
Errata to “Polynomial representations of GLn” February 24, 2025

Polynomial Representations of GLn
J. A. Green

2nd edition, Springer 2007
Errata and addenda by Darij Grinberg

14. Corrections

This is a list of corrections to “Polynomial Representations of GLn” by J. A.
Green (2nd edition 2007). Most of it concerns the Appendix on Schensted cor-
respondence and Littelmann paths by K. Erdmann, J.A. Green and M. Schocker
(freely available from SpringerLink). I have read almost everything in this Ap-
pendix up until the end of (D.7). After the list of corrections, I give an alternative
proof of the Littlewood–Richardson rule that avoids any representation theory
(see Section 15 below).

14.1. Corrections to §A

1. page 74, (A.2b): It is worth mentioning that what is called a “standard”
tableau here is often called a “semistandard” tableau in more combinatorial-
minded sources.

2. page 75, §A.3: Add “Let i = i1i2 . . . ir ∈ I (n, r) be a word.” after “we need
some preliminary definitions”.

3. page 75, (A.3a): The equality hi
c (t) = ω (i1) + · · ·+ ω (it) is actually true

for all t ∈ {0, 1, . . . , r}, including t = 0.

4. page 75, (A.3b): Again, this is actually true for all t ∈ {0, 1, . . . , r}, includ-
ing t = 0.

5. page 76, (A.3e): It is worth saying that Mi = 0 is equivalent to q = 0 (since
the least t ∈ {0, 1, . . . , r} satisfying hi

c (t) = 0 is clearly 0).

6. page 76, (A.3f): It is worth saying that Mi = hi
c (r) is equivalent to q = r

(since the greatest t ∈ {0, 1, . . . , r} satisfying hi
c (t) = hi

c (r) is clearly r).
Hence, if we don’t have Mi = hi

c (r), then we don’t have q = r, and thus
we have q < r, so that speaking of sq+1 makes sense.

7. page 76, (A.3): There is an urgent need for examples here! Here is one:

Let n = 5 and c = 2 and r = 10 and i = 4232133253. Then, the height func-
tion hi

c = hi
2 sends the numbers 0, 1, . . . , 10 to 0, 0, 1, 0, 1, 1, 0,−1, 0, 0,−1,

respectively. Hence, M = Mi
c = 1 and q = qi

c = 2 and q = qi
c = 5. Thus,

f̃c (i) = 4332133253 and
ẽc (i) = 4232133253,
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where we have underlined the unique entry of i that got changed.

Now let j = f̃c (i) = 4332133253. Then, the height function hj
c = hj

2 sends
the numbers 0, 1, . . . , 10 to 0, 0,−1,−2,−1,−1,−2,−3,−2,−2,−3, respec-
tively. Hence, M = Mj

c = 0 and q = qj
c = 0 and q = qj

c = 1. Thus,

f̃c (j) = ∞ (since Mj
c = 0) and

ẽc (j) = 4232133253 = i,

which confirms (A.3g)(5).

8. page 76, (A.3g) (6): It is worth saying that

hi|j
c (t) =

{
hi

c (t) , if t ≤ r;
hi

c (r) + hi
c (t− r) , if t ≥ r

for all t ∈ {0, 1, . . . , r + s}

(note that the case t = r is covered by both cases here), and therefore

Mi|j
c = max

{
Mi

c, hi
c (r) + Mj

c

}
and

qi|j
c =

{
qi

c, if Mi
c ≥ hi

c (r) + Mj
c;

hi
c (r) + qj

c, if Mi
c < hi

c (r) + Mj
c

and

qi|j
c =

{
qi

c, if Mi
c > hi

c (r) + Mj
c;

hi
c (r) + qj

c, if Mi
c ≤ hi

c (r) + Mj
c.

These facts are easy to verify, and are the reason why the formulas for
f̃c (i | j) and ẽc (i | j) hold.

9. page 79, Definition: Replace “ym,λm−1” by “ym−1,λm−1”.

10. page 79: “proved in §C.4”→ “proved in §C.6”.

14.2. Corrections to §B

1. page 80, §B.1: What is called a “standard” tableau here is usually called a
“semistandard” tableau in texts on combinatorics.

2. page 83, Step 1: Replace “(< x1,µ(1)+1 = ∞)” by “(< u1,µ(1)+1 = ∞)”.

3. page 83: It should be said that the notation µa is used as synonym for µ (a).

4. page 84, Definition of z: It should be explained why z ≤ n (otherwise, the
vector εz in (B.3d) is undefined; and earlier even, the k (a) in the inductive
step would be undefined if a = z + 1).
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There is an easy explanation: We WLOG assume that z > 1 (since the claim
is obvious for z = 1). Then, xz = uz−1,k(z−1) is an entry of the tableau u,
and hence belongs to n. Thus, xz ≤ n.

We have 1 ≤ x1 < x2 < · · · < xz by the definition of the xa. Thus, xa ≥ a
for each a (by induction on a). In particular, xz ≥ z, so that z ≤ xz ≤ n,
qed.

5. page 84, (B.3d): “We shall show in (B.5b)”→ “We shall show in (B.5a)”.

6. page 85: Replace “we define xa := ka−1,k(a−1)” by “we define xa := ua−1,k(a−1)”.

7. page 85: Replace “between the entries ua,k(a−1)” by “between the entries
ua,k(a)−1”.

8. page 85: It would be good to introduce another piece of standard termi-
nology: The sequence of places

((1, k (1)) , (2, k (2)) , . . . , (z, k (z)))

(these are the places in which P differs from U) is called the bumping route
(or bumping path) of the insertion U ← x1.

9. page 85, (B.4a): Replace “P = P (i)” by just “P”. (There is no “i” involved
yet.)

10. page 85, (B.4a): Remove the comma in “The row (z) of P, is”.

11. page 86, (B.4a): Remove the comma in “3 in row (1) of U, is bumped”.

12. page 86, last paragraph: Remove the comma in “P (i1i2, · · · ir)”.

13. page 88, proof of (B.5b): “then by (B.5a)”→ “then by (B.3d)”.

14. page 89, proof of (B.5b): It took me a while to understand how “ua,k(a+1) ≤
xa” is obtained here. Namely: Combining k (a + 1) ≤ k (a) with k (a + 1) =
h ̸= k (a), we obtain k (a + 1) < k (a), hence k (a + 1) ≤ k (a)− 1. By the
row-standardness of U, we thus have ua,k(a+1) ≤ ua,k(a)−1 ≤ xa by (B.3c).

15. page 90, Step 1 of the construction of the extrusion sequence: I would
replace “wz := pz,λz” by “wz := pz,l(z) = pz,λz”, in order to make it clear
where the “wa+1 := pa+1,l(a+1)” in the Inductive step comes from.

16. page 90, Step 1 of the construction of the extrusion sequence: Remove
the comma in “the entry in P, at the place”.

17. page 90, Step 2 of the construction of the extrusion sequence: Worth
reminding the reader that pk,λk+1 is understood to be ∞, and that pk,0 is
understood to be 0 for each k.
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18. page 91, proof of (B.6h): The appeal to analogy in the last sentence of
this proof is a bit of a stretch, so let me explain in some detail how the
standardness of U is proved:

First, we show that
l (1) ≥ l (2) ≥ · · · ≥ l (z) . (1)

This is an analogue of (B.3f), and is proved rather similarly:

[Proof of (1): Let a ∈ {1, 2, . . . , z− 1}. We must prove that l (a) ≥ l (a + 1).
Since P is column-standard, we have pa,l(a+1) < pa+1,l(a+1) = wa+1 (by
the definition of wa+1). But l (a) is the largest l ∈ {1, 2, . . . , λa} such that
pa,l < wa+1. Hence, from pa,l(a+1) < wa+1, we obtain l (a) ≥ l (a + 1). Thus,
(1) is proved.]

Next, we observe that
w1 < w2 < · · · < wz, (2)

because each a ∈ {1, 2, . . . , z− 1} satisfies wa = pa,l(a) < wa+1 (by (B.6f)).

Now, we can show that U is standard:

First, we shall show that U is row-standard, i.e., that ua,h−1 ≤ ua,h for all
adjacent pairs (a, h− 1) , (a, h) of places in any row (a) of [µ].

[Proof: This is very similar to the proof of (i) in the proof of (B.5b). Let
(a, h− 1) and (a, h) be two adjacent places in any row of [µ]. Since P is
row-standard, we have pa,h−1 ≤ pa,h. But the only entry in row a that
differs between U and P is ua,l(a) ̸= pa,l(a). Thus, our claim ua,h−1 ≤ ua,h
follows from pa,h−1 ≤ pa,h, unless l (a) is one of h− 1 and h. So it remains
to consider these two cases l (a) = h− 1 and l (a) = h. If l (a) = h− 1, then
we must prove that ua,l(a) ≤ ua,l(a)+1; but this follows from ua,l(a) = wa+1 ≤
pa,l(a)+1 (by (B.6f)) and pa,l(a)+1 = ua,l(a)+1. If l (a) = h, then we must prove
that ua,l(a)−1 ≤ ua,l(a); but this follows from ua,l(a)−1 = pa,l(a)−1 ≤ pa,l(a) <
wa+1 (by (B.6f)) and wa+1 = ua,l(a). In either case, ua,h−1 ≤ ua,h is proved.]

Thus, we have shown that U is row-standard. It remains to prove that U is
column-standard, i.e., that if (a− 1, h) and (a, h) are two adjacent places in
the same column of [µ], then

ua−1,h < ua,h. (3)

[Proof: Let (a− 1, h) and (a, h) be two adjacent places in the same column of
[µ]. If h ̸= l (a) and h ̸= l (a− 1), then ua,h = pa,h and ua−1,h ̸= pa−1,h, then
(3) follows from pa−1,h < pa,h, which holds because P is column-standard.

Now consider the case when h = l (a) and h ̸= l (a− 1). Then, l (a) = h ̸=
l (a− 1). Moreover, l (a− 1) ≥ l (a) (by (1)), so that l (a− 1) > l (a) (since
l (a− 1) ̸= l (a)). Now, from h = l (a), we obtain pa,h = pa,l(a) = wa < wa+1
(by (2)). But the column-standardness of P yields pa−1,h < pa,h. Since
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h ̸= l (a− 1), we have ua−1,h = pa−1,h < pa,h < wa+1 = ua,l(a) = ua,h (since
l (a) = h). Thus, (3) is proved in the case when h = l (a) and h ̸= l (a + 1).

Now consider the case when h ̸= l (a) and h = l (a− 1). Thus, h =
l (a− 1) ≥ l (a) (by (1)). Combining this with h ̸= l (a), we find h > l (a).
Therefore, h ≥ l (a) + 1, so that pa,h ≥ pa,l(a)+1 (since P is row-standard).
Moreover, (B.6f) yields pa,l(a)+1 ≥ wa+1 > wa (by (2)). Now, h ̸= l (a), so
that ua,h = pa,h ≥ pa,l(a)+1 > wa = ua−1,l(a−1) = ua−1,h (since l (a− 1) = h).
That is, ua−1,h < ua,h. Thus, (3) is proved in the case when h ̸= l (a) and
h = l (a + 1).

Finally, consider the case when h = l (a) and h = l (a− 1). Thus, ua−1,h =
ua−1,l(a−1) = wa < wa+1 (by (2)) and ua,h = ua,l(a) = wa+1, so that ua−1,h <
wa+1 = ua,h. Thus, (3) is proved in the case when h = l (a) and h =
l (a + 1).

Hence, we have proved (3) in all four cases.]

We thus have shown that U is column-standard. Since U is also row-
standard, we thus know that U is standard.

19. page 91, (B.6j): Remove the comma at the end of the insertion sequence.

20. page 92, proof of (i): Instead of “xa = pa,k(a) < wa+1 ≤ ua,k(a)+1 =
pa,k(a)+1”, it would be logically clearer to write “pa,k(a) = xa < xa+1 =
wa+1 = xa+1 ≤ ua,k(a)+1 = pa,k(a)+1”.

21. page 92, proof of (i): Replace “E (J ((µ, U, V) , x1))))” by “E (J ((µ, U, V) , x1))”.

22. page 92, proof of (i): To prove that E ((λ, P, Q)) = ((µ, U, V) , x1), we can
proceed as follows: Each a ∈ {1, 2, . . . , z} satisfies

ua,l(a) = ua,k(a) (since l (a) = k (a) by (B.6m))

= xa+1 (by (B.3b))
= wa+1 (by (B.6m) again) .

Thus, when the entries of P in the places (a, l (a)) get replaced by wa+1 in
the construction of E ((λ, P, Q)), they merely revert to their original val-
ues ua,l(a) that they used to have in U. All the other entries of P were
already equal to the respective entries of U (since l (a) = k (a) for all
a), and remain so. Hence, the tableau P reverts back to U in the con-
struction of E ((λ, P, Q)). Moreover, the dominant weight λ reverts back
to µ (since λ was µ + εz and now becomes (µ + εz) − εz = µ), and the
tableau Q reverts back to V (since it loses the entry r in cell (z, λz)). Hence,
E ((λ, P, Q)) = ((µ, U, V) , x1).

