Products of Factorial Schur Functions

Victor Kreiman

published version, The Electronic Journal of Combinatorics **15** (2008), #R84 **Errata and addenda by Darij Grinberg**

The following corrections cover the first 9 pages of the paper.

- **page 1:** It is worth saying that \mathbb{N} means the set $\{0,1,2,\ldots\}$ in this paper (not $\{1,2,3,\ldots\}$ as in some other parts of the literature).
- page 1: "Biedenbarn" → "Biedenharn".
- pages 1–8: Both the definition of factorial Schur functions $s_{\lambda}(x \mid y)$ (and their products $s_{\lambda}(x \mid y)$) and their properties (including Theorem 2.2) can be generalized straightforwardly to the case when λ is a skew partition instead of a partition (resp. λ is a sequence of skew partitions instead of a sequence of partitions). The proofs apply equally well to this generalization.
- page 6: "Alorithm 1" \rightarrow "Algorithm 1".
- page 6, Algorithm 2: The description of this algorithm is slightly incorrect¹. However, I think the algorithm can also be made somewhat clearer by rewriting its definition as follows:

Algorithm 2 (redefined): In the following, when we write "i" or "i+1" without a bar over it, we will always mean an unbarred i or an unbarred i+1, respectively. (Barred i's and (i+1)'s will always be written with a bar overhead.)

Let *l* be the number of *i*'s and *r* the number of i + 1's that *S* contains.

- If l = r: Do not change S.
- If l < r: We classify the entries of S into "dead" and "alive" ones, as follows:
 - * We classify all i's and \bar{i} 's in S as dead.
 - * We classify the l rightmost (i + 1)'s of S as dead.
 - * We also classify as dead any $\overline{i+1}$ that has at most l many (i+1)'s to its right (in S).

¹To wit: In the "l < r" case, if l = 0, then you define R = S, and later swap each \bar{i} with the i immediately to its right. But this might be impossible, since there might be an \bar{i} at the rightmost end of R = S. In order to correct for this, R should not be defined by R = S, but rather defined to be the part of S that ends with the rightmost unbarred i + 1 in S. A similar correction is necessary in the "l > r" case.

* The remaining entries of S (all of them (i+1)'s and $\overline{i+1}$'s) are classified as alive.

Here is an example: If

(so that l = 2 and r = 4), then the leftmost four and the rightmost five entries of S are dead while the remaining three entries in the middle are alive.

We notice that the alive entries of S form a contiguous string, sandwiched between the dead i's and \overline{i} 's to their left and the dead (i+1)'s and $\overline{i+1}$'s to their right (because all i's and \overline{i} 's in S are dead, and because any entry of S to the right of a dead i+1 or a dead $\overline{i+1}$ is dead). We denote this string of alive entries by R. Note that it consists entirely of (i+1)'s and $\overline{i+1}$'s, and contains exactly r-l many (i+1)'s (since there are r many (i+1)'s in S, and exactly l of them are dead). Moreover, this string R must end with an i+1 (not an $\overline{i+1}$), because our definition of "dead" ensures that no $\overline{i+1}$ can be alive unless there is an alive i+1 somewhere to its right. So the string R consists of a bunch of (i+1)'s and $\overline{i+1}$'s, ending with an i+1.

Now, we modify R by changing all (i + 1)'s into i's, and changing all $\overline{i+1}$'s into \overline{i} 's. As a consequence, R now consists of a bunch of i's and \overline{i} 's, ending with an i.

Next, we rotate R cyclically to the right (by one step), so that its last entry becomes its first. Thus, R now consists of a bunch of i's and \bar{i} 's and begins with an i (since it used to end with an i before the cyclic rotation).

This ends the description of the algorithm in the case when l < r. None of the dead entries are changed.

- If l > r: We classify the entries of S into "dead" and "alive" ones, as follows:
 - * We classify all (i+1)'s and $\overline{i+1}$'s in S as dead.
 - * We classify the r leftmost i's of S as dead.
 - * We also classify as dead any \bar{i} that has at most r many i's to its left (in S).
 - * The remaining entries of *S* (all of them i's and \bar{i} 's) are classified as alive.

Here is an example: If

(so that l = 4 and r = 2), then the leftmost four and the rightmost five entries of S are dead while the remaining three entries in the middle are alive.

We notice that the alive entries of S form a contiguous string, sandwiched between the dead i's and \bar{i} 's to their left and the dead (i+1)'s and $\bar{i}+1$'s to their right (because all (i+1)'s and $\bar{i}+1$'s in S are dead, and because any entry of S to the left of a dead i or a dead \bar{i} is dead). We denote this string of alive entries by R. Note that it consists entirely of i's and \bar{i} 's, and contains exactly l-r many i's (since there are l many i's in S, and exactly r of them are dead). Moreover, this string R must begin with an i (not an \bar{i}), because our definition of "dead" ensures that no \bar{i} can be alive unless there is an alive i somewhere to its left. So the string R consists of a bunch of i's and \bar{i} 's, beginning with an i.

