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Errata and addenda by Darij Grinberg

I will refer to the results appearing in the article “A Self-Dual Hopf Algebra
on Double Partially Ordered Sets” by the numbers under which they appear in
this article (specifically, in its version of 21 May 2009, posted on the arXiv as
arXiv preprint arXiv:0905.3508v1).

5. Errata

• Various places (including Theorem 2.1): You claim that ZD is a self-dual
Hopf algebra. The notion of self-duality that you are using, however, dif-
fers from the notions of self-duality commonly used in literature. In partic-
ular, a standard definition of a self-dual Hopf algebra H requires it to have
a bilinear form which provides a Hopf algebra isomorphism H → H∗. This
is not satisfied for ZD: In fact, the bilinear form ⟨·, ·⟩ on ZD gives rise to
a Hopf algebra homomorphism ZD → (ZD)∗ which is not bijective. (It is
in fact injective, but you do not prove this; instead, this is a consequence of
[Foissy11, Theorem 36 1.].)

• Page 2, §2: Replace “if x ∈ J and x < y” by “if x ∈ S and x < y”.

• Page 3: Replace “We define a pairing ⟨, ⟩ : ZD × ZD → Z for any double
posets E, F by:

⟨E, F⟩ := |{α : E → F, α is a picture}|

” by “We define a pairing ⟨, ⟩ : ZD × ZD → Z by:

⟨E, F⟩ := |{α : E → F, α is a picture}| for any double posets E, F.

”.

• Page 3: Replace “⟨E ⊗ G, δG⟩” by “⟨E ⊗ F, δG⟩”.

• Page 3, proof of Theorem 2.1: Replace “I ∩ F is an inferior ideal of (E,<1)”
by “I ∩ F is an inferior ideal of (F,<1)”.

• Page 4, proof of Theorem 2.1: In “I is an inferior ideal of G”, replace the
“G” by a “G” (in mathmode).

• Page 4, proof of Theorem 2.1: In “take g, g′ in G”, replace the “G” by a
“G” (in mathmode).
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• Page 4, proof of Theorem 2.1: Replace “ordre” by “order”.

• Page 4, proof of Theorem 2.1: Replace “a bijection α : E → G” by “a
bijection α : EF → G”.

• Page 4, proof of Theorem 2.1: Replace “doubles posets” by “double posets”.

• Page 4, §2.2: Replace “over all π-partitions” by “over all π-partitions x into
X”.

• Page 4, §2.2: Replace “algebra of quasi-symmetric function” by “algebra of
quasi-symmetric functions”.

• Page 4, §2.2: Replace “commuting variables Y” by “commuting variables
Y” (the “Y” should be in mathmode).

• Page 5, §2.3: Replace “Let ϕ : (E,<1) → (F,<2) be a bijection” by “Let
ϕ : E → F be a bijection”. (You really mean a bijection between sets here,
and poset structures are not relevant to it.)

• Page 5, §2.3: The internal product is non-unital (i.e., there exists no element
e of ZD such that every b ∈ ZD satisfies e ◦ b = b ◦ e = e). When I hear
“product”, I normally tend to expect that it has a unit, which is why I think
this should be pointed out explicitly.

On the other hand, what is true is that the internal product is associative.
See Proposition 6.1 below for a proof.

• Page 5, Lemma 2.1: Replace “and and” by “and”.

• Page 5, Lemma 2.1: Replace “and β a picture” by “and β is a picture”.

• Page 5, proof of Lemma 2.1: Replace “the projection F × G → F” by “the
projection F ×ψ G → F”.

• Page 5, proof of Lemma 2.1: Replace “the projection E × F → F” by “the
projection E ×ψ F → F”.

• Page 5, proof of Lemma 2.1: In “Now β maps bijectively E into F ×ϕ G”,
replace “ϕ” by “ψ”.

• Page 5, proof of Lemma 2.1: Replace “α−1(ψ ( f ) =
(
ϕ−1 ( f ) , f

)
” by “α−1 (ψ ( f )) =(

ϕ−1 ( f ) , f
)
”.

• Page 5, proof of Lemma 2.1: Replace “β (e) = (ϕ (e) , ψ(ϕ (e))” by “β (e) =
(ϕ (e) , ψ (ϕ (e)))”.

• Page 6, proof of Lemma 2.1: Replace “β′ = β′” by “β′ = β”.
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• Pages 6-7, §3.1: Here you define a bialgebra structure on ZS and claim
that it is the one constructed in [MR]. It would be helpful to make this
somewhat more precise: In [MR] you have defined two different (albeit
isomorphic) bialgebra structures on ZS, and the one that you are talking
about is the one that you have called (ZS, ∗′, ∆′) in [MR] (rather than the
one you have called (ZS, ∗, ∆) or simply ZS in [MR]).

• Page 7: Replace “each special double poset on the sum” to “each special
double poset to the sum”.

• Page 7: Replace “diagramm” by “diagram”.

• Page 7, proof of Theorem 3.1: “a lower” should be “an inferior”.

• Page 8, proof of Theorem 3.1: Replace “st (v) = σ” by “st (v) = β”.

• Page 8, proof of Lemma 3.1: The proof should start with the sentence
“Write the special double posets π and π′ in the forms π = (P,<1,<2)
and π′ = (P′,<1,<2), respectively”, so that P and P′ are defined.

• Page 8, proof of Theorem 3.2: Replace “let ϕ be increasing (E,<1) →
(F,<2) = {1, . . . , n}” by “let ϕ be an increasing bijection (E,<1) → (F,<2) =
{1, . . . , n}”.

• Page 8, proof of Theorem 3.2: Replace “as in Section 2.2” by “as in Section
2.3”.

• Page 8, proof of Theorem 3.2: Replace “σ − 1 ◦ ϕ−1” by “σ−1 ◦ ϕ−1”.

• Page 8, proof of Theorem 3.2: Replace “L (π) L (π′)” by “L (π) ◦ L (π′)”.

• Page 9, §3.1: Replace “c1..., ck” by “c1, ..., ck”.

• Page 9, §3.1: Replace “Section 3” in “Section 2.2” in “Recall that the bial-
gebra homomorphism Γ : ZD → QSym has been defined in Section 3”.

• Page 9, §3.2: The formulation “the word obtained from w by exchang-
ing 1 and k in w , then 2 and k − 1, and so on” is ambiguous (the “and
so on” could be misunderstood to end at “k and 1”, which would entail
that the complement of w is w itself). I think a clearer definition of the
complement would be: If w = w1w2 . . . wn is a word (with w1, w2, . . . , wn
being its letters) whose letters belong to {1, 2, 3, . . .}, and k is the high-
est letter appearing in w, then the complement of w is defined as the word
(k + 1 − w1) (k + 1 − w2) . . . (k + 1 − wn).

• Page 9, §3.2: You define the weight of a word as follows: “The weight of
a word w is the partition ν = 1n12n2 ..., where ni is the number of i’s in
w. For the word above, it is the partition 142331.” This notion of a weight
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(while clearly well-defined) is very unlikely to be the one that you want:
indeed, it makes some of your statements below (“there is a well-known
bijection between standard Young tableaux of shape ν and lattice permuta-
tions of weight ν”, and Theorem 3.4) false. Instead, I believe that you want
to define a different notion of weight, namely the following one: “The
weight of a word w (on the symbols 1, 2, 3, . . .) is defined as the sequence
(n1, n2, n3, . . .), where ni is the number of i’s in w. When w is a lattice per-
mutation (but also in some other cases), this sequence is a partition. For
example, the weight of the word 11122132 is (4, 3, 1, 0, 0, 0, . . .) = (4, 3, 1).”

• Page 9, §3.2: Replace “w fits into π” by “a1a2 . . . an fits into π”.

• Page 9, §3.2: Replace “ f (ω (1)) ... f (ω (n))” by “ f
(
ω−1 (1)

)
... f
(
ω−1 (n)

)
”.

• Page 9, §3.2: Replace “we have that τ fits into π” by “we say that τ fits into
π”.

• Page 9, §3.2: Replace “and where <2 is given on the elements of Eν by
(x, y) <2 (x′, y′) if and only if either y > y′, or y = y′ and x < x′” by
“and where <2 is given on the elements of Eν by (x, y) <2 (x′, y′) if and
only if either x > x′, or x = x′ and y < y′ (in other words, <2 compares
two cells of Eν by decreasing row number, or, when the rows are equal, by
increasing column number)”. This definition is needed to ensure that the
reading word in the example on page 10 is the right one.

• Page 9, §3.2: Let’s be self-contained: After “Recall that there is a well-
known bijection between standard tableaux of shape ν and lattice permu-
tations of weight ν, see [S1] Prop.7.10.3 (d).”, add: “Explicitly, this bijec-
tion sends a standard tableau T with n entries to the lattice permutation
r1r2 . . . rn, where rk is the number of the row in which the entry k lies in
T.”.

• Page 10, Theorem 3.4: Replace “(π, πν)” by “⟨π, πν⟩”.

• Page 10: Replace “[Ma] (9.2)” by “[Ma] (Chapter 1, (9.2))”. In the same
sentence, replace “[S1] Th.A.1.3.3” by “[S1] Theorem A1.5.3”.

Another reference for the same result is [Gashar98, Theorem 1.2] for θ = ∅.

• Page 10: You claim that part (ii) of Theorem 3.4 “is the classical formulation
of the Littlewood-Richardson rule”. I find this misleading, since Theorem
3.4 comes nowhere close to proving the Littlewood-Richardson rule (about
the Hall inner product of a skew Schur functions with a Schur function).
What is true is that Theorem 3.4 looks like the Littlewood-Richardson rule,
but it differs from it in that it gives an expression for a scalar product
⟨π, πν⟩ on ZD, while the Littlewood-Richardson rule gives an expression
for a Hall inner product

〈
sλ/µ, sν

〉
on the ring of symmetric functions. That
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the expressions are equal (when π is a skew Ferrers diagram πλ/µ) makes
the two results similar, but I do not think it allows to derive one from the
other. Or am I missing something simple?

• Page 10, proof of Lemma 3.2: Replace “τ fits into π” by “a permutation τ
fits into π”.

• Page 10: You write that Proposition 3.1 “is equivalent to a result of Stanley,
see [G] Th.1 or [S1] Th.7.19.14”. There is no Theorem 7.19.14 in [S1]; I
suspect that you mean Theorem 7.19.4 instead. (Besides, the equivalence
of your Proposition 3.1 to the result of Stanley that you mention is not
completely obvious. See below for a different proof of Proposition 3.1,
which in my opinion is simpler than deriving it from Stanley’s result.)

• Page 10, example below Proposition 3.2: “whose inverse is 5 3 9 2 6 10 11 1 4 6 7”
should be “whose inverse is 5 3 9 2 6 10 11 1 4 7 8” (the last two letters
were wrong).

• Page 11, Lemma 3.3: Replace “ν = (ν1 > ... > νk > 0)” by “ν = (ν1 ≥ ... ≥ νk > 0)”.

• Page 11, proof of proposition: “Proof of proposition” should be “Proof of
proposition 3.2” (it is not the only proposition around).

• Page 11, proof of proposition: Replace “Lemma 5.2” by “Lemma 3.3”
twice.

• Page 11, proof of proposition: Replace “done in(i)” by “done in (i)”.

• Page 12, proof of theorem: “complements of lattice permutation” → “com-
plements of lattice permutations”.

6. Additional details and proofs

Note: The below addenda were written in approx. 2014, as an exer-
cise in understanding and formalizing some arguments in this paper
and in the theory of combinatorial Hopf algebras in general. I was
neither trying to be concise nor good at mathematical writing; instead
I was attempting to prepare the arguments for formal verification (a
project that has yet to materialize). –DG, 2024

6.1. Page 5, §2.3: associativity of the internal product

Let me add an additional fact: The internal product ◦ is associative. In other
words:
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Proposition 6.1. Any three elements E, F and G of ZD satisfy (E ◦ F) ◦ G =
E ◦ (F ◦ G).

Before we prove this, let us first establish some notation.

Definition 6.2. Let A and B be two sets. Let <B denote the smaller relation of
a partial order on B. (We write this relation <B in infix notation; this means
that, if b and b′ are two elements of B, then we write b <B b′ for (b, b′) ∈ (<B).)
Let f : A → B be a map.

We define a new binary relation (<B)
f on the set A as follows: For any two

elements a and a′ of A, we set a (<B)
f a′ if and only if f (a) <B f (a′). (Here,

we again write the relation (<B)
f in infix notation.)

Proposition 6.3. Let A and B be two sets. Let <B denote the smaller relation
of a partial order on B. Let f : A → B be a map. Then, the binary relation
(<B)

f is the smaller relation of a partial order on A.

Proof of Proposition 6.3. Let us write both relations <B and (<B)
f in infix nota-

tion.
We know that the relation <B is the smaller relation of a partial order. In other

words, the relation <B is irreflexive, transitive and asymmetric.
We now notice that the relation (<B)

f is irreflexive1, transitive2 and asymmet-
ric3. In other words, the relation (<B)

f is the smaller relation of a partial order

1Proof. Let a ∈ A be such that a (<B)
f a. We recall that a (<B)

f a holds if and only if f (a) <B

f (a) (according to the definition of “a (<B)
f a”). Hence, f (a) <B f (a) must hold (because

a (<B)
f a holds). But this contradicts the fact that the relation <B is irreflexive. We thus have

found a contradiction.
Now, let us forget that we fixed a. We thus have found a contradiction for each a ∈ A

satisfying a (<B)
f a. Therefore, there exists no a ∈ A satisfying a (<B)

f a. In other words, the
relation (<B)

f is irreflexive. Qed.
2Proof. Let a, a′ and a′′ be three elements of A such that a (<B)

f a′ and a′ (<B)
f a′′. We shall

prove that a (<B)
f a′′.

We recall that a (<B)
f a′ holds if and only if f (a) <B f (a′) (according to the definition of

“a (<B)
f a′”). Thus, f (a) <B f (a′) must hold (since a (<B)

f a′ holds).
We recall that a′ (<B)

f a′′ holds if and only if f (a′) <B f (a′′) (according to the definition
of “a′ (<B)

f a′′”). Thus, f (a′) <B f (a′′) must hold (since a′ (<B)
f a′′ holds).

From f (a) <B f (a′) and f (a′) <B f (a′′), we obtain f (a) <B f (a′′) (since the relation <B
is transitive).

