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Errata and comments

The following are all comments I have noted down when reading your text “An
Introduction to Symmetric Functions and Their Combinatorics” (Student Mathemati-
cal Library #91, AMS 2019). My apologies for mixing real corrections with sub-
jective suggestions, pedantic misreadings and the occasional alternative proof I
couldn’t help writing up. I also have never proofread the list below, so it might
be in need of its own error hunter.

“Line −n” (for negative n) means “line n from the bottom”. Lines in displayed
formulas are counted as lines.

1. page 1: You write: “The algebra of symmetric polynomials in n variables
is isomorphic to the algebra generated by the characters of the irreducible
representations of the symmetric group Sn”. I am pretty sure this is wrong
in any possible interpretation. The former algebra is a polynomial ring; the
latter is finite-dimensional. The closest thing that is true is that the algebra
of symmetric functions(!) is isomorphic to the direct sum of the character
rings of S0, S1, S2, . . ., equipped with a special multiplication obtained from
induction (not just from multiplying characters pointwise).

2. page 2: I doubt that “the set of all symmetric functions with coefficients in
Q is a finite-dimensional vector space over Q”. I assume you are talking
about a graded component of this space.

3. page 3: When defining Xn, you should require n ≥ 0 instead of n ≥ 1.
Indeed, you use X0 = {} (and the respective symmetric functions ek (X0)
and hk (X0)) in Proposition 3.1, for example (since Proposition 3.1 for n = 1
mentions X1−1).

4. page 9, proof of Proposition 1.11: The expression “µ1, . . . , µj+1, µj, . . . , µn”
can be interpreted in two ways. The most obvious interpretation (namely,
as the concatenation of the (j + 1)-tuple

(
µ1, . . . , µj+1

)
with the (n− j + 1)-

tuple
(
µj, . . . , µn

)
) is the wrong one; the right interpretation is “the n-tuple

(µ1, . . . , µn) with its j-th and (j + 1)-st entries swapped”. Worth pointing
out.

5. page 14: When defining the total degree, replace “a1 + a2 · · · ” by “a1 +
a2 + · · · ”.
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6. page 17, between Definition 1.19 and Definition 1.20: “we constructed the
monomial symmetric functions” → “we constructed the monomial sym-
metric polynomials”.

7. page 17, Definition 1.19: This definition of Λ has the consequence that
∞
∏
i=1

(1 + xi) is a symmetric function. This conflicts with the standard defi-

nition of symmetric functions in the literature (which requires a symmet-

ric function to be of bounded degree, so that
∞
∏
i=1

(1 + xi) does not fit the

bill). It also conflicts with your own Definition 7.5, because if you allow

f :=
∞
∏
i=1

(1 + xi) to be an element of Λ, then the Hall inner product 〈 f , f 〉

is undefined. It makes sense to study both “versions” of symmetric func-
tions (i.e., the symmetric power series of bounded degree, and the merely
symmetric power series), but they need different names and different no-
tations.

8. page 17, solution to Exercise 1.21: Replace “sum of the images of x2
1x2

under all permutations” by “sum of all monomials that can be obtained
from x2

1x2 through permutations”. (There is a subtle difference: The former
wording suggests a sum over permutations, whereas the latter suggests
a sum over monomials. The latter is right, because one and the same
monomial can be obtained using different permutations and thus would
be counted multiple times according to the former wording.)

9. page 20, Exercise 1.21: This exercise relies on a concept of infinite prod-
ucts of formal power series, which is not completely obvious. Since it is
not easily found in algebra textbooks (usually, textbooks only define con-
vergence of formal power series in finitely many variables, and not all of
these definitions are easily adapted to the case of infinitely many variables;

for example,
∞
∏
i=1

(1 + xi) does not converge with respect to total degree,

but rather converges with respect to the product topology), I suggest say-
ing some words about how it is defined.

10. page 24, between Example 2.1 and Definition 2.2: “is the sum of all prod-
ucts”→ “is (up to sign) the sum of all products”.

11. page 27, second paragraph: “in any linear combination of monomial sym-
metric functions” → “in any linear combination of monomial symmetric
polynomials (in a given set of variables Xn)”. After this sentence, add “The
same applies to monomial symmetric functions.”.

12. page 27, proof of Proposition 2.6: The “If n ≥ |λ|” here is misplaced:
The sentence in which it appears does not require n ≥ |λ| (but the next
sentence does).
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13. page 28, solution to Example 2.7: I would replace “with distinct positive
integers” by “with k distinct positive integers”.

14. page 30, solution to Example 2.7: “case A4”→ “case A3”.

15. page 31, proof of Proposition 2.10: When you say “By (2.2) we have”, you
mean not (2.2) but rather the next displayed equality after (2.2).

16. page 32, proof of Proposition 2.10: Before “each such eλj must contribute
exactly one factor x2”, add “µ1 = λ′1 and µ2 = λ′2 imply that” (it is easy to
lose track of the context here).

17. page 34, Proposition 2.12 (c): After “l (λ) urns”, I’d add “(which are dis-
tinguishable and labelled 1, 2, . . . , l (λ))”.

18. page 37, proof of Theorem 2.17: I’d mention that different monomials of
f lead to different eλ’s in f (e1, e2, . . . , en); otherwise the same argument
would show the obviously wrong claim that e1, e1, e1, . . . are algebraically
independent.

19. page 38, lines 1–4: What you are saying here is not a restatement of Theo-
rem 2.17 alone, but also incorporates the fact that the e1, e2, e3, . . . generate
the Q-algebra Λ. (This follows from Corollary 2.11, too.)

20. page 39, Definition 2.19: “complete homogeneous polynomial” → “complete
homogeneous symmetric polynomial”.

21. page 39, Definition 2.19: Usually your text isn’t exactly suffering from
a shortage of examples, but here is one place where an example would
be really helpful: after this definition. The undefined concepts around
multisets (e.g., what is the size of a multisubset? is a sum over J ⊆ [[n]]
itself a sum over a set or over a multisubset?) might confuse some readers;
it would be helpful to dispel such confusion by showing (say) h1, h2, h3 and
h2 (X3).

22. page 41: “In Example 2.20 we found”→ “In Example 2.22 we found”.

23. page 43, Combinatorial Proof of Proposition 2.24: “then we just need to
give an involution” might be a bit abrupt for those readers who aren’t used
to proofs by sign-reversing involutions. What about including a simple
example for this method before (say, a proof of ∑

T⊆S
(−1)|T| = 0 for any

nonempty finite set S) in an appendix?

(Strangely enough, you do handhold the reader about sign-reversing invo-
lutions – but not until later, when you prove Proposition 3.2.)

24. page 44, line 1: “new way” → “way” (I don’t think you showed this fact
in any other way before).
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25. page 44, proof of Proposition 2.25: It might be worth pointing out that
the induction step tacitly uses the fact that hλhµ = hν for some partition
ν (namely, for ν = λ ∪ µ as defined on page 13). Actually, it may help
making this fact into a separate lemma; you use it on page 180 as well.

26. page 45, Proposition 2.28: The word “nonempty” isn’t needed. (Likewise
on the few lines before Proposition 2.28.)

27. page 46, proof of Proposition 2.30 (i): The fact that µ >lex λ if µ is ob-
tained from λ by merging parts and rearranging the resulting numbers
into weakly decreasing order is not as obvious as it might appear; I would
suggest at least an example to illustrate the reasons for it.

28. page 48: When you write “logarithms of formal power series behave in
analogy with logarithms of polynomials”, do you really mean “polynomi-
als”? I think logarithms of polynomials aren’t much simpler than loga-
rithms of arbitrary formal power series.

29. page 48, proof of Proposition 2.33: I’d remove the “P (t) =” at the begin-
ning of the displayed computation, since it’s not clear which side of (2.16)
it is referring to. (Do you even need the notation P (t) anywhere? If not, I’d
remove it from the statement of the proposition as well. It’s not standard;

Macdonald’s book uses P (t) for what you would call
d
dt

P (t).)

30. page 49, Problem 2.9: The theorem you are asking the reader to prove here
is the Gale–Ryser theorem, which is much harder than most other problems
in this section. As far as symmetric functions are concerned, only the “only
if” part is useful, while the “if” part is a nice curiosity. (Mark Wildon, in
§5.2 of his An Involutive Introduction to Symmetric Functions, gives a proof of
the “if” part using symmetric functions, but it uses more tools than at the
reader’s disposal in §2 of your book.)

31. page 49, Problem 2.14: Replace “n ≥ 0” by “n ≥ 1” twice in this problem,
since there is no f0.

32. page 50, Problem 2.24: Replace “n − 1− k” by “n − 1 + k”. Also worth
pointing out that k can be any integer ≥ 1 − n here (with the standard
convention that hi (Xn) = 0 for all i < 0).

33. page 51, Problem 2.27: Why are you repeating the equality (2.15) here?

34. page 51, Problem 2.28 (a): Replace “n× n” by “k× k”.

35. page 51, Problem 2.28 (a): “exactly one entry of column j is λj” is literally
false if λj = 0. There are two ways to fix this: either you make the matrix
k× l (λ) (as opposed to k× k), or you replace “exactly one entry of column
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j is λj and all other entries in column j are 0” by “column j has an entry
equal to λj while all other entries of this column are 0”.

36. page 51, Problem 2.28 (b): “for all” → “for each”. (Otherwise, the “all of
which have the same type” part sounds like all balls in all columns must
have the same type.)

37. page 51: Additional problem suggestions: It is worth adding an exercise
that asks to show that if λ, µ ` k satisfy Mλ,µ (p, m) 6= 0, then λ E µ in
dominance order. (This would strengthen Proposition 2.30 (i).) Another
exercise could ask to show that the relation Mλ,µ (p, m) 6= 0 between λ and
µ is in itself a partial order on the set of all partitions of k.

38. page 54, proof of Proposition 3.2: After “followed by a choice of one of
the variables xs in that term”, I would add “(there are j possible choices, to
explain the factor j in (3.4))”.

39. page 55, proof of Proposition 3.2: “For example, when k = 7 and j = 3”
→ “For example, when k = 7 and j = 4”.

40. page 57, proof of Proposition 3.3: “after the rightmost r” → “after the
rightmost number ≤ r” (there might not be an r in the first title).

41. page 57, proof of Proposition 3.3: I would suggest at least mentioning the
existence of a simple and slick proof of (3.6) that uses neither bijections nor

power series: Expand the pj in
k
∑

j=1
hk−j pj using (3.5), then interchange the

summation signs, then get rid of the inner sum using (2.12) to obtain khk.
Probably (3.7) can be proved in the same way.

42. page 58, proof of Proposition 3.5: Here you are tacitly using the fact that
evaluating the symmetric polynomial ej (Xn) at 1, 1, . . . , 1︸ ︷︷ ︸

n times

gives the same

result as evaluating the symmetric function ej at 1, 1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, 0, . . .. (And

the same fact about hj.) This is close to obvious, but worth stating explicitly.

43. page 58, between Proposition 3.5 and Proposition 3.6: The restatement of
(3.10) using multinomial coefficients is broken: The addend for j = 0 is
undefined (there is a division by zero and a multinomial coefficient with a
negative integer in it).

44. page 59, after proof of Proposition 3.6: The restatement of (3.11) using
multinomial coefficients may involve addends in which the n − k + j is

negative. To make sense of them,
(

a + b + c
a, b, c

)
should be defined to be 0

when one of a, b, c is negative.
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45. page 60, Definition 3.10: “For all n ≥ 1 and all k ≥ 1” → “For all n ≥ 0
and k ∈ Z”. (You use the 0-cases later on, e.g., in Proposition 3.13. The
case of negative k is more of a luxury, but it has the advantage of making
(3.17) work for all k ≥ 0, which to me is (pardon) a plus. It is worth saying

that
[

n
k

]
= 0 whenever k < 0.)

