The Redei-Berge symmetric function of a directed graph

Darij Grinberg (Drexel University) joint work with Richard P. Stanley

KTH Stockholm, 2024-03-20;
University of Denver, 2024-05-03
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/kth2024.pdf paper (draft): https://arxiv.org/abs/2307.05569

Digraphs

- Definition. A digraph (= directed graph) means a pair (V, A) of a finite set V and a subset $A \subseteq V \times V$. The elements $(u, v) \in A$ are called arcs of this digraph, and are drawn accordingly.
- Example.

Digraphs

- Definition. A digraph (= directed graph) means a pair (V, A) of a finite set V and a subset $A \subseteq V \times V$.
The elements $(u, v) \in A$ are called arcs of this digraph, and are drawn accordingly.
- Example.

- Thus, we allow loops $((u, u) \in A)$ and antiparallel arcs $((u, v) \in A$ and $(v, u) \in A)$ but not parallel arcs $(A$ is not a multiset).
- Definition. Let $D=(V, A)$ be a digraph. Then, \bar{D} denotes the complement of D; this is the digraph $(V,(V \times V) \backslash A)$. Its arcs are the non-arcs of D.
- Definition. Let $D=(V, A)$ be a digraph. Then, \bar{D} denotes the complement of D; this is the digraph $(V,(V \times V) \backslash A)$. Its arcs are the non-arcs of D.
- Example.

- Definition. A digraph $D=(V, A)$ is loopless if it has no loops (i.e., no arcs (u, u)).
- Definition. A digraph $D=(V, A)$ is loopless if it has no loops (i.e., no arcs (u, u)).
- Definition. A loopless digraph $D=(V, A)$ is a tournament if it has the following property: For any distinct $u, v \in V$, exactly one of the two pairs (u, v) and (v, u) is an arc of D. In other words, a tournament is an orientation of the complete undirected graph K_{V}.
- Definition. A digraph $D=(V, A)$ is loopless if it has no loops (i.e., no arcs (u, u)).
- Definition. A loopless digraph $D=(V, A)$ is a tournament if it has the following property: For any distinct $u, v \in V$, exactly one of the two pairs (u, v) and (v, u) is an arc of D. In other words, a tournament is an orientation of the complete undirected graph K_{V}.
- Examples.

- Definition. Let V be a finite set. A V-listing will mean a list of elements of V that contains each element of V exactly once.
- Definition. Let V be a finite set. A V-listing will mean a list of elements of V that contains each element of V exactly once.
- Definition. Let $D=(V, A)$ be a digraph. A Hamiltonian path (short: hamp) of D means a V-listing $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that

$$
\left(v_{i}, v_{i+1}\right) \in A \quad \text { for each } i \in\{1,2, \ldots, n-1\}
$$

In other words (for $V \neq \varnothing$), it means a path of D that contains each vertex.

- Easy proposition (Rédei 1933): Any tournament has a hamp.
- Easy proposition (Rédei 1933): Any tournament has a hamp.
- This is an easy exercise in graph theory. But Rédei proved a lot more:
- Theorem (Rédei 1933): Let D be a tournament. Then, (\# of hamps of D) is odd.
- Easy proposition (Rédei 1933): Any tournament has a hamp.
- This is an easy exercise in graph theory. But Rédei proved a lot more:
- Theorem (Rédei 1933): Let D be a tournament. Then, (\# of hamps of D) is odd.
- Example. Here are some tournaments:

- Recall Redei's Theorem: Let D be a tournament. Then, (\# of hamps of D) is odd.
- Rédei's proof is complicated and intransparent (see Moon, Topics on Tournaments for an English version).
- Recall Redei's Theorem: Let D be a tournament. Then, (\# of hamps of D) is odd.
- Rédei's proof is complicated and intransparent (see Moon, Topics on Tournaments for an English version).
To give a more conceptual proof, Berge discovered the following:
- Theorem (Berge 1976): Let D be a digraph. Then, $(\#$ of hamps of $\bar{D}) \equiv(\#$ of hamps of $D) \bmod 2$.
- Example.

