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I will refer to the results appearing in the article “On the representation theory
of finite J-trivial monoids” by the numbers under which they appear in this
article (specifically, in its version of 4 March 2011, posted on arXiv under the
identifier arXiv:1010.3455v3).

6. Errata

* Page 3: Replace “and illustrates them” by “and illustrate them”.
* Page 4: “satistfies” should be “satisfies”.

e Page 4: Here it is claimed that “Groups are an example of a variety of
monoids, as are all of the classes of monoids described in this paper”. The
latter part of this sentence is not completely true: The class of all ordered
monoids with 1 on top is not a variety, since a quotient of such a monoid
can fail to be in this class (unless, I assume, you regard it as a variety of
ordered monoids). An example is provided by Examples 2.4 and 2.5 in this
very paper (since the monoid M there is J-trivial and thus is a quotient of
an ordered monoid with 1 on top, but itself is not ordered).

* Page 5: Replace “1 is the largest element of these (pre)-orders” by “in
every of these preorders, we have x < 1 for every x € M”. (Speaking of
“the largest element” is mildly ambiguous, because a preorder can have
several elements each of which is “the largest”.)

* Page 5, Proposition 2.2: Replace “the partial order < is finer than <x” by
“the partial order <y is finer than <”.

* Page 6, §2.1: Here it is claimed that “any ‘R-trivial monoid can be repre-
sented as a monoid of regressive functions on some finite poset P”. This
is correct if one uses the convention that functions act on values from the
right (i.e., the value of an element x under a function f is written x.f rather
than f (x)) and compose accordingly (i.e., the composition fg of two func-
tions f and g is the function which sends every x to (x.f).g). This is a
nonstandard convention, and ought to be explained early on in the paper.
(It is explained in §2.5, but it is used in §2.1 already.)
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* Page 8, §2.5: In the sentence starting with “When P is a chain on N ele-

“ 7

ments”, as well as in the next sentence, replace each “N” by “n”.

¢ Page 11, proof of Lemma 3.6: This proof can be simplified:

Assume that e <7 y. Then, e = ayb for some a,b € M. Applying Lemma
3.5 to yb instead of b, we find e = eyb. Hence, e <7 ey < 7 e, which entails
e = ey since M is [J-trivial. Moreover, applying Lemma 3.5 to ay instead
of a, we find e = aye. Hence, e <7 ye < e, thus e = ye. The converse
implications hold by the definition of < 7.

e Page 12, proof of Corollary 3.8: It also needs to be proved that C C
rad KM. This is a consequence of Corollary 3.7: Indeed, Corollary 3.7
shows that the quotient algebra KM/ rad KM is commutative (being iso-
morphic to the semigroup algebra KKE (M) of the commutative monoid
(E (M), *)), and thus the commutator ideal C of KM must be annihilated
by the canonical projection KM — KM/ rad KM. But this means that this
ideal C is contained in rad KM.

* Page 12, Example 3.9: Replace “C” by “K” throughout this example.

e Page 12, Example 3.9: Replace “algebra morphisms from Hy (W) — Hj (WI\{i}> "
by “algebra morphisms from KHy (W) — KHy (WI\{i}) "

¢ Page 13, (3.7): It is worth saying that g, is understood to lie in KM (not in
KM/ rad KM).

e Page 14: “For any number a denote by [a]| the smallest integer larger than
a.” should be “For any number a denote by [a]| the smallest integer larger
than or equal to a.”. (Otherwise, the statement “there is an N such that
un = 1”7 in the proof of Proposition 3.12 does not hold.)

Un

* Page 14, proof of Proposition 3.12: After “Define u, 1 = {TW ”,add “, so

that Lemma 3.14 yields (v, (v, — 1))"" = 0 by induction on n”.

¢ Page 15, proof of Proposition 3.15: In the first sentence (“First it is clear
that the f; are pairwise orthogonal idempotents”), remove the word “idem-
potents”. Indeed, the idempotency of the f; will only be shown later.