46. page 60, Definition 3.12: “For all n ≥ 1 and all k ≥ 1” → “For all n ≥ 0
and k ∈ Z”. (I’m not sure if you use the 0-cases later on, but there is no
reason to exclude them. Once again, the case of negative k is more of a

luxury. It is worth saying that
{

n
k

}
= 0 whenever k < 0.)

47. page 61, Proposition 3.13: I’d replace “for all n ≥ 2 and k with 1 ≤ k ≤
n− 1” by “for all n ≥ 1 and k ∈ Z”. There is no need to rule out the trivial
cases; the proof works equally well in them.

48. page 62, proof of Proposition 3.13: When you say “remove the n from
one of these permutations”, you mean removing it from the cycle notation
rather than (say) from the one-line notation. This should be said – it’s the
natural choice but not the only one.

49. page 62, proof of Proposition 3.13: “Therefore, we can construct each
permutation of”→ “Therefore, we can construct each second-type permu-
tation of”.

50. page 62, proof of Proposition 3.13: “wth”→ “with”.

51. page 62, Proposition 3.14: Again, I’d replace “for all n ≥ 2 and all k with
2 ≤ k ≤ n− 1” by “for all n ≥ 1 and k ∈ Z”. There is no difference to the
proof, but the generality makes it easier to use the proposition.

52. page 62, Proposition 3.15: You can replace “n ≥ 1” by “n ≥ 0”.

You also don’t want to require k ≤ n – certainly not for (3.18), but even for

(3.17) it is not very helpful. (As it stands, it forces you to use
[

n + 1
n + 1

]
= n!

in the proof, which you haven’t shown.)

Assuming that you have changed Definitions 3.10 and 3.12 as I suggested
above, you can simply replace “and all k with 0 ≤ k ≤ n” here by “and
all k ≥ 0” here, and the proposition remains valid. The proof also remains
valid, provided that you use induction on n and (in the induction step)
treat the k = 0 case separately.

53. page 63, (3.20): “(−1)j−1” should be “(−1)j−1 j” on the right hand side.

54. page 64, (3.21): Replace “j” by “k” on the left hand side.
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55. page 65, Example 3.21: It is worth saying somewhere that “word” means
“finite tuple of positive integers” in this book, and that every permutation
π ∈ Sn is identified with the word (π (1) , π (2) , . . . , π (n)). (This becomes
particularly important in Chapter 10.)

56. page 69, proof of Proposition 3.26: Your induction step uses n ≥ 2 and
k ≥ 1, but you only have n ≥ 2 or k ≥ 1. It thus remains to deal with
the case n = 1 and the case k = 0 separately. (Of course, both of these
cases can be left to the reader, but the structure of the proof should still be
adapted to mention them.)

57. page 69, between Proposition 3.26 and Proposition 3.27: “which can ap-
pear is 1 · q · q2 · · · qk”→ “which can appear is 1 · q · q2 · · · qk−1”.

58. page 70, (3.28): Replace “k” by “j” on the right hand side.

59. page 71, Problem 3.3: The “n” atop the summation sign should be a “k”.

60. page 75, §4.1: Not sure what you mean by “In Chapter 2.16 and 2.17”.

61. page 81: “seminstandard”→ “semistandard”.

62. page 82, Definition 4.11: Something tells me that you will use the notion
of “content” not just for semistandard tableaux but for any fillings of a
partition shape (and even more generally, as in the proof of Proposition
5.20), so it may be worth making this definition a bit more general.

63. page 83: “Therefore, in T we have”→ “Therefore, in R we have”.

64. page 87: “our solution to Example 4.12 raises”→ “our solution to Example
4.9 raises”.

65. page 87, (4.6): I’d say a couple of words about why this equality holds.
(Namely, it follows from Proposition 4.15 using the same trick that was
used in the proof of Proposition 2.6 and in the solution to Example 2.7.)

66. page 90, proof of Proposition 4.23: This is mis-organized: The displayed
equality relies on µj = µl, so you should say “if µj = µl” in the first (not in
the second) sentence of this proof. On the other hand, the second sentence
needs an “if f (Xn) is alternating”.

67. page 91, proof of Proposition 4.24: “Then by Proposition 1.2(i),(ii)” →
“Then by Proposition 1.2(i),(ii),(iii)”.

68. page 91, proof of Proposition 4.24: In the second displayed equation of
this proof, replace “sµn

τ(n)” by “xµn
τ(n)”.

69. page 92, line 1: “is the sequence n− 1, n− 2, . . . , 2, 1” → “is the sequence
n− 1, n− 2, . . . , 2, 1, 0”.
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70. page 92, proof of Proposition 4.25: It is worth pointing out that this proof
can be skipped, as the result of Proposition 4.25 will not be used anywhere
(or will it? I don’t see any direct references).

71. page 97, after the proof of Proposition 4.31: “the left side of (4.12)” →
“the left side of (4.13)”.

72. page 97, Example 4.33: “π-tableaux” → “semistandard π-tableaux”. The
same mistake (lack of “semistandard” even though it is meant) is made a
few times later on, so perhaps it is worth defining “π-tableau” to mean
“semistandard π-tableau”.

73. page 100, Definition 4.37: Replace “which are equal to π
(
lj + 1

)
” by

“which are equal to π
(
lj − 1

)
”, and replace “such that tj > rj” by “such

that tj < rj”. (Otherwise, you are only comparing the numbers of π
(
lj
)
’s

and π
(
lj + 1

)
’s in the tail segments that begin with a π

(
lj
)
; but such seg-

ments are biased towards having more π
(
lj
)
’s, whereas you are interested

in them having as few π
(
lj
)
’s as possible. In particular, if the word has

no π
(
lj
)
’s altogether but some π

(
lj + 1

)
’s, then it should not count as a

Littlewood–Richardson π-word, but your current definition lets it pass as
one.)

With my suggested changes, you need to require that lj > 1 (in “for each
entry”).

74. page 101, line 2: “each filling is a π-tableau”→ “each filling is a semistan-
dard π-tableau”.

75. page 102, line 4: “will not start with π (1)”→ “will not end with π (1)”.

76. page 103, Proposition 4.40: Replace “l (λ) ≥ n” by “l (λ) ≤ n”.

77. page 103, Proposition 4.40 (ii): Replace “leftmost” by “rightmost” in “it is
the leftmost entry in word (T) which is in row j but is not equal to π (j)”.
For example, in the non-Littlewood–Richardson tableau

2 3 4
1 1 1 1 (for π = id) ,

the π-climber is the 4 in row 2, which is not the leftmost entry in row 2
that doesn’t equal π (2) = 2 (there is a 3 to its left).

78. page 104, proof of Lemma 4.41: Replace “the results follow” by “the result
follows”.

79. page 105: “isn’t even a κ (π)-tableau”→ “isn’t even a semistandard κ (π)-
tableau”.
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80. pages 106–109: Figures 4.16, 4.19 and 4.20 use the symbol “`” for what is
denoted by “l” in the main text. These look different enough to suggest
different meanings.

81. page 107: “middle tableau”→ “second tableau from the left”.

82. page 107: “This means k = 1, j = 2, and l = 3” → “This means k = 1,
j = 3, and l = 3”.

83. page 108, Lemma 4.43 (ii): “not a semistandard π-tableau” → “not a
Littlewood–Richardson π-tableau”.

84. page 110, proof of Lemma 4.43 (ii): It is not true that “in each row other
than the row of the π-climber, T and κ (T) have the same number of k’s
and the same number of l’s”. Indeed, this analysis correctly accounts for
the free k’s and l’s, but ignores the existence of paired k’s and l’s. The latter
have to be handled separately: In each column other than the column of
the π-climber, T and κ (T) have the same number of paired k’s and the
same number of paired l’s. Now it remains to add up the numbers for free
and for paired entries.

85. page 111, proof of Proposition 4.28: In “over all Littlewood–Richardson
π-tableau”, replace “π-tableau” by “π-tableaux”.

86. page 111, proof of Proposition 4.28: In the last sentence of this proof,
replace “we have” by “this rewrites as”.

87. page 113, Problem 4.20: Replace “n ≥ k” by “n > k”. Indeed, this doesn’t
hold for n = k unless you interpret s0,1n to mean 0.

88. page 115, Problem 4.30: What does “sign-reversing” mean? Do you mean
that weight (T′) = −weight (T) ?

89. page 115, Problem 4.31: Why do you require n ≥ k here?

90. page 116, Problem 4.36: After “Let λ̃ be the partition with”, add “at most
n parts and with”.

91. page 116, Problem 4.36: Replace “λr−j+1” by “λn−j+1”.

92. page 117: “done this” is an overstatement: I believe Billey, Rhoades and
Tewari have only showed that there exist expansions with nonnegative co-
efficients, but have not found any formula for these coefficients.

93. page 121: After “By our definition of the skew Schur functions”, add “(and
by Proposition 5.4)”.

94. page 122, Proposition 5.7: Here and in the following, you omit the word
“skew” in “semistandard skew tableau”. Worth mentioning, I think.
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95. page 126, proof of Proposition 5.11: Remove “with α1 + · · ·+ αn = n” (this
requirement is unnecessary and distracting).

96. page 126, proof of Proposition 5.11: “a semistandard tableaux”→ “a semi-
standard tableau”.

97. page 127, proof of Proposition 5.12: “in the its”→ “in its”.

98. page 128: “We might hope” → “We might expect” (I don’t see a reason to
hope this – don’t we want more identities?).

99. page 130, Definition 5.16: “over all set-valued tableaux” → “over all set-
valued semistandard tableaux”.

100. page 132: When you say “we adapt the Bender–Knuth involutions”, it is
worth explaining one little subtlety: If a cell a set-valued semistandard
tableau contains both j and j + 1, then these two entries are considered
to be free, not paired (even though the definition of “paired” you give on
page 83 would count them as paired).

101. page 134: After “Every semistandard tableau is a set-valued semistandard
tableau”, I would add “(by regarding each of its entries i as a singleton set
{i})”.

102. page 134: When you say “the symmetric function Gλ”, you are using a non-
standard concept of “symmetric function” that does not require bounded
degree. Likewise, on page 135, the words “linear combination” seem to
refer to an infinite linear combination, which is also nonstandard usage.
At the risk of pedantry, I think this is worth a disclaimer.

103. page 136, Definition 5.22: “of elegant tableau”→ “of elegant tableaux”.

104. page 136, Example 5.24: I would require n > 0 here, since the answer is
wrong for k = n = 0 at least.

105. page 136, solution to Example 5.24: On the last line of page 136, replace
“n + j” by “n + j− 1”.

106. page 137, solution to Example 5.24: “can be at most n + j” → “can be at
most n + j− 1”.

107. page 138: Add “of shape λ” before “with entries in [n]”. Likewise, add “of
shape λ” before “with entries in P”.

108. page 141, first bullet point: In “we replace each j with j + 1 in the left
column and we replace each j + 1 with j in the right column”, the words
“left” and “right” should be interchanged.
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109. page 142: Replace “be ∑
k

jvk” by “be ∑
k

kvk”.

110. page 143, solution to Example 5.31: “Since a semistandard tableau T of
shape (n) cannot have repeated entries in a column, these tableaux are
exactly the reverse plane partitions of shape (n)”→ “Since a reverse plane
partition T of shape (n) cannot have repeated entries in a column, these
reverse plane partitions are exactly the semistandard tableaux of shape
(n)”.

111. page 143, Example 5.32: You need to require n ≥ 1 for the solution to
work.

112. page 143, solution to Example 5.32: “with at least one j for 1 ≤ j ≤ k” →
“with at least one j for each 1 ≤ j ≤ k”.