23. page 92, proof of (ii): This proof relies on the tacit assumption that the z
at the beginning of the extrusion sequence (B.6k) is the same as the z at the
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end of the insertion sequence (B.6o). This is indeed the case, but it is not
obvious from the get-go, so the notation needs to be changed and some
justification added. In more detail:

After “Let (B.6k) be the extrusion sequence which defines E ((λ, P, Q)) =
((µ, U, V) , w1) (see (B.6g)).”, add “Thus, µ = λ− εz.”.

Replace both “z”s in (B.6o) by “x”s.

In (B.6p), add “and a ≤ x” after “wa = xa”.

After “holds for some a”, add “< z”.

In the proof of (B.6p), replace “unique element of {1, 2, , . . . , z}” by “unique
element of {1, 2, . . . , λa}” (this is a separate typo).

After “However this proves that l (a) = k (a), from (B.3c).”, add: “Thus,
k (a) = l (a) ∈ {1, 2, . . . , λa} = {1, 2, . . . , µa} (because a ̸= z and therefore
λa = µa). This entails k (a) ̸= µa + 1. Thus, by (B.3b), the insertion sequence
(B.6o) does not stop at k (a); in other words, a < z′. Hence, a + 1 ≤ z′.

In the sentence “Consequently wa+1 = pa,l(a) = pa,k(a) = xa+1 (see (B.3b);
we are here using the insertion of x1 into (µ, U, V))”, replace both “p”s by
“u”s.

Replace “Now we can prove, by induction on a” by “Thus, we have proved
(B.6p) by induction on a. As a side-result, we have obtained”.

After (B.6r), add “In particular, this shows that l (z) = k (z), so that k (z) =
l (z) = λz = µz + 1. Therefore, by (B.3b), the insertion sequence (B.6o)
stops at k (z), meaning that we have z′ = z.”.

24. page 94: Remove the colon at the end of the second display of the page.
(This is the display saying “Jr−s : T (n, r− s− 1)× I (n, s + 1) −→ T (n, r− s)×
I (n, s) :”.)

14.3. Corrections to §C

1. page 96, §C.1: “in exactly one place; see (A.3g)(2)” should reference (A.3g)(3)
rather than (A.3g)(2).

2. page 97, after (C.2b): It is worth mentioning that the Knuth unwinding KY
is also known as the reading word or the row word of Y.

3. page 97, proof of part (i) of Proposition (C.2c): In “Now suppose that
m > 1 and that Proposition (C.2c) holds”, replace “(C.2c)” by “(C.2c)(i)”.
(Part (ii) won’t be proved until a while later.)

4. page 98, Diagram C.1: All the “0”s here should be “∞”s. The same applies
to Diagram C.2.
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5. page 99: “given the element xa = ya,t” should just be “given the element
xa”, since the equality xa = ya,t is not obvious at this point.

The right time to state xa = ya,t is after proving (2). Indeed, once (2) has
been proved, we can show that

xa = ya,t and k (a) = t and z ≥ a (4)

for each a ∈ {1, 2, . . . , βt} (where z is as in (B.3c)). This is proved by
induction on a: For a = 1, it is clear (at least x1 = y1,t and z ≥ 1 are
clear; but k (1) = t follows from y1,t−1 ≤ y1,t = x1 < y2,t). Now fix an
a ∈ {2, 3, . . . , βt} and assume as induction hypothesis that (1) holds for
a− 1 instead of a; in other words, assume that

xa−1 = ya−1,t and k (a− 1) = t and z ≥ a− 1.

We must prove that (1) holds for a; that is, we must prove that

xa = ya,t and k (a) = t and z ≥ a.

For this purpose, we note that the definition of insertion yields xa =
ua−1,k(a−1) = ua−1,t (since k (a− 1) = t). But we have U = X [t− 1],
so that ua−1,t = ya,t and ua,t−1 = ya,t−1 and ua,t = ya+1,t. Hence, xa =
ua−1,t = ya,t. Furthermore, the equation (2) on page 99 can be rewritten as
ua,t−1 ≤ xa < ua,t (since ua,t−1 = ya,t−1 and ua,t = ya+1,t and xa = ya,t).
But k (a) is defined to be the unique element of {1, 2, . . . , µa + 1} such
that ua,k(a)−1 ≤ xa < ua,k(a). Comparing this with ua,t−1 ≤ xa < ua,t,
we see that t fits this description, so that we have k (a) = t. It remains
to show that z ≥ a. To do so, we observe that the t-th column of U
has βt − 1 entries. Thus, it has an (a− 1)-st entry (since a ≤ βt and
thus a − 1 ≤ βt − 1). In other words, µa−1 ≥ t. But the definition of z
yields k (z) = µz + 1. If we had z = a− 1, then we could rewrite this as
k (a− 1) = µa−1 + 1 > µa−1 ≥ t, which would contradict k (a− 1) = t.
Hence, z ̸= a− 1. Combined with z ≥ a− 1, this leads us to z > a− 1 and
thus to z ≥ a. Thus, the induction step is complete, and we have proved
(1) for all a ∈ {1, 2, . . . , βt}.
This confirms all the values claimed in Table C.1. To ensure that this is
a complete analysis of the Schensted insertion X [t− 1] ← x1, we need
to show that z = βt (meaning that there is no further bumping after the
βt-th row). But this is easy: The t-th column of U has βt − 1 entries, but
the (t− 1)-st column of U has βt−1 ≥ βt entries. Thus, the βt-th row of U
spans the first t− 1 columns but no further. In other words, µβt = t− 1. But
applying (1) to a = βt, we obtain k (βt) = t = µβt + 1 (since µβt = t− 1).
This shows that z = βt (since z is characterized as the first positive integer
for which k (z) = µz + 1).
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6. page 100, (C2.h): The tableau Y needs to be standard (i.e., semistandard,
if we use the combinatorialists’ lingo) in order for this to hold. While this
normally goes without saying (semistandardness is assumed by default
according to §B.1), this might be worth a reminder, since a non-standard
tableau has just been constructed a few lines above.

7. page 101, Table C.2: The tableau X ← y1,1 is not an (λ∗ + ε1)-tableau, as
claimed here, but rather an

(
λ∗ + εβ1

)
-tableau.

8. page 101, Table C.2: Again, it should be explained that the “0”s actually
stand for ∞ (or should just be disregarded completely). The same applies
to Diagram C.3.

9. page 103, definition of basic moves: This is all good, but the rules in (C.3c)
and (C.3d) are somewhat hard to memorize. Here is a more memorable
way to restate the definition:

• Given three letters x, y, z ∈ n, we say that the letter z is numerically in-
termediate between x and y if and only if min {x, y} ≤ z ≤ max {x, y}.

• A basic move of type K′ is a transformation that swaps two consecutive
letters x and y in a word under the condition that a letter z numerically
intermediate between x and y lies immediately to the right of y, and
that we have neither x ≤ y ≤ z nor y ≤ x ≤ z (that is, the three letters
don’t form a weakly increasing subword before or after the move).

• A basic move of type K′′ is a transformation that swaps two consecutive
letters x and y in a word under the condition that a letter z numerically
intermediate between x and y lies immediately to the left of x, and that
we have neither z ≤ x ≤ y nor z ≤ y ≤ x (that is, the three letters don’t
form a weakly increasing subword before or after the move).

So the strict inequalities a < b in (C.3c) and b < c in (C.3d) are preventing
our three relevant letters from forming a weakly increasing subword before
or after the move.

10. page 104, the paragraph above (C3.h): Remove the comma in “of the
tableau U, is identical to the”.

11. pages 104–106, proof of (C3.f) (including all items (C3.g)–(C3.m)): This
proof tries too hard to micromanage the entries of the tableau during the
transformation. As a result, the proof is hard to follow and suffers from
some minor imprecisions (e.g., Proposition (C3.m) (ii) requires z > 1, and
the proof of Proposition (C3.m) (i) presumes that k (1) < µ1, which is not
guaranteed).
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A cleaner proof (although following essentially the same idea) can be made
by breaking up the Knuth unwindings of U and P row by row (rather than
letter by letter). Here is this proof:1

We let I (n) be the set of all (finite) words with entries in n. Thus, I (n) =⊔
r≥0

I (n, r).

On the set I (n), we define a binary relation ≡ by as follows: Two words
i, j ∈ I (n) shall satisfy i ≡ j if and only if there is a finite sequence of words
i (1) , i (2) , . . . , i (s) such that i (1) = i and i (s) = j and each consecutive
pair of words i (σ− 1) , i (σ) is connected by a basic move of type K′ or K′′.
In other words, i ≡ j if and only if the word i can be transformed into j by
a sequence of basic moves.

Clearly, the relation ≡ is an equivalence relation (it is symmetric since the
basic moves are symmetric). Moreover, it is monoidal, meaning that if two
words i, j ∈ I (n) satisfy i ≡ j, then any further word k ∈ I (n) satisfies
i | k ≡ j | k and k | i ≡ k | j. (This is because any basic move that can be
applied to a word w ∈ I (n) can also be applied to any appearance of w
as a segment in a longer word.) These properties of the relation ≡ will be
used without explicit mention.

We have the following two easy properties of the relation ≡:

(C3.g’) Lemma. If b1, b2, . . . , bs, x ∈ n are letters such that s ≥ 1
and x < b1 ≤ b2 ≤ · · · ≤ bs, then b1b2 . . . bsx ≡ b1xb2b3 . . . bs.

Proof. We induct on s. The base case (s = 1) is trivial, since it just
claims b1x ≡ b1x. For the induction step, we fix s > 1 and assume that
b1b2 . . . bs−1x ≡ b1xb2b3 . . . bs−1 has already been proved. We must now
show that b1b2 . . . bsx ≡ b1xb2b3 . . . bs. But we have x < b1 ≤ b2 ≤ · · · ≤ bs
and thus x < bs−1 ≤ bs. Hence, we can transform the word b1b2 . . . bsx
into the word b1b2 . . . bs−1xbs by a basic move of type K′ (applied to the last
three letters). Thus,

b1b2 . . . bsx ≡ b1b2 . . . bs−1x︸ ︷︷ ︸
≡b1xb2b3...bs−1

bs ≡ b1xb2b3 . . . bs−1bs = b1xb2b3 . . . bs.

This completes the induction step. Thus, (C3.g’) is proved.

(C3.h’) Lemma. If b1, b2, . . . , bs, x ∈ n are letters such that s ≥ 1
and b1 ≤ b2 ≤ · · · ≤ bs < x, then b1b2 . . . bs−1xbs ≡ xb1b2 . . . bs.

Proof. We induct on s. The base case (s = 1) is trivial, since it just
claims xb1 ≡ xb1. For the induction step, we fix s > 1 and assume that
b1b2 . . . bs−2xbs−1 ≡ xb1b2 . . . bs−1 has already been proved. We must now
show that b1b2 . . . bs−1xbs ≡ xb1b2 . . . bs. But we have b1 ≤ b2 ≤ · · · ≤

1That said, the notation defined in (C3.g) is used elsewhere, so it is not worth skipping.
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bs < x and thus bs−1 ≤ bs < x. Hence, we can transform the word
b1b2 . . . bs−1xbs into the word b1b2 . . . bs−2xbs−1bs by a basic move of type
K′′ (applied to the last three letters). Thus,

b1b2 . . . bs−1xbs ≡ b1b2 . . . bs−2xbs−1︸ ︷︷ ︸
≡xb1b2...bs−1

bs ≡ xb1b2 . . . bs−1bs = xb1b2 . . . bs.

This completes the induction step. Thus, (C3.h’) is proved.

Now, we are ready for the proof of (C3.f): Let P = (pa,b)(a,b)∈[λ] be the
tableau U ← x. Write the tableau U as U = (ua,b)(a,b)∈[µ]. For any a ∈ n,
we let Pa be the word pa,1pa,2 . . . pa,λa (obtained by reading the row a of P
from left to right), and we let Ua be the word ua,1ua,2 . . . ua,µa (obtained by
reading the row a of U from left to right). Note that the word Pa is empty
if λa = 0, and likewise for Ua. By the definition of Knuth unwinding, we
have KU = Un | Un−1 | · · · | U1 and KP = Pn | Pn−1 | · · · | P1.

