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1. The Cauchy matrix

Let x1, x2, . . . , xn be n numbers, and y1, y2, . . . , yn be n further numbers chosen such
that all n2 pairwise sums xi + yj are nonzero1. Consider the n × n-matrix

C :=

(
1

xi + yj

)
1≤i≤n, 1≤j≤n

=



1
x1 + y1

1
x1 + y2

· · · 1
x1 + yn

1
x2 + y1

1
x2 + y2

· · · 1
x2 + yn

...
... . . . ...

1
xn + y1

1
xn + y2

· · · 1
xn + yn


.

This matrix C is known as the Cauchy matrix, and has been studied for 180 years2.
The first significant result was the formula for its determinant:

det C =

∏
1≤i<j≤n

((
xi − xj

) (
yi − yj

))
∏

(i,j)∈{1,2,...,n}2

(
xi + yj

) (1)

*Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA
1Algebraists can replace the words “number” and “nonzero” by “element of a commutative ring”

and “invertible”, respectively. This generalization comes for free; we will not use anything
specific to any kind of numbers in our proofs.

2Many authors define it to have entries
1

xi − yj
instead of

1
xi + yj

. This boils down to replacing

y1, y2, . . . , yn by −y1,−y2, . . . ,−yn.
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found by Cauchy in 1841 [1] (see, e.g., [11, §1.3] or [2, Exercise 6.18 or Exercise
6.64] for modern proofs). Newer research focuses, e.g., on the LU decomposition
[5], positivity properties [4], or generalizations [7]. See [6] for more on the history
of the topic and for its connections to Lagrange interpolation (and for another proof
of (1)). Applications range from the theoretical (an equivalent version [3, Lemma
5.15.3] of (1) is used in the classical representation theory of symmetric groups) to
the practical (computing the inverse C−1 is a notoriously ill-conditioned problem
that is used as a canary for numerical instability [13]).

2. The sum of the entries of the inverse

The following curious result appears to be known since at least the 1940s:

Theorem 2.1. Assume that the matrix C is invertible. Then, the sum of all entries

of its inverse C−1 is
n
∑

k=1
xk +

n
∑

k=1
yk.

A natural, yet laborious approach to proving this theorem is to compute the
entries of C−1 using (1), and then to add them up. The resulting sum can be seen

(by a tricky induction) to simplify to
n
∑

k=1
xk +

n
∑

k=1
yk. Some details of this proof can

be found in [8, §1.2.3, Exercise 44]. The proof given in [12, (13)] is simpler, avoiding
the use of (1) but relying on Lagrange interpolation theory instead.

We propose a new proof of Theorem 2.1, which reflects the simplicity of the
theorem. We let Ai,j denote the (i, j)-th entry of any matrix A. The following
simple lemma gets us half the way:

Lemma 2.2. Let A be an n × m-matrix, and let B be an m × n-matrix. Then,

n

∑
i=1

m

∑
j=1

(
xi + yj

)
Ai,jBj,i =

n

∑
i=1

xi (AB)i,i +
m

∑
j=1

yj (BA)j,j .
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Proof of Lemma 2.2. We have

n

∑
i=1

m

∑
j=1

(
xi + yj

)
Ai,jBj,i =

n

∑
i=1

m

∑
j=1

xi Ai,jBj,i +
n

∑
i=1

m

∑
j=1︸ ︷︷ ︸

=
m
∑

j=1

n
∑

i=1

yj Ai,jBj,i︸ ︷︷ ︸
=Bj,i Ai,j

=
n

∑
i=1

m

∑
j=1

xi Ai,jBj,i +
m

∑
j=1

n

∑
i=1

yjBj,i Ai,j

=
n

∑
i=1

xi

m

∑
j=1

Ai,jBj,i︸ ︷︷ ︸
=(AB)i,i

(by the definition of
the matrix product)

+
m

∑
j=1

yj

n

∑
i=1

Bj,i Ai,j︸ ︷︷ ︸
=(BA)j,j

(by the definition of
the matrix product)

=
n

∑
i=1

xi (AB)i,i +
m

∑
j=1

yj (BA)j,j .

Proof of Theorem 2.1. Applying Lemma 2.2 to m = n, A = C and B = C−1, we obtain

n

∑
i=1

n

∑
j=1

(
xi + yj

)
Ci,j

(
C−1

)
j,i
=

n

∑
i=1

xi

(
CC−1

)
i,i︸ ︷︷ ︸

=1
(since CC−1 is the

identity matrix)

+
n

∑
j=1

yj

(
C−1C

)
j,j︸ ︷︷ ︸

=1
(since C−1C is the

identity matrix)

=
n

∑
i=1

xi +
n

∑
j=1

yj =
n

∑
k=1

xk +
n

∑
k=1

yk.

However, the factor
(
xi + yj

)
Ci,j on the left hand side of this equality simplifies to

1 (since the definition of C yields Ci,j =
1

xi + yj
). Thus, the left hand side of this

equality is
n
∑

i=1

n
∑

j=1

(
xi + yj

)
Ci,j︸ ︷︷ ︸

=1

(
C−1)

j,i =
n
∑

i=1

n
∑

j=1

(
C−1)

j,i, which is clearly the sum

of all entries of C−1. We have thus shown that the sum of all entries of C−1 is
n
∑

k=1
xk +

n
∑

k=1
yk. This proves Theorem 2.1.