Now, we modify R by changing all i's into (i+1)'s, and changing all \bar{i} 's into $\bar{i+1}$'s. As a consequence, R now consists of a bunch of (i+1)'s and $\bar{i+1}$'s, beginning with an i+1.

Next, we rotate R cyclically to the left (by one step), so that its first entry becomes its last entry. Thus, R now consists of a bunch of (i + 1)'s and $\overline{i + 1}$'s and ends with an i + 1 (since it used to begin with an i + 1 before the cyclic rotation).

This ends the description of the algorithm in the case when l > r. None of the dead entries are changed.

It is rather easy to see that this algorithm undoes itself when it is applied twice in succession. Here is why: First of all, when we apply the algorithm to a string S satisfying l < r, the resulting string has r many i's and l many (i+1)'s (because the r-l many alive (i+1)'s have been replaced by r-l many i's), so that the numbers l and r play the roles of r and l in the resulting string. The same holds if we apply the algorithm to a string S satisfying l > r. Furthermore, if we apply the algorithm to a string S satisfying l < r or l > r, then the dead entries stay dead², and the alive entries stay alive (or, to be more precise, even though the alive entries themselves are changed, the new entries at their positions are again alive)³. Thus, if we apply the algorithm to a string S satisfying l < r, and

²This is easy to check.

³*Proof.* Let \dot{S} be a string satisfying l < r. If a position is occupied by an alive entry in S, then it belongs to the substring R. After we apply the algorithm to S, this substring R consists of a bunch of i's and \bar{i} 's and begins with an i. Thus, after we apply the algorithm to S, any entry of R is an i or an \bar{i} that has more than r many i's weakly left of it (because R begins with an i). Thus, any such entry is alive in the resulting string (keeping in mind that l and r have traded places, so the meanings of "dead" and "alive" are now defined according to the "If l > r" case of the algorithm). So we have shown that any position that contains an alive entry before the algorithm still contains an alive entry after the algorithm, provided that l < r. An

then apply the algorithm again to the the resulting string S', we recover the original string S (because the changes that the algorithm does in the "If l > r" case revert the changes that the algorithm does in the "If l < r" case). A similar argument applies to the case when l > r; finally, the case when l = r is obvious (since the algorithm makes no changes at all in this case). Thus, the algorithm always recovers the original string when applied twice in succession.

- **page 6:** "simple transposition of S_n " \to "simple transposition of $\{1, 2, ..., n\}$ " (or "simple transposition in S_n ").
- page 7, proof of Lemma 3.1: " σ is an involution on \mathcal{B}_{λ} " \to " σ : $\mathcal{B}_{\lambda} \to \mathcal{B}_{\lambda}$ is a bijection (being a composition of involutions)".
- page 8, proof of Lemma 3.2: It is not "clear" that $T^* \in \mathcal{B}_{\lambda}$; rather, a slightly nontrivial argument is required for this. Here is how I would prove that $T^* \in \mathcal{B}_{\lambda}$:

If (u, v) is any box of λ , then T(u, v) shall denote the entry of T in this box (u, v). Likewise, $T^*(u, v)$ shall denote the corresponding entry of T^* .

Both $(T^*)_{< j}$ and $(T^*)_{\ge j}$ are barred skew tableaux (since $(T^*)_{< j} = s_i (T_{< j})$ and $(T^*)_{\ge j} = T_{\ge j}$). Thus, the entries of T^* strictly increase along any column from top to bottom, and furthermore weakly increase along any row from left to right except maybe between the (j-1)-st and j-th columns. It thus remains only to show that the entries of T^* also weakly increase along any row from the (j-1)-st to the j-th column (provided, of course, that the row does have entries in both of these columns). In other words, we must prove that $T^*(p,j-1) \le T^*(p,j)$ for any p for which both (p,j) and (p,j-1) are boxes of λ .

So let us prove this. Fix a p such that both (p,j) and (p,j-1) are boxes of λ . We must prove that $T^*(p,j-1) \leq T^*(p,j)$. Assume the contrary; thus, $T^*(p,j-1) > T^*(p,j)$. However, the entries of T weakly increase along any row from left to right (since $T \in \mathcal{B}_{\lambda}$); hence, $T(p,j-1) \leq T(p,j)$. Furthermore, $T^*(p,j) = T(p,j)$ (since $(T^*)_{>j} = T_{\geq j}$). Thus,

$$T^*(p, j-1) > T^*(p, j) = T(p, j) \ge T(p, j-1)$$

(since $T(p,j-1) \leq T(p,j)$). This means that the entry of T in box (p,j-1) increases (strictly) when T is replaced by T^* . In other words, the entry of $T_{< j}$ in box (p,j-1) increases (strictly) when s_i is applied to $T_{< j}$ (because T^* is obtained from T by applying s_i to $T_{< j}$). Due to the definition of s_i , this entails that this entry is an i or an \overline{i} (since the only entries that can change under s_i are i's, \overline{i} 's, (i+1)'s and $\overline{i+1}$'s, and among these entries

analogous argument applies in the case l > r.

only i's and \bar{i} 's can increase), and must become an i+1 or an $\bar{i}+1$ when s_i is applied to $T_{< j}$ (since this is the only way it can increase). In other words, we have

$$T(p,j-1) \in \{i,\overline{i}\}$$
 and $T^*(p,j-1) \in \{i+1,\overline{i+1}\}.$

From $T(p,j) \ge T(p,j-1) \in \{i,\bar{i}\}$, we obtain $T(p,j) \ge i$. From $T(p,j) = T^*(p,j) < T^*(p,j-1) \in \{i+1,\overline{i+1}\}$, we obtain $T(p,j) \le i$. Hence, T(p,j) is either i or \bar{i} (since we also have $T(p,j) \ge i$). That is, column j of T has an i or an \bar{i} in box (p,j).