We recall that a (<B)
f a′′ holds if and only if f (a) <B f (a′′) (according to the definition of

“a (<B)
f a′′”). Thus, a (<B)

f a′′ must hold (since f (a) <B f (a′′) holds).
Now, let us forget that we fixed a, a′ and a′′. We thus have shown that if a, a′ and a′′ are

three elements of A such that a (<B)
f a′ and a′ (<B)

f a′′, then a (<B)
f a′′. In other words, the

relation (<B)
f is transitive. Qed.

3Proof. It is known that every irreflexive and transitive relation is asymmetric. Applying this
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on A (because the smaller relations of partial orders are characterized by being
irreflexive, transitive and asymmetric). This proves Proposition 6.3.

The following proposition, while not needed in the proof of Proposition 6.1,
will be useful much later:

Proposition 6.4. Let A and B be two sets. Let <B denote the smaller relation
of a total order on B. Let f : A → B be an injective map. Then, the binary
relation (<B)

f is the smaller relation of a total order on A.

Proof of Proposition 6.4. Let us write both relations <B and (<B)
f in infix nota-

tion.
The relation <B is the smaller relation of a total order on B, and therefore also

the smaller relation of a partial order on B. Hence, Proposition 6.3 shows that
the binary relation (<B)

f is the smaller relation of a partial order on A. It now
remains to prove that this partial order is total.

Every two distinct elements a and a′ of A satisfy either a (<B)
f a′ or a′ (<B)

f a
4. Thus, the binary relation (<B)

f is the smaller relation of a total order on A
(since we already know that the binary relation (<B)

f is the smaller relation of
a partial order on A). This proves Proposition 6.4.

to the relation (<B)
f , we conclude that the relation (<B)

f is asymmetric (since (<B)
f is

irreflexive and transitive).
4Proof. Let a and a′ be two distinct elements of A. Then, a ̸= a′ (since a and a′ are distinct). If

we had f (a) = f (a′), then we would have a = a′ (since the map f is injective), which would
contradict a ̸= a′. Hence, we cannot have f (a) = f (a′). Thus, we have f (a) ̸= f (a′). In
other words, the elements f (a) and f (a′) of B are distinct.

But we know that <B is the smaller relation of a total order on B. Thus, if b and b′ are
two distinct elements of B, then either b <B b′ or b′ <B b. Applying this to b = f (a) and
b′ = f (a′), we conclude that either f (a) <B f (a′) or f (a′) <B f (a). We thus are in one of
the following two cases:

Case 1: We have f (a) <B f (a′).
Case 2: We have f (a′) <B f (a).
Let us first consider Case 1. In this case, we have f (a) <B f (a′). Thus, a (<B)

f a′

(because we have a (<B)
f a′ if and only if f (a) <B f (a′) (according to the defini-

tion of “a (<B)
f a′”)). Hence, either a (<B)

f a′ or a′ (<B)
f a. We thus have shown that(

either a (<B)
f a′ or a′ (<B)

f a
)

in Case 1.

Let us now consider Case 2. In this case, we have f (a′) <B f (a). Thus, a′ (<B)
f a

(because we have a′ (<B)
f a if and only if f (a′) <B f (a) (according to the defini-

tion of “a′ (<B)
f a”)). Hence, either a (<B)

f a′ or a′ (<B)
f a. We thus have shown that(

either a (<B)
f a′ or a′ (<B)

f a
)

in Case 2.

Now, we have proven
(

either a (<B)
f a′ or a′ (<B)

f a
)

in each of the two Cases 1 and 2.

Since these two Cases cover all possibilities, this yields that
(

either a (<B)
f a′ or a′ (<B)

f a
)

always holds. Qed.
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We now show the main tool with which we will work in our proof of Propo-
sition 6.1:

Lemma 6.5. Let (E,<E1,<E2) and (F,<F1,<F2) be two double posets.
(a) For every bijection ϕ : E → F, we have

(E,<E1,<E2)×ϕ (F,<F1,<F2) ∼=
(

F,<F1, (<E2)
ϕ−1)

as double posets.

(b) We have

(E,<E1,<E2) ◦ (F,<F1,<F2) = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

ϕ−1)

in ZD.
(c) For every bijection ϕ : E → F, we have

(E,<E1,<E2)×ϕ (F,<F1,<F2) ∼=
(

E, (<F1)
ϕ ,<E2

)
as double posets.

(d) We have

(E,<E1,<E2) ◦ (F,<F1,<F2) = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)

in ZD.

Proof of Lemma 6.5. We shall use the abbreviation E for (E,<E1,<E2), and we
shall use the abbreviation F for (F,<F1,<F2).

The definition of the set E ×ϕ F yields

E ×ϕ F = {(e, f ) ∈ E × F | ϕ (e) = f }
= {(u, v) ∈ E × F | ϕ (u) = v} (1)

(here, we renamed the indices e and f as u and v). Clearly, this shows that
E ×ϕ F ⊆ E × F. The definition of the double poset E ×ϕ F shows that E ×ϕ F =(
E ×ϕ F,<1,<2

)
, where any two elements (e, f ) ∈ E ×ϕ F and (e′, f ′) ∈ E ×ϕ F

satisfy (
(e, f ) <1

(
e′, f ′

)
if and only if f <F1 f ′

)
(2)

and (
(e, f ) <2

(
e′, f ′

)
if and only if e <E2 e′

)
. (3)

(a) Let ϕ be a bijection E → F. Hence, ϕ−1 is a bijection F → E. Thus,
Proposition 6.3 (applied to F, E, <E2 and ϕ−1 instead of A, B, <B and f ) shows
that the binary relation (<E2)

ϕ−1
is the smaller relation of a partial order on F.

Hence,
(

F,<F1, (<E2)
ϕ−1)

is a well-defined double poset.
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Define a map p2 : E ×ϕ F → F by
(

p2 (e, f ) = f for every (e, f ) ∈ E ×ϕ F
)
.

Thus, p2 is the projection on the second component. On the other hand, consider

the map
(
ϕ−1, id

)
: F → E×ϕ F which sends every f ∈ F to

ϕ−1 ( f ) , id ( f )︸ ︷︷ ︸
= f

 =

(
ϕ−1 ( f ) , f

)
∈ E ×ϕ F 5. The maps p2 and

(
ϕ−1, id

)
are mutually inverse6.

Hence, these two maps p2 and
(
ϕ−1, id

)
are invertible and satisfy p−1

2 =
(
ϕ−1, id

)
.

The map p2 is a poset homomorphism
(
E ×ϕ F,<1

)
→ (F,<F1)

7 and a

5Let us check that this map
(
ϕ−1, id

)
is well-defined:

Fix f ∈ F. Then,
(
ϕ−1 ( f ) , f

)
is an element of E × F satisfying ϕ

(
ϕ−1 ( f )

)
= f . In other

words,
(
ϕ−1 ( f ) , f

)
is an element (u, v) of E × F satisfying ϕ (u) = v. In other words,(

ϕ−1 ( f ) , f
)
∈ {(u, v) ∈ E × F | ϕ (u) = v} = E ×ϕ F (by (1)) .

Now, let us forget that we fixed f . We thus have shown that
(
ϕ−1 ( f ) , f

)
∈ E ×ϕ F for

every f ∈ F. Thus, the map
(
ϕ−1, id

)
is well-defined, qed.

6Proof. Every f ∈ F satisfies

(
p2 ◦

(
ϕ−1, id

))
( f ) = p2


(

ϕ−1, id
)
( f )︸ ︷︷ ︸

=(ϕ−1( f ),id( f ))
(by the definition of (ϕ−1,id))


= p2

(
ϕ−1 ( f ) , id ( f )

)
= id ( f )

(by the definition of p2) .

In other words, p2 ◦
(
ϕ−1, id

)
= id.

On the other hand, let (e, f ) ∈ E ×ϕ F. Then, (e, f ) ∈ E ×ϕ F =
{(u, v) ∈ E × F | ϕ (u) = v} (according to (1)). In other words, (e, f ) is an element (u, v)
of E × F satisfying ϕ (u) = v. In other words, (e, f ) is an element of E × F and satisfies
ϕ (e) = f . Now, p2 (e, f ) = f (by the definition of p2) and ϕ−1 ( f ) = e (since ϕ (e) = f ). Now,

((
ϕ−1, id

)
◦ p2

)
(e, f ) =

(
ϕ−1, id

)p2 (e, f )︸ ︷︷ ︸
= f

 =
(

ϕ−1, id
)
( f )

=

ϕ−1 ( f )︸ ︷︷ ︸
=e

, id ( f )︸ ︷︷ ︸
= f

 = (e, f ) = id (e, f ) .

Let us now forget that we fixed (e, f ). We thus have shown that
((

ϕ−1, id
)
◦ p2

)
(e, f ) =

id (e, f ) for every (e, f ) ∈ E ×ϕ F. In other words,
(
ϕ−1, id

)
◦ p2 = id. Combined with

p2 ◦
(
ϕ−1, id

)
= id, this yields that the maps p2 and

(
ϕ−1, id

)
are mutually inverse. Qed.

7Proof. Let g and g′ be two elements of E ×ϕ F satisfying g <1 g′. We shall show that p2 (g) <F1
p2 (g′).

Indeed, g ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e, f ). Thus, (e, f ) is

9
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poset homomorphism
(
E ×ϕ F,<2

)
→
(

F, (<E2)
ϕ−1) 8. Hence, the map p2 is

a homomorphism of double posets
(
E ×ϕ F,<1,<2

)
→
(

F,<F1, (<E2)
ϕ−1)

.

On the other hand, the map p−1
2 is a poset homomorphism (F,<F1) →

(
E ×ϕ F,<1

)

an element of E × F and satisfies ϕ (e) = f and g = (e, f ). Applying the map p2 to both sides
of the equality g = (e, f ), we obtain p2 (g) = p2 (e, f ) = f (by the definition of p2).

Also, g′ ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g′ has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e′, f ′). Thus, (e′, f ′)
is an element of E × F and satisfies ϕ (e′) = f ′ and g′ = (e′, f ′). Applying the map p2 to both
sides of the equality g′ = (e′, f ′), we obtain p2 (g′) = p2 (e′, f ′) = f ′ (by the definition of p2).

We have (e, f ) = g <1 g′ = (e′, f ′). Due to (2), this yields f <F1 f ′. In other words,
p2 (g) <F1 p2 (g′) (since p2 (g) = f and p2 (g′) = f ′).

Now, let us forget that we fixed g and g′. We thus have proven that if g and g′ are two
elements of E ×ϕ F satisfying g <1 g′, then p2 (g) <F1 p2 (g′). In other words, the map p2
is a strictly order-preserving map

(
E ×ϕ F,<1

)
→ (F,<F1). As a consequence, this map p2

is a poset homomorphism
(
E ×ϕ F,<1

)
→ (F,<F1) (since any strictly order-preserving map

between two posets is a poset homomorphism). Qed.
8Proof. Let g and g′ be two elements of E ×ϕ F satisfying g <2 g′. We shall show that

p2 (g) (<E2)
ϕ−1

p2 (g′).
Indeed, g ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g has the form (u, v)

for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e, f ). Thus, (e, f ) is
an element of E × F and satisfies ϕ (e) = f and g = (e, f ). Applying the map p2 to both sides
of the equality g = (e, f ), we obtain p2 (g) = p2 (e, f ) = f (by the definition of p2).

Also, g′ ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g′ has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e′, f ′). Thus, (e′, f ′)
is an element of E × F and satisfies ϕ (e′) = f ′ and g′ = (e′, f ′). Applying the map p2 to both
sides of the equality g′ = (e′, f ′), we obtain p2 (g′) = p2 (e′, f ′) = f ′ (by the definition of p2).

We have (e, f ) = g <2 g′ = (e′, f ′). Due to (3), this yields e <E2 e′. Since ϕ (e) = f , we have
e = ϕ−1 ( f ), so that ϕ−1 ( f ) = e <E2 e′ = ϕ−1 ( f ′) (since ϕ (e′) = f ′).

But f (<E2)
ϕ−1

f ′ holds if and only if ϕ−1 ( f ) <E2 ϕ−1 ( f ′) (due to the definition of

“ f (<E2)
ϕ−1

f ′”). Thus, f (<E2)
ϕ−1

f ′ holds (since ϕ−1 ( f ) <E2 ϕ−1 ( f ′) holds). In other

words, p2 (g) (<E2)
ϕ−1

p2 (g′) holds (since p2 (g) = f and p2 (g′) = f ′).
Now, let us forget that we fixed g and g′. We thus have proven that if g and g′ are two

elements of E ×ϕ F satisfying g <2 g′, then p2 (g) (<E2)
ϕ−1

p2 (g′). In other words, the map

p2 is a strictly order-preserving map
(
E ×ϕ F,<2

)
→
(

F, (<E2)
ϕ−1)

. As a consequence, this

map p2 is a poset homomorphism
(
E ×ϕ F,<2

)
→
(

F, (<E2)
ϕ−1)

(since any strictly order-
preserving map between two posets is a poset homomorphism). Qed.

10
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9 and a poset homomorphism
(

F, (<E2)
ϕ−1)

→
(
E ×ϕ F,<2

) 10. Hence, the

map p−1
2 is a homomorphism of double posets

(
F,<F1, (<E2)

ϕ−1)
→
(
E ×ϕ F,<1,<2

)
.

Now, we know that the map p2 is a homomorphism of double posets

9Proof. Let f and f ′ be two elements of F satisfying f <F1 f ′. We shall prove that p−1
2 ( f ) <1

p−1
2 ( f ′).

We have p−1
2︸︷︷︸

=(ϕ−1,id)

( f ) =
(
ϕ−1, id

)
( f ) =

ϕ−1 ( f ) , id ( f )︸ ︷︷ ︸
= f

 =
(
ϕ−1 ( f ) , f

)
, so that

(
ϕ−1 ( f ) , f

)
= p−1

2 ( f ) ∈ E ×ϕ F.