- Berge proves his theorem (in his Graphs textbook) using an elegant inclusion-exclusion argument.
Then he uses his theorem to prove Rédei's theorem via induction on the number of "inversions" (arcs directed the "wrong way").
This proof is much cleaner than Rédei's, but still far from simple.
For a detailed exposition, see https:
//www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
- Berge proves his theorem (in his Graphs textbook) using an elegant inclusion-exclusion argument.
Then he uses his theorem to prove Rédei's theorem via induction on the number of "inversions" (arcs directed the "wrong way").
This proof is much cleaner than Rédei's, but still far from simple.
For a detailed exposition, see https:
//www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
- Remark. Can we improve on Rédei's theorem even further? MathOverflow question \#232751 asks for the possible values of (\# of hamps of D) for a tournament D. Among the numbers between 1 and 80555 , the answer is "all odd numbers except for 7 and 21" (proved by bof and Gordon Royle).
Question: Are these the only exceptions?
- Independently, Chow (The Path-Cycle Symmetric Function of a Digraph, 1996) introduced a symmetric function assigned to each digraph D.
(This was inspired by Chung/Graham's cover polynomial in rook theory.)
- We only discuss a coarsening of his construction (Chow has two families of variables, and we set the second family to 0). Question: Which of the results below can be generalized to the full version?
- Definition. Let $n \in \mathbb{N}$, and let $/$ be a subset of $\{1,2, \ldots, n-1\}$. Then, we define the power series

$$
L_{I, n}:=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ i_{p}<i_{p+1} \text { for each } p \in I}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}} \in \mathbb{Z}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]}
$$

(where the indices $i_{1}, i_{2}, \ldots, i_{n}$ range over $\{1,2,3, \ldots\}$). Remark: This is a formal power series (but becomes a polynomial if you drop all but finitely many variables). It is known as a (Gessel's) fundamental quasisymmetric function.

- Definition. Let $n \in \mathbb{N}$, and let $/$ be a subset of $\{1,2, \ldots, n-1\}$. Then, we define the power series

$$
L_{I, n}:=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ i_{p}<i_{p+1} \text { for each } p \in I}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}} \in \mathbb{Z}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]}
$$

(where the indices $i_{1}, i_{2}, \ldots, i_{n}$ range over $\{1,2,3, \ldots\}$). Remark: This is a formal power series (but becomes a polynomial if you drop all but finitely many variables). It is known as a (Gessel's) fundamental quasisymmetric function.

- For instance,

$$
\begin{aligned}
L_{\{1\}, 3} & =\sum_{i_{1}<i_{2} \leq i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}} ; \\
L_{\{1\}, 4} & =\sum_{i_{1}<i_{2} \leq i_{3} \leq i_{4}} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} .
\end{aligned}
$$

- Definition. Let $n \in \mathbb{N}$, and let $/$ be a subset of $\{1,2, \ldots, n-1\}$. Then, we define the power series

$$
L_{I, n}:=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ i_{p}<i_{p+1} \text { for each } p \in I}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \in \mathbb{Z}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]
$$

(where the indices $i_{1}, i_{2}, \ldots, i_{n}$ range over $\{1,2,3, \ldots\}$).

- Definition. Let $n \in \mathbb{N}$. Let $D=(V, A)$ be a digraph with n vertices. We define the Redei-Berge symmetric function

$$
U_{D}:=\sum_{w \text { is a } V \text {-listing }} L_{\operatorname{Des}(w, D), n} \in \mathbb{Z}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right],
$$

where

$$
\begin{aligned}
\operatorname{Des}(w, D):=\{i \in\{1,2, \ldots, n-1\} \mid & \left.\left(w_{i}, w_{i+1}\right) \in A\right\} \\
& \text { for each } V \text {-listing } w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) .
\end{aligned}
$$

- Example: Let

Then,

$$
\begin{aligned}
U_{D}= & \sum_{w \text { is a } V \text {-listing }} L_{\operatorname{Des}(w, D), 3} \\
= & L_{\operatorname{Des}((1,2,3), D), 3}+L_{\operatorname{Des}((1,3,2), D), 3}+L_{\operatorname{Des}((2,1,3), D), 3} \\
& \quad+L_{\operatorname{Des}((2,3,1), D), 3}+L_{\operatorname{Des}((3,1,2), D), 3}+L_{\operatorname{Des}((3,2,1), D), 3} \\
= & L_{\{1\}, 3}+L_{\varnothing, 3}+L_{\varnothing, 3}+L_{\varnothing, 3}+L_{\{2\}, 3}+L_{\varnothing, 3} \\
= & 4 \cdot L_{\varnothing, 3}+L_{\{1\}, 3}+L_{\{2\}, 3} \\
= & 4 \cdot \sum_{i_{1} \leq i_{2} \leq i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+\sum_{i_{1}<i_{2} \leq i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+\sum_{i_{1} \leq i_{2}<i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}
\end{aligned}
$$

- We can restate the definition of U_{D} directly as follows:
- Proposition. Let $D=(V, A)$ be a digraph. Then,

$$
U_{D}=\sum_{f: V \rightarrow\{1,2,3, \ldots\}} a_{D, f} \prod_{v \in V} x_{f(v)},
$$

where $a_{D, f}$ is the $\#$ of all V-listings $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ such that