Namely, the idempotency of the f; follows from the equality (3.17) proved
in the next paragraph. Indeed, this equality shows that the element

¢ ((1 - X f,) g (1 - X ﬁ)) is idempotent (since g; is idempotent). There-

j<i j<i
fore, P ((1 - ) fl) g (1 - ) ﬁ)) must be idempotent as well (since
j<i j<i
P (x) is idempotent whenever ¢ (x) is idempotent).
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¢ Page 15, proof of Proposition 3.15: In the last sentence, the claim that “the
coefficient of e; in f; must be 1” doesn’t look that obvious to me. I under-
stand why this coefficient equals the coefficient of e; in P (g;) (because we

have (1 — Y filg (1 — Y fi | = g modulo theideal span{x | x <7 ¢;})
j<i j<i

and thus also equals the coefficient of e; in P (¢;) (since g; = ¢; modulo the

same ideal). But in order to see that the latter coefficient is 1, I need to use

the fact that P (x) = x whenever x is idempotent. This is itself quite easy,

but should be stated as a lemma.

e Page 16, Proposition 3.17: I think “decreasing” should be “(weakly) in-
creasing” both times here.

¢ Page 17, proof of Theorem 3.23: “are two ideals” — “are two right ideals”.
(Or is there a reason why they are two-sided ideals?)

e Page 21: “An algebra is called split basic” — “An algebra A is called split
basic”.

7. Addenda and remarks

7.1. Page 6, §2.1.

Let us prove some of the claims that are left unproven in this section.
First of all, the following very easy fact is used without proof:

Lemma 7.1. Let M be a monoidﬂ Let x € M. Let N € NN be such that
xN = xN+1 Then, xN = yN+1 — yN+2 — ...

Proof of Lemma We have

x N+ — N+m+l for every m € IN. (1)
P|Combining these equalities for all m € IN, we obtain xN = xN*1 = xN+2 = ...,
This proves Lemma O

!We follow the conventions of the paper. In particular, “monoid” means “finite monoid” for
us.
2Proof of : We shall prove (1) by induction over m:
Induction base: We have xV10 = xN — xN+1 — yN+0+1 (since N +1 = N + 0 + 1). In other
words, holds for m = 0. This completes the induction base.
Induction step: Let u be a positive integer. Assume that (1)) holds for m = y — 1. We now
need to prove that (I holds for m = u as well.
We know that holds for m = y — 1. In other words, xNT(#=1) = xN+(=D+1 Now,
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Next, we shall prove a fact which is almost obvious and is often used without
explicit mention:

Lemma 7.2. Let M be a monoid.
(a) If M is J-trivial, then M is R-trivial.
(b) If M is J-trivial, then M is L-trivial.
(c) If M is R-trivial, then M is H-trivial.
(d) If M is L-trivial, then M is H-trivial.
(e) If M is J-trivial, then M is H-trivial.

Proof of Lemma (a) Assume that M is J-trivial. Then, all 7 -classes are of car-
dinality one. In other words, any two J-equivalent elements of M are identical.
In other words,

every two elements x and y of M satisfying x J y
must satisfy x = y. (2)

Now, let x and y be two elements of M satistying x R y. Then, xM = yM

(since x R y holds if and only if xM = yM). Hence, M &ZL/I/ = MyM. In other
=yM

words, x J y (since x J y holds if and only if MxM = MyM). Therefore, x =y

(by @)).

Let us now forget that we fixed x and y. We thus have shown that every two
elements x and y of M satisfying x R y must satisfy x = y. In other words, any
two R-equivalent elements of M are identical. In other words, all R-classes are
of cardinality one. In other words, M is R-trivial. This proves Lemma 7.2 (a).

(b) Assume that M is J-trivial. Then, all J-classes are of cardinality one. In
other words, any two J-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x J y
must satisfy x = y. 3)

Now, let x and y be two elements of M satistying x £ y. Then, Mx = My
(since x £ y holds if and only if Mx = My). Hence, Mx M = MyM. In other
:My
words, x J y (since x J y holds if and only if MxM = MyM). Therefore, x =y
(by (3)).

N+ = pNFr=1)+1 = yN+#t (since N + (4 — 1) + 1 = N + ). Hence,

o N+ — N+ ({-1)
—xN+(p=1)+1_ N+u
(since N+(u—1)+1=N+p)

x = xN+yx —_ xN+y+1'

In other words, (1) holds for m = p. This completes the induction step. Thus, the induction
proof of (T) is complete.
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Let us now forget that we fixed x and y. We thus have shown that every two
elements x and y of M satisfying x £ y must satisfy x = y. In other words, any
two L-equivalent elements of M are identical. In other words, all £-classes are
of cardinality one. In other words, M is L-trivial. This proves Lemma 7.2/ (b).