113. page 145, line 1: I would replace “n ≥ 1” by “n ≥ 0”. There is no reason
to exclude the trivial case n = 0; it gives extra information about the chro-
matic polynomial (namely, that its constant term is 0 unless the graph has
no vertices).

114. page 146, shortly after the solution to Example 5.35: The formulation “we
can remove all of the vertices of a graph G by removing one vertex of
degree 1 at a time” is, strictly speaking, incorrect: What you mean is that
by successively removing one vertex of degree 1 at a time, you can end up
with a 1-vertex graph. You cannot, of course, get rid of the final vertex, as
it has degree 0 rather than 1.

Also, you are using the notion of the degree of a vertex in a graph; this
should be defined. (Namely: If v is a vertex of a graph G, then the degree
of v means the number of edges of G that contain v.)

115. page 146, Proposition 5.36: Once again, you can replace “n ≥ 1” by “n ≥
0”. The proof works fine for n = 0: In this case, it is still true that any
proper coloring of U can be extended to a proper coloring of T in n − 1
many ways (even though n− 1 is negative); indeed, this is vacuously true,
since there is no proper coloring of U.

116. page 146, proof of Proposition 5.36: “for the endpoint”→ “for the vertex”.

117. page 146, proof of Proposition 5.36: “for the color of the endpoint”→ “for
the color of the remaining vertex”.

118. page 146, Definition 5.37: Replace “proper coloring” by “coloring” here.
Later (on page 147) you refer to the weight of any coloring (not necessarily
proper).
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119. page 148, proof of Proposition 5.41: On line 1 of the proof, replace “x
λl(λ)
λl(λ)

”

by “x
λl(λ)
l(λ) ”.

120. page 148, proof of Proposition 5.41: Replace “of mλ in XG)” by “of mλ) in
XG”.

121. page 148, proof of Proposition 5.41: After “by choosing a stable partition
V1, V2, . . . of G”, add “satisfying

∣∣Vj
∣∣ = λj for all j,”.

122. page 153, Problem 5.5: Do you really mean to ask this as stated? Because
the first row of λ is longer than that of µ, so the answer is 0.

123. page 154, Problem 5.8: I’d add a “for n ≥ 1” before the comma here.

124. page 155, Problem 5.22: The left hand side of the equality needs a tn factor
(I believe).

125. page 156: “of graphs”→ “of connected graphs”.

126. page 160: After “is an infinite sequence of north (0, 1) and east (1, 0) steps
which contains exactly n east steps”, I suggest adding “and has its first
step start at (a, 1) whereas each further step starts at the endpoint of the
previous step”. (This is probably clear to everyone who has ever counted
lattice paths, but I’m not sure whether you want to make this assumption
on the reader’s experience.)

127. page 161: After the first displayed equation, add “(where a is an arbitrary
integer, which may even be chosen differently for each factor in the prod-
uct)”.

128. pages 161, 164, 168, 171, 173, 174, 175, 176, 178: I would replace every
“(−1)inv(π)” by a “sgn (π)” on these pages. Of course, these are synonyms,
but you use the sgn notation in Lemma 6.5 and Proposition C.7, and you
speak of a “sign-reversing” involution (as opposed to an “inversion-parity-
reversing” one), so I think it makes sense to stick to one choice of notation.

129. page 162: Replace “moves λj + πj − j” by “moves λj + π (j)− j”.

130. page 162: “ending j units from the right” → “whose ending point is the
j-th one from the right”. (The ending points are usually not evenly spaced,
so I wouldn’t speak of “units”.)

131. page 167, proof of Lemma 6.5 (ii): “same set of east steps” → “same
multiset of east steps”.

12
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132. page 167, Figure 6.8: I suggest switching the colors of the red and blue
paths here. After all, the tail-swapping procedure results in each path
keeping its upper end (but possibly changing its lower end), so unless the
colors of the paths do not correspond to the paths, it makes sense for the
upper ends to preserve their colors.

133. page 168, proof of Lemma 6.5 (iii): I suggest replacing “decompose as
α−m , α+w and α−w , α+m” by “decompose as α−w , α+m and α−m , α+w ” in order not to
swap the two paths unnecessarily.

134. page 168, proof of Lemma 6.6: The proof could be made clearer by some
reorganization. You aren’t cancelling the addends corresponding to the β’s
with π 6= 12 · · · k; you are cancelling the addends corresponding to the β’s
that have intersection. The former are a subset of the latter, but tswp does
not generally send the former to the former, so it is misleading to claim
that it’s the former that are getting cancelled.

I think the best way to organize the proof is by first invoking tswp to cancel
the intersecting β’s, thus obtaining

∑
β∈Hλ,k

sgn (π)wth (β) = ∑
β∈I Iλ,k

sgn (π)wth (β) ;

and then arguing that each β ∈ I Iλ,k satisfies π = 12 · · · k and therefore
sgn (π) = 1, so the equality above simplifies to (6.5).

135. page 168, proof of Lemma 6.7: “Suppose β ∈ Hλ,k”→ “Suppose β ∈ I Iλ,k”.

136. page 168, proof of Lemma 6.7: When you write “where αm ∈ Γ−m,λm”, you
are implicitly using the fact that the permutation π corresponding to any
β ∈ I Iλ,k is the identity 12 · · · k. Since you only stated this during the proof
of Lemma 6.6, it is worth repeating it here.

137. page 173: “product of the weights”→ “product of the e-weights”.

138. page 174: At the end of the second paragraph of this page, I would add:
“Thus each path αm ends at (λ′m −m, ∞), which shows that αm is the path
with the m-th rightmost ending point among α1, α2, . . . , αk (and the ending
points are distinct).”.

139. page 176, proof of Lemma 6.12: “have the same sets of east steps”→ “have
the same multisets of east steps”.

140. page 176, proof of Lemma 6.12: “has leftmost point (l, m)” → “has right-
most point (l, m)” (otherwise, you would need to increment the subscripts
by 1).

141. page 176, Lemma 6.14: Replace “SST (λ′)” by “SST (λ)”.

13
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142. page 176, proof of Lemma 6.14: “Ferrers diagram of λ′” → “Ferrers dia-
gram of λ”.

143. page 176, proof of Lemma 6.14: “the weights”→ “the e-weights”.

144. page 176, proof of Lemma 6.14: “column strict”→ “column-strict”.

145. page 176, proof of Lemma 6.14: “if and only if” → “because” (you as-
sumed that β ∈ Ξλ,k, so you cannot have any intersecting paths in β).

146. page 178, proof of Theorem 6.10: “T ∈ SST (λ′)”→ “T ∈ SST (λ)”.

147. page 178, proof of Theorem 6.10: “sλ′”→ “sλ”.

148. page 179, proof of Proposition 6.16: The equality ωh

(
det

(
hλi+j−i

)
1≤i,j≤k

)
=

det
(
eλi+j−i

)
1≤i,j≤k is not immediately obvious at this stage. It relies on

three things: (1) Proposition C.7 (which shows that the determinant of
a matrix is a very specific linear combination of products of its entries),
(2) the fact that ωh is linear, and (3) the fact that ωh

(
hν1 hν2 · · · hνp

)
=

eν1eν2 · · · eνp for any finite list
(
ν1, ν2, . . . , νp

)
of integers. Among these three

things, (3) warrants some justification (in my opinion). Namely: If all
entries of the list

(
ν1, ν2, . . . , νp

)
are positive, then the equality in ques-

tion (ωh

(
hν1 hν2 · · · hνp

)
= eν1eν2 · · · eνp) can be rewritten as ωh

(
hµ

)
= eµ,

where µ is the partition obtained by sorting the list
(
ν1, ν2, . . . , νp

)
into

weakly decreasing order; but the latter equality follows from the definition
of ωh. Thus, it remains to handle the case when not all entries of the list(
ν1, ν2, . . . , νp

)
are positive. If at least one entry of the list

(
ν1, ν2, . . . , νp

)
is

negative, then the equality in question (ωh

(
hν1 hν2 · · · hνp

)
= eν1eν2 · · · eνp)

boils down to the obvious equality ωh (0) = 0 (since hm = 0 for ev-
ery m < 0), and thus is true. Otherwise, at least one entry of the list(
ν1, ν2, . . . , νp

)
is 0; but then we can remove this entry from the list with-

out changing the equality (since h0 = 1), which reduces our problem to a
simpler case (thus leading to an inductive proof over p).

149. page 189, Problem 6.27: I’d add “Let n be a positive integer.” at the begin-
ning of this problem.

150. page 191, §7.1: Worth saying that you will sometimes abbreviate δλ,µ as δλµ

(for example, in Proposition 7.4).

151. page 193, Definition 7.2: I don’t think you need to define Λk (X, Y); you
can just as well work in the whole space of formal power series in
x1, x2, x3, . . . , y1, y2, y3, . . ..

14
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152. page 194, proof of Proposition 7.3: The second sentence of this proof
makes no sense as stated. I suggest replacing it by the following argu-
ment:

You know that
l

∑
j=1

n

∑
m=1

Ajmuj (X) vm (Y) = 0. (1)

You want to prove that each m with 1 ≤ m ≤ n satisfies

l

∑
j=1

Ajmuj (X) = 0. (2)

Fix any monomial m in the variables x1, x2, x3, . . .. Then, if we compare
coefficients before m on both sides of (1) (while considering y1, y2, y3, . . . as
scalars), we obtain

l

∑
j=1

n

∑
m=1

Ajm ·
(
the coefficient of m in uj (X)

)
· vm (Y) = 0.

Renaming the variables y1, y2, y3, . . . as x1, x2, x3, . . . in this equality, we ob-
tain

l

∑
j=1

n

∑
m=1

Ajm ·
(
the coefficient of m in uj (X)

)
· vm = 0.

In other words,
n

∑
m=1

(
l

∑
j=1

Ajm ·
(
the coefficient of m in uj (X)

))
· vm = 0.

Since {vm | 1 ≤ m ≤ n} is linearly independent, we thus conclude that
each m with 1 ≤ m ≤ n satisfies

l

∑
j=1

Ajm ·
(
the coefficient of m in uj (X)

)
= 0.

Multiplying both sides of this equality by m, we obtain

l

∑
j=1

Ajm ·
(
the coefficient of m in uj (X)

)
·m = 0. (3)

Now, forget that we fixed m. We thus have proved the equality (3) for each
monomial m in the variables x1, x2, x3, . . . and each m with 1 ≤ m ≤ n.
Summing these equalities over all monomials m (while m is fixed), we
obtain precisely (2). Thus, (2) is proven.

Note that this argument is completely bulletproof; there are no “technical
issues” that you are leaving aside here, so the whole first paragraph of
page 194 (= last paragraph of page 193) is unnecessary.

15
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153. page 194, the paragraph before Proposition 7.4: “inner product” → “bi-
linear map on Λk ×Λk”.

154. page 194, Proposition 7.4: “is the function”→ “is the bilinear map” (twice).

155. page 194, Proposition 7.4: A reminder about the meaning of p (k) would
be useful (you haven’t used that notation for a while).

156. page 195, proof of Proposition 7.4: “(by Definition A.15(i)–(iii))” → “(by
Definition A.15(1)–(3))”.

157. page 195, proof of Proposition 7.4: “function”→ “bilinear function”.

158. page 195, proof of Proposition 7.4: In the first sentence of the proof of (i)
⇐⇒ (iii), replace “Bµβ” by “Bλβ”.

159. page 195, proof of Proposition 7.4: After “then we can simplify the inner-
most sum to”, replace “get to” by “δα,β, whence the whole right hand side
simplifies to”.

160. page 197, proof of Proposition 7.6: The second computation relies on the
fact that δλ′,µ′ = δλ,µ, which is fairly obvious but (I think) still worth men-
tioning.

161. page 198: An example of a generalized permutation and its two weights
would be useful.