- we have $f\left(w_{1}\right) \leq f\left(w_{2}\right) \leq \cdots \leq f\left(w_{n}\right)$;
- we have $f\left(w_{i}\right)<f\left(w_{i+1}\right)$ if $\left(w_{i}, w_{i+1}\right) \in A$.
- We can restate the definition of U_{D} directly as follows:
- Proposition. Let $D=(V, A)$ be a digraph. Then,

$$
U_{D}=\sum_{f: V \rightarrow\{1,2,3, \ldots\}} a_{D, f} \prod_{v \in V} x_{f(v)}
$$

where $a_{D, f}$ is the $\#$ of all V-listings $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ such that

- we have $f\left(w_{1}\right) \leq f\left(w_{2}\right) \leq \cdots \leq f\left(w_{n}\right) ;$
- we have $f\left(w_{i}\right)<f\left(w_{i+1}\right)$ if $\left(w_{i}, w_{i+1}\right) \in A$.
- This is similar (though not directly related) to P-partition enumerators and chromatic symmetric functions.
- We can restate the definition of U_{D} directly as follows:
- Proposition. Let $D=(V, A)$ be a digraph. Then,

$$
U_{D}=\sum_{f: V \rightarrow\{1,2,3, \ldots\}} a_{D, f} \prod_{v \in V} x_{f(v)},
$$

where $a_{D, f}$ is the $\#$ of all V-listings $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ such that

- we have $f\left(w_{1}\right) \leq f\left(w_{2}\right) \leq \cdots \leq f\left(w_{n}\right)$;
- we have $f\left(w_{i}\right)<f\left(w_{i+1}\right)$ if $\left(w_{i}, w_{i+1}\right) \in A$.
- Remark. We can restate the definition of $a_{D, f}$ in nicer terms.

Namely, fix a digraph $D=(V, A)$ and a map
$f: V \rightarrow\{1,2,3, \ldots\}$. For any $j \in f(V)$, let $\overline{D_{j}}$ denote the induced subdigraph of the complement \bar{D} on the vertex set $f^{-1}(j)=\{v \in V \mid f(v)=j\}$. Then,

$$
a_{D, f}=\prod_{j \in f(V)}\left(\# \text { of hamps of } \overline{D_{j}}\right)
$$

- Note that U_{D} is $\bar{\Xi}_{\bar{D}}(x, 0)$ in the notations of Chow's 1996 paper.
- Note that U_{D} is $\bar{\Xi}_{\bar{D}}(x, 0)$ in the notations of Chow's 1996 paper.
- What is U_{D} good for? Counting hamps (= Hamiltonian paths), for one:
- Proposition. Let D be a digraph. Then,

$$
U_{D}(1,0,0,0, \ldots)=(\# \text { of hamps of } \bar{D})
$$

- Note that U_{D} is $\bar{\Xi}_{\bar{D}}(x, 0)$ in the notations of Chow's 1996 paper.
- What is U_{D} good for? Counting hamps (= Hamiltonian paths), for one:
- Proposition. Let D be a digraph. Then,

$$
U_{D}(1,0,0,0, \ldots)=(\# \text { of hamps of } \bar{D})
$$

- Thus, any results about U_{D} might give us information about the \# of hamps!
- Note that U_{D} is $\bar{\Xi}_{\bar{D}}(x, 0)$ in the notations of Chow's 1996 paper.
- What is U_{D} good for? Counting hamps (= Hamiltonian paths), for one:
- Proposition. Let D be a digraph. Then,

$$
U_{D}(1,0,0,0, \ldots)=(\# \text { of hamps of } \bar{D})
$$

- Thus, any results about U_{D} might give us information about the \# of hamps!
- Formulas for U_{D} in some specific cases (D acyclic, D poset, D path) can be found in Additional Problem 120 to Chapter 7 of Stanley's EC2. Most prominently, if D is the "greater-than digraph" of a poset P, then $U_{\bar{D}}$ is the chromatic symmetric function of the incomparability graph of P.
- I called U_{D} the "Rédei-Berge symmetric function", but is it actually symmetric? Yes, and in fact something better holds:
- Definition. For each $k \geq 1$, let

$$
p_{k}:=x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots
$$

be the k-th power-sum symmetric function.

- Theorem. For any digraph D, we have

$$
U_{D} \in \mathbb{Z}\left[p_{1}, p_{2}, p_{3}, \ldots\right]
$$

That is, U_{D} can be written as a polynomial in $p_{1}, p_{2}, p_{3}, \ldots$ over \mathbb{Z}.

