
Errata to “Products of Factorial Schur Functions” June 27, 2021

Products of Factorial Schur Functions
Victor Kreiman

published version, The Electronic Journal of Combinatorics 15 (2008), #R84
Errata and addenda by Darij Grinberg

The following corrections cover the first 9 pages of the paper.

• page 1: It is worth saying that N means the set {0, 1, 2, . . .} in this paper
(not {1, 2, 3, . . .} as in some other parts of the literature).

• page 1: “Biedenbarn”→ “Biedenharn”.

• pages 1–8: Both the definition of factorial Schur functions sλ (x | y) (and
their products sλ (x | y)) and their properties (including Theorem 2.2) can
be generalized straightforwardly to the case when λ is a skew partition
instead of a partition (resp. λ is a sequence of skew partitions instead of
a sequence of partitions). The proofs apply equally well to this generaliza-
tion.

• page 6: “Alorithm 1”→ “Algorithm 1”.

• page 6, Algorithm 2: The description of this algorithm is slightly incor-
rect1. However, I think the algorithm can also be made somewhat clearer
by rewriting its definition as follows:

Algorithm 2 (redefined): In the following, when we write “i” or “i + 1” with-
out a bar over it, we will always mean an unbarred i or an unbarred i + 1,
respectively. (Barred i’s and (i + 1)’s will always be written with a bar
overhead.)

Let l be the number of i’s and r the number of i + 1’s that S contains.

– If l = r: Do not change S.

– If l < r: We classify the entries of S into “dead” and “alive” ones, as
follows:

* We classify all i’s and i’s in S as dead.

* We classify the l rightmost (i + 1)’s of S as dead.

* We also classify as dead any i + 1 that has at most l many (i + 1)’s
to its right (in S).

1To wit: In the “l < r” case, if l = 0, then you define R = S, and later swap each i with the
i immediately to its right. But this might be impossible, since there might be an i at the
rightmost end of R = S. In order to correct for this, R should not be defined by R = S, but
rather defined to be the part of S that ends with the rightmost unbarred i + 1 in S. A similar
correction is necessary in the “l > r” case.

1

https://doi.org/10.37236/808


Errata to “Products of Factorial Schur Functions” June 27, 2021

* The remaining entries of S (all of them (i + 1)’s and i + 1’s) are
classified as alive.

Here is an example: If

S = i i i i i + 1 i + 1 i + 1 i + 1 i + 1 i + 1 i + 1 i + 1

(so that l = 2 and r = 4), then the leftmost four and the rightmost five
entries of S are dead while the remaining three entries in the middle
are alive.

We notice that the alive entries of S form a contiguous string, sand-
wiched between the dead i’s and i’s to their left and the dead (i + 1)’s
and i + 1’s to their right (because all i’s and i’s in S are dead, and
because any entry of S to the right of a dead i + 1 or a dead i + 1 is
dead). We denote this string of alive entries by R. Note that it con-
sists entirely of (i + 1)’s and i + 1’s, and contains exactly r − l many
(i + 1)’s (since there are r many (i + 1)’s in S, and exactly l of them
are dead). Moreover, this string R must end with an i + 1 (not an
i + 1), because our definition of “dead” ensures that no i + 1 can be
alive unless there is an alive i + 1 somewhere to its right. So the string
R consists of a bunch of (i + 1)’s and i + 1’s, ending with an i + 1.

Now, we modify R by changing all (i + 1)’s into i’s, and changing all
i + 1’s into i’s. As a consequence, R now consists of a bunch of i’s and
i’s, ending with an i.

Next, we rotate R cyclically to the right (by one step), so that its last
entry becomes its first. Thus, R now consists of a bunch of i’s and i’s
and begins with an i (since it used to end with an i before the cyclic
rotation).

This ends the description of the algorithm in the case when l < r.
None of the dead entries are changed.

– If l > r: We classify the entries of S into “dead” and “alive” ones, as
follows:

* We classify all (i + 1)’s and i + 1’s in S as dead.

* We classify the r leftmost i’s of S as dead.

* We also classify as dead any i that has at most r many i’s to its
left (in S).

* The remaining entries of S (all of them i’s and i’s) are classified as
alive.

Here is an example: If

S = i i i i i i i i + 1 i + 1 i + 1 i + 1 i + 1

2



Errata to “Products of Factorial Schur Functions” June 27, 2021

(so that l = 4 and r = 2), then the leftmost four and the rightmost five
entries of S are dead while the remaining three entries in the middle
are alive.

We notice that the alive entries of S form a contiguous string, sand-
wiched between the dead i’s and i’s to their left and the dead (i + 1)’s
and i + 1’s to their right (because all (i + 1)’s and i + 1’s in S are dead,
and because any entry of S to the left of a dead i or a dead i is dead).
We denote this string of alive entries by R. Note that it consists en-
tirely of i’s and i’s, and contains exactly l− r many i’s (since there are
l many i’s in S, and exactly r of them are dead). Moreover, this string
R must begin with an i (not an i), because our definition of “dead”
ensures that no i can be alive unless there is an alive i somewhere to
its left. So the string R consists of a bunch of i’s and i’s, beginning
with an i.