Now, set x1 = x and consider the “parameters” of the insertion U ← x1 as
defined in (B.3b): the number z (which is the number for which λ = µ +
εz), the numbers k (1) , k (2) , . . . , k (z) (which describe in which positions U
differs from P) and the letters x1, x2, . . . , xz (which are the bumped entries).
We note that the tableau P = U ← x1 differs from U only in its first z rows
(since the bumping ends in the z-th row). Thus, Pa = Ua for each a > z.
Hence,

Pn | Pn−1 | · · · | Pz+1 = Un | Un−1 | · · · | Uz+1. (5)

Furthermore, row z of P = U ← x1 is just row z of U with a new entry xz
adjoined at its end (since (B.3d) says pz,µz+1 = xz). Hence,

Pz = Uz | xz. (6)

Now we claim the following:

(C3.i’) For any a ∈ z− 1, we have

xa+1 | Pa ≡ Ua | xa. (7)

Proof. Let a ∈ z− 1. We have Pa = pa,1pa,2 . . . pa,λa and Ua = ua,1ua,2 . . . ua,µa .
From a ∈ z− 1, we obtain a ̸= z and thus λa = µa (since λ = µ + εz differs
from µ only in its z-th entry). From (B.3d), we know that row a of P differs
from row a of U only in its k (a)-th entry, which is pa,k(a) = xa instead of
ua,k(a) = xa+1. Hence, pa,j = ua,j for all j ̸= k (a).

From (B.3), we know that x1 < x2 < x3 < · · · , so that xa < xa+1 = ua,k(a) ≤
ua,k(a)+1 ≤ ua,k(a)+2 ≤ · · · ≤ ua,µa (since U is row-standard). Hence, (C3.g’)
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(applied to x = xa and (b1, b2, . . . , bs) =
(

ua,k(a), ua,k(a)+1, . . . , ua,µa

)
) yields

ua,k(a)ua,k(a)+1 . . . ua,µa xa

≡ ua,k(a)︸ ︷︷ ︸
=xa+1

xaua,k(a)+1ua,k(a)+2 . . . ua,µa

= xa+1xaua,k(a)+1ua,k(a)+2 . . . ua,µa . (8)

From (B.3c), we know that ua,k(a)−1 ≤ xa. Since U is row-standard, we
have ua,1 ≤ ua,2 ≤ · · · ≤ ua,k(a)−1 ≤ xa < xa+1. Hence, (C3.h’) (applied to

x = xa+1 and (b1, b2, . . . , bs) =
(

ua,1, ua,2, . . . , ua,k(a)−1, xa

)
) yields

ua,1ua,2 . . . ua,k(a)−1xa+1xa

≡ xa+1ua,1ua,2 . . . ua,k(a)−1xa. (9)

Now, we recall that

Pa = pa,1pa,2 . . . pa,λa = pa,1pa,2 . . . pa,µa (since λa = µa)

= pa,1pa,2 . . . pa,k(a)−1︸ ︷︷ ︸
=ua,1ua,2...ua,k(a)−1

(since pa,j=ua,j for all j ̸=k(a))

pa,k(a)︸ ︷︷ ︸
=xa

pa,k(a)+1pa,k(a)+2 . . . pa,µa︸ ︷︷ ︸
=ua,k(a)+1ua,k(a)+2...ua,µa

(since pa,j=ua,j for all j ̸=k(a))

= ua,1ua,2 . . . ua,k(a)−1xaua,k(a)+1ua,k(a)+2 . . . ua,µa . (10)

On the other hand,

Ua = ua,1ua,2 . . . ua,µa

= ua,1ua,2 . . . ua,k(a)−1ua,k(a)ua,k(a)+1 . . . ua,µa ,

so that

Ua | xa = ua,1ua,2 . . . ua,k(a)−1 ua,k(a)ua,k(a)+1 . . . ua,µa xa︸ ︷︷ ︸
≡xa+1xaua,k(a)+1ua,k(a)+2...ua,µa

(by (8))

≡ ua,1ua,2 . . . ua,k(a)−1xa+1xa︸ ︷︷ ︸
≡xa+1ua,1ua,2...ua,k(a)−1xa

(by (9))

ua,k(a)+1ua,k(a)+2 . . . ua,µa

≡ xa+1 ua,1ua,2 . . . ua,k(a)−1xaua,k(a)+1ua,k(a)+2 . . . ua,µa︸ ︷︷ ︸
=Pa

(by (10))

= xa+1 | Pa.

This proves (7).
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Now, we have

KP = Pn | Pn−1 | · · · | P1

= Pn | Pn−1 | · · · | Pz+1︸ ︷︷ ︸
=Un|Un−1|···|Uz+1

(by (5))

| Pz︸︷︷︸
=Uz|xz
(by (6))

| Pz−1 | Pz−2 | Pz−3 | · · · | P1

= Un | Un−1 | · · · | Uz+1 | Uz | xz | Pz−1︸ ︷︷ ︸
≡Uz−1|xz−1

(by (7)
for a=z−1)

| Pz−2 | Pz−3 | · · · | P1

≡ Un | Un−1 | · · · | Uz+1 | Uz | Uz−1 | xz−1 | Pz−2︸ ︷︷ ︸
≡Uz−2|xz−2

(by (7)
for a=z−2)

| Pz−3 | · · · | P1

≡ Un | Un−1 | · · · | Uz+1 | Uz | Uz−1 | Uz−2 | xz−2 | Pz−3︸ ︷︷ ︸
≡Uz−3|xz−3

(by (7)
for a=z−3)

| · · · | P1

≡ · · ·
≡ Un | Un−1 | · · · | Uz+1 | Uz | Uz−1 | Uz−2 | Uz−3 | · · · | U1︸ ︷︷ ︸

=Un|Un−1|···|U1=KU

| x1︸︷︷︸
=x

= KU | x = w.

In view of P = U ← x, we can rewrite this as K (U ← x) ≡ w. In other
words, K (U ← x) can be transformed into w by a sequence of basic moves.
This proves (C3.f).

12. page 106, proof of the “only if” part of Knuth’s theorem: The shorthands
Ps−1 and Ps for Ps−1 (i) and Ps (i) should be explained. Maybe it is better to
just drop the “(i)” argument altogether (since i is fixed here), and simply
write Ps for P (i1 . . . is).

Furthermore it would be nice to remind the reader that Ps = Ps−1 ← is by
the construction of the P-symbol.

13. page 110, item (ii): Remove the comma in “the first row of W, is W̃ = Ũ ←
y”.

14. page 110: When you say “(The case p = µ1 + 2 only occurs when k =
µ1 + 1.)”, I think you mean “l = µ1 + 1” rather than “k = µ1 + 1”.

15. page 111: In the second paragraph of this page (line 8), replace “such that
s ≥ l” by “such that s > l”. Also remove the comma that follows these
words.

16. page 111: In the second paragraph of this page (line 12), replace “to W ′′ =
W ← b” by “to W ′′ = W ← c”.
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17. page 112, Case 1: Remove the comma after “of V with s > k”.

18. page 112, Case 1: Replace “bumps the same letter y = v1,l = w1,l” by
“bumps the same letter y from place (1, l)” (this letter is the (1, l)-th entry
of V ← c and W ← a, and it does equal w1,l, but it is not always the same
as v1,l).

19. page 112, Table C.8: Not pictured on this table is the case l = p. In this
case, there is no letter c in the first row any more (since it has been bumped
into the lower part of the tableau under the guise of z), but otherwise the
picture looks the same (in particular, the entry b occupies the l = p-th place
in row (1)).

20. page 113, Case 1: The proof of x ≤ y < z in the first paragraph of this page
looks questionable to me. I would rather argue as follows:

By definition, y is the l-th letter in the 1-st row of V ← c. Meanwhile, c is
the p-th letter in this row. Since l ≤ p, we thus obtain y ≤ c (since V ← c
is row-standard). Furthermore, c < u1,p = z. Hence, y ≤ c < z.

By definition, y is the l-th letter in the 1-st row of W ← a. Since the 1-st
rows of W ← a and W differ only in their k-th letter (because a bumps out
the k-th letter of the 1-st row of W), this entails that y is the l-th letter in the
1-st row of W as well (since k < l and thus l ̸= k). In other words, y = w1,l.
But x = w1,k. Since W is row-standard, we have w1,k ≤ w1,l (since k < l),
and thus x = w1,k ≤ w1,l = y. Hence, altogether, x ≤ y < z.

21. page 113, Case 2: Better to replace the first “=” sign in “bumps the letter
w = v1,k+1 = u1,k+1” by a “:=” sign, since the letter “w” (albeit with
subscripts) has already been used for a different purpose. Or replace this
letter “w” by an unused letter (such as “t”).

22. page 113, Case 2: Here you write “note that w1,p−1 = u1,p−1 ≤ a < c =
w1,p”. It is perhaps clearer if this is replaced by “note that p = k and thus
w1,p−1 = w1,k−1 = u1,k−1 ≤ a < c = w1,p”.

23. page 113, Case 2: Replace “From v1,k = a ≤ b < c = v1,k+1” by “Let
(v← c)r,s denote the (r, s)-th letter of V ← c. Then, from (v← c)1,k = a ≤
b < c = (v← c)1,k+1”.

24. page 113, Case 2: Replace “From w1,k = a ≤ b < c < u1,k ≤ u1,k+1 =
w1,k+1” by “Let (w← a)r,s denote the (r, s)-th letter of W ← a. Then, from
(w← a)1,k = a ≤ b < c < u1,p = u1,k ≤ u1,k+1 = (w← a)1,k+1”.

25. page 114, the paragraph below (C.5a): In “the set {0} ∪
{

hKP
c : t ∈ [λ]

}
”,

replace the “hKP
c ” by “hKP

c (t)”. Moreover, it is worth pointing out that this
set can also be written as

{
hKP

c (t) : t ∈ [λ] ∪ {0}
}

.
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26. page 114, footnote 3: After “view theorem (C.5b)”, add “and Proposition
(C.2c)”.

27. page 115, (C.5b): Replace “such that h ((a, b)) = M” by “such that hKP ((a, b)) =
M”.

28. page 115, Table C.11: I would replace the “> c + 1” in row a + 1 and
column b + 1 by a “≥ c + 1” (see below for why).

29. page 115, proof of (C.5b): It is not clear to me why “Since a ≥ c + 1,
entries in row (a + 1) to the right of column (b) are all > c + 1”. But I do
understand why these entries are all ≥ c + 1 (since pa+1,b = c + 1 and since
P is row-standard). Fortunately, this is sufficient for the proof (with a few
little modifications, listed below).

30. page 115, proof of (C.5b): In the equality “Y∗ = ∑
1≤x≤b′

ω (pa,x)”, the “b′”

under the summation sign should be “b′ − 1”. Moreover, add a comma
after this equality.

31. page 115, proof of (C.5b): Replace “But for b + 1 ≤ x ≤ λa+1 all the entries
pa+1,x are > c+ 1, hence all the summands ω (pa+1,x) = 0, therefore Y = 0”
by “However, all the entries pa+1,x with b + 1 ≤ x ≤ λa+1 are ≥ c + 1 and
thus satisfy ω (pa+1,x) ∈ {0,−1}; hence, Y ≤ 0”.

32. page 115, proof of (C.5b): Replace “hKP (a, b) = hKP (a + 1, b′ − 1)” by
“hKP (a, b) ≤ hKP (a + 1, b′ − 1). Since hKP (a, b) = M is the largest of all
hKP (t), we thus conclude that hKP (a, b) = hKP (a + 1, b′ − 1)”.

33. page 116, after the proof of (C.5b): Add the sentence “In the situation
of Theorem (C.5b), we denote the tableau P̃ by f̃cP. Thus, K

(
f̃cP
)

=

f̃c (KP).”.

34. page 116, (C.5d): “two set”→ “two sets”.

35. page 116, Proposition B: One of the claims made here is that if f̃c (i) ̸= ∞,
then f̃c (KP (i)) ̸= ∞. But the converse claim should also be made: If
f̃c (KP (i)) ̸= ∞, then f̃c (i) ̸= ∞. (This is used later on, in the proof of
(D.1g).)

Both claims follow from Lemma (C.6c). (Indeed, by repeatedly applying
Lemma (C.6c), we see that if two words i and j in I (n, r) are connected by
a sequence of basic moves, then the statements f̃c (i) ̸= ∞ and f̃c (j) ̸= ∞
are equivalent. Now it just remains to apply this to j = KP (i).)

36. page 116, Lemma (C.6b): Add “Let c ∈ {1, 2, . . . , n− 1}.” at the beginning
of the lemma.
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37. page 117, proof of Lemma (C.6b): After the first sentence, I would add the
following: “Thus, jk = z and jk+1 = x. The definition of a height function
yields

hi
c (k + 1) = hi

c (k) + ωc (ik+1) = hi
c (k) + ωc (z) and

hi
c (k− 1) = hi

c (k)−ωc (ik) = hi
c (k)−ωc (x) and

hj
c (k + 1) = hj

c (k) + ωc (jk+1) = hj
c (k) + ωc (x) and

hj
c (k− 1) = hj

c (k)−ωc (jk) = hj
c (k)−ωc (z)

(where ωc is short for ωc,c+1).”