- I called U_{D} the "Rédei-Berge symmetric function", but is it actually symmetric? Yes, and in fact something better holds:
- Definition. For each $k \geq 1$, let

$$
p_{k}:=x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots
$$

be the k-th power-sum symmetric function.

- Theorem. For any digraph D, we have

$$
U_{D} \in \mathbb{Z}\left[p_{1}, p_{2}, p_{3}, \ldots\right]
$$

That is, U_{D} can be written as a polynomial in $p_{1}, p_{2}, p_{3}, \ldots$ over \mathbb{Z}.

- Which polynomial, though?
- Definition. Fix a digraph $D=(V, A)$.

Let \mathfrak{S}_{V} be the symmetric group on the set V.
For any $\sigma \in \mathfrak{S}_{V}$, we let

$$
p_{\text {type } \sigma}:=\prod_{\gamma \text { is a cycle of } \sigma} p_{\text {length of } \gamma} .
$$

In other words, if σ has cycles of lengths a, b, \ldots, k (including 1 -cycles), then $p_{\text {type } \sigma}=p_{a} p_{b} \cdots p_{k}$.

- Definition. Fix a digraph $D=(V, A)$.

Let \mathfrak{S}_{V} be the symmetric group on the set V.
For any $\sigma \in \mathfrak{S}_{V}$, we let

$$
p_{\text {type } \sigma}:=\prod_{\gamma \text { is a cycle of } \sigma} p_{\text {length of } \gamma} .
$$

We say that a cycle γ of σ is a D-cycle if all the pairs $(i, \sigma(i))$ for $i \in \gamma$ are arcs of D.

- Definition. Fix a digraph $D=(V, A)$.

Let \mathfrak{S}_{V} be the symmetric group on the set V.
For any $\sigma \in \mathfrak{S}_{V}$, we let

$$
p_{\text {type } \sigma}:=\prod_{\gamma \text { is a cycle of } \sigma} p_{\text {length of } \gamma} .
$$

We say that a cycle γ of σ is a D-cycle if all the pairs $(i, \sigma(i))$ for $i \in \gamma$ are arcs of D.

- Main Theorem I. Let $D=(V, A)$ be a digraph. Set

$$
\varphi(\sigma):=\sum_{\substack{\gamma \text { is a cycle of } \sigma ; \\ \gamma \text { is a } D \text {-cycle }}}((\text { length of } \gamma)-1) \quad \text { for each } \sigma \in \mathfrak{S}_{V} .
$$

Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is }}}(-1)^{\varphi(\sigma)} p_{\text {type } \sigma}
$$

- Definition. Fix a digraph $D=(V, A)$.

Let \mathfrak{S}_{V} be the symmetric group on the set V.
For any $\sigma \in \mathfrak{S}_{V}$, we let

$$
p_{\text {type } \sigma}:=\prod_{\gamma \text { is a cycle of } \sigma} p_{\text {length of } \gamma}
$$

We say that a cycle γ of σ is a D-cycle if all the pairs $(i, \sigma(i))$ for $i \in \gamma$ are arcs of D.

- Main Theorem I. Let $D=(V, A)$ be a digraph. Set

$$
\varphi(\sigma):=\sum_{\substack{\gamma \text { is a cycle of } \sigma ; \\ \gamma \text { is a } D \text {-cycle }}}((\text { length of } \gamma)-1) \quad \text { for each } \sigma \in \mathfrak{S}_{V}
$$

Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S} V ; \\ \text { each cycl of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle }}}(-1)^{\varphi(\sigma)} p_{\text {type } \sigma} .
$$

- This yields the $U_{D} \in \mathbb{Z}\left[p_{1}, p_{2}, p_{3}, \ldots\right]$ theorem, of course.
- Example. Recall our favorite example:

D

\bar{D}

The cycles of D are $(2)_{\sim}$ and (3) , whereas the cycles of \bar{D} are $(1)_{\sim},(2,3)_{\sim},(3,1)_{\sim}$ and $(1,3,2)_{\sim}$.
Thus, the

each cycle of σ is
a D-cycle or a \bar{D}-cycle
addends, corresponding to (σ written in one-line notation)

$\sigma=$	$[1,2,3]$	$[3,1,2]$	$[1,3,2]$	$[3,2,1]$
$(-1)^{\varphi(\sigma)}=$	1	1	1	1
$p_{\text {type } \sigma}=$	p_{1}^{3}	p_{3}	$p_{2} p_{1}$	$p_{2} p_{1}$

- Example. Recall our favorite example:

D

\bar{D}

The cycles of D are (2) $)_{\sim}$ and (3) $)_{\sim}$, whereas the cycles of \bar{D} are $(1)_{\sim},(2,3)_{\sim},(3,1)_{\sim}$ and $(1,3,2)_{\sim}$.
Hence, Main Theorem I yields

$$
U_{D}=p_{1}^{3}+p_{3}+p_{2} p_{1}+p_{2} p_{1}=p_{1}^{3}+2 p_{1} p_{2}+p_{3} .
$$

- Example. Another example: Let

addends, with

$\sigma=$	$[1,2,3]$	$[3,1,2]$	$[3,2,1]$
$(-1)^{\varphi(\sigma)}=$	1	1	-1
$p_{\text {type } \sigma}=$	p_{1}^{3}	p_{3}	$p_{2} p_{1}$

Hence, Main Theorem I yields $U_{D}=p_{1}^{3}+p_{3}-p_{2} p_{1}$.

- Recall Main Theorem I: Let $D=(V, A)$ be a digraph. Set

$$
\varphi(\sigma):=\sum_{\substack{\gamma \text { is a cycle of } \sigma ; \\ \gamma \text { is a } D \text {-cycle }}}((\text { length of } \gamma)-1) \quad \text { for each } \sigma \in \mathfrak{S}_{V} .
$$

Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle }}}(-1)^{\varphi(\sigma)} p_{\text {type } \sigma} .
$$

- Recall Main Theorem I: Let $D=(V, A)$ be a digraph. Set

$$
\varphi(\sigma):=\sum_{\substack{\gamma \text { is a cycle of } \sigma ; \\ \gamma \text { is a } D \text {-cycle }}}((\text { length of } \gamma)-1) \quad \text { for each } \sigma \in \mathfrak{S}_{V}
$$

Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S}_{V} ; \\ \text { each cycle of } \sigma \text { is }}}(-1)^{\varphi(\sigma)} p_{\text {type } \sigma}
$$

- Main Theorem I yields Berge's theorem, since the sum for D and the sum for \bar{D} range over the same σ 's, and the addends only differ in sign.
- Recall Main Theorem I: Let $D=(V, A)$ be a digraph. Set

$$
\varphi(\sigma):=\sum_{\substack{\gamma \text { is a cycle of } \sigma ; \\ \gamma \text { is a } D \text {-cycle }}}((\text { length of } \gamma)-1) \quad \text { for each } \sigma \in \mathfrak{S}_{V}
$$

Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S} V ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle }}}(-1)^{\varphi(\sigma)} p_{\text {type } \sigma} .
$$

- Main Theorem I yields Berge's theorem, since the sum for D and the sum for \bar{D} range over the same σ 's, and the addends only differ in sign.
- Corollary. Let $D=(V, A)$ be a digraph. Assume that every D-cycle has odd length. Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S}_{V} ; \\ \text { each cycle of } \sigma \text { is }}} p_{\text {type } \sigma} \in \mathbb{N}\left[p_{1}, p_{2}, p_{3}, \ldots\right] .
$$

- Main Theorem II. Let $D=(V, A)$ be a tournament. For each $\sigma \in \mathfrak{S}_{V}$, let $\psi(\sigma)$ denote the number of nontrivial cycles of σ. (A cycle is called nontrivial if it has length >1.) Then,

$$
\begin{aligned}
U_{D} & \sum_{\begin{array}{c}
\sigma \in \mathfrak{S}_{V} ; \\
\text { each cycle of } \sigma \text { is a } \\
\text { all cycles of } \sigma \text { have odd length }
\end{array}} 2^{\psi(\sigma)} p_{\text {type } \sigma} \\
& \in \mathbb{N}\left[p_{1}, 2 p_{3}, 2 p_{5}, 2 p_{7}, \ldots\right]=\mathbb{N}\left[p_{1}, 2 p_{i} \mid i>1 \text { is odd }\right] .
\end{aligned}
$$

- Main Theorem II. Let $D=(V, A)$ be a tournament. For each $\sigma \in \mathfrak{S}_{V}$, let $\psi(\sigma)$ denote the number of nontrivial cycles of σ. (A cycle is called nontrivial if it has length >1.) Then,

$$
\begin{aligned}
U_{D} & =\sum_{\begin{array}{c}
\sigma \in \mathfrak{S}_{V} ; \\
\text { each cycle of } \sigma \text { is a } \\
\text { all cycles of } \sigma \text {-cycle; }
\end{array}} 2^{\psi(\sigma)} p_{\text {type } \sigma} \\
& \in \mathbb{N}\left[p_{1}, 2 p_{3}, 2 p_{5}, 2 p_{7}, \ldots\right]=\mathbb{N}\left[p_{1}, 2 p_{i} \mid i>1 \text { is odd length }\right] .
\end{aligned}
$$