(c) Assume that M is R-trivial. Then, all R-classes are of cardinality one. In
other words, any two R-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x R y
must satisfy x = y. (4)

Now, let x and y be two elements of M satisfying x ‘H y. Then, x R y and
x L y (because x H y holds if and only if (x R y and x £ y)). Hence, x = y (by
@)

Let us now forget that we fixed x and y. We thus have shown that every two
elements x and y of M satisfying x H y must satisfy x = y. In other words, any
two H-equivalent elements of M are identical. In other words, all H-classes are
of cardinality one. In other words, M is ‘H-trivial. This proves Lemma [7.2] (c).

(d) Assume that M is L-trivial. Then, all L-classes are of cardinality one. In
other words, any two L-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x L y
must satisfy x = y. 5)

Now, let x and y be two elements of M satisfying x H y. Then, x R y and
x L y (because x H y holds if and only if (x R y and x £ y)). Hence, x = y (by
@)

Let us now forget that we fixed x and y. We thus have shown that every two
elements x and y of M satisfying x H y must satisfy x = y. In other words, any
two H-equivalent elements of M are identical. In other words, all H-classes are
of cardinality one. In other words, M is H-trivial. This proves Lemma [7.2{(d).

(e) Assume that M is J-trivial. Then, M is L-trivial (by Lemma (b)).
Hence, M is H-trivial (by Lemma [7.2](d)). This proves Lemma [7.2] (e).

Now, Lemma [7.2]is proven. O

Next, we show an auxiliary lemma that is nearly trivial:

Lemma 7.3. Let M be a monoid. Let x, u and v be three elements of M such
that x = uxv. Then,

x = u"xo™ for every m € IN. (6)

Proof of Lemma 7.3, We will prove ' by induction over m:
Induction base: We have u x = x, thus x = %0, In other words, (ﬁ)
—1 —1
holds for m = 0. This completes the induction base.
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Induction step: Let k € IN. Assume that (6) holds for m = k. We now need to
prove that (6) holds for m = k + 1.
We know that @) holds for m = k. In other words, we have x = u*xv*. Thus,

x=uk x oF = uku x vof = uFTlxoktt,
~ N
=uxov —ykt+t1l  —pk+1

In other words, @ holds for m = k + 1. This completes the induction step. Thus,
the induction proof of (6) is complete. Hence, Lemma [7.3]is proved. O

Next, let us show a slightly less trivial (but still easy) fact. In fact, we are going
to prove the claim made in §2.1 that “The class of H-trivial monoids coincides
with that of aperiodic monoids”. This fact is the equivalence of the assertions A;
and A, in the following lemma:

Lemma 7.4. Let M be a monoid. Then, the following four assertions A;, A»,
Az and Ay are equivalent:

o Assertion Ai: The monoid M is H-trivial.
e Assertion Ap: The monoid M is aperiodic.

e Assertion Ajz: For every four elements x, y, b and v of M satisfying x = yv
and y = bx, we have x = y.

e Assertion Ay: For every four elements x, y, a and u of M satisfying x = uy
and y = xa, we have x = y.

Proof of Lemma Let us recall the definition of the relation H: If x and y are
two elements of M, then

x ‘H y holds if and only if (x Ryand x Ly). (7)

Let us also recall the definition of the relation £: If x and y are two elements
of M, then
x L y holds if and only if Mx = My. (8)

Finally, let us recall the definition of the relation R: If x and y are two elements
of M, then
x R y holds if and only if xM = yM. )

Now, we shall prove the implications A; = Aj, Ay = A3, A3 = A4 and
./44 — .Al.

Proof of the implication A; => Ap: Assume that Assertion .A; holds. We shall
show that Assertion .4, holds.
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We know that Assertion 47 holds. In other words, the monoid M is H-trivial.
In other words, all H-classes are of cardinality one. In other words, any two
H-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x H y
must satisfy x = y. (10)
Now, let x € M. We know that M is finite. Thus, |M| € IN. Let ¢ be the map
(1,2,...,|[M|+1} = M,
i,
There exist two distinct elements p and g of {1,2,...,|M| + 1} satisfying ¢ (p) =
¢ (q) Consider these p and g. We WLOG assume that p < g (otherwise,
we can simply switch p with g). Thus, p < g (since p and g are distinct), and
therefore p < g — 1 (since p and g are integers). Hence, (§ —1) — p € IN. Thus,
g—(p+1)=(g—1)— p € N. Hence, x7~(P*1) is a well-defined element of M.
We have ¢ (p) = x7 (by the definition of ¢) and ¢ () = x7 (by the definition

of ¢). From ¢ (p) = x”, we obtain x” = ¢ (p) = ¢ (q) = x1.
Butg=(g—(p+1))+(p+1) and thus