38. page 117, proof of (ii) in the proof of Lemma (C.6b): This proof can be
redone in a nicer way (at least to my taste):

Proof of (ii): By definition,

Mi = max
{

hi
c (ν) | ν ∈ {0, 1, . . . , r}

}
. (11)

We shall now show that

Mi = max
{

hi
c (ν) | ν ∈ {0, 1, . . . , r} \ {k}

}
(12)

holds as well. Indeed, assume the contrary. Thus, Mi is the maximum
of the set

{
hi

c (ν) | ν ∈ {0, 1, . . . , r}
}

, but not the maximum of the (only
slightly smaller) set

{
hi

c (ν) | ν ∈ {0, 1, . . . , r} \ {k}
}

. In other words, Mi

is the largest of all the numbers hi
c (0) , hi

c (1) , . . . , hi
c (r), but ceases to

be so if we remove the number hi
c (k) from this list. Obviously, the only

way this can happen is if Mi equals hi
c (k) but is larger than all the other

numbers in the list hi
c (0) , hi

c (1) , . . . , hi
c (r). So we must be in this exact

situation. Thus, Mi = hi
c (k) but

Mi > hi
c (ν) for all ν ̸= k. (13)

In particular, from (13), we obtain Mi > hi
c (k + 1) and Mi > hi

c (k− 1)
(here we use the fact that k ≥ 1). Thus, hi

c (k) = Mi > hi
c (k + 1) = hi

c (k) +
ωc (ik+1), so that ωc (ik+1) < 0 and thus ik+1 = c + 1 (by the definition
of ωc). Likewise, we can show (using Mi > hi

c (k− 1)) that ik = c. Thus,
the word j is obtained from i by swapping the consecutive letters ik = c
and ik+1 = c + 1. Moreover, this swap must be a basic move. If this basic
move is of type K′, then we must have k ≥ 2 and ik < ik−1 ≤ ik+1 (since

ik = c < c + 1 = ik+1), so that ik−1 ∈

 ik︸︷︷︸
=c

, ik+1︸︷︷︸
=c+1

 = (c, c + 1] and thus
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ik−1 = c + 1, whence

M = hi
c (k) = hi

c (k− 2) + ωc

 ik−1︸︷︷︸
=c+1

+ ωc

 ik︸︷︷︸
=c


= hi

c (k− 2) + ωc (c + 1)︸ ︷︷ ︸
=−1

+ωc (c)︸ ︷︷ ︸
=1

= hi
c (k− 2) + (−1) + 1 = hi

c (k− 2) ,

and this contradicts (13). Thus, this basic move cannot be of type K′. Hence,
it must be of type K′′. Thus, we must have k ≤ r− 2 and ik ≤ ik+2 < ik+1

(since ik = c < c + 1 = ik+1), so that ik+2 ∈

 ik︸︷︷︸
=c

, ik+1︸︷︷︸
=c+1

 = [c, c + 1) and

thus ik+2 = c, whence

M > hi
c (k + 2) (by (13))

= hi
c (k) + ωc

 ik+1︸︷︷︸
=c+1

+ ωc

 ik+2︸︷︷︸
=c


= hi

c (k) + ωc (c + 1)︸ ︷︷ ︸
=−1

+ωc (c)︸ ︷︷ ︸
=1

= hi
c (k) + (−1) + 1 = hi

c (k) ,

and this contradicts M = hi
c (k). This contradiction shows that our assump-

tion was false. Thus, (12) is proved.

The same argument, applied to the word j instead of i, shows that

Mj = max
{

hj
c (ν) | ν ∈ {0, 1, . . . , r} \ {k}

}
(14)

(because we have not used the assumption ik < ik+1 in our above argu-
ment).

But the right hand sides of the equalities (12) and (14) are equal (since (i)
shows that hi

c (ν) = hj
c (ν) for all ν ̸= k). Hence, so are the left hand sides.

In other words, Mi = Mj.

39. page 117, proof of Lemma (C.6b): After the proof of (ii), I would add
another claim: “Next we claim that

(iii) we have qi ≥ k if and only if qj ≥ k.

Indeed, if qi < k, then (i) yields hj
c
(
qi) = hi

c
(
qi) = Mi = Mj by (ii), and

thus qj ≤ qi by the minimality of qj; but this entails qj ≤ qi < k. Hence,
qi < k implies qj < k. Similarly, the converse is true. Hence, we have qi < k
if and only if qj < k. By taking the contrapositive, we obtain (iii).”
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40. page 117, proof of Lemma (C.6b): I struggle to understand how you prove
part (a) of the lemma. So here is my proof of part (a):

“Now, for the proof of (a), suppose that qi /∈ {k, k + 1}. We must show that
qj = qi.

We have qi ̸= k (since qi /∈ {k, k + 1}). Thus, (i) shows that hj
c
(
qi) =

hi
c
(
qi) = Mi (by the definition of qi). Thus, hj

c
(
qi) = Mi = Mj by (ii).

Therefore, qi ≥ qj, by the minimality of qj.

If we also have qj ̸= k, then the same argument (with the roles of i and j
interchanged) shows that qj ≥ qi, and thus qj = qi (since qi ≥ qj). Hence,
we are done in this case. Thus, from now on, we WLOG assume that qj = k.

Hence, k = qj is the first place where the height function hj
c reaches its

maximum (by the definition of qj). Hence, hj
c (k− 1) < hj

c (k). In other
words, ωc (z) > 0 (since hj

c (k− 1) = hj
c (k)− ωc (z)). Hence, z = c. Thus,

x < z = c, so that ωc (x) = 0. Now, (i) yields hj
c (k + 1) = hi

c (k + 1),
whence

hi
c (k + 1) = hj

c (k + 1) = hj
c

 k︸︷︷︸
=qj

+ ωc (x)︸ ︷︷ ︸
=0

= hj
c

(
qj
)

= Mj
(

by the definition of Mj
)

= Mi.

Hence, qi ≤ k + 1 (by the minimality of qi). Since qi /∈ {k, k + 1}, we can
conclude that qi < k, which contradicts qi ≥ qj = k. This contradiction
shows that the case we are considering (that is, when qj = k) is impossible,
and the proof of (i) is complete.”

41. page 117, proof of Lemma (C.6b): In the proof of (b), you write “In fact,
by (i), qj = k”. To me, this is unclear, so I’d rather say “But (iii) shows that
qj ≥ k, so that qj = k”.

42. page 117, proof of Lemma (C.6b): In the proof of (c), you write “Then
x = c, and qj ≥ k, by (ii)”. Again, it is not clear to me how you obtain
qj ≥ k here, but you can obtain it immediately from (iii).

43. page 117, proof of Lemma (C.6b): In the proof of (c), after “Then z >
c + 1”, I would add “(since z > x = c)”.

44. page 117, Lemma (C.6c): Add “Let c ∈ {1, 2, . . . , n− 1}.” at the beginning
of the lemma.

17



Errata to “Polynomial representations of GLn” February 24, 2025

45. page 117, Lemma (C.6c): Replace “If f̃c (i) ̸= ∞, then f̃c (j) ̸= ∞, and f̃c (j)
is obtained from f̃c (i) by a basic move” by “Then, the inequality f̃c (i) ̸= ∞
holds if and only if f̃c (j) ̸= ∞. Moreover, if it holds, then f̃c (j) is obtained
from f̃c (i) by a basic move”.

In fact, in this form, the statement is symmetric in i and j, which is used in
the proof of the lemma.

46. page 117, Lemma (C.6c): The last claim of this lemma (“There is a corre-
sponding statement (and proof), with ẽc replacing f̃c”) is quite an imposi-
tion on the reader, as it requires constructing analogues of both Lemma
(C.6b) and Lemma (C.6c) and their already rather patience-demanding
proofs.

An easier way to prove this claim would be to use the results of §D.3 (which
are completely independent), specifically Lemma (D.3e). This can be done
as follows. First, we show a simple property of the operator C:

(D.3i’) Lemma. Let i, j ∈ I (n, r) be two words such that j is
obtained from i by a basic move. Then, the word C (j) is obtained
from C (i) by a basic move as well.

Proof. If i K′ j, then i = (. . . , b, c, a, . . .) and j = (. . . , b, a, c, . . .) for some
letters a < b ≤ c, and thus

C (i) = (. . . , n + 1− a, n + 1− c, n + 1− b, . . .) and
C (j) = (. . . , n + 1− c, n + 1− a, n + 1− b, . . .) ,

which shows that C (i) K′′ C (j) (since a < b ≤ c entails n + 1 − c ≤
n + 1− b < n + 1− a). Similarly, if i K′′ j, then C (i) K′ C (j). In both cases,
Lemma (D.3i’) is proved.

(D.3j’) Lemma. The analogue of Lemma (C.6c) for ẽc instead of
f̃c holds. In other words:

Let c ∈ {1, 2, . . . , n− 1}. Let i, j ∈ I (n, r), and suppose j is ob-
tained from i by a basic move. Then, the inequality ẽc (i) ̸= ∞
holds if and only if ẽc (j) ̸= ∞. Moreover, if it holds, then ẽc (j) is
obtained from ẽc (i) by a basic move.

Proof. Lemma (D.3i’) shows that the word Cj is obtained from Ci by a basic
move. Hence, Lemma (C.6c) (applied to n − c, Ci and Cj instead of c, i
and j) shows that f̃n−c (Ci) ̸= ∞ holds if and only if f̃n−c (Cj) ̸= ∞, and
furthermore that the word f̃n−c (Cj) is obtained from f̃n−c (Ci) by a basic
move (if these words are not ∞).

For convenience, set C (∞) := ∞. Lemma (D.3e) yields C (ẽc (i)) = f̃n−c (Ci)
and similarly C (ẽc (j)) = f̃n−c (Cj). Thus, we have the following chain of
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equivalences:

(ẽc (i) ̸= ∞) ⇐⇒ (C (ẽc (i)) ̸= ∞)

(
since the map C is bijective

and sends ∞ to ∞

)
⇐⇒

(
f̃n−c (Ci) ̸= ∞

) (
since C (ẽc (i)) = f̃n−c (Ci)

)
⇐⇒

(
f̃n−c (Cj) ̸= ∞

) (
since f̃n−c (Ci) ̸= ∞ holds

if and only if f̃n−c (Cj) ̸= ∞

)
⇐⇒ (C (ẽc (j)) ̸= ∞)

(
since C (ẽc (j)) = f̃n−c (Cj)

)
⇐⇒ (ẽc (j) ̸= ∞)

(
since the map C is bijective

and sends ∞ to ∞

)
.

In other words, ẽc (i) ̸= ∞ holds if and only if ẽc (j) ̸= ∞. Moreover, if it
holds, then f̃n−c (Ci) ̸= ∞ and f̃n−c (Cj) ̸= ∞ hold as well (by the above
equivalence), and thus the word f̃n−c (Cj) is obtained from f̃n−c (Ci) by a
basic move (as we have shown above). In other words, the word C (ẽc (j))
is obtained from C (ẽc (i)) by a basic move (since C (ẽc (i)) = f̃n−c (Ci)
and C (ẽc (j)) = f̃n−c (Cj)). Hence, Lemma (C.3i’) shows that the word
C (C (ẽc (j))) is obtained from C (C (ẽc (i))) by a basic move as well. Since
C (C (ẽc (j))) = ẽc (j) (because C2 = id) and C (C (ẽc (i))) = ẽc (i) (simi-
larly), we can rewrite this as follows: The word ẽc (j) is obtained from ẽc (i)
by a basic move. Thus, Lemma (D.3j’) is proved.

47. page 118, proof of Lemma (C.6c): Before going into the cases, it is worth
reminding the reader that f̃c (i) is defined to be the word i with the letter c
at position qi replaced by c + 1. Hence, f̃c (i) differs from i only in position
qi.

48. page 118, Case (a): After “The claim follows directly if y is not changed,
either.”, add “Thus we restrict ourselves to the case when it is changed.
Then, y = c, and qi is either k− 1 or k + 2 (depending on the type of the
basic move).”.

49. page 118, Case (a): After “we get hj
c (k) = hj

c (k− 1)+ 1”, add “= hj
c
(
qj)+ 1

(since k− 1 = qi = qj)”.

50. page 118, Case (a): After “we get hi
c (k) = hi

c (k + 2)”, add “= hi
c
(
qi) (since

k + 2 = qi)”.

51. page 118, Case (c): Replace “since otherwise hi
c (k + 2) = hi

c (k) + 1” by
“since otherwise y = c (since y ≥ x = c) and therefore hi

c (k + 2) = hi
c (k) +

1 (because z > c + 1) in contradiction to the fact that hi
c (k) = hi

c
(
qi) = Mi

is the largest value of hi
c”.
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52. page 118, Case (c): After “since otherwise hi
c (k− 2) = hi

c (k)”, add “in
contradiction to the fact that k = qi is the first time the function hi

c attains
its maximum value”.