- Main Theorem II easily yields Rédei's theorem, as the only addend with $2^{\psi(\sigma)}$ odd is the $\sigma=$ id addend.
- The above corollary from Main Theorem I yields that U_{D} is p-positive when D has no even-length cycles. But this holds even more generally:
- The above corollary from Main Theorem I yields that U_{D} is p-positive when D has no even-length cycles. But this holds even more generally:
- Main Theorem III. Let $D=(V, A)$ be a digraph that has no cycles of length 2. Then,

$$
U_{D}=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle; } \\ \text { no even-length cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a reversed } D \text {-cycle }}} p_{\text {type } \sigma}
$$

- The above corollary from Main Theorem I yields that U_{D} is p-positive when D has no even-length cycles. But this holds even more generally:
- Main Theorem III. Let $D=(V, A)$ be a digraph that has no cycles of length 2. Then,

$$
U_{D}=\sum_{\begin{array}{c}
\sigma \in \mathfrak{S} V ; \\
\text { each cycle of } \sigma \text { is } \\
\text { a } D \text {-cycle or a } \bar{D} \text {-cycle; } \\
\text { no even-length cycle of } \sigma \text { is }
\end{array}} p_{\text {type } \sigma .}
$$

- Remark. Not all p-positive U_{D} 's are explained by this theorem.
- The proof of Main Theorem I is long and intricate. It might be simplifiable. Here are the main ideas.
- The proof of Main Theorem I is long and intricate. It might be simplifiable. Here are the main ideas.
- Pólya-style lemma. Let V be a finite set. Let $\sigma \in \mathfrak{S}_{V}$ be a permutation of V. Then,

$$
\sum_{\substack{f: V \rightarrow\{1,2,3, \ldots\} ; \\ f \circ \sigma=f}} \prod_{v \in V} x_{f(v)}=p_{\text {type } \sigma}
$$

Proof. Easy exercise.

- The proof of Main Theorem I is long and intricate. It might be simplifiable. Here are the main ideas.
- Pólya-style lemma. Let V be a finite set. Let $\sigma \in \mathfrak{S}_{V}$ be a permutation of V. Then,

$$
\sum_{\substack{f: V \rightarrow\{1,2,3, \ldots\} ; \\ f \circ \sigma=f}} \prod_{v \in V} x_{f(v)}=p_{\operatorname{type} \sigma}
$$

- Using this lemma (and the above formula for $a_{D, f}$), we can easily reduce Main Theorem I to the following lemma:
- Main combinatorial lemma. Let $D=(V, A)$ be a digraph with n vertices. Let $f: V \rightarrow\{1,2,3, \ldots\}$ be any map. Then,

$$
\prod_{j \in f(V)}\left(\# \text { of hamps of } \overline{D_{j}}\right)=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle; }}}(-1)^{\varphi(\sigma)},
$$

where $\overline{D_{j}}$ is the induced subdigraph of \bar{D} on the vertex set $f^{-1}(j)$.

- So we need to prove the Main combinatorial lemma: Let $D=(V, A)$ be a digraph with n vertices. Let $f: V \rightarrow\{1,2,3, \ldots\}$ be any map. Then,

$$
\prod_{j \in f(V)}\left(\# \text { of hamps of } \overline{D_{j}}\right)=\sum_{\substack{\sigma \in \mathfrak{G}, j ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle; } \\ f \circ \sigma=f}}(-1)^{\varphi(\sigma)},
$$

where $\overline{D_{j}}$ is the induced subdigraph of \bar{D} on the vertex set $f^{-1}(j)$.

- So we need to prove the Main combinatorial lemma: Let $D=(V, A)$ be a digraph with n vertices. Let $f: V \rightarrow\{1,2,3, \ldots\}$ be any map. Then,

$$
\prod_{j \in f(V)}\left(\# \text { of hamps of } \overline{D_{j}}\right)=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle; } \\ f \circ \sigma=f}}(-1)^{\varphi(\sigma)},
$$

where $\overline{D_{j}}$ is the induced subdigraph of \bar{D} on the vertex set $f^{-1}(j)$.