162. pages 199–200, proof of Proposition 7.10: In the first paragraph of the
proof, both “P×P matrix” and “domino” should probably be explained.
(Also, I’d speak of a “domino of π” rather than just of a “domino”.)

163. page 200, proof of Proposition 7.10: When you apply Problem 2.17(a),
you are assuming λ and µ to be partitions, which is not generally satisfied
when λ and µ come from an arbitrary generalized permutation.

The easiest way to fix this, I believe, is to recognize that both sides of (7.6)
are symmetric in x1, x2, x3, . . . and also symmetric in y1, y2, y3, . . ., and thus
it suffices to verify that they have identical coefficients of xλyµ whenever
λ and µ are partitions. Thus, you can restrict yourself to the case when λ
and µ are partitions. In this case, you can furthermore WLOG assume that
the partitions λ and µ have the same size (because if |λ| 6= |µ|, then the
coefficients on both sides of (7.6) are easily seen to be 0). Thus, you can
apply Problem 2.17(a).

Restricting yourself to specific λ and µ also allows you to work with n× n-
matrices (for n = |λ| = |µ|) instead of P× P-matrices, which makes the
application of Problem 2.17(a) a lot more direct.
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164. page 200, proof of Corollary 7.11: In order to apply Proposition 7.4, you
cannot immediately use the equality

∑
λ

mλ (X) hλ (Y) = ∑
λ

sλ (X) sλ (Y) ;

instead, you need its “finite” variant

∑
λ`n

mλ (X) hλ (Y) = ∑
λ`n

sλ (X) sλ (Y) for n ∈N.

So I would spend a sentence or so explaining how the latter can be derived
from the former.

Likewise, your argument only gives you
〈
mλ, hµ

〉
= 0 in the case when

|λ| = |µ| (since the bilinear forms in Proposition 7.4 are defined on Λk ×
Λk, not on the whole Λ × Λ). A few words should be said about why〈
mλ, hµ

〉
= 0 also holds for even simpler reasons when |λ| 6= |µ| (maybe a

good problem?).

165. page 202, solution to Example 7.16: I’d replace “h0 = p0” by “h0 = p∅”
in order to clarify that the “0” in “p0” stands not for the number 0 (as p0
would be undefined for the number 0) but for the empty partition ∅.

166. pages 203–204, proof of Proposition 7.17: It’s probably a correct proof, but
my head is spinning from trying to verify the mutual inverseness of the
two maps, so let me suggest a simpler proof. I will use a tiny bit of algebra
– namely, the orbit-stabilizer formula (in one of the most down-to-earth
settings: the symmetric group Sn acting on n-tuples). Feel free to include
the following proof (or split it into exercises).

Alternative proof of Proposition 7.17 (sketched). Fix n ≥ 0.

Step 1: If j = (j1, j2, . . . , jn) ∈ Pn is an n-tuple, then we let xj be the mono-
mial xj1 xj2 · · · xjn . An n-tuple (j1, j2, . . . , jn) ∈ Pn is said to be weakly increas-
ing if j1 ≤ j2 ≤ · · · ≤ jn. The definition of hn yields

hn = ∑
j∈Pn is weakly

increasing

xj. (4)

Step 2: We let the symmetric group Sn act on the set Pn from the right by
permuting the entries: i.e., we set

(k1, k2, . . . , kn) · σ =
(

kσ(1), kσ(2), . . . , kσ(n)

)
(5)

for any σ ∈ Sn and (k1, k2, . . . , kn) ∈ Pn.

It is clear that if k ∈ Pn and σ ∈ Sn, then

xk·σ = xk. (6)
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In other words, if j ∈ Pn and k ∈ Pn satisfy j ∈ k · Sn (where k · Sn denotes
the orbit {k · σ | σ ∈ Sn} of k), then

xj = xk. (7)

For each n-tuple k ∈ Pn, the orbit k · Sn = {k · σ | σ ∈ Sn} contains exactly
one weakly increasing n-tuple (namely, the result of sorting the entries of
k into increasing order). In other words, for each n-tuple k ∈ Pn, there is
exactly one weakly increasing n-tuple j ∈ Pn satisfying j ∈ k · Sn.

The orbit-stabilizer theorem (applied to the action of Sn on Pn) yields that
each k ∈ Pn satisfies

|Sn| = |k · Sn| · |{σ ∈ Sn | k · σ = k}| .

In view of |Sn| = n!, this rewrites as

n! = |k · Sn| · |{σ ∈ Sn | k · σ = k}| . (8)

Step 3: Let type σ denote the cycle type of any permutation σ ∈ Sn. (This is
a partition of n.)

For any permutation σ ∈ Sn, we have

ptype σ = ∑
k∈Pn;
k·σ=k

xk. (9)

[Proof of (9): Let σ ∈ Sn be a permutation. Let z1, z2, . . . , zm be all cycles
of σ (including the 1-cycles), listed in the order of decreasing length (with
ties broken in some arbitrary way, without repetitions). Then, type σ =
(|z1| , |z2| , . . . , |zm|) (by the definition of type σ).

Fix some k = (k1, k2, . . . , kn) ∈ Pn satisfying k · σ = k. Then,

(k1, k2, . . . , kn) = k = k︸︷︷︸
=(k1,k2,...,kn)

·σ = (k1, k2, . . . , kn) · σ

=
(

kσ(1), kσ(2), . . . , kσ(n)

)
(by (5)) .

In other words, ki = kσ(i) for each i ∈ [n]. Thus, if two elements i and j
of [n] can be obtained from one another by applying σ some number of
times, then ki = k j. Hence, the values of k j for all j ∈ z1 are equal (since
all j ∈ z1 can be obtained from one another by applying σ some number of
times1). In other words, there exists some r1 ∈ P such that all j ∈ z1 satisfy
k j = r1. This r1 is unique (since z1 is nonempty). Consider this r1. The
same logic can be applied to the other cycles z2, z3, . . . , zm of σ; thus, for

1because z1 is a cycle of σ
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each i ∈ {1, 2, . . . , m}, we obtain a value ri ∈ P such that all j ∈ zi satisfy
k j = ri. It is now easy to see that the m-tuple (r1, r2, . . . , rm) ∈ Pm satisfies

x|z1|
r1 x|z2|

r2 · · · x
|zm|
rm = xk.

Forget that we fixed k. Thus, for each n-tuple k = (k1, k2, . . . , kn) ∈ Pn

satisfying k · σ = k, we have constructed an m-tuple (r1, r2, . . . , rm) ∈ Pm

satisfying
x|z1|

r1 x|z2|
r2 · · · x

|zm|
rm = xk. (10)

(Namely, ri is the unique positive integer such that all j ∈ zi satisfy k j = ri.)
This defines a map

R : {k ∈ Pn | k · σ = k} → Pm,
k 7→ (r1, r2, . . . , rm) .

It is easy to see that this map R is injective2 and surjective3; thus, R is
bijective. Hence, we can substitute R (k) for (r1, r2, . . . , rm) in the sum

∑
(r1,r2,...,rm)∈Pm

x|z1|
r1 x|z2|

r2 · · · x
|zm|
rm , and thus obtain

∑
(r1,r2,...,rm)∈Pm

x|z1|
r1 x|z2|

r2 · · · x
|zm|
rm = ∑

k∈Pn;
k·σ=k

xk (by (10)) .

But type σ = (|z1| , |z2| , . . . , |zm|); thus,

ptype σ = p(|z1|,|z2|,...,|zm|) = p|z1|p|z2| · · · p|zm| =
m

∏
i=1

p|zi|︸︷︷︸
= ∑

r∈P

x|zi|
r

=
m

∏
i=1

∑
r∈P

x|zi|
r

= ∑
(r1,r2,...,rm)∈Pm

x|z1|
r1 x|z2|

r2 · · · x
|zm|
rm (by the product rule)

= ∑
k∈Pn;
k·σ=k

xk.

This proves (9).]

Step 4: Problem C.4 shows that each λ ` n satisfies

(the number of all σ ∈ Sn satisfying type σ = λ) · zλ = n!. (11)

2Indeed, any k ∈ Pn satisfying k · σ = k can be uniquely reconstructed from its image
R (k) = (r1, r2, . . . , rm): Indeed, the value ri determines the entries k j for all j ∈ zi (where
k = (k1, k2, . . . , kn)), and thus all entries k j of k are determined (since each j ∈ [n] belongs to
some zi).

3Indeed, if (r1, r2, . . . , rm) ∈ Pm is given, then we can easily construct an n-tuple k ∈ Pn

(satisfying k · σ = k) that gets mapped to (r1, r2, . . . , rm) under R. Namely, the j-th entry of
this n-tuple k will be ri where i is the unique element of {1, 2, . . . , m} that satisfies j ∈ zi.
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(Indeed, this is precisely the claim cλzλ = n! from Problem C.4, because cλ

stands for the number of all σ ∈ Sn satisfying type σ = λ in Problem C.4.)
Now, type σ ` n for each σ ∈ Sn; hence, we can split the sum ∑

σ∈Sn

ptype σ

according to the value of type σ as follows:

∑
σ∈Sn

ptype σ = ∑
λ`n

∑
σ∈Sn;

type σ=λ

ptype σ︸ ︷︷ ︸
=pλ

(since type σ=λ)

= ∑
λ`n

∑
σ∈Sn;

type σ=λ

pλ

︸ ︷︷ ︸
=(the number of all σ∈Sn satisfying type σ=λ)·pλ

= ∑
λ`n

(the number of all σ ∈ Sn satisfying type σ = λ)︸ ︷︷ ︸
=

n!
zλ

(by (11))

·pλ

= ∑
λ`n

n!
zλ

pλ.

Thus,

∑
λ`n

n!
zλ

pλ = ∑
σ∈Sn

ptype σ︸ ︷︷ ︸
= ∑

k∈Pn;
k·σ=k

xk

(by (9))

= ∑
σ∈Sn

∑
k∈Pn;
k·σ=k︸ ︷︷ ︸

= ∑
k∈Pn

∑
σ∈Sn;
k·σ=k

xk

= ∑
k∈Pn

∑
σ∈Sn;
k·σ=k

xk

︸ ︷︷ ︸
=(the number of all σ∈Sn satisfying k·σ=k)xk

= ∑
k∈Pn

(the number of all σ ∈ Sn satisfying k · σ = k)︸ ︷︷ ︸
=|{σ∈Sn | k·σ=k}|

=
n!
|k · Sn|
(by (8))

xk

= ∑
k∈Pn

n!
|k · Sn|

xk. (12)

But recall that (as we saw in Step 2) for each n-tuple k ∈ Pn, there is exactly
one weakly increasing n-tuple j ∈ Pn satisfying j ∈ k · Sn. Thus, we can
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split the sum ∑
k∈Pn

n!
|k · Sn|

xk according to the value of this j. We thus find

∑
k∈Pn

n!
|k · Sn|

xk

= ∑
j∈Pn is weakly

increasing

∑
k∈Pn;
j∈k·Sn

n!
|k · Sn|︸ ︷︷ ︸
=

n!
|j · Sn|

(since k·Sn=j·Sn
(because j∈k·Sn))

xk︸︷︷︸
=xj

(by (7))

= ∑
j∈Pn is weakly

increasing

∑
k∈Pn;
j∈k·Sn

n!
|j · Sn|

xj

︸ ︷︷ ︸
=(the number of all k∈Pn satisfying j∈k·Sn)·

n!
|j · Sn|

xj

= ∑
j∈Pn is weakly

increasing

(the number of all k ∈ Pn satisfying j ∈ k · Sn)︸ ︷︷ ︸
=(the number of all k∈Pn satisfying k∈j·Sn)

(since “j∈k·Sn” is equivalent to “k∈j·Sn”)

· n!
|j · Sn|

xj

= ∑
j∈Pn is weakly

increasing

(the number of all k ∈ Pn satisfying k ∈ j · Sn)︸ ︷︷ ︸
=|j·Sn|

· n!
|j · Sn|

xj

= ∑
j∈Pn is weakly

increasing

|j · Sn| ·
n!
|j · Sn|︸ ︷︷ ︸

=n!

xj = n! ∑
j∈Pn is weakly

increasing

xj

︸ ︷︷ ︸
=hn

(by (4))

= n!hn.