Now, we modify R by changing all i’s into (i + 1)’s, and changing
all i’s into i + 1’s. As a consequence, R now consists of a bunch of
(i + 1)’s and i + 1’s, beginning with an i + 1.

Next, we rotate R cyclically to the left (by one step), so that its first en-
try becomes its last entry. Thus, R now consists of a bunch of (i + 1)’s
and i + 1’s and ends with an i + 1 (since it used to begin with an i + 1
before the cyclic rotation).

This ends the description of the algorithm in the case when l > r.
None of the dead entries are changed.

It is rather easy to see that this algorithm undoes itself when it is applied
twice in succession. Here is why: First of all, when we apply the algorithm
to a string S satisfying l < r, the resulting string has r many i’s and l
many (i + 1)’s (because the r − l many alive (i + 1)’s have been replaced
by r − l many i’s), so that the numbers l and r play the roles of r and
l in the resulting string. The same holds if we apply the algorithm to a
string S satisfying l > r. Furthermore, if we apply the algorithm to a
string S satisfying l < r or l > r, then the dead entries stay dead2, and
the alive entries stay alive (or, to be more precise, even though the alive
entries themselves are changed, the new entries at their positions are again
alive)3. Thus, if we apply the algorithm to a string S satisfying l < r, and

2This is easy to check.
3Proof. Let S be a string satisfying l < r. If a position is occupied by an alive entry in S, then it

belongs to the substring R. After we apply the algorithm to S, this substring R consists of a
bunch of i’s and i’s and begins with an i. Thus, after we apply the algorithm to S, any entry
of R is an i or an i that has more than r many i’s weakly left of it (because R begins with an
i). Thus, any such entry is alive in the resulting string (keeping in mind that l and r have
traded places, so the meanings of “dead” and “alive” are now defined according to the “If
l > r” case of the algorithm). So we have shown that any position that contains an alive entry
before the algorithm still contains an alive entry after the algorithm, provided that l < r. An

3



Errata to “Products of Factorial Schur Functions” June 27, 2021

then apply the algorithm again to the the resulting string S′, we recover
the original string S (because the changes that the algorithm does in the
“If l > r” case revert the changes that the algorithm does in the “If l < r”
case). A similar argument applies to the case when l > r; finally, the case
when l = r is obvious (since the algorithm makes no changes at all in this
case). Thus, the algorithm always recovers the original string when applied
twice in succession.

• page 6: “simple transposition of Sn”→ “simple transposition of {1, 2, . . . , n}”
(or “simple transposition in Sn”).

• page 7, proof of Lemma 3.1: “σ is an involution on Bλ” → “σ : Bλ → Bλ

is a bijection (being a composition of involutions)”.

• page 8, proof of Lemma 3.2: It is not “clear” that T∗ ∈ Bλ; rather, a slightly
nontrivial argument is required for this. Here is how I would prove that
T∗ ∈ Bλ:

If (u, v) is any box of λ, then T (u, v) shall denote the entry of T in this box
(u, v). Likewise, T∗ (u, v) shall denote the corresponding entry of T∗.

Both (T∗)<j and (T∗)≥j are barred skew tableaux (since (T∗)<j = si
(
T<j

)
and (T∗)≥j = T≥j). Thus, the entries of T∗ strictly increase along any col-
umn from top to bottom, and furthermore weakly increase along any row
from left to right except maybe between the (j− 1)-st and j-th columns. It
thus remains only to show that the entries of T∗ also weakly increase along
any row from the (j− 1)-st to the j-th column (provided, of course, that
the row does have entries in both of these columns). In other words, we
must prove that T∗ (p, j− 1) ≤ T∗ (p, j) for any p for which both (p, j) and
(p, j− 1) are boxes of λ.

So let us prove this. Fix a p such that both (p, j) and (p, j− 1) are boxes of
λ. We must prove that T∗ (p, j− 1) ≤ T∗ (p, j). Assume the contrary; thus,
T∗ (p, j− 1) > T∗ (p, j). However, the entries of T weakly increase along
any row from left to right (since T ∈ Bλ); hence, T (p, j− 1) ≤ T (p, j).
Furthermore, T∗ (p, j) = T (p, j) (since (T∗)≥j = T≥j). Thus,

T∗ (p, j− 1) > T∗ (p, j) = T (p, j) ≥ T (p, j− 1)

(since T (p, j− 1) ≤ T (p, j)). This means that the entry of T in box (p, j− 1)
increases (strictly) when T is replaced by T∗. In other words, the entry of
T<j in box (p, j− 1) increases (strictly) when si is applied to T<j (because
T∗ is obtained from T by applying si to T<j). Due to the definition of si,
this entails that this entry is an i or an i (since the only entries that can
change under si are i’s, i’s, (i + 1)’s and i + 1’s, and among these entries

analogous argument applies in the case l > r.