1 = @@= (p+1))+(p+1) — 44— (p+1) ,p+1 (since g — (p+1) € N)

-

eM
e MxPH1,

Hence, x? = x1 € MxPt!, sothat M xP C MM xPtl C MxPtl. Combined
~~~ S~~~
EMxPH1 M
with My = Mx x? C Mx?, this yields Mx? = MxP*+1. But x? £ xP*1 holds
0
=xxP cM
if and only if Mx? = Mx? "1 (because of , applied to x” and xP*! instead of x
and y). Thus, we have x? £ xP*1 (since MxP = MxP*1).
Also, g = (p+1)+ (g — (p+1)) and thus

x1 = x(PHD)+a=(p+1)) — yp+1 4q-(p+1) (since g — (p+1) € N)
eM
e xPHIM.
Hence, x? = x7 € xP* 1M, so that x? M C xP1 MM C xP* M. Combined
~~ N~
exPt1M M
with xP™ M = xP xM C xPM, this yields xM = xP*IM. But x? R xP*! holds
=xPx cM

3Proof. Assume the contrary. Thus, there exist no two distinct elements p and g of
{1,2,...,|M]| +1} satisfying ¢ (p) = ¢(q). In other words, any two distinct elements p
and q of {1,2,...,|M|+1} satisfy ¢ (p) # ¢ (gq). In other words, the map ¢ is injective.
Hence, there exists an injective map {1,2,...,|M|+1} — M (namely, ¢). Consequently,
M| > {1,2,...,|M|+1}| = |[M|+1 > |M|. This is absurd. This contradiction proves that
our assumption was wrong, qed.
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if and only if x? M = xP*1M (because of (9), applied to x” and xP*! instead of x
and ). Thus, we have x? R x?*! (since x* M = xP*1 M).

Finally, x¥ H xP*! holds if and only if (x? R x**! and x? £ xP*!) (because
of @), applied to x” and xP*! instead of x and y). Hence, we have x? H xP*!
(since x” R xP*1 and xP £ xP*1). Thus, x¥ = xP*! (by (10), applied to x” and
xP*1 instead of x and y). Thus, there exists some positive integer N such that
xN = xN*1 (namely, N = p).

Now, let us forget that we fixed x. We thus have shown that for every x € M,
there exists some positive integer N such that xN = xN*1. In other words, the
monoid M is aperiodic. In other words, Assertion A, holds. This proves the
implication 4; = A».

Proof of the implication Ay = Ajz: Assume that Assertion A, holds. We shall
show that Assertion A3 holds.

Assertion A holds. In other words, the monoid M is aperiodic. In other
words, for every x € M,

there exists some positive integer N such that x™ = xN 11, (11)

Now, let x, y, b and v be four elements of M satisfying x = yv and y = bx. We
are going to prove that x = v.

There exists some positive integer N such that bN = bN*! (according to ,
applied to b instead of x). Consider this N.

We have x = y v = bxv. Hence, Lemma [7.3| (applied to u = b) shows that

<~
=bx
x = b"xo™ for every m € IN. (12)
Applying (12) to m = N, we obtain x = bN  xoN = bbNxovN. Compared
—pN+1—ppN
withy =b _x = bbNxoN, this yields x = y.
=~

=bNxoN

Let us now forget that we fixed x, y, b and v. We thus have proven that
for every four elements x, y, b and v of M satisfying x = yv and y = bx, we
have x = y. In other words, Assertion A3 holds. This proves the implication
.Az — .A3.

Proof of the implication A3 => A4: Assume that Assertion .43 holds. We shall
show that Assertion 44 holds.

Let x, y, a and u be four elements of M satisfying x = uy and y = xa. Recall
that Assertion A3 holds. Hence, Assertion A3 (applied to y, x, u and a instead
of x, y, b and v) yields y = x. In other words, x = v.

Let us now forget that we fixed x, y, 2 and u. We thus have shown that
for every four elements x, y, a and u of M satisfying x = uy and y = xa, we
have x = y. In other words, Assertion A4 holds. This proves the implication

.A3 — A4.
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Proof of the implication Ay => A;: Assume that Assertion .44 holds. We shall
show that Assertion .4; holds.

Let x and y be two elements of M such that x H y. Recall that x H y
holds if and only if (x R y and x £ y) (because of (7)). Hence, we must have
(x Ry and x L y) (since we have x H y). Thus, x R y and x L y.