Also, p−1
2︸︷︷︸

=(ϕ−1,id)

( f ′) =
(
ϕ−1, id

)
( f ′) =

ϕ−1 ( f ′) , id
(

f ′
)︸ ︷︷ ︸

= f ′

 =
(
ϕ−1 ( f ′) , f ′

)
, so that

(
ϕ−1 ( f ′) , f ′

)
= p−1

2 ( f ′) ∈ E ×ϕ F.
Now, (2) (applied to ϕ−1 ( f ) and ϕ−1 ( f ′) instead of e and e′) yields((
ϕ−1 ( f ) , f

)
<1
(
ϕ−1 ( f ′) , f ′

)
if and only if f <F1 f ′

)
(since

(
ϕ−1 ( f ) , f

)
∈ E ×ϕ F and(

ϕ−1 ( f ′) , f ′
)
∈ E ×ϕ F). Thus, we have

(
ϕ−1 ( f ) , f

)
<1

(
ϕ−1 ( f ′) , f ′

)
(since f <F1 f ′). In

other words, p−1
2 ( f ) <1 p−1

2 ( f ′) (since p−1
2 ( f ) =

(
ϕ−1 ( f ) , f

)
and p−1

2 ( f ′) =
(
ϕ−1 ( f ′) , f ′

)
).

Now, let us forget that we fixed f and f ′. We thus have shown that if f and f ′ are two
elements of F satisfying f <F1 f ′, then p−1

2 ( f ) <1 p−1
2 ( f ′). In other words, the map p−1

2 is
a strictly order-preserving map (F,<F1) →

(
E ×ϕ F,<1

)
. As a consequence, this map p−1

2
is a poset homomorphism (F,<F1) →

(
E ×ϕ F,<1

)
(since any strictly order-preserving map

between two posets is a poset homomorphism). Qed.
10Proof. Let f and f ′ be two elements of F satisfying f (<E2)

ϕ−1
f ′. We shall prove that p−1

2 ( f ) <2

p−1
2 ( f ′).

We have f (<E2)
ϕ−1

f ′ if and only if ϕ−1 ( f ) <E2 ϕ−1 ( f ′) (due to the definition of

“ f (<E2)
ϕ−1

f ′”). Thus, we have ϕ−1 ( f ) <E2 ϕ−1 ( f ′) (since we have f (<E2)
ϕ−1

f ′).

We have p−1
2︸︷︷︸

=(ϕ−1,id)

( f ) =
(
ϕ−1, id

)
( f ) =

ϕ−1 ( f ) , id ( f )︸ ︷︷ ︸
= f

 =
(
ϕ−1 ( f ) , f

)
, so that

(
ϕ−1 ( f ) , f

)
= p−1

2 ( f ) ∈ E ×ϕ F.

Also, p−1
2︸︷︷︸

=(ϕ−1,id)

( f ′) =
(
ϕ−1, id

)
( f ′) =

ϕ−1 ( f ′) , id
(

f ′
)︸ ︷︷ ︸

= f ′

 =
(
ϕ−1 ( f ′) , f ′

)
, so that

(
ϕ−1 ( f ′) , f ′

)
= p−1

2 ( f ′) ∈ E ×ϕ F.
Now, (3) (applied to ϕ−1 ( f ) and ϕ−1 ( f ′) instead of e and e′) yields((
ϕ−1 ( f ) , f

)
<2
(
ϕ−1 ( f ′) , f ′

)
if and only if ϕ−1 ( f ) <E2 ϕ−1 ( f ′)

)
(since

(
ϕ−1 ( f ) , f

)
∈

E ×ϕ F and
(
ϕ−1 ( f ′) , f ′

)
∈ E ×ϕ F). Thus, we have

(
ϕ−1 ( f ) , f

)
<2

(
ϕ−1 ( f ′) , f ′

)
(since

ϕ−1 ( f ) <E2 ϕ−1 ( f ′)). In other words, p−1
2 ( f ) <2 p−1

2 ( f ′) (since p−1
2 ( f ) =

(
ϕ−1 ( f ) , f

)
and

p−1
2 ( f ′) =

(
ϕ−1 ( f ′) , f ′

)
).

Now, let us forget that we fixed f and f ′. We thus have shown that if f and f ′ are two

elements of F satisfying f (<E2)
ϕ−1

f ′, then p−1
2 ( f ) <2 p−1

2 ( f ′). In other words, the map

p−1
2 is a strictly order-preserving map

(
F, (<E2)

ϕ−1)
→
(
E ×ϕ F,<2

)
. As a consequence,

11



Errata to “... Double Partially Ordered Sets” February 2, 2025

(
E ×ϕ F,<1,<2

)
→

(
F,<F1, (<E2)

ϕ−1)
, while its inverse p−1

2 is a homomor-

phism of double posets
(

F,<F1, (<E2)
ϕ−1)

→
(
E ×ϕ F,<1,<2

)
. In other words,

p2 is an isomorphism of double posets
(
E ×ϕ F,<1,<2

)
→
(

F,<F1, (<E2)
ϕ−1)

.

Thus, the double posets
(
E ×ϕ F,<1,<2

)
and

(
F,<F1, (<E2)

ϕ−1)
are isomorphic.

That is, we have
(
E ×ϕ F,<1,<2

) ∼= (F,<F1, (<E2)
ϕ−1)

as double posets. Hence,

E ×ϕ F =
(
E ×ϕ F,<1,<2

) ∼= (F,<F1, (<E2)
ϕ−1)

(4)

as double posets. Thus,

(E,<E1,<E2)︸ ︷︷ ︸
=E

×ϕ (F,<F1,<F2)︸ ︷︷ ︸
=F

= E ×ϕ F ∼=
(

F,<F1, (<E2)
ϕ−1)

as double posets. This proves Lemma 6.5 (a).
(b) The definition of E ◦ F shows that E ◦ F is the sum of E ×ϕ F for all increas-

ing bijections ϕ : (E,<E1) → (F,<F2). In other words,

E ◦ F = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

E ×ϕ F︸ ︷︷ ︸
=

(
F,<F1,(<E2)

ϕ−1
)

(according to (4))

= ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

ϕ−1)

in ZD. Thus,

(E,<E1,<E2)︸ ︷︷ ︸
=E

◦ (F,<F1,<F2)︸ ︷︷ ︸
=F

= E ◦ F = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

ϕ−1)

in ZD. This proves Lemma 6.5 (b).
(c) Let ϕ be a bijection E → F. Proposition 6.3 (applied to E, F, <F1 and ϕ

instead of A, B, <B and f ) shows that the binary relation (<F1)
ϕ is the smaller

relation of a partial order on E. Hence,
(

E, (<F1)
ϕ ,<E2

)
is a well-defined double

poset.
Define a map p1 : E ×ϕ F → E by

(
p1 (e, f ) = e for every (e, f ) ∈ E ×ϕ F

)
.

Thus, p1 is the projection on the first component. On the other hand, consider

the map (id, ϕ) : E → E ×ϕ F which sends every e ∈ E to

id (e)︸ ︷︷ ︸
=e

, ϕ (e)

 =

this map p−1
2 is a poset homomorphism

(
F, (<E2)

ϕ−1)
→
(
E ×ϕ F,<2

)
(since any strictly

order-preserving map between two posets is a poset homomorphism). Qed.

12
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(e, ϕ (e)) ∈ E ×ϕ F 11. The maps p1 and (id, ϕ) are mutually inverse12. Hence,
these two maps p1 and (id, ϕ) are invertible and satisfy p−1

1 = (id, ϕ).

The map p1 is a poset homomorphism
(
E ×ϕ F,<1

)
→
(

E, (<F1)
ϕ
)

13 and

11Let us check that this map (id, ϕ) is well-defined:
Fix e ∈ E. Then, (e, ϕ (e)) is an element of E × F satisfying ϕ (e) = ϕ (e). In other words,

(e, ϕ (e)) is an element (u, v) of E × F satisfying ϕ (u) = v. In other words,

(e, ϕ (e)) ∈ {(u, v) ∈ E × F | ϕ (u) = v} = E ×ϕ F (by (1)) .

Now, let us forget that we fixed e. We thus have shown that (e, ϕ (e)) ∈ E ×ϕ F for every
e ∈ E. Thus, the map (id, ϕ) is well-defined, qed.

12Proof. Every e ∈ E satisfies

(p1 ◦ (id, ϕ)) (e) = p1

 (id, ϕ) (e)︸ ︷︷ ︸
=(id(e),ϕ(e))

(by the definition of (id,ϕ))

 = p1 (id (e) , ϕ (e)) = id (e)

(by the definition of p1) .

In other words, p1 ◦ (id, ϕ) = id.
On the other hand, let (e, f ) ∈ E ×ϕ F. Then, (e, f ) ∈ E ×ϕ F =

{(u, v) ∈ E × F | ϕ (u) = v} (according to (1)). In other words, (e, f ) is an element (u, v)
of E × F satisfying ϕ (u) = v. In other words, (e, f ) is an element of E × F and satisfies
ϕ (e) = f . Now, p1 (e, f ) = e (by the definition of p1). Now,

((id, ϕ) ◦ p1) (e, f ) = (id, ϕ)

p1 (e, f )︸ ︷︷ ︸
=e

 = (id, ϕ) (e) =

id (e)︸ ︷︷ ︸
=e

, ϕ (e)︸︷︷︸
= f

 = (e, f ) = id (e, f ) .

Let us now forget that we fixed (e, f ). We thus have shown that ((id, ϕ) ◦ p1) (e, f ) =
id (e, f ) for every (e, f ) ∈ E ×ϕ F. In other words, (id, ϕ) ◦ p1 = id. Combined with p1 ◦
(id, ϕ) = id, this yields that the maps p1 and (id, ϕ) are mutually inverse. Qed.

13Proof. Let g and g′ be two elements of E ×ϕ F satisfying g <1 g′. We shall show that
p1 (g) (<F1)

ϕ p1 (g′).
Indeed, g ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g has the form (u, v)

for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e, f ). Thus, (e, f ) is
an element of E × F and satisfies ϕ (e) = f and g = (e, f ). Applying the map p1 to both sides
of the equality g = (e, f ), we obtain p1 (g) = p1 (e, f ) = e (by the definition of p1).

Also, g′ ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g′ has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e′, f ′). Thus, (e′, f ′)
is an element of E × F and satisfies ϕ (e′) = f ′ and g′ = (e′, f ′). Applying the map p1 to both
sides of the equality g′ = (e′, f ′), we obtain p1 (g′) = p1 (e′, f ′) = e′ (by the definition of p1).

We have (e, f ) = g <1 g′ = (e′, f ′). Due to (2), this yields f <F1 f ′. Thus, ϕ (e) = f <F1
f ′ = ϕ (e′) (since ϕ (e′) = f ′).

But e (<F1)
ϕ e′ holds if and only if ϕ (e) <F1 ϕ (e′) (due to the definition of “e (<F1)

ϕ e′”).
Thus, e (<F1)

ϕ e′ holds (since ϕ (e) <F1 ϕ (e′) holds). In other words, p1 (g) (<F1)
ϕ p1 (g′)

holds (since p1 (g) = e and p1 (g′) = e′).
Now, let us forget that we fixed g and g′. We thus have proven that if g and g′ are two

elements of E×ϕ F satisfying g <1 g′, then p1 (g) (<F1)
ϕ p1 (g′). In other words, the map p1 is

13
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a poset homomorphism
(
E ×ϕ F,<2

)
→ (E,<E2)

14. Hence, the map p1 is a

homomorphism of double posets
(
E ×ϕ F,<1,<2

)
→
(

E, (<F1)
ϕ ,<E2

)
.

On the other hand, the map p−1
1 is a poset homomorphism

(
E, (<F1)

ϕ
)

→

a strictly order-preserving map
(
E ×ϕ F,<1

)
→
(

E, (<F1)
ϕ
)

. As a consequence, this map p1

is a poset homomorphism
(
E ×ϕ F,<1

)
→
(

E, (<F1)
ϕ
)

(since any strictly order-preserving
map between two posets is a poset homomorphism). Qed.

14Proof. Let g and g′ be two elements of E ×ϕ F satisfying g <2 g′. We shall show that p1 (g) <E2
p1 (g′).

Indeed, g ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e, f ). Thus, (e, f ) is
an element of E × F and satisfies ϕ (e) = f and g = (e, f ). Applying the map p1 to both sides
of the equality g = (e, f ), we obtain p1 (g) = p1 (e, f ) = e (by the definition of p1).

Also, g′ ∈ E ×ϕ F = {(u, v) ∈ E × F | ϕ (u) = v}. In other words, g′ has the form (u, v)
for some (u, v) ∈ E × F satisfying ϕ (u) = v. Let us denote this (u, v) by (e′, f ′). Thus, (e′, f ′)
is an element of E × F and satisfies ϕ (e′) = f ′ and g′ = (e′, f ′). Applying the map p1 to both
sides of the equality g′ = (e′, f ′), we obtain p1 (g′) = p1 (e′, f ′) = e′ (by the definition of p1).

We have (e, f ) = g <2 g′ = (e′, f ′). Due to (3), this yields e <E2 e′. In other words,
p1 (g) <E2 p1 (g′) (since p1 (g) = e and p1 (g′) = e′).

Now, let us forget that we fixed g and g′. We thus have proven that if g and g′ are two
elements of E ×ϕ F satisfying g <2 g′, then p1 (g) <E2 p1 (g′). In other words, the map p1
is a strictly order-preserving map

(
E ×ϕ F,<2

)
→ (E,<E2). As a consequence, this map p1

is a poset homomorphism
(
E ×ϕ F,<2

)
→ (E,<E2) (since any strictly order-preserving map

between two posets is a poset homomorphism). Qed.

14
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(
E ×ϕ F,<1

) 15 and a poset homomorphism (E,<E2) →
(
E ×ϕ F,<2

) 16.

Hence, the map p−1
1 is a homomorphism of double posets

(
E, (<F1)

ϕ ,<E2

)
→(

E ×ϕ F,<1,<2
)
.

Now, we know that the map p1 is a homomorphism of double posets

15Proof. Let e and e′ be two elements of E satisfying e (<F1)
ϕ e′. We shall prove that p−1

1 (e) <1

p−1
1 (e′).
We have e (<F1)

ϕ e′ if and only if ϕ (e) <F1 ϕ (e′) (due to the definition of “e (<F1)
ϕ e′”).

Thus, we have ϕ (e) <F1 ϕ (e′) (since we have e (<F1)
ϕ e′).

We have p−1
1︸︷︷︸

=(id,ϕ)

(e) = (id, ϕ) (e) =

id (e)︸ ︷︷ ︸
=e

, ϕ (e)

 = (e, ϕ (e)), so that (e, ϕ (e)) = p−1
1 (e) ∈

E ×ϕ F.

