc11] Proposition 2.7.1

(1)]). Hence, each element a of W can be uniquely written as a k-linear combination
Yy ai,juf D' of the elements of this family. When this a is nonzero, we define

ijEN

the leading monomial of a to be the lexicographically highest pair (i,j) € IN? for

which 4;; # 0, and we define the leading coefficient of a to be the coefficient a;

corresponding to this pair (i, f).

(@) Let w € M. Then, Theorem [8.T] yields

min{m,n}

p(w)= Y 1 (Bo)Um kD k (31)
k=0

for appropriate n,m € IN. The elements U"*D"~* on the right hand side of this
equality are k-linearly independent (since the family (U]Dl)z.]. o 18 a basis of W),
and at least one of the coefficients r¢ (By,) is nonzero (indeed, we have ry (By) = 1,

since any board B satisfies 1o (B) = 1). Thus, the entire right hand side is nonzero.
Hence, ¢ (w) # 0. This proves Lemma (a).




Monomial identities in the Weyl algebra page 58

(b) Let u,v € M and A € k satisfy ¢ (1) = A¢ (v). Recall that for each w €
M, the element ¢ (w) € W is nonzero (by part (a)) and has leading coefficient 1
(indeed, the equality shows that the leading coefficient of ¢ (w) is rg (By) = 1).
Thus, comparing leading coefficients in ¢ (1) = A¢ (v) shows that A = 1 and
¢ (u) = ¢ (). O
Second proof. (b) First, we generalize Proposition [3.6| by replacing the assumption
“¢(w(p)) = ¢ (w(q))"by “¢(w(p)) = Ap (W (q))” and adding the claim “A = 1"
to the conclusion. The proof of Proposition 3.6/ that we gave above still applies to
this generalization, once a few trivial changes are made. In particular, the polyno-
mial identity

I1 (x —h) = [1 (x — &i)

p;i is an NE-step of p g; is an NE-step of q
must be replaced by
[1 (x=m)=A ]I (=3,
p; is an NE-step of p g; is an NE-step of q

which of course entails not only

{h; | piisan NE-step of p}

multiset
= {8i | i is an NE-step of q},yjtiset
but also A =1 (by comparing leading coefficients).

Applying this generalized version of Proposition 3.6/ to our situation (setting p
and q to be the standard paths of u and v), we obtain A = 1, and thus ¢ (1) = ¢ (v).
This proves Lemma (b).

(@) Let w € M. We must prove that ¢ (w) # 0. Assume the contrary. Thus,
¢ (w) = 0= 0¢ (w). Hence, part (b) (applied to u = w and v = w and A = 0) yields
0=1and ¢ (w) = ¢ (w). Obviously, 0 = 1 is absurd, so we found a contradiction.
This proves Lemma (a). O

10.2. Characteristic p

We have hitherto assumed that the field k has characteristic 0. If k has characteristic
p # 0 instead, things change significantly: Purely identity-type results such as
Proposition Proposition [3.5 and Lemma [3.§ remain valid (indeed, they hold
whenever k is merely a commutative ring), but the action of W on k [x] is no longer
faithful (i.e., Lemma fails), and various other results that build on the tacit
identification of integers with elements of k become false as well (e.g., Proposition
B.6). Lemma [3.9 remains true, but the first proof we gave above no longer works
(although it is not hard to derive it from the characteristic-0 case, since it is an
identity in the free k-module W). Thus, Lemma remains true as well.
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The proof of Proposition [3.7| also falls flat in characteristic p, but the proposition
itself survives. Indeed, it holds for any nontrivial ring k, and can be proved by
comparing leading terms in Theorem

The most interesting question is when two words u,v € M satisfy ¢ (u) = ¢ (v)
for a field k of characteristic p # 0. The equivalence S; <= S5 in Theorem 2.1 no
longer holds in this case, as (e.g.) we have ¢ (UPT!D) = ¢ (UDUP) (indeed, U? is

a central element of V¥ when char k = p) but we don’t have U 1D % UDUP. One

might try to salvage the equivalence by loosening the notion of balanced commu-
tations, e.g., by allowing both UF and D? to be swapped with any (neighboring)

—bal
factor of the word; the resulting equivalence relation o might satisfy the equiv-

alence (¢ (u) = ¢ (v)) <= (u e v) , but we don’t know if it does.

I Question 10.4. Does it?

The Weyl algebra W in characteristic p # 0 has some quotients (unlike in char-
acteristic 0, where it is famously a simple algebra). Indeed, both elements U? and
D? are known to lie in its center, and thus generate two-sided ideals WWU?}Y and
WDPFW that can be quotiented out. We can thus form the three quotients

W™ =W/ (Wwurw), W_ =W/ (WDFW),
W =W/ (WUPW + WDPW).

The third quotient, WZ, is actually a finite-dimensional k-vector space, of dimen-
sion p? and with basis (U Di)l.]. c{01,.,p-1} 1t acts faithfully and densely on the

k-algebra k [x] / (xP). The quotient W_ acts faithfully on the full polynomial ring
k [x]. The quotients W_ and W~ are isomorphic via the isomorphism sending
U Dand D — —U.

The question of when two words u, v € M give rise to equal monomials can now
be asked not only for W, but also for any of its quotient algebras W—, WW_ and W_.
For instance, the words UP~'DUDP~1 and UP~'DP~1 do not yield equal monomials
in W (by Proposition 3.7), but yield equal monomials in each of the quotients
W=, W_ and W_ (since their difference in W is UP~'DUDP~! — Ur~1pr-t =

ur—1(bu —1)Dr~! = uP~'UDDP~! = UFDP, which becomes 0 in each of the
—r
quotients). What combinatorial condition is responsible for this equality? We don’t

know; there are neither any balanced commutations that can be applied to them to
produce new words, nor any U? or D? factors that can be annihilated. Thus, we ask
the following rather open-ended question (actually three questions in disguise):

Question 10.5. Characterize equalities between monomials in W=, W_ and W_
combinatorially.
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10.3. Down-up algebras

We now return to the case when k is a field of characteristic 0.