14.4. Corrections to §D

1. page 121: Here is a proof of Lemma (D.1a):

(i) Fix i ∈ I (n, r) and c ∈ {1, 2, . . . , n− 1}. We have the following chain of
logical equivalences:(

f̃c (i) = ∞
)

⇐⇒
(

Mi
c = 0

)
(by (A.3e))

⇐⇒
(

hi
c (t) ≤ hi

c (0) for all t ∈ {0, 1, . . . , r}
)

(
since Mi

c is defined as the maximum value of hi
c

)
⇐⇒

(
hi

c (t) ≤ hi
c (0) for all t ∈ {1, 2, . . . , r}

)
(

since the inequality hi
c (t) ≤ hi

c (0)
automatically holds for t = 0

)
⇐⇒

(
hi

c (t) ≤ 0 for all t ∈ {1, 2, . . . , r}
) (

since hi
c (0) = 0

)
⇐⇒ (# {ν ≤ t : iν = c} − # {ν ≤ t : iν = c + 1} ≤ 0 for all t ∈ {1, 2, . . . , r})(

since hi
c (t) = # {ν ≤ t : iν = c} − # {ν ≤ t : iν = c + 1}

for all t ∈ {0, 1, . . . , r} (this is a restatement of (A.3b))

)
⇐⇒ (# {ν ≤ t : iν = c} ≤ # {ν ≤ t : iν = c + 1} for all t ∈ {1, 2, . . . , r}) .

This proves Lemma (D.1a) (i).

(ii) Fix i ∈ I (n, r) and c ∈ {1, 2, . . . , n− 1}. For each s ∈ {1, 2, . . . , r}, we
have

hi
c (r)︸ ︷︷ ︸

=ω(i1)+ω(i2)+···+ω(ir)
(by the definition of height function)

− hi
c (s− 1)︸ ︷︷ ︸

=ω(i1)+ω(i2)+···+ω(is−1)
(by the definition of height function)

= (ω (i1) + ω (i2) + · · ·+ ω (ir))− (ω (i1) + ω (i2) + · · ·+ ω (is−1))

= ω (is) + ω (is+1) + · · ·+ ω (ir)
= # {ν ≥ s : iν = c} − # {ν ≥ s : iν = c + 1} (15)

(by the definition of ω = ωc,c+1). Now, we have the following chain of

20



Errata to “Polynomial representations of GLn” February 24, 2025

logical equivalences:

(ẽc (i) = ∞)

⇐⇒
(

Mi
c = hi

c (r)
)

(by (A.3f))

⇐⇒
(

hi
c (t) ≤ hi

c (r) for all t ∈ {0, 1, . . . , r}
)

(
since Mi

c is defined as the maximum value of hi
c

)
⇐⇒

(
hi

c (t) ≤ hi
c (r) for all t ∈ {0, 1, . . . , r− 1}

)
(

since the inequality hi
c (t) ≤ hi

c (r) holds automatically for t = r
)

⇐⇒
(

hi
c (s− 1) ≤ hi

c (r) for all s ∈ {1, 2, . . . , r}
)

(here, we have substituted s− 1 for t)

⇐⇒
(

hi
c (r)− hi

c (s− 1) ≥ 0 for all s ∈ {1, 2, . . . , r}
)

⇐⇒ (# {ν ≥ s : iν = c} − # {ν ≥ s : iν = c + 1} ≥ 0 for all s ∈ {1, 2, . . . , r})
(by (15))

⇐⇒ (# {ν ≥ s : iν = c} ≥ # {ν ≥ s : iν = c + 1} for all s ∈ {1, 2, . . . , r}) .

This proves Lemma (D.1a) (ii).

2. page 122: It is worth saying that the operators W, B and C are known as
complementation, reversal and reverse-complementation.

3. page 122, proof of (D.1c): “Prove similarly that i ∈ T implies C (i) ∈ Υ”
should be “Prove similarly that i ∈ Υ implies C (i) ∈ T. Thus, C restricts
to a map T → Υ and also to a map Υ → T. These two maps are mutually
inverse, since C2 = id.”.

4. page 122, (D.1e): I would replace “column t of Zλ” by “column t of [λ]”,
so as to avoid an impression of a circular definition.

5. page 123, proof of Theorem (D.1g): “Let c ∈ {1, 2, . . . , n}” should be “Let
c ∈ {1, 2, . . . , n− 1}”.

6. page 123, proof of Theorem (D.1g): “From §A.3” could better be “From
(A.3f)”.

7. page 123, proof of Theorem (D.1g): Remove the “= Mi
c” part from “Hence

hKP(i)
c (r) = hi

c (r) = Mi
c”.

8. page 123, proof of Theorem (D.1g): Instead of “We can calculate MKP(i)
c =

MKTλ
c easily; it is λc − λc+1, and it is attained at the last place (1, λ1) of

KP (i). Therefore the maximum Mi
c of hi

c is also attained at the last place
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of i”, it would be clearer to say: “The height function hKP(i)
c = hKTλ

c starts
out at 0, then decreases by 1 for each place in the (c + 1)-st row of λ, then
increases by 1 for each place in the c-th row of λ; then it remains constant
with the value λc − λc+1 ever after. Since λc ≥ λc+1, we conclude that
its maximum value is λc − λc+1 = hKP(i)

c (r) = hi
c (r). In other words,

MKP(i)
c = hi

c (r). Hence, Mi
c = MKP(i)

c = hi
c (r) as well”.

9. page 123, proof of Theorem (D.1g): You write: “We know ẽc (KP (j)) =
KP (ẽc (j)), by Proposition B, hence ẽc (KP (j)) = ∞ for all c”. This uses
a variation of Proposition B instead of Proposition B proper (Proposition
B is about f̃c, not about ẽc). But it is easier to replace the argument by a
different one: “Let c ∈ {1, 2, . . . , n− 1}. From j ∈ T, we obtain ẽc (j) = ∞
and thus Mj

c = hj
c (r) by (A.3f). But MKP(j)

c = Mj
c by Lemma (C.6b) and

Proposition (C.3p), and furthermore hKP(j)
c (r) = hj

c (r) since the letters of
the word KP (j) are a permutation of the letters of j (and both words have
length r, so that the value of the height function at r is accounting for
all their letters). Thus, hKP(j)

c (r) = hj
c (r) = Mj

c = MKP(j)
c , and therefore

ẽc (KP (j)) = ∞ by (A.3f).”.

10. page 124, proof of Theorem (D.1g): After “Hence all entries of the first
row of P (j) are equal to 1”, I would add “(since P (j) is row-standard)”.

11. page 124, proof of Theorem (D.1g): When you say “Next consider the
last entry, t say, in the sth row of P (j)”, you should explain that you are
arguing by strong induction on s (since you use the induction hypothesis
a few sentences later). So I would instead write: “We shall now show that
all entries of the sth row of P (j) are equal to s for all s ∈ {1, 2, . . . , n}. We
will prove this by strong induction on s. So we assume this is proved for
all entries of rows 1, 2, . . . , s− 1, and we consider the last entry, t say, in the
sth row of P (j).”.

12. page 124, proof of Theorem (D.1g): After “it is constant on the letters of
rows 1 up to s− 1”, add “(by the induction hypothesis, since s− 1 < t− 1)”.

13. page 124, proof of Theorem (D.1g): Remove “, say x,” (you never use the
notation x).

14. page 124, proof of Theorem (D.1g): After “This is a contradiction.”, I
would add “ Hence, t ≤ s. Since P (j) is row-standard, this shows that all
entries in the s-th row of P (j) are ≤ s. Since P (j) is column-standard, they
cannot be < s, and thus they are all = s.”.

15. page 124, proof of Theorem (D.1g): You write: “Using Lemma (C.6b) and
Proposition B, as in the proof of (i), it is quite easy to see that i ∈ Υ”.
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I think this needs more details (it is indeed similar to the corresponding
part of (i), but not completely analogous):

We want to show that i ∈ Υ. Let c ∈ {1, 2, . . . , n− 1}. We must prove
that f̃c (i) = ∞. Equivalently (by (A.3e)), we must prove that Mi

c = 0.
But Proposition (C.3p) shows that the words i and KP (i) are connected by
a sequence of basic moves; hence, Lemma (C.6b) shows that their height
functions have the same maximum: Mi

c = MKP(i)
c . Thus, it remains to show

that MKP(i)
c = 0. In other words, it remains to show that all values of the

height function hKP(i)
c are ≤ 0. In other words, it remains to show that

hKP(i)
c (t) ≤ 0 for each t ∈ {0, 1, . . . , r}.

So let us show this. Fix t ∈ {0, 1, . . . , r}. The construction of the tableau Zλ

ensures that each appearance of c in Zλ is followed by an appearance of
c + 1 one box further south in the same column (since the entries of each
column are k + 1, k + 2, . . . , n for some k). In the Knuth unwinding KZλ,
the latter c + 1 appears earlier than the former c (since it lies further south
in Zλ). Thus, among the first t letters of KZλ, there must be at least as
many (c + 1)’s as there are c’s (since each column that contributes a c to
these first t letters must also contribute a c + 1 to them). In other words,

(number of (c + 1) ’s among the first t letters of KZλ)

≥ (number of c’s among the first t letters of KZλ) .

But (A.3b) yields

hKZλ
c (t) = (number of c’s among the first t letters of KZλ)

− (number of (c + 1) ’s among the first t letters of KZλ)

≤ 0

(by the preceding sentence). Since P (i) = Zλ, we can rewrite this as
hKP(i)

c (t) ≤ 0. This is precisely what we needed to show. Thus, i ∈ Υ
is proved.

16. page 124, (D.1i): The “Q (λ)” here means the tableau Q(λ) defined in (C.2h).
This should be said.

17. page 124, proof of Proposition (D.1i): Here is this proof in a bit more
detail:

From (D.1d), we have iλ = KTλ, and thus P
(
iλ
)
= P (KTλ) = Tλ (by

(C.2c) (i)) and Q
(
iλ
)
= Q (KTλ) = Q(λ) (by (C.2h)). On the other hand,

P
(

iQ(λ)
)
= Tλ (by (D.1g) (i) and (D.1h)) and Q

(
iQ(λ)

)
= Q (λ) (by (D.1h)).

Hence, P
(
iλ
)
= Tλ = P

(
iQ(λ)

)
and Q

(
iλ
)
= Q(λ) = Q (λ) = Q

(
iQ(λ)

)
.
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Since any word i is uniquely determined by the pair (P (i) , Q (i)) (by
(B.6a)), we thus obtain iλ = iQ(λ). The same argument, using Zλ and iλ

instead of Tλ and iλ, shows that iλ = iQ(λ).

18. page 124, §D.2: “(see (A.4a))” should be “(see (A.4c))”.

19. page 125, proof of Proposition (D.2b): At the very beginning of this proof,
add the following: “By Remark (A.3g) (5), the cases f̃c (i) = j and ẽc (i) = j
can be transformed into each other by swapping i with j. Thus, it suffices
to handle one of them.”.

20. page 125, proof of Proposition (D.2b): “By Proposition B (see (C.6b))”
should be “By Proposition B (see (C.6a))”.

21. page 125, proof of Proposition (D.2b): After “Now take P = P (i) in The-
orem (C.5b)”, add “(this is applicable, since f̃c (KP (i)) = KP (j) ̸= ∞ guar-
antees that MKP(i)

c ̸= 0)”.

22. page 125, proof of Proposition (D.2b): After “Therefore KP (j) = KP̃”,
add “, and thus P (j) = P̃ since any tableau is uniquely determined by its
Knuth unwinding (see (C.2c) (i))”.

23. page 125, proof of Proposition (D.2b): After “If q < r, then j′ = f̃c (i′)”,
add “(since q < r shows that Mi′ = Mi and thus qi′ = qi = q, so that
the construction of f̃c (i′) from i′ changes the same c as the construction of
f̃c (i) from i)”.

24. page 125, proof of the “only if” part of Theorem 1: Replace “i (1) , (2) , . . . , i (s)”
by “i (1) , i (2) , . . . , i (s)”.

25. page 125, last paragraph: It is worth reminding that ∞ does not count as a
word (and thus is not included in S (w)).

26. page 125, last paragraph: After “would be an element of S (w) of size
S− 1.” (the last words on page 125), add “Thus, w′ ∈ T.”.

27. page 126, first paragraph: After “But then Theorem (D.1g)”, add “(i)”.