Also, p−1
1︸︷︷︸

=(id,ϕ)

(e′) = (id, ϕ) (e′) =

id
(
e′
)︸ ︷︷ ︸

=e′

, ϕ (e′)

 = (e′, ϕ (e′)), so that (e′, ϕ (e′)) =

p−1
1 (e′) ∈ E ×ϕ F.
Now, (2) (applied to ϕ (e) and ϕ (e′) instead of f and f ′) yields

((e, ϕ (e)) <1 (e′, ϕ (e′)) if and only if ϕ (e) <F1 ϕ (e′)) (since (e, ϕ (e)) ∈ E ×ϕ F and
(e′, ϕ (e′)) ∈ E ×ϕ F). Thus, we have (e, ϕ (e)) <1 (e′, ϕ (e′)) (since ϕ (e) <F1 ϕ (e′)). In other
words, p−1

1 (e) <1 p−1
1 (e′) (since p−1

1 (e) = (e, ϕ (e)) and p−1
1 (e′) = (e′, ϕ (e′))).

Now, let us forget that we fixed e and e′. We thus have shown that if e and e′ are two
elements of E satisfying e (<F1)

ϕ e′, then p−1
1 (e) <1 p−1

1 (e′). In other words, the map p−1
1 is

a strictly order-preserving map
(

E, (<F1)
ϕ
)
→
(
E ×ϕ F,<1

)
. As a consequence, this map p−1

1

is a poset homomorphism
(

E, (<F1)
ϕ
)
→
(
E ×ϕ F,<1

)
(since any strictly order-preserving

map between two posets is a poset homomorphism). Qed.
16Proof. Let e and e′ be two elements of E satisfying e <E2 e′. We shall prove that p−1

1 (e) <2

p−1
1 (e′).

We have p−1
1︸︷︷︸

=(id,ϕ)

(e) = (id, ϕ) (e) =

id (e)︸ ︷︷ ︸
=e

, ϕ (e)

 = (e, ϕ (e)), so that (e, ϕ (e)) = p−1
1 (e) ∈

E ×ϕ F.

Also, p−1
1︸︷︷︸

=(id,ϕ)

(e′) = (id, ϕ) (e′) =

id
(
e′
)︸ ︷︷ ︸

=e′

, ϕ (e′)

 = (e′, ϕ (e′)), so that (e′, ϕ (e′)) =

p−1
1 (e′) ∈ E ×ϕ F.
Now, (3) (applied to ϕ (e) and ϕ (e′) instead of f and f ′) yields

((e, ϕ (e)) <2 (e′, ϕ (e′)) if and only if e <E2 e′) (since (e, ϕ (e)) ∈ E ×ϕ F and (e′, ϕ (e′)) ∈
E ×ϕ F). Thus, we have (e, ϕ (e)) <2 (e′, ϕ (e′)) (since e <E2 e′). In other words,
p−1

1 (e) <2 p−1
1 (e′) (since p−1

1 (e) = (e, ϕ (e)) and p−1
1 (e′) = (e′, ϕ (e′))).

Now, let us forget that we fixed e and e′. We thus have shown that if e and e′ are two
elements of E satisfying e <E2 e′, then p−1

1 (e) <2 p−1
1 (e′). In other words, the map p−1

1 is
a strictly order-preserving map (E,<E2) →

(
E ×ϕ F,<2

)
. As a consequence, this map p−1

1
is a poset homomorphism (E,<E2) →

(
E ×ϕ F,<2

)
(since any strictly order-preserving map

between two posets is a poset homomorphism). Qed.

15
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(
E ×ϕ F,<1,<2

)
→
(

E, (<F1)
ϕ ,<E2

)
, while its inverse p−1

1 is a homomorphism

of double posets
(

E, (<F1)
ϕ ,<E2

)
→
(
E ×ϕ F,<1,<2

)
. In other words, p1 is an

isomorphism of double posets
(
E ×ϕ F,<1,<2

)
→
(

E, (<F1)
ϕ ,<E2

)
. Thus, the

double posets
(
E ×ϕ F,<1,<2

)
and

(
E, (<F1)

ϕ ,<E2

)
are isomorphic. That is,

we have
(
E ×ϕ F,<1,<2

) ∼= (E, (<F1)
ϕ ,<E2

)
as double posets. Hence,

E ×ϕ F =
(
E ×ϕ F,<1,<2

) ∼= (E, (<F1)
ϕ ,<E2

)
(5)

as double posets. Thus,

(E,<E1,<E2)︸ ︷︷ ︸
=E

×ϕ (F,<F1,<F2)︸ ︷︷ ︸
=F

= E ×ϕ F ∼=
(

E, (<F1)
ϕ ,<E2

)
as double posets. This proves Lemma 6.5 (c).

(d) The definition of E ◦ F shows that E ◦ F is the sum of E ×ϕ F for all increas-
ing bijections ϕ : (E,<E1) → (F,<F2). In other words,

E ◦ F = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

E ×ϕ F︸ ︷︷ ︸
=(E,(<F1)

ϕ,<E2)
(according to (5))

= ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)

in ZD. Thus,

(E,<E1,<E2)︸ ︷︷ ︸
=E

◦ (F,<F1,<F2)︸ ︷︷ ︸
=F

= E ◦ F = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)

in ZD. This proves Lemma 6.5 (d).

Now, we can finally prove Proposition 6.1:

Proof of Proposition 6.1. Let E, F and G be three elements of ZD. We have to
prove the equality (E ◦ F) ◦ G = E ◦ (F ◦ G). Since this equality is Z-linear in
each of E, F and G, we can WLOG assume that E, F and G are (isomorphism
classes of) double posets (since (isomorphism classes of) double posets span
the Z-module ZD). Assume this. Let us write the double poset E in the form
E = (E,<E1,<E2). Let us write the double poset F in the form F = (F,<F1,<F2).
Let us write the double poset G in the form (G,<G1,<G2).

16
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We have

E︸︷︷︸
=(E,<E1,<E2)

◦ F︸︷︷︸
=(F,<F1,<F2)

= (E,<E1,<E2) ◦ (F,<F1,<F2) = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

ϕ−1)
(by Lemma 6.5 (b))

= ∑
α is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

α−1)
(here, we renamed the summation index ϕ as α) .

Thus,

(E ◦ F)︸ ︷︷ ︸
= ∑

α is an increasing
bijection (E,<E1)→(F,<F2)

(
F,<F1,(<E2)

α−1)
◦ G︸︷︷︸
=(G,<G1,<G2)

=

 ∑
α is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

α−1) ◦ (G,<G1,<G2)

= ∑
α is an increasing

bijection (E,<E1)→(F,<F2)

(
F,<F1, (<E2)

α−1)
◦ (G,<G1,<G2)︸ ︷︷ ︸

= ∑
ϕ is an increasing

bijection (F,<F1)→(G,<G2)

(
F,(<G1)

ϕ,(<E2)
α−1

)

(by Lemma 6.5 (d), applied to F, <F1, (<E2)
α−1

, G, <G1 and <G2
instead of E, <E1, <E2, F, <F1 and <F2)

(since the operation ◦ is Z-bilinear)

= ∑
α is an increasing

bijection (E,<E1)→(F,<F2)

∑
ϕ is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

ϕ , (<E2)
α−1)

= ∑
α is an increasing

bijection (E,<E1)→(F,<F2)

∑
β is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β , (<E2)
α−1)

(here, we renamed the summation index ϕ as β in the inner sum)

= ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

∑
β is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β , (<E2)
ϕ−1)

(6)

(here, we renamed the summation index α as ϕ in the outer sum) .

17
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On the other hand,

F︸︷︷︸
=(F,<F1,<F2)

◦ G︸︷︷︸
=(G,<G1,<G2)

= (F,<F1,<F2) ◦ (G,<G1,<G2) = ∑
ϕ is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

ϕ ,<F2

)
 by Lemma 6.5 (d), applied to

F, <F1 , <F2 , G, <G1 and <G2
instead of E, <E1 , <E2 , F, <F1 and <F2


= ∑

β is an increasing
bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β ,<F2

)
(here, we renamed the summation index ϕ as β) .

Thus,

E︸︷︷︸
=(E,<E1,<E2)

◦ (F ◦ G)︸ ︷︷ ︸
= ∑

β is an increasing
bijection (F,<F1)→(G,<G2)

(
F,(<G1)

β,<F2

)

= (E,<E1,<E2) ◦

 ∑
β is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β ,<F2

)
= ∑

β is an increasing
bijection (F,<F1)→(G,<G2)

(E,<E1,<E2) ◦
(

F, (<G1)
β ,<F2

)
︸ ︷︷ ︸

= ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
F,(<G1)

β,(<E2)
ϕ−1

)

(by Lemma 6.5 (b), applied to (<G1)
β

instead of <F1)

(since the operation ◦ is Z-bilinear)

= ∑
β is an increasing

bijection (F,<F1)→(G,<G2)

∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)︸ ︷︷ ︸
= ∑

ϕ is an increasing
bijection (E,<E1)→(F,<F2)

∑
β is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β , (<E2)
ϕ−1)

= ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

∑
β is an increasing

bijection (F,<F1)→(G,<G2)

(
F, (<G1)

β , (<E2)
ϕ−1)

.

Compared with (6), this yields (E ◦ F) ◦ G = E ◦ (F ◦ G). This proves Proposition
6.1.

18
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6.2. Page 5, proof of Lemma 2.1: an alternative argument

In the proof of Lemma 2.1, you take several lines (starting with “Moreover, let
( f , g) , ( f ′, g′) ∈ F ×ψ G” and ending with “Finally e <2 e′”) in order to prove
that the map β−1 :

(
F ×ψ G,<1

)
→ (E,<2) is increasing. Here is a different

proof of this: We have β = (id, ψ) ◦ ϕ. Thus, β is a composition of two bijections
(since (id, ψ) and ϕ are bijections), thus itself a bijection. In other words, β is
invertible. For every e ∈ E, we have

β︸︷︷︸
=(id,ψ)◦ϕ

(e) = ((id, ψ) ◦ ϕ) (e) = (id, ψ) (ϕ (e))

=

id (ϕ (e))︸ ︷︷ ︸
=ϕ(e)

, ψ (ϕ (e))

 = (ϕ (e) , ψ (ϕ (e))) .

Thus, for every e ∈ E, we have((
p1 ◦ α−1 ◦ p2

)
◦ β
)
(e)

=
(

p1 ◦ α−1 ◦ p2

) β (e)︸︷︷︸
=(ϕ(e),ψ(ϕ(e)))

 =
(

p1 ◦ α−1 ◦ p2

)
(ϕ (e) , ψ (ϕ (e)))

= p1

α−1

p2 (ϕ (e) , ψ (ϕ (e)))︸ ︷︷ ︸
=ψ(ϕ(e))

(by the definition of p2)


 = p1

α−1 (ψ (ϕ (e)))︸ ︷︷ ︸
=(α−1◦ψ)(ϕ(e))



= p1

((
α−1 ◦ ψ

)
(ϕ (e))

)
= p1

 (ϕ−1, id
)
(ϕ (e))︸ ︷︷ ︸

=(ϕ−1(ϕ(e)),id(ϕ(e)))


since α−1 ◦ ψ︸︷︷︸

=α◦(ϕ−1,id)

= α−1 ◦ α ◦
(

ϕ−1, id
)
=
(

ϕ−1, id
)

= p1

(
ϕ−1 (ϕ (e)) , id (ϕ (e))

)
= ϕ−1 (ϕ (e)) (by the definition of p1)

= e = id (e) .

In other words,
(

p1 ◦ α−1 ◦ p2
)
◦ β = id. Since β is invertible, this yields that

β−1 = p1 ◦ α−1 ◦ p2. (7)
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But α is a picture, and thus α−1 is increasing as a map from (G,<1) to
(
E ×ϕ F,<2

)
.

Now, we know that:

• the map p2 is increasing as a map from
(

F ×ψ G,<1
)

to (G,<1);

• the map α−1 is increasing as a map from (G,<1) to
(
E ×ϕ F,<2

)
;

• the map p1 is increasing as a map from
(
E ×ϕ F,<2

)
to (E,<2).

Combining these, we conclude that the composition p1 ◦ α−1 ◦ p2 is increasing
as a map from

(
F ×ψ G,<1

)
to (E,<2). In other words, β−1 is increasing as a

map from
(

F ×ψ G,<1
)

to (E,<2) (since β−1 = p1 ◦ α−1 ◦ p2).

6.3. Page 6, proof of Lemma 2.1: an alternative argument

In the proof of Lemma 2.1, you spend several lines to prove that the map α−1 :
(G,<1) →

(
E ×ϕ F,<2

)
is increasing. Here is a different proof of this:

We have ψ = α ◦
(
ϕ−1, id

) 17 and β = (id, ψ) ◦ ϕ 18. Thus, we can
prove that (7) holds (similarly to how we did it above). In other words, β−1 =

p1 ◦ α−1 ◦ p2. Thus, p−1
1 ◦ β−1︸︷︷︸

=p1◦α−1◦p2

◦p−1
2 = p−1

1 ◦ p1︸ ︷︷ ︸
=id

◦α−1 ◦ p2 ◦ p−1
2︸ ︷︷ ︸

=id

= α−1, so

that α−1 = p−1
1 ◦ β−1 ◦ p−1

2 .
But β is a picture, and thus β−1 is increasing as a map from

(
F ×ψ G,<1

)
to

(E,<2). Now, we know that:

• the map p−1
2 is increasing as a map from (G,<1) to

(
F ×ψ G,<1

)
;

• the map β−1 is increasing as a map from
(

F ×ψ G,<1
)

to (E,<2);

• the map p−1
1 is increasing as a map from (E,<2) to

(
E ×ϕ F,<2

)
.

Combining these, we conclude that the composition p−1
1 ◦ β−1 ◦ p−1

2 is increas-
ing as a map from (G,<1) to

(
E ×ϕ F,<2

)
. In other words, α−1 is increasing as

a map from (G,<1) to
(
E ×ϕ F,<2

)
(since α−1 = p−1

1 ◦ β−1 ◦ p−1
2 ).

17Proof. We know that the inverse p−1
2 of the bijection p2 : E ×ψ F → F is given by p−1

2 =(
ϕ−1, id

)
. Thus, α︸︷︷︸

=ψ◦p2

◦
(

ϕ−1, id
)

︸ ︷︷ ︸
=p−1

2

= ψ ◦ p2 ◦ p−1
2︸ ︷︷ ︸

=id

= ψ, qed.