Hence, (12) becomes

∑
λ`n

n!
zλ

pλ = ∑
k∈Pn

n!
|k · Sn|

xk = n!hn.

Dividing both sides of this equality by n!, we obtain

∑
λ`n

1
zλ

pλ = hn.

This proves Proposition 7.17 (again). �

167. page 206, proof of Proposition 7.15: In “for any n ≥ 0, we have pn (XY)”,
replace “n ≥ 0” by “n ≥ 1”.
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168. page 210, second paragraph: I’d add a footnote reminding the reader that
sh (T) means the shape of a tableau T. (You defined this notation long ago
and never used it before.)

169. page 213, first paragraph: I suggest replacing “and we replace b with a”
by “and we replace this b with a” to make it clearer that only one copy of
b is getting replaced.

170. page 218, Lemma 8.8: I’d split the first sentence into two, in order for
“c ≤ d” and “s1, . . . , sn” to be separated by more than a comma.

171. page 218, proof of Lemma 8.8: The sentence “Therefore, d1 was to the right
of c1 in T, so c1 ≤ d1” only makes sense if c1 and d1 are both defined. You
probably also want to say that if d1 exists (i.e., the letter d doesn’t just end
up as a new last entry in the first row), then so does c1.

172. pages 218–220, proof of Proposition 8.9: This proof is not as clear as it
could be.

First of all, I believe it makes more sense to split it into two: First, show a
lemma that rc (T) is a semistandard tableau whenever T is a semistandard
tableau; then use this lemma to quickly obtain Proposition 8.9 by induc-
tion. (This is worth already because you are already using this lemma!
On page 251, when you say “By Proposition 8.9”, you really mean “By the
lemma”, because you aren’t starting with an empty tableau there. More-
over, you are already stating the analogue of this lemma for reverse row
insertion explicitly (as Proposition 8.11); thus, for symmetry reasons alone,
it is worth giving it the same treatment.)

Second, the last two paragraphs of your proof (which are where the real
work is happening) are somewhat confusing. They refer to Figures 8.14
and 8.15, but the configurations shown there do not seem representative of
all cases: what if there is no b? what if there is no cj−1? what if there is
no cj−2? Finally, it is not completely obvious that the shape of the tableau
remains a partition (i.e., columns don’t grow holes) throughout the process,
and this is somewhat implicit in your argument. If interpreted correctly, the
proof works, but I think you can make it easier for the reader to interpret
it correctly if you reorganize it as follows:

After the sentence “In fact, we only change one entry of that column”, add
the following: “ – namely, we insert cj−1 either into the position previously
occupied by cj (somewhere in the existing j-th row) or into a hitherto empty
position (thus extending the j-th row). Thus, we need to prove that:

(A) no “hole” is gaping below this position (i.e., there is an entry imme-
diately below it), unless it is in the first row;

(B) the number cj−1 (in its new position) is larger than the entry immedi-
ately below it, unless it is in the first row; and
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(C) the number cj−1 (in its new position) is smaller than the entry imme-
diately above it (if there is such an entry).

Among these three properties, (C) is trivial: If there is an entry b immedi-
ately above the new position, then the position into which we inserted cj−1
was previously occupied by cj, and we must have cj < b (since the tableau
was semistandard before the insertion), and thus by Lemma 8.6 we have
cj−1 < cj < b, which means precisely that cj−1 is smaller than the entry
immediately above the position where it was inserted.”

Now, of course, it remains to prove (A) and (B). Now you can forget about
b, and the existence of cj−1 and cj−2 is not in question (we are assuming
that we aren’t in the first row anymore, so we have j ≥ 2).

Obviously, my writing is neither economical nor very readable, but I think
the organization of my argument is better.

173. pages 220–221, first paragraph of page 221 (= last paragraph of page 220)
and second paragraph of page 221: I find this rather confusing. No clarity
is gained by handling the n = 2 case separately from the n ≥ 3 case; your
description of the latter is actually clearer (at least to me), and the former
is obscured by the fact that “the intermediate pair (Sint, Uint) we obtain by
applying our bijection to the reverse plane partition consisting of just T2”
is simply the pair (T2,∅), which makes the reader wonder whether she is
misreading the text (or why otherwise you are introducing new names for
old things).

Also, “By Lemma 8.8, no two boxes of U are in the same column” is not
quite correct: This is true not by Lemma 8.8, but rather by the very fact
that we have only added one new box per column.

174. page 221, last paragraph: “add one” → “add 1”. (The word “one” can
easily be mistaken for a pronoun, which would even make some sense
here but definitely not reflect your intent.)

175. page 222, first paragraph: You write: “This will fill some of the empty
boxes, but by Lemma 8.8 we will only need the empty boxes we have
already added”. Be careful: It is true that the newly filled boxes form
a horizontal strip (because of Lemma 8.8); but this only shows that the
newly filled boxes in rows 2, 3, 4, . . . do not stick out of λ. You need to
argue separately for why the newly filled boxes in row 1 do not stick out
of λ (after all, a horizontal strip could have an arbitrarily long first row).
This follows from the fact that the bottom row of S is T1; but you need to
state this fact here (and prove it – frankly, I don’t find it obvious enough to
just leave as an exercise at this stage in the treatment of RSK).

In general, I suggest first dealing with S completely (including showing
that S is semistandard and does not stick out of λ), and only then defining
U.
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I would also refer to Figures 8.18 and 8.19 earlier on (not just at the end of
the construction), and I would also say in the caption of Figure 8.19 what
step of the construction each filling corresponds to, and what T̂1 is (namely,
T̂1 =

(
5 5 6

)
).

176. page 223, first paragraph: “subtract one”→ “subtract 1”. (Again, the word
“one” looks too much like a pronoun.)

177. page 226, between Proposition 8.11 and Definition 8.12: “to ensure xQ(π) =
xtopwt(π)”→ “to ensure xQ(π) = topwt (π)”.

178. page 227, proof of Proposition 8.14: After “Now by Lemma 8.8”, add “and
Lemma 8.7” (and, ideally, elaborate on the details). Indeed, you want to
know that the bumping path that results in aj ends further right than the
bumping path that results in aj−r does. Lemma 8.8 only shows that the
former bumping path stays to the right of the latter in each row; but since
the two paths can end in different rows, this does not mean that the former
path ends further right than the latter. You only get to that conclusion if
you know that bumping paths trend left (Lemma 8.7).

Better yet, this consequence of Lemma 8.8 and Lemma 8.7 could be made
an extra lemma, since you use it several times. (Note that you already state
its analogue for reverse row insertion as a lemma – Lemma 8.17.)

179. page 229, first paragraph: Again, when you say “by Lemma 8.8”, you
mean not Lemma 8.8 but the consequence of Lemma 8.8 and Lemma 8.7
mentioned above (page 227).

180. page 229, last paragraph: “and building E(P, Q)”→ “and building E(P, Q) =[
a1 a2 · · · an
b1 b2 · · · bn

]
” (since you are referring to aj and bj a few sentences

further on).

181. page 230, proof of Lemma 8.17: In the first paragraph of this proof, it is
not precise to say that c0 and d0 are moved to a lower row; they are rather
being expelled from the tableau altogether. (Perhaps worth making precise
in a footnote.)

182. page 231, proof of Lemma 8.17: The last paragraph of this proof is confus-
ing: When you refer to “P”, it is not always clear which version of P you
mean (as P changes during the procedure that computes E (P, Q)). More-
over, you have aj and aj+1 switched a few times. I suggest denoting the
versions of P by Pn, Pn−1, . . . , P0, where Pi is the version of P obtained after
removing n− i boxes (so that i boxes remain). Also, some pseudo-formulas
like

Pj+2
remove ck−→
obtain c0

Pj+1
remove dm−→
obtain d0

Pj
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(if properly explained beforehand) might be easier to parse than long sen-
tences.

183. page 231, Theorem 8.19: In the last sentence, replace “xtopwt(π)ybottomwt(π) =

xQ(π)yP(π)” by “topwt (π) = xQ(π) and bottomwt (π) = yP(π)” (to get the
notations right, but also to match the formulation with requirements on R
stated on page 210).

184. page 232: You write: “if π is a permutation in the usual sense”. This
assumes that the reader understands how a permutation can be viewed as
a generalized permutation (viz., by writing it in two-line notation, with the
top row being sorted to be 1, 2, . . . , n). Have you ever explained that? (I’d
say it’s worth doing so already in Chapter 7, when you define the concept
of generalized permutations; it explains the name.)

185. Page 233: Your construction of α does not guarantee that αj will be positive
integers (or even nonnegative integers), nor does it properly explain when
the sequence should end and what the j-th entry of a finite sequence should
be understood as when the sequence has fewer than j entries. I would sug-
gest rephrasing it in terms of infinite sequences of integers. Then you can
show that what if you start with ∅’s on the left and bottom borders, then all
the sequences you actually get are partitions (padded with infinitely many
zeroes as usually). This can be proved by induction using a lemma which
says that if, in the situation of Figure 8.31, all of λ, µ and ν are partitions
such that µ/λ and ν/λ are horizontal strips, then (a) all of m, M and α
are partitions as well (where m, M and α are as defined before – I suggest
labeling the defining formulas so that you can refer to them cleanly), and
(b) both α/µ and α/ν are horizontal strips.

186. page 235, Lemma 8.22: You probably want to restate this lemma so that
it says that λj ≤ µj whenever µ is the right or upper neighbor of λ in the
growth diagram. Indeed, the way you are currently stating it, it does not
claim that λj ≤ µj when λ and µ are on the eastern or northern border
of the growth diagram; but you do use this very case later (in the third
paragraph of page 237, when you say “By Lemma 8.22”).

187. page 237, proof of Proposition 8.25: You define Ins (a, b) thus: “For each
vertex (a, b), let Ins (a, b) be the semistandard tableau we obtain by using
the RSK correspondence to insert the entries of the bottom row of π which
correspond to the squares below and to the left of the vertex (a, b) in the
growth diagram.”

I find this confusing. First, the RSK correspondence yields two tableaux,
so “the semistandard tableau we obtain by using the RSK correspondence”
isn’t as unambiguous as it might appear. Second, “below and to the left”
may mean either a whole quadrant or just two half-axes; you mean the
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quadrant, but this isn’t immediately clear. Finally, there is too much going
on in a single sentence.

I suggest fixing this by defining the notation π (a, b) as in the proof of
Proposition 8.28 further below (except that the meaning of “below and to
the left” should be clarified, and ideally illustrated on an example), and
then defining Ins (a, b) to be P (π (a, b)). (Note that π (a, b) can also be
defined more directly as the generalized permutation obtained from π by

removing all columns
(

ai
bi

)
with ai > a and removing all columns

(
ai
bi

)
with bi > b.)

Such a definition of Ins (a, b) would have the additional advantage of mak-
ing the similarity between the P-filling and the Q-filling more explicit.

188. page 239, second paragraph: After “Since Ins (W, H − 1) is the tableau
made by the numbers less than H”, add “in the tableau Ins (W, H)”.

189. page 239, second paragraph: After “a copy of H in Ins (W − 1, H) is bumped
up to the next row if and only if it is in a box in µ that also appears in ν”, I
would add “(because it is bumped up to the next row if and only if its box
is filled with a number less than H afterwards)”.