28. page 126, proof of Proposition (D.2d): I would say a few words about
how the implication (1) =⇒ (3) in part (iii) is proven (all the other claims
do indeed follow from the things above). Namely, we proceed similarly to
the proof of the implication (1) =⇒ (2): Let w ∈ I (Q,≈). Define S (w)

to be the set of all words of the form f̃c1 f̃c2 · · · f̃ct (w), where c1, c2, . . . , ct
are arbitrary elements of {1, 2, . . . , n− 1} (again, we allow t to be 0). This
set S (w) is finite (being a subset of the finite set I (n, r)), and thus there
exists an element w′ of this set with largest size. This element w′ must
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then satisfy f̃c (w′) = ∞ for all c ∈ {1, 2, . . . , n− 1} (since otherwise, f̃c (w′)
would have even larger size than w′), and thus lies in Υ. By Proposition
(D.2b), it satisfies Q (w′) = Q (w) = Q (since w ∈ I (Q,≈)), so that w′ = iQ

(by Theorem (D.1g) (ii), since w′ ∈ Υ). Hence, iQ = w′ = f̃c1 f̃c2 · · · f̃ct (w)
for some c1, c2, . . . , ct (since w′ ∈ S (w)). Therefore, w = ẽct · · · ẽc2 ẽc1

(
iQ
)
.

Thus, the implication (1) =⇒ (3) is proved.

29. page 126, Weights: “Remember (see (A.3g)(3), or §3.1)” should be “Re-
member (see (A.3g)(4), or §3.1)”.

30. page 127, last line: “We shall see in §D.4”→ “We shall see in §D.8”.

31. page 127, proof of Proposition (D.2f) (ii): “For each t ∈ n” should be “For
each positive integer t” (the tableau Zλ can have more than n columns).

32. page 127, proof of Proposition (D.2f) (iii) and (iv): “By (D.2d) we know
that” should perhaps be “By (D.2d) (iii) we know that”.

33. page 127, proof of Proposition (D.2f) (iii) and (iv): “From (A.3g)(3)”
should be “From (A.3g)(4)”.

34. page 127, proof of Proposition (D.2f) (iii) and (iv): “Therefore i ⊴ iQ”
should be “Therefore wt (i) ⊴ wt

(
iQ)”.

35. page 128, between (D.3b) and (D.3c): I would replace “and n− iν = n− c”
by “and n− iν + 1 = n− c + 1” (after all, the “+1”s are in the formula that
you are rewriting).

36. page 128, between (D.3b) and (D.3c): After “So (D.3b) gives”, add “(upon
substutituting ν for r− ρ + 1 and rewriting the conditions)”.

37. page 128, after (D.3c): “for every subset Π of {1, . . . , s}” should be “for
every subset Π of {1, . . . , t}”.

38. page 128, Lemma (D.3e): It should be pointed out that you set C∞ := ∞,
so that the statement makes sense even if some of the operators yield ∞.

39. page 128, proof of Lemma (D.3e): “in the vertical line x = r” should be “in
the vertical line x = r/2” (at least if reflection is understood in the sense of
elementary geometry).

40. pages 128–129, proof of Lemma (D.3e): The shorthands “h” and “h̃” for
hi

c and hCi
n−c are unnecessary and only confusing in this proof; they should

both be replaced by “hi
c” and “hCi

n−c” everywhere they are used.

41. page 129, proof of Lemma (D.3e): Remove the comma before “becomes
the first maximum of”.
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42. page 129, proof of Lemma (D.3e): After “assumes its maximum at place
r− q for the first time.”, add “In other words, qCi

n−c = r− q.”.

43. page 129, proof of Lemma (D.3g): “the weight of C
(
iQ) is

(
nλ1 , (n− 1)λ2 , . . .

)
”

should be “the weight of C
(
iQ) is (λn, . . . , λ1). In other words, the weight

of iR is (λn, . . . , λ1) (since iR = C (i) = C
(
iQ))”.

44. page 129, proof of Lemma (D.3g): This whole proof is confusingly phrased
and awkward with its unnecessary separation of two cases that are really
two parts of the same argument. Here is how I would write it:

Let i ∈ I (n, r) have shape λ. We must show that Ci has shape λ as well.

Let Q = Q (i), so that Q ∈ Q (λ). By the definition of iQ, we have Q
(
iQ) =

Q and iQ ∈ T. The latter yields CiQ ∈ C (T) = Υ by Lemma (D.1c). But
each word w ∈ Υ has the form w = iR for some standard tableau R with
entries 1, 2, . . . , r (indeed, if we set R := Q (w), then iR is defined as the
unique word in Υ whose Q-symbol is R; but this word must be precisely w
because w ∈ Υ and Q (w) = R). Hence, the word CiQ has this form (since
CiQ ∈ Υ). In other words, CiQ = iR for some standard tableau R. Consider
this R.

By Proposition (D.2f) (i), we know that wt
(
iQ) = λ. Hence, wt

(
CiQ) =

(λn, . . . , λ1). In other words, wt (iR) = (λn, . . . , λ1), since C
(
iQ) = iR. But

Proposition (D.2f) (ii) shows that wt (iR) = (µn, . . . , µ1), where µ is the
shape of R. Comparing these, we find (λn, . . . , λ1) = (µn, . . . , µ1), hence
λ = µ. Thus, λ is the shape of R as well.

From Proposition (D.2d) (iii), we see that there are c1, c2, . . . , ct ∈ {1, 2, . . . , n− 1}
such that i = f̃c1 · · · f̃ct

(
iQ). Hence, by Lemma (D.3e), we conclude that

Ci = ẽn−c1 · · · ẽn−ct

(
CiQ) = ẽn−c1 · · · ẽn−ct (iR) (since CiQ = iR). Since

the operators ẽc preserve the shape of a word (because Proposition (D.2b)
shows that they even preserve its Q-symbol), we thus conclude that the
shape of Ci is the shape of iR. Hence, the shape of Ci is λ, since the shape
of iR is λ. This completes the proof.

45. page 130, definition of the Littelmann algebra: It is worth saying that
algebras (and thus subalgebras) are not required to be unital here.

46. page 130, (D.4b): “spanned the set” should be “spanned by the set”.

47. page 130, proof of Proposition (D.4e): “the basis {vi : i ∈ I}” should be
“the basis {vi : i ∈ I (n, r)}”.

48. page 130, proof of Proposition (D.4e): It is worth saying that fact (iv)
follows by induction on w using fact (iii).
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49. page 130, proof of Proposition (D.4e): After the final formula on this page,
add “Thus, fact (iv) shows that DS ∈ L, since fact (ii) shows that each DZ(c)
and each DY(c) lies in L.”.

50. page 131, proof of Proposition (D.4e): Replace “EndF (S, S)” by “EndF (S)”.

51. page 131, §D.5: “By Proposition B, this is an L-submodule of V⊗r” should
be “By Proposition (D.2b), this is an L-submodule of V⊗r”.

52. page 131, §D.5: After “For z = ∑
i

ξivi ∈ V⊗r”, add “(with ξi ∈ F)”.

53. page 132, Lemma (D.5b): “lies in the set” should be “is a subset of ”.

54. page 132, Corollary (D.5c): “lies in” should be “is a subset of ”.

55. page 132, the paragraph below Corollary (D.5c): “lies in” should be “is a
subset of ”.

56. page 132, definition of an L-module: After “so that x (ym) = (xy)m”, add
“and (x + y)m = xm + ym”. Also require that (λx)m = λ (xm) for all
λ ∈ F and x ∈ L and m ∈ M.

57. page 133, after (D.5f): “stated in (A.3g)(4)” should be “stated in (A.3g)(5)”.

58. page 133, (D.5g): “such that sz (i) ≤ sz (j) implies that i ≤ j” should be
“such that sz (i) < sz (j) implies that i ≤ j” (otherwise, the total order
would not exist, since different words can have the same size).

59. page 133, (D.5g): Replace “upper triangular” and “lower triangular” by
“strictly upper triangular” and “strictly lower triangular”, respectively.

60. page 133, Corollary (D.5h): Remove the comma after “subalgebra of L”.

61. page 133, (D.5j): This argumentation is a bit sloppy here. It has been shown
that the L-module V⊗r is a direct sum of finitely many simple L-modules
(indeed, this follows from Lemma (D.5i) and from V⊗r =

⊕
λ∈Λ+(n,r)

⊕
Q∈Q(λ)

MQ).

In other words, V⊗r is completely reducible as an L-module. But this does
not immediately yield that L itself is completely reducible as an L-module,
which would be necessary to apply [11, Theorem (25.2), page 164]. Instead,
the complete reducibility of L can be justified as follows:

The L-module V⊗r is faithful (since L is defined as an F-algebra of en-
domorphisms of V⊗r). Hence, the canonical F-algebra morphism L →
EndF (V⊗r) is injective. Moreover, this morphism is a morphism of L-
representations, if we equip L with the left regular L-module structure and
equip EndF (V⊗r) with the L-module structure given by post-action (i.e.,
the L-action given by (ℓα) (v) = ℓ · α (v) for all ℓ ∈ L and α ∈ EndF (V⊗r)
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and v ∈ V⊗r). Hence, the left regular L-module L can be identified with an
L-submodule of EndF (V⊗r). But the L-module EndF (V⊗r) is isomorphic
to

⊕
i∈I(n,r)

V⊗r (by the isomorphism that sends each α ∈ EndF (V⊗r) to the

family (α (vi))i∈I(n,r) ∈
⊕

i∈I(n,r)
V⊗r), and thus is completely reducible (since

V⊗r is completely reducible as an L-module, and since complete reducibil-
ity is inherited by finite direct sums). Hence, the left regular L-module
L is completely reducible as well (since any submodule of a completely
reducible L-module is completely reducible – see [11, (15.2)] for a proof).
Now, [11, Theorem (25.2)] really does show that L is semisimple.

62. page 135, proof of (D.7c): You write: “But KP (i) equals KP (KP (i)), hence
its Q-symbol is Q(λ) (see (C.2i))”. It would be easier to argue that Proposi-
tion (C.2h) yields Q (KP (i)) = Q(λ).

63. page 136, (D.7e): In this diagram, both “ f̃c(i)”s should be “ f̃c (i)”s.

64. page 136, after (D.7e): You write: “In the same way, one has a diagram like
(D.7e), with ẽc replacing f̃c”. This requires the ẽc-analogue of Proposition B,
which has never been stated explicitly and which would need to be proved.
Here is a quick way to do this:

(D.7e’) Proposition B’. Let i ∈ I (n, r) and c ∈ {1, 2, . . . , n− 1}.
Then, ẽc (i) ̸= ∞ holds if and only if ẽc (KP (i)) ̸= ∞. Moreover,
if these two inequalities hold, then ẽc (KP (i)) = KP (ẽc (i)).

Proof. We distinguish the cases ẽc (i) ̸= ∞ and ẽc (i) = ∞:

• Case 1: We have ẽc (i) ̸= ∞. Then, we must show that ẽc (KP (i)) =
KP (ẽc (i)) and ẽc (KP (i)) ̸= ∞.

Indeed, ẽc (i) is a word (since ẽc (i) ̸= ∞). Let us denote this word by
j. Thus, j = ẽc (i), so that f̃c (j) = i ̸= ∞. Therefore, (C.6a) (applied
to j instead of i) yields f̃c (KP (j)) ̸= ∞ and f̃c (KP (j)) = KP

(
f̃c (j)

)
.

The latter equality entails

KP (j) = ẽc

KP

 f̃c (j)︸ ︷︷ ︸
=i

 (
since ẽc undoes f̃c

)
= ẽc (KP (i)) .

Hence, ẽc (KP (i)) = KP

 j︸︷︷︸
=ẽc(i)

 = KP (ẽc (i)) ̸= ∞. This proves

(D.7e’) in Case 1.
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• Case 2: We have ẽc (i) = ∞. Then, we must show that ẽc (KP (i)) = ∞
as well.

The word KP (i) can be obtained from i by a sequence of basic moves
(by Proposition (C.3p)). Each basic move might change the height
function of the word, but leaves the maximum of this height function
unchanged (by the first claim in Lemma (C.6b)). Hence, the height
functions of the words KP (i) and i have the same maximum. In other
words, MKP(i)

c = Mi
c. Moreover, hi

c (r) is the total weight of all letters
of i (since i has r letters), whereas hKP(i)

c (r) is the total weight of all
letters of KP (i) (for similar reasons). Since the words i and KP (i)
have the same letters (just in a different order), this shows that hi

c (r) =
hKP(i)

c (r).

But ẽc (i) = ∞, and thus Mi
c = hi

c (r) (by the definition of ẽc in (A.3f)).
Hence, MKP(i)

c = Mi
c = hi

c (r) = hKP(i)
c (r). Therefore, ẽc (KP (i)) = ∞

(again by the definition of ẽc). Thus, (D.7e’) is proved in Case 2. ■

65. page 136, proof of (D.7h): Replace “Hom” by “Hom” (different font).

66. page 141, (D.10b): Replace “t ≥ 0” by “t ≥ 1”.

67. page 142: On the first line, replace “tableaux” by “tableau”.

68. page 142: The first displayed equation on this page is saying

“ trtt (t− 1)rt−1,t . . . 1r1t ”,

but it should be the other way round:

“ 1r1t2r2t · · · trtt ”.