18Proof. We know that the inverse p−1
1 of the bijection p1 : F ×ψ G → G is given by p−1

1 = (id, ψ).
Thus, (id, ψ)︸ ︷︷ ︸

=p−1
1

◦ ϕ︸︷︷︸
=p1◦β

= p−1
1 ◦ p1︸ ︷︷ ︸
=id

◦β = β, qed.
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6.4. Page 9, §3.1: descent compositions vs. descent sets

On page 9, you define the descent composition of a permutation σ ∈ Sn in
terms of its ascending runs. Let me give an alternative description of descent
compositions:

Proposition 6.6. For every composition α = (α1, α2, . . . , αℓ), we denote the
number α1 + α2 + · · ·+ αℓ by |α| and call it the size of the composition α, and
we say that α is a composition of |α|.

For every composition α = (α1, α2, . . . , αℓ), define a set D (α) by

D (α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1} (8)

=
{

α1 + α2 + · · ·+ αp | p ∈ {1, 2, . . . , ℓ− 1}
}

. (9)

(Here, the set {1, 2, . . . , q} is to be understood as the empty set whenever
q < 1. In particular, {1, 2, . . . , 0 − 1} = ∅. Thus, if α is the empty composition
(), then D (α) = ∅.)

(a) For every composition α = (α1, α2, . . . , αℓ), we have

D (α) ⊆ {1, 2, . . . , |α| − 1} , (10)

|D (α)| = max {ℓ− 1, 0} (11)

and

(α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1)

= (the increasing list of D (α)) . (12)

(Here, if S is any finite set of integers, then the increasing list of S is defined
to be the list of all elements of S in increasing order (with each element of S
appearing precisely once). This list is uniquely determined.)

(b) For every n ∈ N and every subset I of {1, 2, . . . , n − 1}, there exists a
unique composition α of n such that D (α) = I.

(c) Let n ∈ N. Let σ ∈ Sn be a permutation. Let Des σ denote the subset

{i ∈ {1, 2, . . . , n − 1} | σ (i) > σ (i + 1)}

of {1, 2, . . . , n − 1}. Proposition 6.6 (b) (applied to I = Des σ) yields that there
exists a unique composition α of n such that D (α) = Des σ. Consider this α.
Then, α = C (σ).

Proof of Proposition 6.6. (a) Let α = (α1, α2, . . . , αℓ). Then, α1, α2, . . ., αℓ are posi-
tive integers (since α is a composition). Now, every p ∈ {1, 2, . . . , ℓ− 1} satisfies
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α1 + α2 + · · ·+ αp ∈ {1, 2, . . . , |α| − 1} 19. Hence,{
α1 + α2 + · · ·+ αp | p ∈ {1, 2, . . . , ℓ− 1}

}
⊆ {1, 2, . . . , |α| − 1} .

Thus, (9) becomes

D (α) =
{

α1 + α2 + · · ·+ αp | p ∈ {1, 2, . . . , ℓ− 1}
}
⊆ {1, 2, . . . , |α| − 1} .

This proves (10).
Next, let us prove (12). Indeed, every i ∈ {1, 2, . . . , ℓ− 2} satisfies α1 + α2 +

· · ·+ αi < α1 + α2 + · · ·+ αi+1
20. In other words,

α1 < α1 + α2 < α1 + α2 + α3 < · · · < α1 + α2 + · · ·+ αℓ−1.

Thus, the list (α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1) is strictly increas-
ing. Hence, all entries of this list are pairwise distinct.

But D (α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1}. Therefore,
the list (α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1) is a list of all elements
of D (α). Thus, this list is a list of all elements of D (α) in increasing order (since
it is strictly increasing). Moreover, each element of D (α) appears precisely once
in this list (since each element of D (α) must appear at least once in this list
(because this list is a list of all elements of D (α)) and must appear at most once
in this list (since all entries of this list are pairwise distinct)). Hence, the list
(α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1) is the list of all elements of
D (α) in increasing order (with each element of D (α) appearing precisely once).
In other words, the list (α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1) is the
increasing list of D (α) (since the increasing list of D (α) is the list of all elements

19Proof. Let p ∈ {1, 2, . . . , ℓ− 1}. Then, p ≥ 1 and p ≤ ℓ− 1, so that p ≥ 1 > 0 and ℓ− p︸︷︷︸
≤ℓ−1<ℓ

>

ℓ− ℓ = 0. Now, α1, α2, . . ., αp are positive integers (since α1, α2, . . ., αℓ are positive integers).
Thus, α1 + α2 + · · · + αp is a nonempty sum of positive integers (in fact, it is nonempty
because the number of its addends is p > 0), and thus a positive integer. Also, αp+1, αp+2, . . .,
αℓ are positive integers (since α1, α2, . . ., αℓ are positive integers). Thus, αp+1 + αp+2 + · · ·+ αℓ
is a nonempty sum of positive integers (in fact, it is nonempty because the number of its
addends is ℓ− p > 0), and thus a positive integer. Hence, αp+1 + αp+2 + · · ·+ αℓ > 0.

Now, the definition of |α| yields

|α| = α1 + α2 + · · ·+ αℓ =
(
α1 + α2 + · · ·+ αp

)
+
(
αp+1 + αp+2 + · · ·+ αℓ

)︸ ︷︷ ︸
>0

> α1 + α2 + · · ·+ αp.

Hence, α1 + α2 + · · · + αp < |α|. Since α1 + α2 + · · · + αp is a positive integer, this shows
that α1 + α2 + · · · + αp is a positive integer smaller than |α|. Thus, α1 + α2 + · · · + αp ∈
{1, 2, . . . , |α| − 1}, qed.

20Proof. Let i ∈ {1, 2, . . . , ℓ− 2}. Then, αi+1 is a positive integer (since α1, α2, . . ., αℓ are positive
integers), so that αi+1 > 0. Now, α1 + α2 + · · ·+ αi+1 = (α1 + α2 + · · ·+ αi) + αi+1︸︷︷︸

>0

> α1 +

α2 + · · ·+ αi. In other words, α1 + α2 + · · ·+ αi < α1 + α2 + · · ·+ αi+1, qed.
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of D (α) in increasing order (with each element of D (α) appearing precisely
once) (due to the definition of “increasing list”)). This proves (12).

It is known that every finite subset S of Z satisfies

|S| = (the length of the increasing list of S) .

Applying this to S = D (α), we obtain

|D (α)| =

the length of the increasing list of D (α)︸ ︷︷ ︸
=(α1,α1+α2,α1+α2+α3,...,α1+α2+···+αℓ−1)

(by (12))


= (the length of the list (α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1))

= |{1, 2, . . . , ℓ− 1}| = max {ℓ− 1, 0} .

This proves (11). Thus, Proposition 6.6 (a) is proven.
(b) Let n ∈ N. Let I be a subset of {1, 2, . . . , n − 1}.
If n = 0, then Proposition 6.6 (b) is easy to prove21. Hence, for the rest of this

proof, we can WLOG assume that we don’t have n = 0. Assume this.
We have n ̸= 0 (since we don’t have n = 0) and thus n > 0 (since n ∈ N).
Let (i1, i2, . . . , ik) be the increasing list of the set I. Then, (i1, i2, . . . , ik) is the

list of all elements of I in increasing order (with each element of I appearing
precisely once) (according to the definition of the “increasing list”). As a conse-
quence, we have I = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik. Let us extend this list
(i1, i2, . . . , ik) to a list (i0, i1, i2, . . . , ik, ik+1) by defining two additional elements i0
and ik+1 by i0 = 0 and ik+1 = n. Notice that i0 < i1 < i2 < · · · < ik < ik+1
22. Thus, ip−1 < ip for every p ∈ {1, 2, . . . , k + 1}. In other words, ip − ip−1 > 0

21Proof. Assume that n = 0. Then, I ⊆ {1, 2, . . . , n − 1} = ∅, so that I = ∅. Now, there exists
a composition α of 0 such that D (α) = ∅ (namely, α = ()). Also, there exists at most one
composition α of 0 such that D (α) = ∅ (in fact, there exists at most one composition α of
0 (namely, ())). Hence, there exists a unique composition α of 0 such that D (α) = ∅ (since
there exists a composition α of 0 such that D (α) = ∅). In other words, there exists a unique
composition α of n such that D (α) = I (since n = 0 and I = ∅). In other words, Proposition
6.6 (b) is proven.

22Proof. Let us first assume that k ̸= 0. Then, k ≥ 1 (since k ∈ N), and thus the integers i1 and ik
are well-defined. Now, i1 ∈ {i1, i2, . . . , ik} = I ⊆ {1, 2, . . . , n − 1}, so that i1 ≥ 1 and thus i1 >
0. Hence, i0 = 0 < i1. Furthermore, k ≥ 1, so that ik ∈ {i1, i2, . . . , ik} = I ⊆ {1, 2, . . . , n − 1},
thus ik ≤ n − 1 < n = ik+1.

Combining i0 < i1 with i1 < i2 < · · · < ik, we obtain i0 < i1 < i2 < · · · < ik. Combining
this with ik < ik+1, we obtain i0 < i1 < i2 < · · · < ik < ik+1.

Let us now forget that we assumed that k ̸= 0. We thus have proven i0 < i1 < i2 < · · · <
ik < ik+1 under the assumption that k ̸= 0. Thus, for the rest of this proof, we can WLOG
assume that we don’t have k ̸= 0.

We have k = 0 (since we don’t have k ̸= 0). Thus, ik+1 = i0+1 = i1, so that i1 = ik+1 = n >
0 = i0, so that i0 < i1. This rewrites as i0 < i1 < i2 < · · · < ik < ik+1 (since k = 0). Thus,
i0 < i1 < i2 < · · · < ik < ik+1 is proven.
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for every p ∈ {1, 2, . . . , k + 1}. Hence, ip − ip−1 is a positive integer for every
p ∈ {1, 2, . . . , k + 1}. In other words, i1 − i0, i2 − i1, . . ., ik+1 − ik are positive in-
tegers. Hence, (i1 − i0, i2 − i1, . . . , ik+1 − ik) is a composition. Let us denote this
composition by τ. We then have τ = (i1 − i0, i2 − i1, . . . , ik+1 − ik), so that τ is
a composition of n 23. Moreover, D (τ) = I 24. Hence, τ is a composition

23Proof. From τ = (i1 − i0, i2 − i1, . . . , ik+1 − ik), we obtain

|τ| = |(i1 − i0, i2 − i1, . . . , ik+1 − ik)| = (i1 − i0) + (i2 − i1) + · · ·+ (ik+1 − ik) =
k+1

∑
p=1

(
ip − ip−1

)
=

k+1

∑
p=1

ip −
k+1

∑
p=1

ip−1 =
k+1

∑
p=1

ip︸ ︷︷ ︸
=

k
∑

p=1
ip+ik+1

−
k

∑
p=0

ip︸ ︷︷ ︸
=i0+

k
∑

p=1
ip

(here, we have substituted p for p − 1 in the second sum)

=

(
k

∑
p=1

ip + ik+1

)
−
(

i0 +
k

∑
p=1

ip

)
= ik+1 − i0︸︷︷︸

=0

= ik+1 = n.

Thus, τ is a composition of n, qed.
24Proof. Every p ∈ {1, 2, . . . , k} satisfies

(i1 − i0) + (i2 − i1) + · · ·+
(
ip − ip−1

)
=

p

∑
q=1

(
iq − iq−1

)
=

p

∑
q=1

iq −
p

∑
q=1

iq−1 =
p

∑
q=1

iq︸ ︷︷ ︸
=

p−1
∑

q=1
iq+ip

−
p−1

∑
q=0

iq︸ ︷︷ ︸
=i0+

p−1
∑

q=1
iq

(here, we substituted q for q − 1 in the second sum)

=

(
p−1

∑
q=1

iq + ip

)
+

(
i0 +

p−1

∑
q=1

iq

)
= ip − i0︸︷︷︸

=0

= ip. (13)

Now, from (9) (applied to τ, k + 1 and (i1 − i0, i2 − i1, . . . , ik+1 − ik) instead of α, ℓ and
(α1, α2, . . . , αℓ)), we obtain

D (τ) =

(i1 − i0) + (i2 − i1) + · · ·+
(
ip − ip−1

)
| p ∈

1, 2, . . . , (k + 1)− 1︸ ︷︷ ︸
=k




=


(i1 − i0) + (i2 − i1) + · · ·+

(
ip − ip−1

)︸ ︷︷ ︸
=ip

(by (13))

| p ∈ {1, 2, . . . , k}


=
{

ip | p ∈ {1, 2, . . . , k}
}
= {i1, i2, . . . , ik} = I,

qed.
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of n satisfying D (τ) = I. In other words, τ is a composition α of n such that
D (α) = I.

On the other hand, there exists at most one composition α of n such that
D (α) = I. 25 Since we know that such an α exists (namely, τ), we can thus

25Proof. Let β and γ be two compositions α of n such that D (α) = I. We shall show that β = γ.
We know that β is a composition α of n such that D (α) = I. In other words, β is a compo-

sition of n and satisfies D (β) = I. Let us write the composition β in the form (β1, β2, . . . , βℓ).
Then, |β| = n (since β is a composition of n). Since |β| = β1 + β2 + · · · + βℓ (by the defi-
nition of |β|), this rewrites as β1 + β2 + · · · + βℓ = n. If ℓ = 0, then β1 + β2 + · · · + βℓ =
(empty sum) = 0, which contradicts β1 + β2 + · · · + βℓ = n ̸= 0. Hence, we cannot have
ℓ = 0. Thus, ℓ > 0 (since ℓ ∈ N).

The equality (12) (applied to β and (β1, β2, . . . , βℓ) instead of α and (α1, α2, . . . , αℓ)) yields

(β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βℓ−1)

=

the increasing list of D (β)︸ ︷︷ ︸
=I

 = (the increasing list of I)

= (i1, i2, . . . , ik) (since (i1, i2, . . . , ik) is the increasing list of I) .