There are several deformations and other variations of the Weyl algebra 7V, and
our question about equal monomials can be asked for each of them. We here
discuss one of the most recent such variations: the down-up algebra, actually a family
of algebras depending on three scalar parameters «, 3, y.

We fix three scalars «, B,y € k. The down-up algebra A («, B, 7y) is defined to be
the k-algebra with generators D and U and the two relations

D?U = aDUD + BUD? + 4D and
DU? = aUDU + BU?D + yU.

Clearly, this algebra A (&, B, v) has an algebra anti-automorphism w sending D and
U to U and D. Also, it is easy to check that the above two relations of A (&, B, )
are satisfied in the Weyl algebra ¥V whenever « + 8 = v — B = 1; therefore, the
Weyl algebra WV is a quotient of A («, B, y) in this case. Down-up algebras origi-
nate in [BenRob98, Proposition 3.5] and have since found uses in noncommutative
algebraic geometry and combinatorics.

We can define a map ¢ : M — A(a,B, ) in the same way as we defined ¢ :
M — W, but using the down-up algebra A («, 8, y) instead of W. (Thus, ¢ is a
morphism of multiplicative monoids and sends D and U to D and U.) Surprisingly,
we have:

Theorem 10.6. Assume that « + 8 = v — f = 1. Then, the equivalence of the six
statements Sy, S3, S5, S1, S5 and S in Theorem [2.1] still holds if we replace W

by A (a, B, 7).

Proof. The statements S3, S5, Ss, S5 and Sg are unchanged from Theorem SO
they are still equivalent. It thus remains to prove that §; <= Ss.

S5 = &S;: This relies on a version of Lemma for the algebra A («, B, )
instead of WW. This version, in turn, relies on a version of Lemma for the algebra
A (a,B,v) instead of V. But the latter has already been established in [BenRob98].
In fact, the k-algebra A («, B, v) is graded (just like W: the generators U and D are
homogeneous of degrees 1 and —1). Its 0-th graded component is commutative, by
[BenRob98, Proposition 3.5]. As in the second proof of Lemma this entails the
validity of Lemma [3.9|for A (a, B,7), and this in turn yields that Lemma holds
for A (a, B, ) as well. Hence, Ss implies Sy.

&1 = S5: The condition « + 8 = v — B = 1 ensures that the Weyl algebra W is
a quotient of A (a, B,) (with its generators D and U being the projections of the
generators D and U). Thus, ¢ (u) = ¢ (v) in A (&, B, ) implies ¢ (1) = ¢ (v) in W.
In other words, our new statement &7 implies the old statement S; from Theorem
But that old statement implies S5, as we already know. Hence, our new &; also
implies Ss. O
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Example 10.7. One of the situations to which Theorem applies is the case
when ¢ = 2 and B = —1 and 7 = 0. In this case, the down-up algebra
A, B,v) = A(2,—-1,0) is the homogenized Weyl algebra, since its two defining
relations

D*U = 2DUD — UD? and DU? = 2UDU — U*D
can be rewritten (in terms of commutators [x, y] := xy — yx) as
[D, DU—-UD] =0 and [U, DU—-UD] =0

and thus mean that the commutator DU — UD is a central element. This algebra
appears in [BDSHP10, §2.3] under the name of U (L), with the generators a, a
and e corresponding to our D, U and DU — UD.

I Question 10.8. To what extent can the condition a + 8 = v — = 1 be lifted in
Theorem [10.6F°

This condition is unnecessary for S5 = &;, but needed for §; = Ss. For
example, S = S5 would fail in the following five cases:

1. the case (a, B,7) = (0,1,0) (here, we have ¢ (DU?) = ¢ (U?D));

2. more generally, the case « = y = 0 and arbitrary f (here we have ¢ (DU*D) =
¢ (U*D*U?));

3. the case («, B) = (0, —1) and arbitrary 7 (here we have ¢ (DU*) = ¢ (U*D));
4. the case (a, ) = (—1, —1) and arbitrary 7y (here we have ¢ (DU?) = ¢ (U>D));

5. the case («, ) = (1, —1) and arbitrary 7 (here we have ¢ (DU®) = ¢ (U°®D)).

However, such failures seem to be the exception, not the rule. The last three are
explained by [Zha099, Theorem 1.3 (f)], and correspond to the only roots of unity
that are quadratic over Q. There are more exceptions with irrational «, 3,7, for
instance («, B) = (0,7) with i = /=1, which satisfies ¢ (DU®) = ¢ (U®D).

With some additional work, we can adapt the above proof of Theorem to re-
place the condition “a 4+ =7—p=1"by“a+pf=1and (y =0) < (B =—1)".
Indeed, under this condition, we can find a nonzero scalar { € k such that v =
(14 B) ¢. Then, there is a k-algebra morphism from A («, B, y) to W that sends D
and U to D and ¢U. This morphism sends equal monomials in A («, B,y) to pro-
portional monomials in WW; but Lemma (b) says that proportional monomials
in YW must actually be equal, and so we can argue as in the proof of Theorem [10.6}
However, the condition & + 8 = 1 cannot be lifted in this way. Instead, we suspect
that the linear-recurrence highest weight modules of [BenRob98, Proposition 2.2]
should be used in the general case in lieu of k [x] (certainly, this would explain the
above exceptions as coming from the periodic linearly recurrent sequences).
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