4



Errata to “Products of Factorial Schur Functions” June 27, 2021

only i’s and i’s can increase), and must become an i + 1 or an i + 1 when si
is applied to T<j (since this is the only way it can increase). In other words,
we have

T (p, j− 1) ∈
{

i, i
}

and T∗ (p, j− 1) ∈
{

i + 1, i + 1
}

.

From T (p, j) ≥ T (p, j− 1) ∈
{

i, i
}

, we obtain T (p, j) ≥ i. From T (p, j) =
T∗ (p, j) < T∗ (p, j− 1) ∈

{
i + 1, i + 1

}
, we obtain T (p, j) ≤ i. Hence,

T (p, j) is either i or i (since we also have T (p, j) ≥ i). That is, column j of
T has an i or an i in box (p, j).

However, recall that column j of T must have an unbarred i + 1. Since
we already know that this column has an i or an i in box (p, j), we thus
conclude that this unbarred i + 1 must be located immediately below this
box (p, j) (since the entries of T strictly increase along any column from
top to bottom). In other words, this unbarred i + 1 must be located in box
(p + 1, j). That is, we have T (p + 1, j) = i + 1. From (T∗)≥j = T≥j, we
obtain T∗ (p + 1, j) = T (p + 1, j) = i + 1.

In particular, both (p + 1, j) and (p, j− 1) are boxes of T∗. Hence, (p + 1, j− 1)
must be a box of T∗ as well (since the shape of T∗ is a skew diagram). The
entry of T∗ in this box must satisfy T∗ (p + 1, j− 1) > T∗ (p, j− 1) (since
the entries of T∗ strictly increase along any column from top to bottom). In
view of T∗ (p, j− 1) ∈

{
i + 1, i + 1

}
, this becomes T∗ (p + 1, j− 1) > i + 1.

In other words, i + 1 < T∗ (p + 1, j− 1).

However, since the entries of T weakly increase along any row from left to
right, we have T (p + 1, j− 1) ≤ T (p + 1, j). In other words, T (p + 1, j− 1) ≤
i+ 1 (since T (p + 1, j) = i+ 1). Thus, T (p + 1, j− 1) ≤ i+ 1 < T∗ (p + 1, j− 1).
This means that the entry of T in box (p + 1, j− 1) increases (strictly) when
T is replaced by T∗. In other words, the entry of T<j in box (p + 1, j− 1)
increases (strictly) when si is applied to T<j (because T∗ is obtained from T
by applying si to T<j). Due to the definition of si, this entails that this entry
is an i or an i (since the only entries that can change under si are i’s, i’s,
(i + 1)’s and i + 1’s, and among these entries only i’s and i’s can increase),
and must become an i + 1 or an i + 1 when si is applied to T<j (since this
is the only way it can increase). In other words, we have

T (p + 1, j− 1) ∈
{

i, i
}

and T∗ (p + 1, j− 1) ∈
{

i + 1, i + 1
}

.

Of course, T∗ (p + 1, j− 1) ∈
{

i + 1, i + 1
}

contradicts T∗ (p + 1, j− 1) >
i + 1. This contradiction shows that our assumption was false. Hence, we
have proved that T∗ (p, j− 1) ≤ T∗ (p, j) for any p for which both (p, j) and
(p, j− 1) are boxes of λ; this completes our proof of the claim that T∗ ∈ Bλ.

• page 8, proof of Lemma 3.2: Starting with “By Lemma 3.6(ii)” and until
the end of the proof of Lemma 3.2, replace every “si” by “σi”.

5



Errata to “Products of Factorial Schur Functions” June 27, 2021

• page 9, first line: “equal to λ′1, the number of columns of λ” → “equal to
λ1, the number of columns of λ”.

• page 9, Proposition 4.1: It should be said that (−y)p means the tuple(
−y1,−y2, . . . ,−yp

)
.

• page 9, Proposition 4.1: I think the “(−y)(µi+n+1−i)” in part (ii) should be
“(−y)(µj+n+1−j)”. (At least this is what your proof yields. Maybe the other
version is also correct?)

• page 9, proof of Proposition 4.1: When you write “(i) is proven in Mac-
donald [Ma2]”, it’s worth being more precise: Your Proposition 4.1 (i) is
the equality [Ma2, (6.18)], with the caveat that the “

(
λj + n− j

)
” in [Ma2,

(6.18)] should be “(λi + n− i)” (the source of the error is in the computa-
tion several lines above, where both “βk − αj”s should be “αj − βk”s), and
that the definition of sλ (x | a) in [Ma2] is not identical with the defini-
tion in your paper (but the two definitions are equivalent because of [Ma2,
(6.16)]).

• page 9, proof of Proposition 4.1: In “Define Pn,m = {ν ∈ Pn | ν′1 ≤ m}”,
replace “ν′1” by “ν1”.

• page 9, proof of Proposition 4.1: Replace “cµ
λ,n = (∧n A)Iλ,Iµ

” by “cµ
λ,n (y) =

(∧n A)Iλ,Iµ
”.

6