Hence, 0︸︷︷︸
=i0

, β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βℓ−1︸ ︷︷ ︸
=(i1,i2,...,ik)

, β1 + β2 + · · ·+ βℓ︸ ︷︷ ︸
=n=ik+1


= (i0, i1, i2, . . . , ik, ik+1) . (14)

Therefore,the length of the list (0, β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βℓ−1, β1 + β2 + · · ·+ βℓ)︸ ︷︷ ︸
=(i0,i1,i2,...,ik ,ik+1)


= (the length of the list (i0, i1, i2, . . . , ik, ik+1)) = k + 2,

so that

k + 2
= (the length of the list (0, β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βℓ−1, β1 + β2 + · · ·+ βℓ))

= ℓ+ 1

and therefore k = ℓ− 1. Now, (14) yields

β1 + β2 + · · ·+ βp = ip for every p ∈ {0, 1, . . . , ℓ} . (15)

Now, let us fix p ∈ {1, 2, . . . , ℓ}. Then, (15) yields β1 + β2 + · · · + βp = ip. Mean-
while, (15) (applied to p − 1 instead of p) yields β1 + β2 + · · · + βp−1 = ip−1. Now,(

β1 + β2 + · · ·+ βp
)︸ ︷︷ ︸

=ip

−
(

β1 + β2 + · · ·+ βp−1
)︸ ︷︷ ︸

=ip−1

= ip − ip−1, so that

ip − ip−1 =
(

β1 + β2 + · · ·+ βp
)
−
(

β1 + β2 + · · ·+ βp−1
)
= βp.

25
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conclude that there exists a unique composition α of n such that D (α) = I. This
proves Proposition 6.6 (b).

(c) We know that α is the unique composition of n such that D (α) = Des σ.
Thus, α is a composition of n and satisfies D (α) = Des σ.

Let us write the composition α in the form α = (α1, α2, . . . , αℓ). Then, |α| =
|(α1, α2, . . . , αℓ)| = α1 + α2 + · · ·+ αℓ, so that α1 + α2 + · · ·+ αℓ = |α| = n (since
α is a composition of n).

From (12), we obtain

(α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αℓ−1)

=

the increasing list of D (α)︸ ︷︷ ︸
=Des σ

 = (the increasing list of Des σ) .

Let us first prove that the word σ = (σ (1) , σ (2) , . . . , σ (n)) can be split into ℓ
consecutive ascending runs of lengths α1, α2, . . ., αℓ.

For every p ∈ {0, 1, . . . , ℓ}, let ip denote the nonnegative integer α1 + α2 + · · ·+
αp. Then, the definition of i0 yields i0 = α1 + α2 + · · ·+ α0 = (empty sum) = 0.
Also, the definition of iℓ yields iℓ = α1 + α2 + · · ·+ αℓ = n. Every p ∈ {1, 2, . . . , ℓ}
satisfies

ip − ip−1 = αp. (16)
26 Moreover, i0 < i1 < · · · < iℓ 27.

Thus, βp = ip − ip−1.
Let us now forget that we fixed p. We thus have shown that βp = ip − ip−1 for every

p ∈ {1, 2, . . . , ℓ}. Thus,

(β1, β2, . . . , βℓ) = (i1 − i0, i2 − i1, . . . , iℓ − iℓ−1) =

i1 − i0, i2 − i1, . . . , ik+1 − i(k+1)−1︸ ︷︷ ︸
=ik


(since ℓ = k + 1 (since k = ℓ− 1))

= (i1 − i0, i2 − i1, . . . , ik+1 − ik) = τ,

so that β = (β1, β2, . . . , βℓ) = τ.
We thus have shown that β = τ. The same argument (but applied to γ instead of β) shows

that γ = τ. Thus, β = γ.
Let us now forget that we fixed β and γ. We thus have shown that if β and γ are two

compositions α of n such that D (α) = I, then β = γ. In other words, there exists at most one
composition α of n such that D (α) = I. This completes the proof.

26Proof of (16): Let p ∈ {1, 2, . . . , ℓ}. Then, the definition of ip yields ip = α1 + α2 + · · ·+ αp. But
the definition of ip−1 yields ip−1 = α1 + α2 + · · ·+ αp−1. Hence,

ip − ip−1 =
(
α1 + α2 + · · ·+ αp

)
−
(
α1 + α2 + · · ·+ αp−1

)
= αp.

This proves (16).
27Proof. Let p ∈ {1, 2, . . . , ℓ}. Then, αp is a positive integer (since α1, α2, . . ., αℓ are positive

integers (since (α1, α2, . . . , αℓ) is a composition)). Now, (16) yields ip − ip−1 = αp > 0 (since

26
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But for every q ∈ {1, 2, . . . , ℓ}, the list
(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

is
strictly increasing28. Thus, for every q ∈ {1, 2, . . . , ℓ}, the list(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

is an ascending run of the word σ. This

αp is a positive integer). In other words, ip−1 < ip.
Let us now forget that we fixed p. We thus have proven that ip−1 < ip for every p ∈

{1, 2, . . . , ℓ}. In other words, i0 < i1 < · · · < iℓ, qed.
28Proof. Let q ∈ {1, 2, . . . , ℓ}. Since q ≤ ℓ and i0 < i1 < · · · < iℓ, we have iq ≤ iℓ = n. Because of

this, and because of iq−1︸︷︷︸
≥0

+1 ≥ 1, it is clear that each of the integers iq−1 + 1, iq−1 + 2, . . ., iq

belongs to {1, 2, . . . , n}. Hence, the list
(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

is well-defined.
Now, let g ∈

{
1, 2, . . . , iq − iq−1 − 1

}
. We shall now show that σ

(
iq−1 + g

)
<

σ
(
iq−1 + (g + 1)

)
.

Indeed, assume the contrary. Then, σ
(
iq−1 + g

)
≥ σ

(
iq−1 + (g + 1)

)
. Let h = iq−1 + g.

Then,

σ

 h︸︷︷︸
=iq−1+g

 = σ
(
iq−1 + g

)
≥ σ

(
iq−1 + (g + 1)

)
= σ

iq−1 + g︸ ︷︷ ︸
=h

+1

 = σ (h + 1) .

Moreover, recall that g ∈
{

1, 2, . . . , iq − iq−1 − 1
}

. Thus, g ≥ 1 and g ≤ iq − iq−1 − 1. Com-
bining h = iq−1 + g︸︷︷︸

≥1

≥ iq−1︸︷︷︸
≥0

+1 ≥ 1 with h = iq−1 + g︸︷︷︸
≤iq−iq−1−1

≤ iq−1 +
(
iq − iq−1 − 1

)
=

iq︸︷︷︸
≤n

−1 ≤ n − 1, we obtain 1 ≤ h ≤ n − 1, so that h ∈ {1, 2, . . . , n − 1}.

The map σ is a permutation, thus bijective, thus injective. Hence, σ (u) ̸= σ (v) for any two
distinct elements u and v of {1, 2, . . . , n}. Applying this to u = h and v = h + 1, we obtain
σ (h) ̸= σ (h + 1). Combined with σ (h) ≥ σ (h + 1), we obtain σ (h) > σ (h + 1). Now, we
know that h is an element of {1, 2, . . . , n − 1} satisfying σ (h) > σ (h + 1). In other words,

h ∈ {i ∈ {1, 2, . . . , n − 1} | σ (i) > σ (i + 1)} = Des σ(
since Des σ = {i ∈ {1, 2, . . . , n − 1} | σ (i) > σ (i + 1)}

(by the definition of Des σ)

)
= D (α) =

{
α1 + α2 + · · ·+ αp | p ∈ {1, 2, . . . , ℓ− 1}

}
(by (9)) .

In other words, there exists some p ∈ {1, 2, . . . , ℓ− 1} such that h = α1 + α2 + · · ·+ αp. Let
us consider this p.

The definition of ip yields ip = α1 + α2 + · · ·+ αp = h (since h = α1 + α2 + · · ·+ αp).
Now, let us assume (for the sake of contradiction) that p ≤ q − 1. Then, ip ≤ iq−1 (since

i0 < i1 < · · · < iℓ); but this contradicts ip = h ≥ iq−1 + 1 > iq−1. This contradiction shows
that our assumption (that p ≤ q − 1) was wrong. Hence, we cannot have p ≤ q − 1. We thus
must have p > q − 1. Since p and q − 1 are integers, this yields p ≥ (q − 1) + 1 = q. Thus,
q ≤ p, so that iq ≤ ip (since i0 < i1 < · · · < iℓ), so that iq ≤ ip = h ≤ iq − 1 < iq. But this
is absurd. This contradiction shows that our assumption was wrong. Hence, σ

(
iq−1 + g

)
<

σ
(
iq−1 + (g + 1)

)
is proven.

Let us now forget that we fixed g. Thus we have proven that σ
(
iq−1 + g

)
<

σ
(
iq−1 + (g + 1)

)
for every g ∈

{
1, 2, . . . , iq − iq−1 − 1

}
. In other words, the list(

σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

is strictly increasing. Qed.
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ascending run has length αq
29. Hence, for every q ∈ {1, 2, . . . , ℓ}, the list(

σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

is an ascending run of the word σ having
length αq. Thus, for q ranging over the set {1, 2, . . . , ℓ}, these lists(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

are ℓ ascending runs of the word σ having
lengths α1, α2, . . ., αℓ. These ℓ ascending runs are clearly consecutive, and cover
the whole word σ (since i0 = 0 and iℓ = n). Hence, the word σ can be split into ℓ
consecutive ascending runs of lengths α1, α2, . . ., αℓ (namely, into the ascending
runs

(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

for q ∈ {1, 2, . . . , ℓ}). In particular,
the word σ has ℓ consecutive ascending runs of lengths α1, α2, . . ., αℓ.

Let now (c1, c2, . . . , ck) be any composition of n such that the word σ has k
consecutive ascending runs of lengths c1, c2, . . ., ck, and such that k ≤ ℓ. We
shall prove that (c1, c2, . . . , ck) = α.

This is obvious if n = 0 30. Hence, for the rest of the proof of (c1, c2, . . . , ck) =
α, we can WLOG assume that we don’t have n = 0. Assume this. We have n ≥ 1
(since n ∈ N and since we don’t have n = 0). Hence, ℓ ≥ 1 31 and k ≥ 1 32.
Thus, ℓ− 1 ≥ 0 (since ℓ ≥ 1) and k − 1 ≥ 0 (and k ≥ 1).

We know that (c1, c2, . . . , ck) is a composition of n. Thus, |(c1, c2, . . . , ck)| = n,
so that n = |(c1, c2, . . . , ck)| = c1 + c2 + · · ·+ ck.

The word σ has k consecutive ascending runs of lengths c1, c2, . . ., ck. In
other words, there exist k + 1 elements j0, j1, . . ., jk of {0, 1, . . . , n} satisfying the
following properties:

• We have j0 ≤ j1 ≤ · · · ≤ jk.

• For every q ∈ {1, 2, . . . , k}, the list
(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
))

is
an ascending run of σ having length cq.

29Proof. Fix q ∈ {1, 2, . . . , ℓ}. We need to show that the list
(
σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

has length αq.
But we have iq−1 < iq (since i0 < i1 < · · · < iℓ). Thus, the list(

σ
(
iq−1 + 1

)
, σ
(
iq−1 + 2

)
, . . . , σ

(
iq
))

has length iq − iq−1 = αq (by (16), applied to p = q).
This completes our proof.

30Proof. Assume that n = 0. Then, (c1, c2, . . . , ck) is a composition of n. In other words,
(c1, c2, . . . , ck) is a composition of 0 (since n = 0). Hence, (c1, c2, . . . , ck) = ∅ (since ∅ is
the only composition of 0). On the other hand, α is a composition of n. In other words, α is
a composition of 0 (since n = 0). Hence, α = ∅ (since ∅ is the only composition of 0). Thus,
(c1, c2, . . . , ck) = ∅ = α, qed.

31Proof. We have iℓ = n ≥ 1 > 0 = i0, so that iℓ ̸= i0 and thus ℓ ̸= 0. Since ℓ ∈ N, this yields
ℓ ≥ 1, qed.

32Proof. Assume the contrary. Then, k < 1. Since k ∈ N, this shows that k = 0. Hence,

|(c1, c2, . . . , ck)| =

∣∣∣∣∣∣∣(c1, c2, . . . , c0)︸ ︷︷ ︸
=()=∅

∣∣∣∣∣∣∣ = |∅| = 0. Compared with |(c1, c2, . . . , ck)| = n (since

(c1, c2, . . . , ck) is a composition of n), this yields n = 0, so that 0 = n ≥ 1. But this is absurd.
This contradiction shows that our assumption was wrong, qed.
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Consider these elements j0, j1, . . ., jk. 33 It is easy to see that

cq = jq − jq−1 for every q ∈ {1, 2, . . . , k} . (17)

34 It is now easy to see that (j0 = 0 and jk = n) 35. Furthermore,

Des σ ⊆ {j1, j2, . . . , jk−1} (19)

36. But

∣∣∣∣∣∣Des σ︸ ︷︷ ︸
=D(α)

∣∣∣∣∣∣ = |D (α)| = max {ℓ− 1, 0} (by (11)). But ℓ − 1 ≥ 0 and

thus max {ℓ− 1, 0} = ℓ − 1. Hence, |Des σ| = max {ℓ− 1, 0} = ℓ − 1. But

33Visually speaking, these elements j0, j1, . . ., jk are the borders of the k ascending runs.
34Proof of (17): Let q ∈ {1, 2, . . . , k}. Then, one of the two above properties of the elements

j0, j1, . . ., jk shows that the list
(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
))

is an ascending run of
σ having length cq. Hence, this list

(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
))

has length cq. In
other words,(

the length of the list
(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
)))

= cq. (18)

But jq−1 ≤ jq (since j0 ≤ j1 ≤ · · · ≤ jk). Hence, the list(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
))

has length jq − jq−1. In other words,(
the length of the list

(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
)))

= jq − jq−1.

Compared with (18), this yields cq = jq − jq−1. This proves (17).
35Proof. We know that j0, j1, . . ., jk are elements of {0, 1, . . . , n}. In particular, j0 and jk are

elements of {0, 1, . . . , n}. Since jk is an element of {0, 1, . . . , n}, we have jk ≤ n, so that n ≥ jk.
Combined with

n = c1 + c2 + · · ·+ ck =
k

∑
q=1

cq︸︷︷︸
=jq−jq−1
(by (17))

=
k

∑
q=1

(
jq − jq−1

)
=

k

∑
q=1

jq −
k

∑
q=1

jq−1

=
k

∑
q=1

jq︸ ︷︷ ︸
=

k−1
∑

q=1
jq+jk

−
k−1

∑
q=0

jq︸ ︷︷ ︸
=j0+

k−1
∑

q=1
jq

(here, we substituted q for q − 1 in the second sum)

=

(
k−1

∑
q=1

jq + jk

)
−
(

j0 +
k−1

∑
q=1

jq

)
= jk − j0︸︷︷︸

≥0
(since j0∈{0,1,...,n})

≤ jk,

this yields n = jk. Thus, jk = n. Now, n = jk︸︷︷︸
=n

−j0 = n − j0, so that 0 = −j0 and thus j0 = 0.