190. page 241, proof of Proposition 8.28: In the last sentence of this proof,
before “we must have”, add “and since Fill (W, H) and Q (W, H) have
the same shape (because Fill (W, H) has the same shape as the tableau
Ins (W, H) from the proof of Proposition 8.25, which in turn is identical
to the tableau P (W, H) from the same proof, which in turn has the same
shape as Q (W, H)), ”.

191. page 242, proof of Theorem 8.29: “over a line from the lower left corner
to the upper right corner”→ “over the line of slope 1 passing through the
lower left corner”. (This line will not pass through the upper right corner
unless W = H.)

192. page 242, proof of Theorem 8.29: “the P-labeling and the Q-labeling” →
“the P-filling and the Q-filling”.

193. page 243, Problem 8.6: The words “with finite support” should be ex-
plained.

194. page 243, Problem 8.9: The word “hook” has never been defined.

195. page 243, Problem 8.10: “whose last entry is aj” is ambiguous – you mean
that the last entry is picked from the j-th position, not just that it equals aj
(which would be the literal interpretation).
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196. page 245, Problem 8.21: The “for which boxes” formulation is somewhat
ambiguous (the “boxes” looks like it refers to the “which”). I would replace
it by “whose order relation is defined as follows: two boxes”.

197. page 246: Replace “the hook lengths” by “the hook-length” (in order to
match the hyphenation you use in Problem B.5).

198. page 248, §9.1: One line above Example 9.1, replace “s11 = h2, and s2 = e2”
by “s11 = e2, and s2 = h2”.

199. page 251, proof of Theorem 9.3: At the end of the first paragraph of this
proof, replace “for which µ ⊆ sh (P′), sh (P′) /µ is a horizontal strip of
length n, and xP ∏

j∈J
xj = xP′” by “for which µ ⊆ sh (P′) and sh (P′) /µ

is a horizontal strip of length n, which bijection has the property that
xP ∏

j∈J
xj = xP′”. (Your current wording belies the fact that “µ ⊆ sh (P′)”

and “sh (P′) /µ is a horizontal strip of length n” are properties of the
tableaux P′ in the set, whereas “xP ∏

j∈J
xj = xP′” is a property of the bi-

jection.)

200. page 251, proof of Theorem 9.3: After “to obtain a filling P′ of shape λ.”,
I’d add “Thus, P′ = rjn

(
rjn−1

(
· · ·
(
rj1 (P)

)
· · ·
))

.”.

201. page 251, proof of Theorem 9.3: When you write “combined with Lemma
8.8”, you mean not Lemma 8.8 itself but rather the corollary of Lemma 8.8
and Lemma 8.7 that says that (in the notation of Lemma 8.8) the new cell
in rd (rc (T)) is in a column further right than the new cell in rc (T). (As I
already said above, I think it makes sense to state this corollary as a lemma
in its own right; this is not the only place where you say you are using
Lemma 8.8, but in truth are using that corollary.)

202. page 252, proof of Proposition 9.4: After “But a horizontal strip of length
λ1 has exactly one filling of content λ1”, add “, whereas any other skew
shape has none”. (You want to know that the sum in (9.2) has no other
addends than the ones coming from horizontal strips of length λ1.)

203. page 252, proof of Proposition 9.4: “we can group fillings of ν/µ of content
λ”→ “we can group the semistandard tableaux of shape ν/µ and content
λ”. (For arbitrary fillings, the boxes which contain l will not generally form
a horizontal strip.)

204. page 254, first paragraph: In the first display on page 254, replace “∑
ζ

Kν,ζmν”

by “∑
ζ

Kν,ζmζ”. Besides, you are using the equality (4.6) here, which may

be worth mentioning.
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205. page 254, last paragraph: Replace “for which µ ⊆ sh (P′), sh (P′) /µ is a
vertical strip of length n, and xP ∏

j∈J
xj = xP′” by “for which µ ⊆ sh (P′) and

sh (P′) /µ is a vertical strip of length n, which bijection has the property
that xP ∏

j∈J
xj = xP′”. (This is the same issue as on page 251 above.)

206. page 260, (9.5): Replace the outer summation sign “ ∑
µvh⊇µ

” by “ ∑
µvh⊇µ;
|µvh/µ|=n

”

(since otherwise, the condition |µvh/µ| = n is lost).

207. page 260: Before “We suspect many terms”, I’d add “Each such choice of
µv partitions the skew shape µvh/µ into two subshapes µv/µ and µvh/µv,
which shall be called the inner vertical strip and the outer horizontal strip,
respectively.”. (This introduces the terminology that is used later on.)

208. page 264, first paragraph: Here it should also be explained why the traver-
sal of the component starting at the head actually is a traversal (i.e., it
passes through each box).

209. page 264, Lemma 9.16: In the first sentence of the lemma: “Suppose µ ⊆
µvh are partitions and µvh/µ can be separated into an inner vertical strip
and an outer horizontal strip” → “Suppose µ ⊆ µvh are partitions such
that µvh/µ is a border strip”.

In the last sentence of the lemma, after “there is a separation of µvh/µ”,
add “into an inner vertical strip and an outer horizontal strip”.

210. page 264, proof of Lemma 9.16: In the first paragraph of this proof, you say
that “we can assume without loss of generality that µvh/µ is connected”.
This hinges on some tacit arguments that is not completely trivial. As
you correctly notice, one of these arguments is saying that two boxes in
different connected components cannot lie in the same row or column. But
here is another: If we separate each connected component of a skew shape
into an inner and an outer part, then we get a separation of the whole
skew shape into the union of all inner parts and the union of all outer
parts. (That is, the union of all inner parts is a skew shape, and the union
of all outer parts is a skew shape.) The easiest way to prove this is by
arguing that if we do not get a separation this way, then we must have
some inner-part box that is a right or top neighbor of some outer-part box;
but due to their adjacency, these two boxes have to belong to the same
connected component, and thus cause a contradiction.

211. page 264, proof of Lemma 9.16: In the third paragraph of this proof, re-
place “is to the left (resp., below) the box” by “is to the left of (resp., below)
the box”.
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212. page 265, first line: On the first line of page 265, replace “Lemma 9.16 tells”
by “Lemma 9.15 and Lemma 9.16 tell” (you need Lemma 9.15 to know that
all µvh/µ’s appearing in (9.5) are border strips).

213. page 265, (9.6): Replace the outer summation sign “ ∑
µvh⊇µ

” by “ ∑
µvh⊇µ;
|µvh/µ|=n;

µvh/µ is a border strip

”.

The same change should be done in (9.7).

214. page 265, Theorem 9.17: Replace “n ≥ 0” by “n ≥ 1” here. Even if you did
define p0 to be 1, the theorem would still fail for n = 0 due to an incorrect
sign.

215. page 266, Definition 9.18: Before “λ (j + 1) /λ (j) is a connected border
strip”, I would add “the set λ (j) is (the Ferrers diagram of) a partition
and”. (This might be redundant – I am not 100% sure, but I’m pretty sure
it makes everything clearer; you haven’t even properly defined what α/β is
when α and β are not partition shapes. Equivalently, you can require that
the entries of the tableau increase weakly left-to-right and top-to-bottom.)

216. page 266, Definition 9.18: The upper bound of the product in the displayed
formula should be l (µ)− 1 rather than l (µ).

I would also replace “for all j with 0 ≤ j ≤ l (µ)” by “for all j with 0 ≤ j ≤
l (µ)− 1”. (Strictly speaking, this is unnecessary, at least if you consider an
empty skew shape to be a connected border strip; but I think it is natural
to talk of 0 ≤ j ≤ l (µ)− 1.)

Finally, I would replace “we set” by “we define the sign sgn (T) of T by”
(so that the word “sign” is explained).

217. page 267, proof of Theorem 9.20: A better induction base for this proof
would be the case l (λ) = 0 (which has to be handled either way). There
is nothing in your induction step that really requires l (λ) ≥ 2 (as opposed
to just l (λ) ≥ 1).

218. page 268, proof of Theorem 9.20: After “When we combine Tα with µ/ν”,
I would add “(filling the boxes in µ/ν with the number l and adding them
to Tα)”. I would also replace “combine Tα” by “combine a Tα ∈ BST (ν, α)”.

219. page 269, second paragraph: Wouldn’t it be helpful to actually cite a proof
of this claim about irreducible characters? One place where this is proved is
§5.5 of Mark Wildon’s nice (albeit much less detailed than your book) notes
http://www.ma.rhul.ac.uk/~uvah099/Maths/Sym/SymFuncs2017.pdf . An-
other is Proposition 5.21.1 in Pavel Etingof et al., Introduction to representa-
tion theory, AMS 2011 (updated version 2018).
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220. page 272, solution to Example 10.2: It would be helpful to clarify whether
the rows are T1 and the columns are T2, or vice versa.

221. page 272, (10.3): You are missing an s411 (X3) term on the right hand side.

222. page 273: After “will have the shapes (4, 2),” add “(4, 1, 1),”.

223. page 270, Problem 9.10: Are you sure you don’t want to require the border
strips in the decompositions to be connected?

224. page 274, second paragraph: In the description of jeu de taquin, you write:
“There is a unique way to slide a box into the blank space so that the result-
ing object is column strict and row nondecreasing”. This is not quite obvi-
ous: The uniqueness is easy, but the existence (specifically, the proof that
the sliding entry will not be smaller than its new left neighbor or smaller-
or-equal to its new bottom neighbor) needs a proof. And this proof is not
completely trivial; it relies on the fact that there is only one empty box in
an otherwise filled skew diagram (otherwise it wouldn’t work, which is
why the tableau switching paper of Benkart/Sottile/Stroomer requires the
rather technical “staircases” condition).

225. page 274: “column strict and row nondecreasing” → “column-strict and
row-nondecreasing”.

226. page 278, §10.2: In the second paragraph of §10.2, replace “suppose word (T1)
has just one entry” by “suppose word (T2) has just one entry”.

227. page 279, third paragraph: Replace “In one type of step we have consec-
utive entries x and z” by “In one type of step we have consecutive entries
z and x”. (It is a bit confusing to label consecutive steps starting with the
second one.)

228. page 279, third paragraph: Replace “for some i ≥ j” by “for some i > j”.
(You aren’t switching c with aj.)

229. page 279, third paragraph: Replace “as well as x = ai and y = ai+1 for

some i < j” by “as well as x = ai and y =

{
ai+1, if i < j− 1;
c, if i = j− 1

for some

i < j”. (When you first swap aj with aj−1, the catalyzing neighbor on the
right is c, not aj.)

230. page 279, third paragraph: I think an example of the traveler moving
through a row would be helpful here (showing what x, y, z are in each
step).

231. page 280: After Definition 10.10, I’d add a sentence along the lines of “This
relation ∼K is an equivalence relation, since any elementary Knuth trans-
formation can be undone by another elementary Knuth transformation.”.
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232. page 281, first paragraph: In the sentence “In general, our definition of
Knuth equivalence guarantees that the Knuth equivalence classes for a set
of words are exactly the connected components of the corresponding graph
on those words”, replace “a set of words” by “a set of words closed un-
der elementary Knuth transformations”4. For example, if S is the set of all
words that correspond to even permutations π ∈ Sn, then the graph corre-
sponding to this set S is totally disconnected (i.e., each vertex is isolated),
but the Knuth equivalence classes are nontrivial (for large n).

233. page 281, second paragraph: “as a product on words”→ “as a product on
tableaux”.

234. page 282: One line above Corollary 10.13, replace “tableaux” by “tableau”.

235. page 283, proof of Theorem 10.14: “using using”.

236. page 283, proof of Theorem 10.14: When you refer to Figures 10.8 and
10.9, I suggest explaining that the part left of a and the part right of dk
are not shown (i.e., there may be more filled boxes left of a or right of dk,
but they do not matter). I would actually remove the a from the figures
as well, and only re-include it when it is needed in the proof later on (so
I would duplicate the figures, removing the a’s from the first copies but
leaving them in the second).