- Work on each "level set" $f^{-1}(j)$ separately:

Main combinatorial lemma (simplified). Let $D=(V, A)$ be a digraph. Then,

$$
(\# \text { of hamps of } \bar{D})=\sum_{\substack{\sigma \in \mathfrak{S}_{V} ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle }}}(-1)^{\varphi(\sigma)}
$$

- So we need to prove the Main combinatorial lemma: Let $D=(V, A)$ be a digraph with n vertices. Let $f: V \rightarrow\{1,2,3, \ldots\}$ be any map. Then,

$$
\prod_{j \in f(V)}\left(\# \text { of hamps of } \overline{D_{j}}\right)=\sum_{\substack{\sigma \in \mathfrak{S} v ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle; } \\ f \circ \sigma=f}}(-1)^{\varphi(\sigma)},
$$

where $\overline{D_{j}}$ is the induced subdigraph of \bar{D} on the vertex set $f^{-1}(j)$.

- Work on each "level set" $f^{-1}(j)$ separately:

Main combinatorial lemma (simplified). Let $D=(V, A)$ be a digraph. Then,

$$
(\# \text { of hamps of } \bar{D})=\sum_{\substack{\sigma \in \mathfrak{S} \vee ; \\ \text { each cycle of } \sigma \text { is } \\ \text { a } D \text {-cycle or a } \bar{D} \text {-cycle }}}(-1)^{\varphi(\sigma)}
$$

- This can be proved using a nontrivial exclusion-inclusion.
- To prove Main Theorems II and III, start with the Main Theorem I sum, and combine σ 's into equivalence classes by reversing certain cycles:
- For Main Theorem II, call two permutations in \mathfrak{S}_{V} equivalent if one can be obtained from the other by reversing (nontrivial) cycles. This turns D-cycles into \bar{D}-cycles and vice versa. The equivalence class of σ has $2^{\psi(\sigma)}$ elements if σ has no 2 -cycles. Their addends in the sum cancel out if σ has an even-length cycle; otherwise they are all equal and sum up to $2^{\psi(\sigma)} p_{\text {type } \sigma}$.

p-expansions: Proof ideas, 3

- To prove Main Theorems II and III, start with the Main Theorem I sum, and combine σ 's into equivalence classes by reversing certain cycles:
- For Main Theorem II, call two permutations in \mathfrak{S}_{V} equivalent if one can be obtained from the other by reversing (nontrivial) cycles. This turns D-cycles into \bar{D}-cycles and vice versa. The equivalence class of σ has $2^{\psi(\sigma)}$ elements if σ has no 2 -cycles. Their addends in the sum cancel out if σ has an even-length cycle; otherwise they are all equal and sum up to $2^{\psi(\sigma)} p_{\text {type } \sigma}$.
- For Main Theorem III, call a necklace $\left(v_{1}, v_{2}, \ldots, v_{k}\right)_{\sim}$ risky if its length k is even and either it or its inverse is a D-cycle. Call two permutations in \mathfrak{S}_{V} equivalent if one can be obtained from the other by reversing risky cycles. The equivalence class of σ has $2^{r(\sigma)}$ elements, where $r(\sigma)$ is the number of risky cycles of σ. Their addends in the sum cancel out if σ has a risky cycle; otherwise there is only one of them.
- The proof of Main Theorem I is detailed in the preprint (https://arxiv.org/abs/2307.05569); the proofs of II and III are outlined.
These would make a good project for formalization (Coq, Lean, etc.): only elementary combinatorics but some tricky reasoning with cycles and sums.

A surprise

- Rédei's theorem determines the $\#$ of hamps of a tournament D modulo 2. What about $\bmod 4$?
- Rédei's theorem determines the $\#$ of hamps of a tournament D modulo 2. What about mod 4?
- Theorem. Let D be a tournament. Then, (\# of hamps of D) $\equiv 1+2$ (\# of nontrivial odd-length D-cycles $) \bmod 4$.

Here, "nontrivial" means "having length >1 ".

- We can prove this using Main Theorem II. We have not seen this anywhere in the literature.
- Main Theorem I can be rewritten without speaking about digraphs:
- Theorem. Let $n \in \mathbb{N}$, and let V be an n-element set. Let \mathbf{k} be a commutative ring.
For any $a=(i, j) \in V \times V$, we fix an element $t_{a}=t_{(i, j)} \in \mathbf{k}$ and set $s_{a}:=t_{a}+1$.
We define the deformed Redei-Berge symmetric function

$$
\begin{aligned}
\widetilde{U}_{t} & \left.:=\sum_{\substack{w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
\text { is a } V \text {-listing }}} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} \prod_{\substack{k \in[n-1] ; \\
i_{k}=i_{k+1}}} s_{\left(w_{k}, w_{k+1}\right)}\right) x_{i_{1} x_{i_{2}} \cdots x_{i_{n}}} \\
& \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] .
\end{aligned}
$$