Hence, (j0 = 0 and jk = n), qed.
36Proof of (19): Let h ∈ Des σ. Then,

h ∈ Des σ = {i ∈ {1, 2, . . . , n − 1} | σ (i) > σ (i + 1)}

(by the definition of Des σ). In other words, h is an element of {1, 2, . . . , n − 1} and satisfies
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|{j1, j2, . . . , jk−1}| ≤ k− 1 (since j1, j2, . . ., jk−1 are k− 1 integers (since k− 1 ≥ 0)).
Now,

|Des σ| = ℓ︸︷︷︸
≥k

(since k≤ℓ)

− 1 ≥ k − 1 ≥ |{j1, j2, . . . , jk−1}|

(since |{j1, j2, . . . , jk−1}| ≤ k − 1). But it is clear that if S is a finite set, and if T
is a subset of S satisfying |T| ≥ |S|, then we must have T = S. Applying this to
S = {j1, j2, . . . , jk−1} and T = Des σ, we obtain

Des σ = {j1, j2, . . . , jk−1} (21)

(since Des σ ⊆ {j1, j2, . . . , jk−1} and |Des σ| ≥ |{j1, j2, . . . , jk−1}|).

σ (h) > σ (h + 1).
We have h ∈ {1, 2, . . . , n − 1}, so that 1 ≤ h ≤ n − 1. Now, h ≤ n − 1 < n = jk (since

jk = n). Thus, there exists at least one q ∈ {0, 1, . . . , k} satisfying h ≤ jq (namely, q = k).
Hence, there exists the smallest q ∈ {0, 1, . . . , k} satisfying h ≤ jq. Let us denote this smallest
q by r. Thus, r is an element q ∈ {0, 1, . . . , k} satisfying h ≤ jq. In other words, r is an element
of {0, 1, . . . , k} satisfying h ≤ jr. We have j0 = 0 < 1 ≤ h ≤ jr, so that j0 ̸= jr and thus 0 ̸= r.
Hence, r ̸= 0. Since r ∈ {0, 1, . . . , k} and r ̸= 0, we have r ∈ {0, 1, . . . , k} \ {0} = {1, 2, . . . , k}.
Thus, r − 1 ∈ {0, 1, . . . , k − 1} ⊆ {0, 1, . . . , k}.

But
every q ∈ {0, 1, . . . , k} satisfying h ≤ jq must satisfy q ≥ r (20)

(because r is the smallest q ∈ {0, 1, . . . , k} satisfying h ≤ jq).
Let us assume (for the sake of contradiction) that h ≤ jr−1. Then, (20) (applied to q = r − 1)

yields r − 1 ≥ r (since r − 1 ∈ {0, 1, . . . , k}). But this is absurd. This contradiction shows
that our assumption (that h ≤ jr−1) is false. Thus, we do not have h ≤ jr−1. Hence, we have
h > jr−1. Thus, h ≥ jr−1 + 1 (since h and jr−1 are integers), so that h − jr−1 ≥ 1.

Let us assume (for the sake of contradiction) that h ̸= jr. Combined with h ≤ jr, this yields
h < jr. Thus, h ≤ jr − 1 (since h and jr are integers), so that h︸︷︷︸

≤jr−1

− jr−1 ≤ jr − 1 − jr−1 =

jr − jr−1 − 1. Combined with h − jr−1 ≥ 1, this yields 1 ≤ h − jr−1 ≤ jr − jr−1 − 1, so that
h − jr−1 ∈ {1, 2, . . . , jr − jr−1 − 1}.

But recall that, for every q ∈ {1, 2, . . . , k}, the list
(
σ
(

jq−1 + 1
)

, σ
(

jq−1 + 2
)

, . . . , σ
(

jq
))

is an ascending run of σ having length cq. Applying this to q = r, we conclude that
the list (σ (jr−1 + 1) , σ (jr−1 + 2) , . . . , σ (jr)) is an ascending run of σ having length cr. In
particular, this list is an ascending run, and therefore increasing. In other words, ev-
ery g ∈ {1, 2, . . . , jr − jr−1 − 1} satisfies σ (jr−1 + g) ≤ σ (jr−1 + (g + 1)). Applying this to
g = h − jr−1, we obtain

σ (jr−1 + (h − jr−1)) ≤ σ (jr−1 + ((h − jr−1) + 1))

(since h − jr−1 ∈ {1, 2, . . . , jr − jr−1 − 1}). Since jr−1 + (h − jr−1) = h and jr−1 +
((h − jr−1) + 1) = h + 1, this rewrites as σ (h) ≤ σ (h + 1). This contradicts σ (h) > σ (h + 1).

This contradiction shows that our assumption (that h ̸= jr) was wrong. Hence, we
must have h = jr. Thus, jr = h < jk, so that jr ̸= jk and thus r ̸= k. Combin-
ing this with r ∈ {1, 2, . . . , k}, we obtain r ∈ {1, 2, . . . , k} \ {k} = {1, 2, . . . , k − 1}. Now,
h = jr ∈ {j1, j2, . . . , jk−1} (since r ∈ {1, 2, . . . , k − 1}).

Now, let us forget that we fixed h. We thus have shown that every h ∈ Des σ satisfies
h ∈ {j1, j2, . . . , jk−1}. In other words, Des σ ⊆ {j1, j2, . . . , jk−1}. This proves (19).
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On the other hand, D ((c1, c2, . . . , ck)) = {j1, j2, . . . , jk−1} 37. Compared with
(21), this yields D ((c1, c2, . . . , ck)) = Des σ.

Now, recall that α was defined as the unique composition of n such that
D (α) = Des σ. In other words, α is the unique composition β of n such that
D (β) = Des σ. The “uniqueness” part of this statement shows that every com-
position β of n such that D (β) = Des σ must satisfy β = α. Applying this to
β = (c1, c2, . . . , ck), we obtain (c1, c2, . . . , ck) = α (since (c1, c2, . . . , ck) is a compo-
sition of n and satisfies D ((c1, c2, . . . , ck)) = Des σ). Thus, (c1, c2, . . . , ck) = α is
proven.

Now, let us forget that we fixed (c1, c2, . . . , ck). We thus have shown the fol-
lowing fact:

Fact A: If (c1, c2, . . . , ck) is any composition of n such that the word σ
has k consecutive ascending runs of lengths c1, c2, . . ., ck, and such
that k ≤ ℓ, then (c1, c2, . . . , ck) = α.

We also know that α = (α1, α2, . . . , αℓ) is a composition of n with the property
that the word σ has ℓ consecutive ascending runs of lengths α1, α2, . . ., αℓ. In
other words, α is a composition (c1, c2, . . . , ck) of n such that the word σ has k
consecutive ascending runs of lengths c1, c2, . . ., ck. Moreover, among all such
compositions (c1, c2, . . . , ck), the composition α is the one with the minimum k
(because of Fact A, and since α has k = ℓ). In other words, we have proven the
following fact:

37Proof. For every p ∈ {1, 2, . . . , k − 1}, we have

c1 + c2 + · · ·+ cp =
p

∑
q=1

cq︸︷︷︸
=jq−jq−1
(by (17))

=
p

∑
q=1

(
jq − jq−1

)
=

p

∑
q=1

jq −
p

∑
q=1

jq−1

=
p

∑
q=1

jq︸ ︷︷ ︸
=

p−1
∑

q=1
jq+jp

−
p−1

∑
q=0

jq︸ ︷︷ ︸
=j0+

p−1
∑

q=1
jq

(here, we substituted q for q − 1 in the second sum)

=

(
p−1

∑
q=1

jq + jp

)
−
(

j0 +
p−1

∑
q=1

jq

)
= jp − j0︸︷︷︸

=0

= jp. (22)

Now, applying (9) to (c1, c2, . . . , ck), k and ci instead of α, ℓ and αi, we obtain

D ((c1, c2, . . . , ck)) =


c1 + c2 + · · ·+ cp︸ ︷︷ ︸

=jp
(by (22))

| p ∈ {1, 2, . . . , k − 1}


=
{

jp | p ∈ {1, 2, . . . , k − 1}
}
= {j1, j2, . . . , jk−1} .

This proves (21).
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Fact B: Among all compositions (c1, c2, . . . , ck) of n such that the word
σ has k consecutive ascending runs of lengths c1, c2, . . ., ck, the com-
position α is the one with the minimum k.

Recall the definition of C (σ). This definition says that, among all compositions
(c1, c2, . . . , ck) of n such that the word σ has k consecutive ascending runs of
lengths c1, c2, . . ., ck, the composition C (σ) is the one with the minimum k.
Comparing this description of C (σ) with the description of α given in Fact B,
we obtain that α = C (σ). This proves Proposition 6.6 (c).

6.5. Page 9, Corollary 3.3: a proof

For the sake of completeness, let me give a proof of Corollary 3.3 using [GriRei15,
Theorem 5.2.11]. But first, let me recall your definition of the notion of a π-
partition:

Definition 6.7. Let π = (E,<1,<2) be a double poset. Let X be a totally
ordered set. A π-partition into X means a map x : E → X such that any two
elements e and e′ of E satisfy(

e <1 e′ implies x (e) ≤ x
(
e′
))

and (
e <1 e′ and e ≥2 e′ implies x (e) < x

(
e′
))

.

Proof of Corollary 3.3. Let π be a special double poset. We shall show that
Γ (π) = (F ◦ L) (π).

We use the definition of QSym given in [GriRei15, Definition 5.1.5] (where it
is denoted by QSym). The definition of Γ (π) then rewrites as follows:

Γ (π) = ∑
f is a π-partition

into {1,2,3,...}

∏
e∈E

x f (e). (23)

Write π in the form π = (E,<1,<2). Then, <2 is a total order (since π is
special). Hence, we can WLOG assume that E = {1, 2, . . . , n} for some n ∈ N,
and that the second order <2 of π is the natural order on {1, 2, . . . , n} (since we
can achieve this by relabelling the elements of E). Assume this. Then, (E,<1)
becomes a labelled poset in the sense of [GriRei15, Definition 5.2.1] (since E ⊆
Z). Also, <2 is the natural order on {1, 2, . . . , n}. In other words, <2 is the
restriction of <Z to E (where <Z is the natural order on Z). Thus, ≥2 is the
restriction of ≥Z to E.

We recall the definition of a P-partition (for P being a labelled poset) given in
[GriRei15, Definition 5.2.1]. It is easy to see that the (E,<1)-partitions are the
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same as the π-partitions into {1, 2, 3, . . .} 38. But now recall the definition of

38Proof. Let x be a π-partition into {1, 2, 3, . . .}. By the definition of a π-partition, we then know
that x is a map E → {1, 2, 3, . . .} such that any two elements e and e′ of E satisfy(

e <1 e′ implies x (e) ≤ x
(
e′
))

(24)

and (
e <1 e′ and e ≥2 e′ implies x (e) < x

(
e′
))

(25)

(since x is a π-partition). Thus, any two elements e and e′ of E satisfy(
e <1 e′ and e ≥Z e′ implies x (e) < x

(
e′
))

. (26)

(Proof of (26): Let e and e′ be two elements of E. Assume that e <1 e′ and e ≥Z e′. We have
e ≥Z e′. In other words, e ≥2 e′ (since ≥2 is the restriction of ≥Z to E). Thus, (25) shows that
x (e) < x (e′). This proves (26).)

Now, if i and j are two elements of E, then

(i <1 j and i <Z j implies x (i) ≤ x (j)) (27)

(according to (24), applied to e = i and e′ = j) and

(i <1 j and i >Z j implies x (i) < x (j)) (28)

(according to (26), applied to e = i and e′ = j). In other words, x is an (E,<1)-partition (due
to the definition of an (E,<1)-partition).

Now, let us forget that we fixed x. We thus have shown that if x is a π-partition into
{1, 2, 3, . . .}, then x is an (E,<1)-partition. In other words,

every π-partition into {1, 2, 3, . . .} is an (E,<1) -partition. (29)

Let now y be an (E,<1)-partition. According to the definition of an (E,<1)-partition, we
thus know that y is a map E → {1, 2, 3, . . .} such that any two elements i and j of E satisfy

(i <1 j and i <Z j implies y (i) ≤ y (j)) (30)

and
(i <1 j and i >Z j implies y (i) < y (j)) (31)

(since y is an (E,<1)-partition).
Now, let e and e′ be two elements of E.
Assume that e <1 e′. We shall now prove that y (e) ≤ y (e′). If e <Z e′, then this follows

immediately from (30) (applied to e = i and e′ = j). Hence, for the rest of this proof, we
can WLOG assume that we don’t have e <Z e′. Assume this. We have e ≥Z e′ (since we
don’t have e <Z e′). But e ̸= e′ (since e <1 e′, and since <1 is a partial order). Combined
with e ≥Z e′, this yields e >Z e′. Thus, y (e) < y (e′) (by (31)), so that y (e) ≤ y (e′). Thus,
y (e) ≤ y (e′) is proven.