69. page 142, item (1): “the sum of the entries in row s”→ “the number of the
entries in row s”.

70. page 142, item (3): Remove the period at the end of the displayed inequal-
ity.

71. page 142, last paragraph: This is a bit trickier than you make it sound:
Why exactly is the matrix U upper-triangular?

In truth, the triangularity of the matrix U is a red herring, and it would do
no harm to ignore it completely; it would only simplify the proof.

72. page 143, §D.11: “Chapter 6 of the collective work” should be “Chapter 5
of the collective work”. Likewise, all references to LLT in this section suffer
from the same numbering shift: any number starting with “6.” should be
changed to start with “5.”.
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Also, it is worth warning the reader that LLT use the notation 0 for what
is called ∞ in this appendix (that is, the undefined value of f̃c and ẽc), and
that the definition of σi in LLT’s Section 5.5 suffers from a typo (it says
“σi
(
ar

i as
i+1
)
= as

i as
i+1” while meaning “σi

(
ar

i as
i+1
)
= as

i ar
i+1”).

73. page 143, (D.11e): “plactid”→ “plactic”.

74. page 144, (D.11e): “implies uu′ ∼ vv′” should be “implies uv ∼ u′v′”.

75. page 144, (D.11e): Remove the comma after “with the ∼-class of u′”.

76. page 144, (D.11f): It would be worth mentioning that Z [M] is known as
the monoid ring of M.

77. page 145, (D.11g): Remove the comma after “Then a further generaliza-
tion”.

78. page 145, (D.11g): The last sentence here (“Notice that dλ appears in the
“λ-rectangle” (D.6d)”) looks wrong to me: The number of plactic classes
of weight λ is not the same as the number of plactic classes of shape λ
(which is the dλ from (D.6d)).

79. page 146, (D.11i): After “is the last place”, add “of k”.

80. page 146, (D.11i): After “is the place”, add “of k”.

14.5. Corrections to §E

1. page 149: “the directed graph Γ in (D.11i)” should be “the directed graph
Γ in (D.11h)”.

2. page 149: On the last line, “(C.2c)” should be “(C.2h)”.

15. A shorter path to the Littlewood–Richardson
rule

pages 129–140, sections D.4 till D.9: This is all nice and interesting, but the
Littlewood–Richardson rule (D.10a) can be proved quite easily without any use
of the Littelmann algebra. Here is how this proof goes:

(D.12a) Lemma. Let i ∈ I (n, r) and j ∈ I (n, s) be two words. Then,
any word that is ≈-equivalent to the concatenation i | j must itself
be a concatenation i′ | j′, where i′ ∈ I (n, r) and j′ ∈ I (n, s) are two
words with i′ ≈ i and j′ ≈ j.

30



Errata to “Polynomial representations of GLn” February 24, 2025

Proof. Let w be a word that is ≈-equivalent to the concatenation i | j. We must
prove that w is itself a concatenation i′ | j′, where i′ ∈ I (n, r) and j′ ∈ I (n, s) are
two words with i′ ≈ i and j′ ≈ j.

By Theorem A (see (D.2a)), the word w can be obtained from i | j by a sequence
of operations of the form ẽc and f̃c. Hence, it suffices to consider the case when
w = ẽc (i | j) or w = f̃c (i | j) for some c ∈ {1, 2, . . . , n− 1} (the general case will
then follow by induction). Let us thus assume that we are in this case. Fix the
c ∈ {1, 2, . . . , n− 1} such that w = ẽc (i | j) or w = f̃c (i | j).

Now, (A.3g) (6) shows that f̃c (i | j) is either f̃c (i) | j or i | f̃c (j) (or ∞). Thus,
if w = f̃c (i | j), then w = f̃c (i) | j or w = i | f̃c (j). In either case, w thus has
the form i′ | j′, where i′ ∈ I (n, r) and j′ ∈ I (n, s) are two words with i′ ≈ i and
j′ ≈ j (because Theorem A shows that f̃c (i) ≈ i and f̃c (j) ≈ j). Hence, we are
done in the case when w = f̃c (i | j).

The case when w = ẽc (i | j) is completely analogous. Hence, we are done in
all cases, and Lemma (D.12a) is proved. ■

Now, we let A∗ denote the set of all words with letters in n. Thus, A∗ =⋃
r≥0

I (n, r), and this is a disjoint union. The set A∗ is a monoid with respect to

concatenation (ij = i | j for any two words i, j ∈ A∗), and thus has a monoid ring
Z [A∗]. The elements of the latter ring Z [A∗] are formal Z-linear combinations
of words.

An element f ∈ Z [A∗] is said to be ≈-invariant if it has the property that
whenever i, j ∈ A∗ are two words satisfying i ≈ j, the coefficients of i and j in f
are equal. For instance, the element

2 · [133]− 3 · [331]− 3 · [313] + 5 · [1234]

(here we put words in square brackets, to avoid confusing them with the scalar
factors in front of them) is ≈-invariant, but the element [331] itself is not (since
the word 313 is ≈-equivalent to 331 but appears with a different coefficient in
[331]).

Let Z [A∗]≈ denote the set of all ≈-invariant elements of Z [A∗].
We use the notations P (λ) and Q (λ) and P : Q defined in (D.6a) and (D.6b)

and (D.6c). For any λ ∈ Λ+ (n, r) and any Q ∈ Q (λ), we let

(∗ : Q) := ∑
P∈P(λ)

(P : Q) = ∑
i∈A∗;

Q(i)=Q

i = ∑
i∈Iλ(Q,≈)

i ∈ Z [A∗] .

This element (∗ : Q) is the sum of all words in the ≈-equivalence class Iλ (Q,≈);
hence, all words in this class appear in it with coefficient 1, while all other words
appear with coefficient 0. Therefore, this element (∗ : Q) is ≈-invariant, and thus
belongs to Z [A∗]≈. Moreover:

(D.12b) Lemma. The set Z [A∗]≈ is the Z-linear span of the elements
(∗ : Q) for all λ ∈ Λ+ (n, r) and Q ∈ Q (λ).
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Proof. These elements (∗ : Q) are precisely the sums of the ≈-equivalence
classes in A∗. But the span of these sums is precisely Z [A∗]≈, by the definition
of Z [A∗]≈. ■

(D.12c) Lemma. The set Z [A∗]≈ is a unital Z-subalgebra of Z [A∗].

Proof. Clearly, Z [A∗]≈ is a Z-submodule, and contains the unity of Z [A∗]
(which is the empty word). It remains to show that it is closed under multiplica-
tion. By Lemma (D.12b), it suffices to show that (∗ : Q) (∗ : S) ∈ Z [A∗]≈ for all
λ ∈ Λ+ (n, r), Q ∈ Q (λ), µ ∈ Λ+ (n, s) and S ∈ Q (µ). So let us consider such
λ, Q, µ and S.

Recall that (∗ : Q) = ∑
i∈Iλ(Q,≈)

i and (∗ : S) = ∑
j∈Iµ(S,≈)

j (similarly). Hence,

(∗ : Q) (∗ : S) =

 ∑
i∈Iλ(Q,≈)

i

 ∑
j∈Iµ(S,≈)

j

 = ∑
i∈Iλ(Q,≈)

∑
j∈Iµ(S,≈)

i | j.

Hence, (∗ : Q) (∗ : S) is the sum of all concatenations i | j with i ∈ Iλ (Q,≈) and
j ∈ Iµ (S,≈). Note that any two such concatenations are distinct (because all
words in Iλ (Q,≈) have length r and all words in Iµ (S,≈) have length s), and
thus this sum has no repeated addends. Therefore,

(∗ : Q) (∗ : S) = ∑
w∈X

w, (16)

where X is the set of all words w ∈ A∗ that can be written as concatenations i | j
with i ∈ Iλ (Q,≈) and j ∈ Iµ (S,≈).

But Lemma (D.12a) shows that if i | j is such a concatenation, then so is every
word w that is ≈-equivalent to i | j (because Lemma (D.12a) tells us that any
such word w can be written as a concatenation i′ | j′ with i′ ≈ i and j′ ≈ j, and
of course these ≈-relations entail that i′ ∈ Iλ (Q,≈) and j′ ∈ Iµ (S,≈) because
of i ∈ Iλ (Q,≈) and j ∈ Iµ (S,≈)). In other words, the set X is closed under ≈
(that is, every element that is ≈-equivalent to an element of X must itself lie in
X). In other words, X is a union of ≈-equivalence classes. Hence, the sum ∑

w∈X
w

is ≈-invariant, i.e., belongs to Z [A∗]≈. In view of (16), we can rewrite this as
follows: (∗ : Q) (∗ : S) belongs to Z [A∗]≈. As explained above, this completes
the proof of Lemma (D.12c). ■

(D.12d) Definition. Let Λ+ (n, ∗) :=
⊔

r∈N

Λ+ (n, r) and Q (∗) :=⊔
λ∈Λ+(n,∗)

Q (λ).

(D.12e) Proposition. The map

T→ Q (∗) ,
w 7→ Q (w)

is a bijection.

32



Errata to “Polynomial representations of GLn” February 24, 2025

Proof. Clearly, this map is well-defined. It remains to prove that each Q ∈
Q (∗) has exactly one preimage under it. In other words, it remains to prove
that for each Q ∈ Q (∗), there is exactly one w ∈ T satisfying Q (w) = Q. In
other words, it remains to prove that for each Q ∈ Q (∗), there is exactly one
w ∈ T lying in the set I (Q,≈). In other words, it remains to prove that for each
Q ∈ Q (∗), there is exactly one w ∈ I (Q,≈) lying in the set T. But this is part of
Proposition (D.2d) (i). ■

(D.12f) Definition. For any λ ∈ Λ+ (n, r), we define the Schur poly-
nomial sλ ∈ Z [X1, X2, . . . , Xn] by

sλ := ∑
P∈P(λ)

XP, where XP := ∏
c∈[λ]

XP(c).

Splitting this sum by the weight of P, we can rewrite this formula as

sλ := ∑
α∈Λ(n,r)

∑
P∈P(λ) has weight α

Xα1
1 Xα2

2 · · ·X
αn
n

= ∑
α∈Λ(n,r)

|{P ∈ P (λ) | P has weight α}| · Xα1
1 Xα2

2 · · ·X
αn
n .

This polynomial sλ is precisely the formal character ΦMλ
from §D.9 and also is

precisely the formal character ΦVλ
from §3.4 and §5. This is shown in the proof

of (D.9a). As a consequence, the equality

ΦVλ
·ΦVµ = ∑

ν

cν
λ,µΦVν

(which defines the Littlewood–Richardson coefficients cν
λ,µ) can be rewritten as

sλsµ = ∑
ν

cν
λ,µsν. (17)

We shall now obtain a different formula for sλsµ, which will then (by comparing
coefficients) yield an expression for cν

λ,µ.

(D.12g) Theorem (Littlewood–Richardson rule, general form). Let
λ ∈ Λ+ (n, r) and µ ∈ Λ+ (n, s). Let Q ∈ Q (λ) and S ∈ Q (µ). Let
W be the set of all words k ∈ I (n, r + s) of the form k = i | j, where

(a1) the word i ∈ I (n, r) satisfies Q (i) = Q;

(b1) the word j ∈ I (n, s) satisfies Q (j) = S;

(c1) the word k belongs to T.

Then,
sλsµ = ∑

k∈W
swt(k).

Here, wt (k) denotes the weight of a word k.
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Proof. Consider the surjective unital Z-algebra morphism π : Z [A∗] →
Z [X1, X2, . . . , Xn] that sends each word i1i2 · · · ir to the (commutative) monomial
Xi1 Xi2 · · ·Xir . Then,

π ((∗ : Q)) = π

 ∑
P∈P(λ)

(P : Q)

 since (∗ : Q) = ∑
P∈P(λ)

(P : Q)


= ∑

P∈P(λ)
π ((P : Q))︸ ︷︷ ︸

=XP
(since the letters of P:Q

are the entries of P)

(since the map π is Z-linear)

= ∑
P∈P(λ)

XP = sλ (by the definition of sλ) .

Similarly,
π ((∗ : S)) = sµ.

Multiplying these two equalities, we find

π ((∗ : Q))π ((∗ : S)) = sλsµ,

so that

sλsµ = π ((∗ : Q))π ((∗ : S))
= π ((∗ : Q) (∗ : S)) (18)

(since π is an algebra morphism).
But the product (∗ : Q) (∗ : S) lies in the subalgebra Z [A∗]≈ (by Lemma (D.12c)).

Thus, it can be written as a linear combination

(∗ : Q) (∗ : S) = ∑
W∈Q(∗)

cW (∗ : W) (19)

with coefficients cW ∈ Z (since Lemma (D.12b) says that Z [A∗]≈ is the Z-linear
span of the elements (∗ : W) for all W ∈ Q (∗)).