However, recall that column j of T must have an unbarred i+1. Since we already know that this column has an i or an \overline{i} in box (p,j), we thus conclude that this unbarred i+1 must be located immediately below this box (p,j) (since the entries of T strictly increase along any column from top to bottom). In other words, this unbarred i+1 must be located in box (p+1,j). That is, we have T(p+1,j)=i+1. From $(T^*)_{\geq j}=T_{\geq j}$, we obtain $T^*(p+1,j)=T(p+1,j)=i+1$.

In particular, both (p+1,j) and (p,j-1) are boxes of T^* . Hence, (p+1,j-1) must be a box of T^* as well (since the shape of T^* is a skew diagram). The entry of T^* in this box must satisfy T^* $(p+1,j-1) > T^*$ (p,j-1) (since the entries of T^* strictly increase along any column from top to bottom). In view of T^* $(p,j-1) \in \{i+1,\overline{i+1}\}$, this becomes T^* (p+1,j-1) > i+1. In other words, $i+1 < T^*$ (p+1,j-1).

However, since the entries of T weakly increase along any row from left to right, we have $T(p+1,j-1) \leq T(p+1,j)$. In other words, $T(p+1,j-1) \leq i+1$ (since T(p+1,j)=i+1). Thus, $T(p+1,j-1) \leq i+1 < T^*(p+1,j-1)$. This means that the entry of T in box (p+1,j-1) increases (strictly) when T is replaced by T^* . In other words, the entry of $T_{< j}$ in box (p+1,j-1) increases (strictly) when s_i is applied to $T_{< j}$ (because T^* is obtained from T by applying s_i to $T_{< j}$). Due to the definition of s_i , this entails that this entry is an i or an i (since the only entries that can change under t are t (since this is the only way it can increase). In other words, we have

$$T(p+1,j-1) \in \{i,\overline{i}\}\$$
 and $T^*(p+1,j-1) \in \{i+1,\overline{i+1}\}.$

Of course, $T^*(p+1,j-1) \in \{i+1,\overline{i+1}\}$ contradicts $T^*(p+1,j-1) > i+1$. This contradiction shows that our assumption was false. Hence, we have proved that $T^*(p,j-1) \leq T^*(p,j)$ for any p for which both (p,j) and (p,j-1) are boxes of λ ; this completes our proof of the claim that $T^* \in \mathcal{B}_{\lambda}$.

• **page 8, proof of Lemma 3.2:** Starting with "By Lemma 3.6(ii)" and until the end of the proof of Lemma 3.2, replace every " s_i " by " σ_i ".

- **page 9, first line:** "equal to λ'_1 , the number of columns of $\lambda'' \to$ "equal to λ_1 , the number of columns of λ'' .
- page 9, Proposition 4.1: It should be said that $(-y)_p$ means the tuple $(-y_1, -y_2, \ldots, -y_p)$.
- **page 9, Proposition 4.1:** I think the " $(-y)_{(\mu_i+n+1-i)}$ " in part (ii) should be " $(-y)_{(\mu_j+n+1-j)}$ ". (At least this is what your proof yields. Maybe the other version is also correct?)
- **page 9, proof of Proposition 4.1:** When you write "(i) is proven in Macdonald [Ma2]", it's worth being more precise: Your Proposition 4.1 (i) is the equality [Ma2, (6.18)], with the caveat that the " $(\lambda_j + n j)$ " in [Ma2, (6.18)] should be " $(\lambda_i + n i)$ " (the source of the error is in the computation several lines above, where both " $\beta_k \alpha_j$ "s should be " $\alpha_j \beta_k$ "s), and that the definition of s_λ ($x \mid a$) in [Ma2] is not identical with the definition in your paper (but the two definitions are equivalent because of [Ma2, (6.16)]).
- page 9, proof of Proposition 4.1: In "Define $\mathcal{P}_{n,m} = \{ \nu \in \mathcal{P}_n \mid \nu_1' \leq m \}$ ", replace " ν_1' " by " ν_1 ".
- page 9, proof of Proposition 4.1: Replace " $c_{\lambda,n}^{\mu} = (\wedge^n A)_{I_{\lambda},I_{\mu}}$ " by " $c_{\lambda,n}^{\mu}(y) = (\wedge^n A)_{I_{\lambda},I_{\mu}}$ ".