We know that x £ y holds if and only if Mx = My (according to (8)). Thus,
we must have Mx = My (since x £ y holds). Hence, x = \1/x € Mx = My. In

eM
other words, there exists an u € M such that x = uy. Consider this u.

We know that x R y holds if and only if xM = yM (according to (9)). Thus,
we must have xM = yM (since x R y holds). Hence, y =y _1 € yM = xM. In

eM
other words, there exists an a2 € M such that y = xa. Consider this a.

Now, Assertion A, yields x = y (since x = uy and y = xa).

Let us now forget that we fixed x and y. We thus have proven that every two
elements x and y of M satisfying x H y must satisfy x = y. In other words, any
two H-equivalent elements of M are identical. In other words, all H-classes are
of cardinality one. In other words, M is H-trivial. In other words, Assertion A;
holds. This proves the implication A4y = A;.

We have thus proven the four implications A1 = A, Ay = A3, Az = A4
and Ay = A;. Combined, these implications yield the equivalence A; <=
Ay <= A3 <= A,. This proves Lemma O

Next, let us prove another elementary result, which is used in §2.3 (in the
sentence “Since M is finite, this implies that M is [J-trivial (see [Pin10a, Chapter
V, Theorem 1.9])”):

Lemma 7.5. Let M be a monoid which is R-trivial and L-trivial. Then, M is
J -trivial.
Proof of Lemma Let us recall the definition of the relation J: If x and y are
two elements of M, then

x J y holds if and only if MxM = MyM. (13)

Let us also recall the definition of the relation £: If x and y are two elements
of M, then
x L y holds if and only if Mx = My. (14)

Finally, let us recall the definition of the relation R: If x and y are two elements
of M, then
x R y holds if and only if xM = yM. (15)

We know that M is R-trivial. Thus, all ‘R-classes are of cardinality one. In
other words, any two R-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x R y
must satisfy x = y. (16)
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We know that M is L-trivial. Thus, all L-classes are of cardinality one. In
other words, any two L-equivalent elements of M are identical. In other words,

every two elements x and y of M satisfying x L y
must satisfy x = y. (17)

But the monoid M is R-trivial, and thus H-trivial (according to Lemma[7.2](c)).
In other words, the Assertion A; of Lemma holds. Hence, the Assertion .4,
of Lemma holds as well (since the Assertions A4, Aj, A3 and A4 of Lemma
are equivalent (according to Lemma [7.4)). In other words, the monoid M is
aperiodic. In other words, for every x € M,

there exists some positive integer N such that XN = yNFL (18)

Let x and y be two elements of M such that x 7 y. Recall that x J y holds if
and only if MxM = MyM (because of (13)). Hence, we must have MxM = MyM
(since we have x J y).

Now,x=_1 x_1 € MxM = MyM. In other words, there exist u € M and

TN

eEM €M
v € M such that x = uyv. Consider these u and v.

Wealsohavey=_1 y 1 &€ MyM = MxM (since MxM = MyM). In other

eM eM
words, there exists a € M and b € M such that y = axb. Consider these a and b.

Now,x =u y v =uaxbv = (ua)x (bv). Thus, Lemma(applied to ua and
<~

=axb
bv instead of u and v) shows that

x = (ua)" x (bv)" for every m € IN. (19)

Now, there exists some positive integer N such that (ua)™ = (ua)N " (accord-

ing to , applied to ua instead of x). Let us denote this N by a. Thus, « is a pos-

itive integer such that (ua)® = (ua)*"'. Now, (applied to m = «) yields x =

(ua)” x (bv)* = (ua) (ua)® x (bv)". Compared with (ua) x =
~—— ~

=(ua)* ™ =(ua) (ua)* =(ua)*x(bv)*

ua) (ua)" x (bv)", this yields x = (ua)x. Thus, x = (ua)x = _u ax € Max,

eM
so that M _x C MMax C Max. Combined with Ma x C Mx, this yields
=~ 7 ~
€Max cM M

Max = Mx. But ax £ x holds if and only if Max = Mx (according to (14),