Then,

$$
\widetilde{U}_{t}=\sum_{\sigma \in \mathfrak{S}_{V}}\left(\prod_{\gamma \text { is a cycle of } \sigma}\left(\prod_{i \in \gamma} s_{(i, \sigma(i))}-\prod_{i \in \gamma} t_{(i, \sigma(i))}\right)\right) p_{\text {type } \sigma}
$$

- Theorem. Let $n \in \mathbb{N}$, and let V be an n-element set. Let \mathbf{k} be a commutative ring.
For any $a=(i, j) \in V \times V$, we fix an element $t_{a}=t_{(i, j)} \in \mathbf{k}$ and set $s_{a}:=t_{a}+1$.
We define the deformed Redei-Berge symmetric function

$$
\begin{aligned}
\widetilde{U}_{t} & \left.:=\sum_{\substack{w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
\text { is a } V \text {-listing }}} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} \prod_{\substack{k \in[n-1] ; \\
i_{k}=i_{k+1}}} s_{\left(w_{k}, w_{k+1}\right)}\right) x_{i_{1} x_{i_{2}} \cdots x_{i_{n}}} \\
& \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] .
\end{aligned}
$$

Then,

$$
\widetilde{U}_{t}=\sum_{\sigma \in \mathfrak{S}_{V}}\left(\prod_{\gamma \text { is a cycle of } \sigma}\left(\prod_{i \in \gamma} s_{(i, \sigma(i))}-\prod_{i \in \gamma} t_{(i, \sigma(i))}\right)\right) p_{\text {type } \sigma}
$$

- This generalizes Main Theorem I (set each t_{a} to 0 or -1), but also follows from it by multilinearity.
- Richard P. Stanley for the obvious reasons.
- Hsin Chieh Liao, Anna Pun, Bruce Sagan, Mike Zabrocki for helpful comments.
- the organizers for the opportunity to present this.
- you for your patience.
- In his paper The Path-Cycle Symmetric Function of a Digraph (1996), Timothy Y. Chow defined the path-cycle symmetric function of a digraph:

Appendix: Chow's path-cycle symmetric function

- Definition. Let $D=(V, A)$ be a digraph. The path-cycle symmetric function $\bar{\Xi}_{D}=\bar{\Xi}_{D}(\mathbf{x}, \mathbf{y})$ in two infinite families of indeterminates $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ is the power series

Here:

- A PC-cover means a set of paths and cycles of D (possibly trivial ones) such that each vertex in V belongs to exactly one of these.
- If S is a PC-cover, then an S-friendly coloring means a map $f: V \rightarrow\{1,2,3, \ldots\}$ such that
- $f(v)=f(w)$ whenever v and w lie on the same S-path;
- $f(v)=f(w)$ whenever v and w lie on the same S-cycle;
- $f(v) \neq f(w)$ whenever v and w lie on different S-paths; (but different S-cycles are unconstrained!).

Appendix: Chow's path-cycle symmetric function

- Definition. Let $D=(V, A)$ be a digraph. The path-cycle symmetric function $\bar{\Xi}_{D}=\bar{\Xi}_{D}(\mathbf{x}, \mathbf{y})$ in two infinite families of indeterminates $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ is the power series

- Setting $\mathbf{y}=\mathbf{0}$ (that is, $y_{i}=0$ for all i) amounts to forbidding cycles in PC-covers, thus turning them into P-covers. Thus, $\bar{\Xi}_{D}(\mathbf{x}, \mathbf{0})=U_{\bar{D}}$ (exercise!).

Appendix: Chow's path-cycle symmetric function

- Definition. Let $D=(V, A)$ be a digraph. The path-cycle symmetric function $\bar{\Xi}_{D}=\bar{\Xi}_{D}(\mathbf{x}, \mathbf{y})$ in two infinite families of indeterminates $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ is the power series

- Setting $\mathbf{y}=\mathbf{0}$ (that is, $y_{i}=0$ for all i) amounts to forbidding cycles in PC-covers, thus turning them into P-covers. Thus, $\bar{\Xi}_{D}(\mathbf{x}, \mathbf{0})=U_{\bar{D}}$ (exercise!).
- Question. Do any of our results extend to $\bar{\Xi}_{D}$?
- Theorem (Gessel, Stanley, [EC2, Ch. 7, Additional problem 122 (h)]). Let $D=(V, A)$ be the path digraph with $n>0$ vertices. Then,

$$
U_{D}=\sum_{i=1}^{n} f_{i} s_{\left(i, 1^{n-i}\right)}
$$

Here, s_{λ} denotes the Schur function, whereas f_{i} means the \# of permutations $\sigma \in S_{i}$ in which no entry j is followed by $j-1$ (OEIS sequence A000255).

- Question. When else is U_{D} Schur-positive?