237. pages 283–285, proof of Theorem 10.14: I have given up trying to under-
stand this proof. I think it is too long and yet too terse. I understand the
idea, but I’m not sure I can fill in the details. I am also a bit skeptical: You
start by moving the cj’s past the bi’s using x as a catalyst, and you finish by
claiming that “we can reverse our initial steps” – but x is no longer avail-
able as a catalyst at that point. (Something tells me that we need more than
just the single x entry – I would expect the upper neighbors of c1, c2, . . . , cm
to all come useful.)

I believe there is a good case for such a proof, but I believe it should be
organized differently. It lends itself ideally to being factored into a se-
quence of relatively simple lemmas such as “If c1 ≤ c2 ≤ · · · ≤ cm <
x ≤ b1 ≤ b2 ≤ · · · ≤ bk is a sequence of letters, then xb1 · · · bkc1 · · · cm ∼K
xc1 · · · cmb1 · · · bk” (I’m not actually if this one is true, but I think you get
the gist), and I see no reason not to factor it. Moreover, these proofs can
preferably be done by induction rather than by showing the first step and
handwaving the rest

4This is not the best condition, but the easiest one to state. In truth, it suffices to have a “Knuth-
convex” set of words, i.e., a set of words such that any two Knuth-equivalent words in the
set are connected by a sequence of elementary Knuth transformations with all intermediate
words being in the set as well.
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However, given the position in which Theorem 10.14 stands in your book,
I would suggest a different way of proof:

Alternative proof of Theorem 10.14 (sketched). It suffices to prove the following
lemma:

Lemma 10.14a. Let a1 ≤ a2 ≤ · · · ≤ am ≤ x ≤ b1 ≤ b2 ≤ · · · ≤ bk and
c1 ≤ c2 ≤ · · · ≤ cm ≤ x ≤ d1 ≤ d2 ≤ · · · ≤ dk be two weakly increasing
numbers such that

• every i satisfies ci < ai;

• every j satisfies dj < bj.

Then,

a1 · · · amxb1 · · · bkc1 · · · cmd1 · · · dk ∼K a1 · · · amb1 · · · bkc1 · · · cmxd1 · · · dk.

[Proof of Lemma 10.14a. Let T be the tableau that consists of just one row,
with entries a1, a2, . . . , am, x, b1, . . . , bk (from left to right). This is clearly a
semistandard tableau, and satisfies

word (T) = a1 · · · amxb1 · · · bk. (13)

Now, let us insert the numbers c1, c2, . . . , cm, d1, d2, . . . , dk into T (using RSK
insertion, in this order). Here is what happens:

• The insertion of c1 bumps a1 into the 2nd row (since c1 < a1). The first
row becomes c1a2 · · · amxb1 · · · bk.

• The insertion of c2 bumps a2 into the 2nd row (since c1 ≤ c2 < a2).
The first row becomes c1c2a3 · · · amxb1 · · · bk.

• The insertion of c3 bumps a3 into the 2nd row (since c2 ≤ c3 < a3).
The first row becomes c1c2c3a4 · · · amxb1 · · · bk.

• And so on. After c1, c2, . . . , ck have been inserted, we obtain the tableau

a1 a2 · · · am
c1 c2 · · · cm x b1 b2 · · · bk

.

• The insertion of d1 bumps b1 into the 2nd row (since x ≤ d1 < b1).
The first row becomes c1 · · · cmxd1b2 · · · bk.

• The insertion of d2 bumps b2 into the 2nd row (since d1 ≤ d2 < b2).
The first row becomes c1 · · · cmxd1d2b3 · · · bk.

• The insertion of d3 bumps b3 into the 2nd row (since d2 ≤ d3 < b3).
The first row becomes c1 · · · cmxd1d2d3b4 · · · bk.

• And so on. After d1, d2, . . . , dk have been inserted, we obtain the
tableau

a1 a2 · · · am b1 b2 · · · bk
c1 c2 · · · cm x d1 d2 · · · dk

.
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Thus,

rdk

(
rdk−1

(
· · ·
(
rd1

(
rcm

(
rcm−1 (· · · (rc1 (T)))

)))))
=

a1 a2 · · · am b1 b2 · · · bk
c1 c2 · · · cm x d1 d2 · · · dk

,

so that

word
(

rdk

(
rdk−1

(
· · ·
(
rd1

(
rcm

(
rcm−1 (· · · (rc1 (T)))

))))))
= a1 · · · amb1 · · · bkc1 · · · cmxd1 · · · dk. (14)

But Theorem 10.11 (applied to (c1, c2, . . . , cm, d1, d2, . . . , dk) instead of (c1, c2, . . . , cn))
yields

word (T) c1 · · · cmd1 · · · dk

∼K word
(

rdk

(
rdk−1

(
· · ·
(
rd1

(
rcm

(
rcm−1 (· · · (rc1 (T)))

))))))
.

In view of (13) and (14), this rewrites as

a1 · · · amxb1 · · · bkc1 · · · cmd1 · · · dk ∼K a1 · · · amb1 · · · bkc1 · · · cmxd1 · · · dk.

This proves Lemma 10.14a. � ]

238. page 285, §10.3: It is worth explaining that a permutation of a multiset A is
defined to be a tuple of elements of A such that every element of A appears
in this tuple as often as it appears in A.

239. page 286: “identical to the left of x and to the right of z” → “identical to
the left and to the right of the respective yzx or yxz blocks”.

240. page 286: I think this argument is somewhat incomplete. In order to obtain
rx
(
rz
(
ry (T)

))
= rz

(
rx
(
ry (T)

))
, it isn’t enough to show that the bumping

paths of z and x in ry (T) have no common boxes; it also needs to be shown
that

• the bumping path of z in ry (T) is identical to the bumping path of z
in rx

(
ry (T)

)
, and

• the bumping path of x in ry (T) is identical to the bumping path of x
in rz

(
ry (T)

)
.

The second of these two statements is an automatic consequence of the
disjointness of the bumping paths, but the first is not, since the bump-
ing procedure is influenced not only by the numbers in the boxes on the
bumping path itself but also by the numbers in their left neighbor boxes.
Fortunately, bumping an entry can only replace it by a smaller entry, so
whatever entries have changed from ry (T) to rx

(
ry (T)

)
will not affect the

bumping path of z. Thus, the first statement holds as well. But I believe
this should be explained.
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241. pages 287–288: I think the case distinction in the “ry (rz (rx (T))) = ry (rx (rz (T)))”
part of the proof can be much improved. While each case is indeed rea-
sonably straightforward, I would argue that identifying the right cases to
distinguish between is not. Thus, I suggest listing all the cases with their
outcomes.

Here is my version of this list:

We suppose that the entries of the first row of T are a1, . . . , aj+k+l+n, where

a1 ≤ · · · ≤ aj ≤ x,

x < aj+1 ≤ · · · ≤ aj+k ≤ y,

y < aj+k+1 ≤ · · · ≤ aj+k+l ≤ z,

z < aj+k+l+1 ≤ · · · ≤ aj+k+l+n.

Here, if k = 0, then the chain of inequalities x < aj+1 ≤ · · · ≤ aj+k ≤ y
should be interpreted as being vacuous; it is thus not saying that x < y.
(The same applies to the chain y < aj+k+1 ≤ · · · ≤ aj+k+l ≤ z when l = 0,
but this does not matter, since we already are given that y < z.) Now, the
cases I distinguish are the following:

• Case 1: We have n = 0.

– Subcase 1.1: We have k + l = 0. In this case, the first row of T has
the form a1 · · · aj. Hence, when we construct ry (rz (rx (T))), we
first have x insert itself at the end of the first row; then z inserts
itself at the end of the first row; then y bumps out z. When we con-
struct ry (rx (rz (T))), we first have z insert itself at the end of the
first row; then x bumps out z; then y inserts itself at the end of the
first row. Thus, the first rows of ry (rz (rx (T))) and ry (rx (rz (T)))
are identical, and both times the same letter is being bumped into
the next row.

– Subcase 1.2: We have k + l > 0. In this case, when we construct
rz (rx (T)), we first have x bump out aj+1; then z inserts itself at
the end of the first row. When we construct rx (rz (T)), we first
have z insert itself at the end of the first row; then x bumps out
aj+1. Thus, the first rows of rz (rx (T)) and rx (rz (T)) are identical,
and both times the same letter is being bumped into the next row.
Obviously, this identity does not change when we apply ry again;
thus, the same holds for ry (rz (rx (T))) and ry (rx (rz (T))).

• Case 2: We have n > 0.

– Subcase 2.1: We have k + l = 0.

∗ Subsubcase 2.1.1: We have n = 1. In this case, j + k + l = j.
Hence, the first row of T has the form a1a2 · · · ajaj+1, with
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x ≤ y < z < aj+1. Hence, when we construct ry (rz (rx (T))),
we first have x bump out aj+1; then z inserts itself at the end
of the first row; then y bumps out z. When we construct
ry (rx (rz (T))), we first have z bump out aj+1; then x bumps
out z; then y inserts itself at the end of the first row. Thus, the
first rows of ry (rz (rx (T))) and ry (rx (rz (T))) are identical,
and both times the same two letters are being bumped into
the next row (in the same order).

∗ Subsubcase 2.1.2: We have n > 1. This is the second case you
consider on page 288.

– Subcase 2.2: We have k + l > 0.

∗ Subsubcase 2.2.1: We have l = 0. In this case, k + l = k. Hence,
the first row of T has the form a1a2 · · · ajaj+1 · · · aj+kaj+k+1 · · · aj+k+n,
with y < z < aj+k+1 ≤ · · · ≤ aj+k+n. Thus, when we construct
ry (rz (rx (T))), we first have x bump out aj+1 (which is strictly
left of aj+k+1, because k = k + l > 0); then z bumps out aj+k+1;
then y bumps out z. When we construct ry (rx (rz (T))), we
first have z bump out aj+k+1; then x bumps out aj+1 (which is
strictly left of aj+k+1); then y bumps out z. Thus, the first rows
of ry (rz (rx (T))) and ry (rx (rz (T))) are identical, and the let-
ters that are bumped out from these first row are (respectively)
aj+1, aj+k+1, z (in this order) and aj+k+1, aj+1, z (in this order).
Since we know that aj+1 ≤ x < z, we can conclude from the
induction hypothesis that inserting these bumped-out letters
into the remaining rows of T will again have the same result.

∗ Subsubcase 2.2.2: We have k = 0. In this case, k + l = l. Hence,
the first row of T has the form a1a2 · · · ajaj+1 · · · aj+laj+l+1 · · · aj+l+n,
with x ≤ y < aj+1 ≤ · · · ≤ ak+l ≤ z. Thus, when we con-
struct ry (rz (rx (T))), we first have x bump out aj+1 (which is
strictly left of aj+l+1, because l = k + l > 0); then z bumps out

aj+l+1; then y bumps out a′j+2, where a′j+2 =

{
aj+2, if l ≥ 2;
z, if l = 1

is the entry currently occupying position j + 2 (here, we are
using the facts that y < aj+1 ≤ aj+2 and that y < z). When
we construct ry (rx (rz (T))), we first have z bump out aj+l+1;
then x bumps out aj+1 (which is strictly left of aj+l+1); then y
bumps out a′j+2, where a′j+2 is the same as in the previous sen-
tence. Thus, the first rows of ry (rz (rx (T))) and ry (rx (rz (T)))
are identical, and the letters that are bumped out from these
first row are (respectively) aj+1, aj+l+1, a′j+2 (in this order) and
aj+l+1, aj+1, a′j+2 (in this order). Since we know that aj+1 ≤
a′j+2 < aj+l+1 (indeed, if l ≥ 2, then this follows from aj+1 ≤
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aj+2 ≤ z < aj+l+1; but if l = 1, then this follows from aj+1 ≤
z < aj+l+1), we can conclude from the induction hypothe-
sis that inserting these bumped-out letters into the remaining
rows of T will again have the same result.