3. Variants

Theorem 2.1 was stated under the assumption that C be invertible. Using (1), it
is easy to see that this assumption is equivalent to requiring that x1, x2, . . . , xn be
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distinct and that y1, y2, . . . , yn be distinct3. It is not hard to relieve Theorem 2.1
of this assumption: Just replace the inverse C−1 (which no longer exists) by the
adjugate4 adj C of the matrix C. The resulting theorem is as follows:

Theorem 3.1. The sum of all entries of the adjugate matrix adj C is(
n
∑

k=1
xk +

n
∑

k=1
yk

)
det C.

Proof. Similar to our above proof of Theorem 2.1.5 Use the classical result that
C · adj C = adj C · C = det C · In (where In denotes the n × n identity matrix).

Theorem 3.1 can be transformed even further:

Theorem 3.2. Let D be the (n + 1)× (n + 1)-matrix obtained from C by inserting
a row full of 1’s at the very bottom and a column full of 1’s at the very right, and
putting 0 in the bottom-right corner:

D =



1
x1 + y1

1
x1 + y2

· · · 1
x1 + yn

1

1
x2 + y1

1
x2 + y2

· · · 1
x2 + yn

1

...
... . . . ...

...
1

xn + y1

1
xn + y2

· · · 1
xn + yn

1

1 1 · · · 1 0


.

Then,

det D = −
(

n

∑
k=1

xk +
n

∑
k=1

yk

)
· det C.

Proof sketch. This follows from Theorem 3.1 using the following more general fact:
If A is any n × n-matrix, and if B is the (n + 1)× (n + 1)-matrix obtained from A
in the same way as D was obtained from C (that is, by inserting a row full of 1’s
at the very bottom and a column full of 1’s at the very right, and putting 0 in the
bottom-right corner), then

det B = −s,
3Algebraists working over an arbitrary commutative ring should read “distinct” as “strongly dis-

tinct” (where two elements a, b of a ring are said to be strongly distinct if their difference a − b is
invertible).

4The adjugate adj A of an n × n-matrix A is the n × n-matrix whose (i, j)-th entry is
(−1)i+j det

(
A∼j,∼i

)
, where A∼j,∼i is the result of removing the j-th row and the i-th column

from A. Older texts often refer to the adjugate as the “classical adjoint” (or just as the “adjoint”,
which however has another meaning as well).

5I wrote up this proof in much more detail in [2, solution to Exercise 6.69 (a)].
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where s is the sum of all entries of adj A. This fact, in turn, can be proved by Laplace
expansion of det B along the last row (followed by expanding each cofactor along
the last column). We refer to [2, solution to Exercise 6.69 (c)] for all details.

Theorem 3.2 appears in [9, Chapter XI, Exercise 43]; we know nothing more
about its origins.

4. Two little exercises

For all its aid in our proof, it appears that Lemma 2.2 is a one-trick pony: We are
unaware of any other interesting results whose proofs it simplifies. The sum of
all entries of a matrix is not generally a particularly well-behaved quantity (unlike
the sum of its diagonal entries, which is known as the trace and has many good
properties). However, some experimentation has led us to a surprising (if not very
deep) twin to Theorem 2.1.

We assume that x1, x2, . . . , xn and y1, y2, . . . , yn are real numbers (and that n ≥ 1).
Consider the n × n-matrix

F :=
(
min

{
xi, yj

})
1≤i≤n, 1≤j≤n =


min {x1, y1} min {x1, y2} · · · min {x1, yn}
min {x2, y1} min {x2, y2} · · · min {x2, yn}

...
... . . . ...

min {xn, y1} min {xn, y2} · · · min {xn, yn}

 .

Thus, F is obtained from C by replacing the “inverted sums”
1

xi + yj
by the minima

min
{

xi, yj
} 6. It would almost be too much to ask for F−1 to have properties

comparable to those of C−1. But in fact, it behaves even better:

Proposition 4.1. Assume that F is invertible. Then:

(a) The sum of all entries of F−1 is
1

min {x1, x2, . . . , xn, y1, y2, . . . , yn}
.

(b) Assume that x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn and x1 ≤ y1.
Then, for each j ∈ {1, 2, . . . , n}, the sum of all entries in the j-th column of

F−1 is
1
x1

if j = 1, and is 0 if j > 1.

6This can be seen as an instance of tropicalization (see, e.g., [10]). More precisely, tropicalization

(the sort that replaces + and · by max and +) would replace
1

xi + yj
by −max

{
xi, yj

}
; but this

turns into min
{

xi, yj
}

if we multiply all our numbers x1, x2, . . . , xn, y1, y2, . . . , yn by −1.

September 15, 2022



The entry sum of the inverse Cauchy matrix page 6

The proof of this proposition is another neat exercise in working with inverse
matrices – one we do not want to spoil for the reader. As with C, computing the
determinant is not necessary. However, it is computable, and the result is another
nice exercise:

Proposition 4.2. Assume that x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn. For
any i, j ∈ {1, 2, . . . , n}, set fi,j := min

{
xi, yj

}
. Then,

det F = f1,1 ·
n

∏
k=2

( fk,k − fk,k−1 − fk−1,k + fk−1,k+1) . (2)

Note that the product on the right hand side of (2) will often be 0 if the xi and
the yj’s are ordered in an “insufficiently balanced” way (e.g., if there are more than
two yj’s between two consecutive xi’s). We leave it to the reader to establish more
precise criteria for det F to be 0.
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