applied to ax and x instead of x and y). Hence, ax £ x (because Max = Mx).
Hence, (applied to ax and x instead of x and y) yields ax = x.

Furthermore, there exists some positive integer N such that (bv)~ = (bv)N™
(according to (I8), applied to bv instead of x). Let us denote this N by B.

Thus, 8 is a positive integer such that (bv)? = (bv)P*!. Now, (applied to

10
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m = P) yields x = (ua)ﬁx (bv)/3 = (ua)ﬁx (bv)ﬁ (bv). Compared with
A d
=(b0)P "1 =(bv)F (bv)

X (bv) = (ua)P x (bv)P (bv), this yields x = x (bv). Thus, x = x (bv) =

:(ua)ﬁx(bv)ﬁ
xb v € xbM,sothat x M C xb MM C xbM. Combined with x bM C xM,
—~— ~~ —— —~~
eM €xbM M M
this yields xbM = xM. But xb R x holds if and only if xbM = xM (accord-
ing to , applied to xb and x instead of x and y). Hence, xb R x (because
xbM = xM). Hence, (applied to xb and x instead of x and y) yields xb = x.
Now, ax = x and xb = x. Recall now that y = ax b = xb = x. Hence, x = v.

=X
Let us now forget that we fixed x and y. We thus have shown that every two
elements x and y of M satisfying x J y must satisfy x = y. In other words, any
two J-equivalent elements of M are identical. In other words, all J-classes are
of cardinality one. In other words, M is J-trivial. This proves Lemma O

Finally, let us prove yet another elementary result about the equivalence re-
lations R and £ (which is, to my knowledge, not used in the paper, but still
interesting)ﬁ

Proposition 7.6. Let M be a monoid. Let a and b be two elements of M.
Assume that there exists a ¢ € M such that a R ¢ and ¢ £ b. Then, there exists
ade Msuchthata £dand d R b.

Proof of Proposition Let us recall the definition of the relation £: If x and y
are two elements of M, then

x L y holds if and only if Mx = My. (20)

Also, let us recall the definition of the relation R: If x and y are two elements
of M, then
x R y holds if and only if xM = yM. (21)

Now, we have assumed that there exists a ¢ € M such thata R ¢ and ¢ £ b.
Consider this c.

We know that a R ¢ holds if and only if aM = ¢cM (by 1), applied to x = a
and y = c). Thus, we have aM = cM (since a R ¢ holds).

We know that ¢ £ b holds if and only if Mc = Mb (by (20), applied to x = ¢
and y = b). Thus, we have Mc = Mb (since ¢ L b holds).

We have a = a\l/ € aM = cM. Thus, there exists an x € M such that a = cx.

eM
Consider this x.

4Proposi’cion is one part of Proposition 1.6 in Chapter V of [Pin10a] (in the case of monoids,
rather than arbitrary semigroups). (It is arguably the harder part.)
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We have c = 1 ¢ € Mc = Mb. Thus, there exists a y € M such that ¢ = yb.

eM
Consider this y.
Wehavec=c_1 € cM = aM (since aM = cM). Thus, there exists an x’ € M
eM

such that ¢ = ax’. Consider this x’.
We have b = _1 b € Mb = Mc (since Mc = Mb). Thus, there exists a y’ € M

eM
such that b = y/c. Consider this y'.

. _ _ _ / _
Now, define an element f of M by f =bx. Then, f = _b x=y  cx, =
=y'c ince n—
(since a=cx)
y'a. Thus, M f = My'a C Ma.

= =~
=y'a M

On the other hand, a = cb xX=1y bo; = yf. Hence, M af = My f C Mf.

=Y = =Y cM

Combined with Mf C Ma, this yields Ma = Mf.
We know that a £ f holds if and only if Ma = Mf (by (20), applied to x = a
and y = f). Thus, a £ f holds (since Ma = Mf).

Furhermore, b=y’ ¢ = ya x' = fx'. Thus, b M= fx¥MC fM.
=ax’ =f =fx M

(since f=y'a)
Combined with f M =bxM C bM, this yields fM = bM.
Rl
We know that f R b holds if and only if fM = bM (by 1), applied to x = f
and y = b). Thus, f R b holds (since fM = bM).
Now, we know that a £ f and f R b. Thus, there exists a d € M such that
a Ldandd R b (namely, d = f). This proves Proposition O

Note that Proposition 7.6/ does not require the finiteness of M.
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