Now, let πT : Z [A∗]→ Z [A∗] be the Z-linear map that

sends each word w ∈ A∗ to

{
w, if w ∈ T;
0, else.

Thus, πT is the canonical projection from Z [A∗] to the span of the basis vectors
w that belong to T. While πT is not a Z-algebra morphism, we can notice a
few useful properties. Most importantly, applying πT to a sum of words has the
effect of filtering out all the words that don’t belong to T from this sum, leaving
only the words that do belong to T in place. Thus,

πT ((∗ : Q)) = iQ (20)
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(because among all the words i ∈ Iλ (Q,≈) that make up the sum (∗ : Q) =
∑

i∈Iλ(Q,≈)
i, there is only one that belongs to T, namely the word iQ, as we know

from Proposition (D.2d) (i)). The same argument (applied to W instead of Q)
shows that for any W ∈ Q (∗), we have

πT ((∗ : W)) = iW . (21)

Hence, applying the map πT to the equality (19), we find

πT ((∗ : Q) (∗ : S)) = πT

 ∑
W∈Q(∗)

cW (∗ : W)


= ∑

W∈Q(∗)
cW πT ((∗ : W))︸ ︷︷ ︸

=iW
(by (21))

(since πT is Z-linear)

= ∑
W∈Q(∗)

cW iW . (22)

On the other hand,
(∗ : Q) = ∑

i∈A∗;
Q(i)=Q

i = ∑
i∈I(n,r);
Q(i)=Q

i

(since any word i ∈ A∗ satisfying Q (i) = Q must have |Q| = |λ| = r letters and
thus belong to I (n, r)) and similarly

(∗ : S) = ∑
j∈I(n,s);
Q(j)=S

j.

Multiplying these two equalities, we find

(∗ : Q) (∗ : S) =

 ∑
i∈I(n,r);
Q(i)=Q

i


 ∑

j∈I(n,s);
Q(j)=S

j


= ∑

i∈I(n,r);
Q(i)=Q

∑
j∈I(n,s);
Q(j)=S

i | j. (23)

This sum has no repeated addends (since we can uniquely reconstruct the two
words i and j from the concatenation i | j when we know that i lies in I (n, r)),
and thus can be rewritten as the sum of all words k ∈ A∗ that can be written as
i | j where the word i ∈ I (n, r) satisfies Q (i) = Q and where the word j ∈ I (n, s)
satisfies Q (j) = S. Hence, (23) rewrites as follows:

(∗ : Q) (∗ : S) = ∑
k∈A∗;

k can be written as i|j
with i∈I(n,r) and j∈I(n,s)
and Q(i)=Q and Q(j)=S

k = ∑
k∈A∗;

k can be written as i|j
with Q(i)=Q and Q(j)=S

k
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(here we have dropped the requirements “i ∈ I (n, r)” and “j ∈ I (n, s)”, since
they follow automatically from Q (i) = Q and Q (j) = S). Applying the map πT

to this equality, we find

πT ((∗ : Q) (∗ : S)) = πT

 ∑
k∈A∗;

k can be written as i|j
with Q(i)=Q and Q(j)=S

k

 = ∑
k∈T;

k can be written as i|j
with Q(i)=Q and Q(j)=S

k

(since πT filters the addends for belonging to T). Comparing this with (22), we
obtain

∑
W∈Q(∗)

cW iW = ∑
k∈T;

k can be written as i|j
with Q(i)=Q and Q(j)=S

k.

Comparing the coefficients of the word iW on both sides of this equality (for a
given W ∈ Q (∗)), we obtain

cW =

{
1, if iW can be written as i | j with Q (i) = Q and Q (j) = S;
0, else

(24)

for any W ∈ Q (∗) (since Proposition (D.2d) (i) shows that iW ∈ T).
For any tableau W, we let shape (W) denote the shape of W. Thus, if W ∈ Q (ν)

for some ν, then shape (W) = ν.
Now, let us apply the algebra morphism π to both sides of (19). We find

π ((∗ : Q) (∗ : S)) = π

 ∑
W∈Q(∗)

cW (∗ : W)


= ∑

W∈Q(∗)
cW π ((∗ : W))︸ ︷︷ ︸

=sshape(W)

(this is proved just like
we showed π((∗:Q))=sλ)

(since π is linear)

= ∑
W∈Q(∗)

cWsshape(W).

In view of (18), we can rewrite this as

sλsµ = ∑
W∈Q(∗)

cWsshape(W)

= ∑
w∈T

cQ(w)sshape(Q(w)) (25)

(here, we substituted Q (w) for W in the sum, using the bijection from Proposi-
tion (D.12e)).
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Now, let w ∈ T. Then, iQ(w) = w (indeed, iQ(w) is defined as the unique word
in I (Q (w) ,≈) lying in T; but the word w itself also lies in I (Q (w) ,≈) and in
T, and therefore we conclude from the uniqueness that w must be iQ(w)). But
(24) yields

cQ(w) =

{
1, if iQ(w) can be written as i | j with Q (i) = Q and Q (j) = S;
0, else

=

{
1, if w can be written as i | j with Q (i) = Q and Q (j) = S;
0, else

(26)

(since iQ(w) = w). Furthermore, Proposition (D.2f) (i) yields wt
(

iQ(w)
)
= shape (Q (w)),

and thus
shape (Q (w)) = wt

(
iQ(w)

)
= wt (w) (27)

(since iQ(w) = w).
Forget that we fixed w. We thus have shown that each w ∈ T satisfies (26) and

(27). Hence, we can rewrite (25) as

sλsµ = ∑
w∈T

{
1, if w can be written as i | j with Q (i) = Q and Q (j) = S;
0, else

swt(w)

= ∑
w∈T;

w can be written as i|j
with Q(i)=Q and Q(j)=S

swt(w) = ∑
k∈T;

k can be written as i|j
with Q(i)=Q and Q(j)=S

swt(k)

= ∑
k∈I(n,r+s);

k can be written as i|j
with Q(i)=Q and Q(j)=S;

k∈T

swt(k) (28)

(here, we have restricted the sum to k ∈ I (n, r + s) only, because only a word
of length r + s has any chance of being written as i | j with Q (i) = Q and
Q (j) = S). But the conditions under the summation sign in (28) are precisely the
conditions (a1), (b1) and (c1) in the definition of the set W in Theorem (D.12g).
Hence, the summation sign can be rewritten as “ ∑

k∈W
”.

Hence, (28) rewrites as
sλsµ = ∑

k∈W
swt(k).

This proves Theorem (D.12g). ■

(D.12h) Theorem (Littlewood–Richardson rule, restated form). Let
λ ∈ Λ+ (n, r) and µ ∈ Λ+ (n, s). Let Q ∈ Q (λ) and S ∈ Q (µ). Let
W be the set of all words k ∈ I (n, r + s) of the form k = i | j, where
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(a2) the word i ∈ I (n, r) satisfies Q (i) = Q;

(b2) the word j is iS;

(c2) the reverse B (k) of the word k is a lattice permutation.

Then,
sλsµ = ∑

k∈W
swt(k).

Here, wt (k) denotes the weight of a word k.

Proof. This will follow from Theorem (D.12g), once we can show that the
set W defined in Theorem (D.12g) is precisely the set W defined in Theorem
(D.12h). For this purpose, we must show that the conditions (a1), (b1) and (c1)
from Theorem (D.12g) (taken together) are equivalent to the conditions (a2), (b2)
and (c2) from Theorem (D.12h).

Let us do this. Consider two words i and j and their concatenation k = i | j ∈
I (n, r + s).

We observed in §D.1 that a word i belongs to T if and only if B (i) is a lattice
permutation. Hence, k ∈ T if and only if B (k) is a lattice permutation. In other
words, condition (c1) is equivalent to condition (c2). Thus, we WLOG assume
that both conditions (c1) and (c2) hold (since otherwise, neither of them holds,
and we are done). Hence, k ∈ T, and the word B (k) is a lattice permutation.

If a word w = w1w2 · · ·wp is a lattice permutation, then any prefix of w (that
is, any word of the form w1w2 · · ·wq with q ≤ p) is a lattice permutation again
(by the definition of “lattice permutation”). Hence, any prefix of B (k) is a lattice
permutation (since B (k) is a lattice permutation). But B (j) is a prefix of B (k)
(since k = i | j and thus B (k) = B (i | j) = B (j) | B (i)). Thus, we conclude that
B (j) is a lattice permutation. In other words, j ∈ T (since a word i belongs to T
if and only if B (i) is a lattice permutation).

Therefore, if Q (j) = S, then j ∈ I (S,≈) and thus j = iS (because Proposition
(D.2d) (i) tells us that iS is the only word in I (S,≈) that belongs to T). Hence,
condition (b1) implies condition (b2).

Conversely, if the word j is iS, then Q (j) = Q
(
iS) = S (by the definition of

iS) and thus also j ∈ I (n, s) (since Q (j) = S shows that j has as many letters
as S has entries; but S ∈ Q (µ) shows that S has |µ| = s many entries). Hence,
condition (b2) implies (b1). Thus, we have shown that the two conditions (b1)
and (b2) imply one another; in other words, they are equivalent.

Finally, conditions (a1) and (a2) are equivalent, since they say the same thing.
Altogether, we now have seen that the conditions (a1), (b1) and (c1) from

Theorem (D.12g) (taken together) are equivalent to the conditions (a2), (b2) and
(c2) from Theorem (D.12h). This completes our proof of (D.12h). ■

(D.12i) Theorem (Littlewood–Richardson rule, special form). Let
λ ∈ Λ+ (n, r) and µ ∈ Λ+ (n, s). Let W be the set of all words k ∈
I (n, r + s) of the form k = i | j, where
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(a3) the word i satisfies KP (i) = i, and the tableau P (i) has shape λ;

(b3) the word j is iµ;

(c3) the reverse B (k) of the word k is a lattice permutation.

Then,
sλsµ = ∑

k∈W
swt(k).

Here, wt (k) denotes the weight of a word k.

Proof. We set Q := Q(λ) (see (C.2h) for the definition of this) and S := Q(µ).
Then, we apply Theorem (D.12h). As a result, we obtain

sλsµ = ∑
k∈W

swt(k),

where the setW is the one defined in Theorem (D.12h). It remains to show that
the setW defined in Theorem (D.12h) is precisely the setW defined in Theorem
(D.12i). For this purpose, we must show that the conditions (a2), (b2) and (c2)
from Theorem (D.12h) (taken together) are equivalent to the conditions (a3), (b3)
and (c3) from Theorem (D.12i).

Let us do this. Consider two words i and j and their concatenation k = i | j ∈
I (n, r + s).

We have iµ = iQ
(µ)

by Proposition (D.1i). In other words, iµ = iS (since S =

Q(µ)). Hence, condition (b2) is equivalent to (b3). Moreover, condition (c2) is
equivalent to (c3), since they are literally the same.

We know from Exercise (C.2i) that a word i of shape λ satisfies KP (i) = i if
and only if Q (i) = Q(λ). In other words, a word i of shape λ satisfies KP (i) = i
if and only if Q (i) = Q (since Q = Q(λ)). Hence, if a word i of shape λ satisfies
KP (i) = i, then Q (i) = Q and therefore also i ∈ I (n, r) (since Q (i) = Q shows
that i has as many letters as Q has entries; but Q = Q(λ) shows that Q has |λ| = r
many entries). In other words, condition (a3) implies (a2). Conversely, condition
(a2) implies (a3), since Q (i) = Q = Q(λ) ∈ Q (λ) entails that i has shape λ and
thus satisfies KP (i) = i (by Exercise (C.2i), since Q (i) = Q(λ)). Thus, the two
conditions (a2) and (a3) mutually imply one another. In other words, they are
equivalent.

Altogether, we now have seen that the conditions (a2), (b2) and (c2) from
Theorem (D.12h) (taken together) are equivalent to the conditions (a3), (b3) and
(c3) from Theorem (D.12i). This completes our proof of (D.12i). ■

(D.12j) Theorem (Littlewood–Richardson rule, rewritten special form).
Let λ ∈ Λ+ (n, r) and µ ∈ Λ+ (n, s) and ν ∈ Λ+ (n, r + s). Let Wν be
the set of all words k ∈ I (n, r + s) of the form k = i | j, where

(a3) the word i satisfies KP (i) = i, and the tableau P (i) has shape λ;
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(b3) the word j is iµ;

(c3’) the reverse B (k) of the word k is a lattice permutation of weight
ν.

Then,
cν

λ,µ = |Wν| .

Proof. Take the formula sλsµ = ∑
k∈W

swt(k) from Theorem (D.12i), and compare

the coefficients of sν on both of its sides. The coefficient on the left hand side is
cν

λ,µ (by (17)), while the coefficient on the right hand side is |Wν|. ■

Proof of (D.10a): The claim of (D.10a) is just Theorem (D.12j), with the words
k, i, j and the setWν renamed as i, j, k andW . ■
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