∗ Subsubcase 2.2.3: We have k > 0 and l > 0. This is the
“most generic” case, as all the relevant intervals [j + 1, j + k],
[j + k + 1, j + k + l] and [j + k + l, j + k + n] are nonempty. Thus,
when we construct ry (rz (rx (T))), we first have x bump out
aj+1; then z bumps out aj+k+l+1; then y bumps out aj+k+1.
When we construct ry (rx (rz (T))), we first have z bump out
aj+k+l+1; then x bumps out aj+1; then y bumps out aj+k+1.
Thus, the first rows of ry (rz (rx (T))) and ry (rx (rz (T))) are
identical, and the letters that are bumped out from these first
row are (respectively) aj+1, aj+k+l+1, aj+k+1 (in this order) and
aj+k+l+1, aj+1, aj+k+1 (in this order). Since we know that aj+1 ≤
aj+k+1 < aj+k+l+1 (indeed, if aj+k+1 < aj+k+l+1 follows from
aj+k+1 ≤ z < aj+k+l+1), we can conclude from the induction
hypothesis that inserting these bumped-out letters into the re-
maining rows of T will again have the same result.

Note that I am not distinguishing between the cases x = y and x < y,
as I don’t see a reason to do so. I believe the same arguments apply to
both x = y and x < y, as long as you make sure to interpret the chain of
x < aj+1 ≤ · · · ≤ aj+k ≤ y as vacuous when k = 0.

242. page 289, proof of Theorem 10.17: “to its right”→ “to its left”.

243. page 289, proof of Theorem 10.17: Before “each entry of rl−1 bumps”, add
“when we insert rl−1 into P (rl) using RSK insertion,”.

244. page 290, proof of Corollary 10.22: Since you haven’t mentioned it before
but are using it now, it feels reasonable to mention the monoidal property
of Knuth equivalence here (i.e., the fact that if α1 ∼K α2 and β1 ∼K β2, then
α1β1 ∼K α2β2).

245. page 292, line 7: “tableaux”→ “tableau”.

246. page 292: Two lines above Definition 10.25, you write “into the new boxes
of λ/µ”. This presupposes the following two facts:

• The boxes created by inserting b1, . . . , b|ν| into U are actually the boxes
of λ/µ.

• Inserting s1, . . . , s|ν| into these boxes (in the order in which they ap-
pear) yields a semistandard skew tableau.
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These facts are not hard to check, but at least something should be said
about the proofs. (The first fact comes from observing that

rb|ν|

(
rb|ν|−1

(
· · · rb1 (U)

))
=
(

result of inserting the word b1 · · · b|ν| into U
)

= (result of inserting the word word (V) into U)
by an analogue of Theorem 10.16,

since b1 · · · b|ν| ∼K word

P
(

b1 · · · b|ν|
)

︸ ︷︷ ︸
=P(σ)=V

 = word (V)


= UErV (by the definition of UErV)

= UEV = T (since (U, V) ∈ T (µ, ν, T))

is a tableau of shape λ. Here, the “analogue of Theorem 10.16” means the
fact that Knuth-equivalent words not only produce the same P-tableau, but
also lead to the same result when inserted in an already existing tableau.
While this fact follows easily from Theorem 10.16 (just write the already
existing tableau as the P-tableau of some word), I find this fact sufficiently
useful to state in its own right. The second fact presupposed above is
proved in the same way as Proposition 8.14.)

247. page 294: You write: “Fill in the boxes of µ in S with entries which are
smaller than all entries of S to create a semistandard tableau US of shape
λ”. I think this is only possible if you allow negative integers as entries.
Example 10.28 illustrates why: The only reason why you are able to avoid
negative (or zero) entries in Figure 10.17 is that you are not taking the
“smaller than all entries of S” requirement seriously (the 2 you add in row
2 is not smaller than the 2 in S).

You should probably say that you are going to allow tableaux (and gener-
alized permutations) with negative entries when necessary, seeing that you
use them in the proof of Lemma 10.30 as well.

248. pages 294–295: I don’t understand your argument for why U is indepen-
dent of the choice of entries to fill µ with. (I think you are using the letter
U for two different tableaux in that argument.) I also am missing a proof
for why V is independent of this choice. Fortunately, I don’t believe these
arguments are necessary: You can instead fix a choice of entries to fill µ
with, and define the map Ω using this choice; then Theorem 10.33 entails
that Ω is actually independent of this choice because it is the inverse of the
map Ψ (and inverses are unique).

249. page 295, Example 10.28: As I said above, your US in Figure 10.17 does
not quite fit the “entries smaller than all entries of S” bill.
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250. page 296, proof of Lemma 10.29: After “let v′j be vj with b removed”, I’d
add “(where b refers to the leftmost appearance of b in each word)”.

251. page 297, proof of Lemma 10.30: You are tacitly using that the array τ is
actually a generalized permutation. This follows from the fact that cj < ak
for all j and k (which, in turn, follows from the fact that c1, . . . , cm are the
entries of Q (σ) = T−, which are nonpositive).

252. page 298, proof of Proposition 10.31: I’d replace “rect (Ψ (U, V)) = W” by
“rect (Ψ (U, V)) = Q (σ) = W” just in order to make the reasoning clearer.

253. page 298, proof of Proposition 10.32: After “the entries in µ must be
u1, . . . , u|µ|”, add “(since π is a generalized permutation, so that u1 ≤ · · · ≤
u|µ| ≤ t1 ≤ · · · ≤ t|λ|−|µ|, and this entails that u1, . . . , u|µ| are the smallest
|µ| many entries of US)”.

254. page 298, proof of Proposition 10.32: After “In particular, the shape of U
is µ”, I’d add “(since U = P

(
a1, . . . , a|µ|

)
is the intermediate result in the

construction of P (π) achieved after the first |µ| many insertions, and the
Q-tableau achieved at that point is precisely the part of Q (π) = US that
contains the smallest |µ| many entries of US; but clearly the P-tableau and
the Q-tableau always have the same shape)”.

255. page 298, proof of Proposition 10.32: Replace “By Lemma 10.30” by “Note
that the tableau P (π) can be obtained from U by inserting c1, . . . , c|λ|−|µ| in
this order; and the S part of US is obtained by filling the boxes of λ/µ with
t1, . . . , t|λ|−|µ| in the order in which they are created during this insertion
process. Hence, by Lemma 10.30 (applied to τ, |λ| − |µ|, ti, ci, U and P (π)
instead of π, n, ai, bi, T and U)”.

256. page 298, proof of Theorem 10.33: On the second line of this proof, replace
“, and let Q (σ) = W” by “and Q (σ) = W”. (This is part of the definition
of σ, not of W.)

257. page 299, proof of Theorem 10.33: You are tacitly using the fact that the
array π′ (which you define as the concatenation σ′σ) is actually a general-
ized permutation. This follows from the fact that v1, . . . , v|µ| (which are the
entries of Uc, since Q (σ′) = Uc) are smaller than s1, . . . , s|ν| (which are the
entries of S).

258. page 299, proof of Theorem 10.33: After “so we must have π = π′.”, I
would add “Thus,

(
d1, d2, . . . , d|µ|

)
=
(

a1, a2, . . . , a|µ|
)

and
(

b1, b2, . . . , b|ν|
)
=(

c1, c2, . . . , c|λ|−|µ|
)

.”
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259. page 299, proof of Theorem 10.33: Instead of saying “by Lemma 10.30 and
our construction”, I’d just say “as we have seen in the proof of Proposition
10.32 above”. After all, your notations here are exactly the same as in that
proof, so there is no need to redo anything.

260. page 299, proof of Theorem 10.33: In the last displayed equation on page
299, replace “W = rect (S1) = Q (σ)” by “W = Q (σ)”. Indeed, the rect (S1)
term is useless and misleading (the equality W = Q (σ) comes immediately
from the definition of σ).

261. page 299, proof of Theorem 10.33: After “Therefore, τ = σ”, I would add

“, so that π =

[
u1 · · · u|µ| s1 · · · s|ν|
a1 · · · a|µ| b1 · · · b|ν|

]
”. (This is closer to what you

actually use in the next paragraph.)

262. page 301, proof of Theorem 10.39: I’d replace “word (S) ∼K n · · · n · · · 1 · · · 1”
by “word (S) ∼K word (W) = n · · · n · · · 1 · · · 1” (since you are talking
about word (W) in the next paragraph).

263. page 302, second paragraph: “is if xyw2 is not a Littlewood–Richardson
word” → “is if the word xyw2 contains more copies of x than of x − 1
despite x > 1”.

264. page 302, third paragraph: “would be if zyw2 were not a Littlewood–
Richardson word” → “would be if the word zyw2 contained more copies
of z than of z− 1”.

265. page 302, third paragraph: I’m skeptical about the claim that “xyw2 has
exactly the same number of x’s as x + 1’s”. Fortunately, a weaker claim
suffices: Since w2 is Littlewood–Richardson, and since y = x, the word
xyw2 must have at least two more x’s than it has x + 1’s. In view of z =
x + 1, this rewrites as follows: The word xyw2 must have at least two more
z− 1’s than it has z’s. Therefore, the word zyw2 (which has one more z and
one fewer x = z − 1 than xyw2) must have at least as many z − 1’s than
it has z’s. But this contradicts the fact that the word zyw2 contains more
copies of z than of z− 1.

266. page 304, Problem 10.9: Remove the spurious “2” at the end of this exer-
cise.

267. page 307, Problem 10.12: The last sentence should not be part of the last
bullet point.

268. page 307, Figure 10.20: Are you sure the labelling of the middle rhombus
is correct? Here b and c are two adjacent vertices, and so are a and d;
the inequality b + c ≥ a + d then doesn’t seem to correspond to the hive
inequality in the works of Knutson and Tao. (But I’m no expert on those
works.)
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269. page 315, proof of Proposition A.14: On line −3 of the page, replace “F”
by “Fn”.

270. page 317, line −4: “we say u1, . . . , un”→ “we say −→u 1, . . . ,−→u n”.

271. page 318, Proposition A.18: It is worth saying that the field is supposed to
be Q or R here (but not C, which would render axiom (4) meaningless and
axiom (5) false).

272. page 319, proof of Proposition A.18: On the first line of the displayed
equation, replace “uk” by “−→u k”.

273. page 319, proof of Proposition A.18: On line 10 of the proof (and of the
page), replace “and w =” by “and −→w =”.

274. page 320, line 2: “function” → “bilinear map” (which should be defined).
If it was just an arbitrary function, then the values of

〈−→u j,
−→v k
〉

would not
uniquely determine it.

275. page 321, Problem A.12: On line 2 of the problem, replace “−→w , . . . ,−→w n”
by “−→w 1, . . . ,−→w n”.

276. page 321, Problem A.13 (a): “−→v = 〈a, b〉”→ “−→v = (a, b)”.

277. page 324 (ca.): It is worth pointing out that any partition λ of k has l (λ) ≤ k
and thus can be written as (λ1, λ2, . . . , λk). This little notational trick gets
tacitly used in the text many times, but may be somewhat confusing to
readers who aren’t used to it (they may wonder whether λ actually has k
nonzero entries).

278. page 333, proof of Proposition C.7: Replace “of the form 1, j” by “of the
form (1, j)”.

279. page 335: I’d add an exercise asking to prove that inv (πσ) ≤ inv π + inv σ
for any π, σ ∈ Sn.

280. back cover: “the involution Ω”→ “the involution ω”.
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