Let us now forget that we assumed that e <1 e′. We thus have shown that(
e <1 e′ implies y (e) ≤ y

(
e′
))

. (32)

Now, assume that e <1 e′ and e ≥2 e′. We have e ≥2 e′. In other words, e ≥Z e′ (since ≥2 is
the restriction of ≥Z to E). But e <1 e′, so that e ̸= e′ (since <1 is a partial order). Combined
with e ≥Z e′, this yields e >Z e′. Thus, (31) (applied to i = e and j = e′) yields y (e) < y (e′).
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FP (for P being a labelled poset) given in [GriRei15, Definition 5.2.1]. This yields

F(E,<1) = ∑
f∈A((E,<1))

x f ,

where A ((E,<1)) denotes the set of all (E,<1)-partitions and where x f is de-
fined as ∏

i∈E
x f (i). Thus,

F(E,<1) = ∑
f∈A((E,<1))︸ ︷︷ ︸

= ∑
f is a (E,<1)-partition

(since A((E,<1)) is the set
of all (E,<1)-partitions)

x f︸︷︷︸
= ∏

i∈E
x f (i)

= ∑
f is a (E,<1)-partition︸ ︷︷ ︸
= ∑

f is a π-partition
into {1,2,3,...}

(since the (E,<1)-partitions are
the same as the π-partitions

into {1,2,3,...})

∏
i∈E

x f (i)︸ ︷︷ ︸
= ∏

e∈E
x f (e)

(here, we renamed
the index i as e)

= ∑
f is a π-partition

into {1,2,3,...}

∏
e∈E

x f (e) = Γ (π) (by (23)) . (34)

Let us now compute F (L (π)).
Recall that you have defined the notion of a “linear extension” of a special

double poset; in particular, this yields the notion of a “linear extension” of π. On
the other hand, in [GriRei15, §5.2], the notion of a “linear extension” of a labelled
poset is defined; in particular, this yields the notion of a “linear extension” of
(E,<1). Now, we shall see that these two notions agree: Namely,

the linear extensions of (E,<1) are precisely the linear extensions of π. (35)

39

Let us now forget that we assumed that e <1 e′ and e ≥2 e′. We thus have shown that(
e <1 e′ and e ≥2 e′ implies y (e) < y

(
e′
))

. (33)

Now, let us forget that we fixed e and e′. We thus have proven that any two elements e and
e′ of E satisfy (32) and (33). In other words, y is a π-partition into {1, 2, 3, . . .} (according to
the definition of a π-partition).

Let us now forget that we fixed y. We thus have proven that if y is an (E,<1)-partition,
then y is a π-partition into {1, 2, 3, . . .}. In other words,

every (E,<1) -partition is a π-partition into {1, 2, 3, . . .} .

Combining this with (29), we conclude that the (E,<1)-partitions are the same as the π-
partitions into {1, 2, 3, . . .}. Qed.

39Proof of (35): A linear extension of π is the same as a total order on the set E which extends the
first order <1 of π (according to the definition of a “linear extension” of π). In other words, a
linear extension of π is the same as a total order on the set E which extends the partial order
<1. In other words, a linear extension of π is the same as a total order on the set E which
extends (E,<1) as a poset.
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You identify linear extensions of π with a certain kind of words, and also with
permutations in Sn. Similarly, in [GriRei15, §5.2], linear extensions of (E,<1)
are identified with a certain kind of words. It is clear that these identifications
are the same – i.e., if σ is a linear extension of π, then the word with which the
linear extension σ of π is identified is identical with the word with which the
linear extension σ of (E,<1) is identified.40 Following [GriRei15, §5.2], we use
the notation L (P) for the set of all linear extensions of a labelled poset P. Then,
[GriRei15, Theorem 5.2.11] says that FP (x) = ∑

w∈L(P)
Fw (x) for every labelled

poset P. Applying this to P = (E,<1), we obtain

F(E,<1) (x) = ∑
w∈L((E,<1))︸ ︷︷ ︸

= ∑
w is a linear

extension of (E,<1)
(since L((E,<1)) is the set of all

linear extensions of (E,<1))

Fw (x) = ∑
w is a linear

extension of (E,<1)︸ ︷︷ ︸
= ∑

w is a linear
extension of π

(since the linear extensions
of (E,<1) are precisely the

linear extensions of π)

Fw (x)

= ∑
w is a linear

extension of π

Fw (x) .

Now, (34) yields

Γ (π) = F(E,<1) = F(E,<1) (x) = ∑
w is a linear

extension of π

Fw (x) . (36)

On the other hand, L (π) is the sum of all linear extensions of π (according to
the definition of L). In other words,

L (π) = ∑
σ is a linear

extension of π

σ.

But a linear extension of (E,<1) is the same as a linear order on the set E which extends
(E,<1) as a poset (according to the definition of “linear extension” given in [GriRei15, §5.2]).
Since “linear order” is synonymous for “total order”, this rewrites as follows: A linear exten-
sion of (E,<1) is the same as a total order on the set E which extends (E,<1) as a poset. In
other words, a linear extension of (E,<1) is the same as a linear extension of π (since a linear
extension of π is the same as a total order on the set E which extends (E,<1) as a poset).
In other words, the linear extensions of (E,<1) are precisely the linear extensions of π. This
proves (35).

40This is because both of these words are defined in the same way (namely, as the list of all
elements of E in σ-increasing order).
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Applying the map F to both sides of this equality, we obtain

F (L (π)) = F

 ∑
σ is a linear

extension of π

σ

 = ∑
σ is a linear

extension of π

F (σ)︸ ︷︷ ︸
=FC(σ)

(by the definition of F)

(since F is Z-linear)

= ∑
σ is a linear

extension of π

FC(σ) = ∑
w is a linear

extension of π

FC(w) (37)

(here, we renamed the summation index σ as w) .

Now, let us fix a linear extension w of π. We recall that w is thus identified with
a word and with a permutation in Sn. Proposition 6.6 (b) (applied to I = Des w)
yields that there exists a unique composition α of n such that D (α) = Des w.
Consider this α. Then, α = C (w) (according to Proposition 6.6 (c), applied to
σ = w). Notice that the fundamental quasisymmetric function Fα is denoted by
Lα in [GriRei15, §5.2].

Now, in [GriRei15, Proposition 5.2.10], it is shown that Fw (x) equals the fun-
damental quasisymmetric function Lα. Since Fα is denoted by Lα in [GriRei15,
§5.2], this result rewrites as follows: Fw (x) equals the fundamental quasisym-
metric function Fα. In other words, Fw (x) = Fα = FC(w) (since α = C (w)).

Let us now forget that we fixed w. We thus have shown that Fw (x) = FC(w)
for every linear extension w of π. Thus, (36) becomes

Γ (π) = ∑
w is a linear

extension of π

Fw (x)︸ ︷︷ ︸
=FC(w)

= ∑
w is a linear

extension of π

FC(w) = F (L (π)) (by (37))

= (F ◦ L) (π) .

Let us now forget that we fixed π. We thus have proven that Γ (π) = (F ◦ L) (π)
for every special double poset π. Thus, (Γ |ZDS) (π) = Γ (π) = (F ◦ L) (π) for
every special double poset π. In other words, the two maps Γ |ZDS and F ◦ L
are equal to each other on the basis of the Z-module ZDS consisting of the (iso-
morphism classes of) special double posets. Since these two maps Γ |ZDS and
F ◦ L are Z-linear, this shows that these two maps Γ |ZDS and F ◦ L are identical
(because if two Z-linear maps from the same domain are equal to each other on
a basis of the domain, then these two maps must be identical). In other words,
Γ |ZDS= F ◦ L. This proves Corollary 3.3.

Let me also prove the claim that “the linear function F : ZS → QSym defined
by σ 7→ FC(σ) is a homomorphism of bialgebras”. You refer to “[MR] Th.3.3”,
but as far as I can tell this fact is never explicitly stated in [MR]; it takes some
work to derive it from the results of [MR]. Here is a simple way to derive it from
[GriRei15, Corollary 8.1.14]:

Proof of the fact that the linear function F : ZS → QSym defined by σ 7→ FC(σ) is a
homomorphism of bialgebras: For every n ∈ N and w ∈ Sn, we let γ (w) denote the
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unique composition α of n such that D (α) = Des w (where Des w is defined as
in Proposition 6.6 (c)). (This unique composition exists according to Proposition
6.6 (b) (applied to σ = w and I = Des w).)

Part of [GriRei15, Corollary 8.1.14(a)] (applied to k = Z) states (in the nota-
tions of [GriRei15, §8]) that the Z-linear map

FQSym → QSym,
Fw 7→ Lγ(w)

is a Hopf morphism. Translating this into our notations, we obtain the following:
The Z-linear map

ZS → QSym,
w 7→ Fγ(w)

is a Hopf morphism41. Renaming the index w as σ in this fact, we rewrite it as
follows: The Z-linear map

ZS → QSym,
σ 7→ Fγ(σ)

is a Hopf morphism. In other words, the Z-linear map

ZS → QSym,
σ 7→ FC(σ)

is a Hopf morphism (because every n ∈ N and every σ ∈ Sn satisfy γ (σ) = C (σ)
42). In particular, this map is a homomorphism of bialgebras. This completes
our proof that the linear function F : ZS → QSym defined by σ 7→ FC(σ) is a
homomorphism of bialgebras.

6.6. Page 10, Proposition 3.1: properties of standard
permutations

Let me give a self-contained proof of Proposition 3.1.
First, I am going to give a formal definition of the standard permutation of a

word. Let me start with the following simple fact:
41In our translation, we used the following dictionary:

• What is called FQSym in [GriRei15] is what we call ZS.

• What is called QSym in [GriRei15] is what we call QSym.

• What is called Fw in [GriRei15] (for w being a permutation) is what we call w.

• What is called Lα in [GriRei15] (for α being a composition) is what we call Fα.

42Proof. Let n ∈ N and σ ∈ Sn. Proposition 6.6 (c) (applied to α = γ (σ)) yields that γ (σ) = C (σ)
(since γ (σ) is the unique composition α of n such that D (α) = Des σ (due to the definition
of γ (σ))). Qed.
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Proposition 6.8. Let P be a poset. Let w = a1a2 · · · an be a word over the poset
P (that is, a finite list of elements of P). We define a binary relation ≺w on the
set {1, 2, . . . , n} as follows: For any i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, we
set i ≺w j if and only if(

either ai < aj or
(
ai = aj and i < j

))
.

(a) This binary relation ≺w is the smaller relation of a partial order on the
set {1, 2, . . . , n}.

(b) Assume that the poset P is totally ordered. Then, the binary relation ≺w
is the smaller relation of a total order on the set {1, 2, . . . , n}.

Proof of Proposition 6.8. (a) Any two elements p and q of {1, 2, . . . , n} satisfying
p ≺w q must satisfy

ap ≤ aq. (38)
43

43Proof of (38): Let p and q be two elements of {1, 2, . . . , n} satisfying p ≺w q.
We have p ≺w q if and only if

(
either ap < aq or

(
ap = aq and p < q

))
(according to the

definition of the relation ≺w). Hence, we must have
(
either ap < aq or

(
ap = aq and p < q

))
(since we have p ≺w q). In other words, we are in one of the following two cases:

Case 1: We have ap < aq.
Case 2: We have

(
ap = aq and p < q

)
.

Let us first consider Case 1. In this case, we have ap < aq. Thus, ap ≤ aq. Hence, (38) is
proven in Case 1.

Let us now consider Case 1. In this case, we have
(
ap = aq and p < q

)
. Thus, ap = aq, so

that ap ≤ aq. Hence, (38) is proven in Case 2.
We have now proven (38) in each of the two Cases 1 and 2. Since these two Cases cover all

possibilities, this yields that (38) always holds. Qed.
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The binary relation ≺w is irreflexive44, transitive45 and antisymmetric46. There-
fore, this binary relation ≺w is the smaller relation of a partial order on the set
{1, 2, . . . , n} (since every irreflexive, transitive and antisymmetric relation on a
set S must be the smaller relation of a partial order on S). This proves Proposi-
tion 6.8 (a).

(b) Proposition 6.8 (a) shows that the binary relation ≺w is the smaller relation
of a partial order on the set {1, 2, . . . , n}. In order to prove Proposition 6.8 (b),

44Proof. Let p be an element of {1, 2, . . . , n} such that p ≺w p.
We have p ≺w p if and only if

(
either ap < ap or

(
ap = ap and p < p

))
(according to the

definition of the relation ≺w). Hence, we must have
(
either ap < ap or

(
ap = ap and p < p

))
(since we have p ≺w p). Since ap < ap is impossible, we thus have

(
ap = ap and p < p

)
.

Thus, p < p, which is absurd.
Now, let us forget that we fixed p. We thus have obtained a contradiction for every p ∈

{1, 2, . . . , n} satisfying p ≺w p. Hence, there exists no p ∈ {1, 2, . . . , n} satisfying p ≺w p. In
other words, the relation ≺w is irreflexive, qed.

45Proof. Let p, q and r be three elements of {1, 2, . . . , n} such that p ≺w q and q ≺w r.
We are going to show that p ≺w r.
We have p ≺w q and thus ap ≤ aq (by (38)). Also, we have q ≺w r and thus aq ≤ ar (by (38),

applied to q and r instead of p and q). Thus, ap ≤ aq ≤ ar. Hence, either ap = ar or ap < ar.
In other words, we are in one of the following two cases:

Case 1: We have ap = ar.
Case 2: We have ap < ar.
Let us first consider Case 1. In this case, we have ap = ar. Thus, ar = ap ≤ aq. Combined

with aq ≤ ar, this yields ar = aq, so that aq = ar.
We have p ≺w q if and only if

(
either ap < aq or

(
ap = aq and p < q

))
(according to the

definition of the relation ≺w). Hence, we must have
(
either ap < aq or

(
ap = aq and p < q

))
(since we have p ≺w q). Since ap < aq is impossible (because ap = ar = aq), this yields that
we have

(
ap = aq and p < q

)
. Hence, p < q.

We have q ≺w r if and only if
(
either aq < ar or

(
aq = ar and q < r

))
(according to the

definition of the relation ≺w). Hence, we must have
(
either aq < ar or

(
aq = ar and q < r

))
(since we have q ≺w r). Since aq < ar is impossible (since aq = ar), this shows that we have(

aq = ar and q < r
)
. Hence, q < r.

Now, ap = ar and p < q < r. Hence,
(
ap = ar and p < r

)
, and therefore(

either ap < ar or
(
ap = ar and p < r

))
.

Now, we have p ≺w r if and only if
(
either ap < ar or

(
ap = ar and p < r

))
(accord-

ing to the definition of the relation ≺w). Hence, we must have p ≺w r (since we have(
either ap < ar or

(
ap = ar and p < r

))
). Hence, p ≺w r is proven in Case 1.

Let us now consider Case 2. In this case, we have ap < ar. Thus,(
either ap < ar or

(
ap = ar and p < r

))
.

Now, we have p ≺w r if and only if
(
either ap < ar or

(
ap = ar and p < r

))
(accord-

ing to the definition of the relation ≺w). Hence, we must have p ≺w r (since we have(
either ap < ar or

(
ap = ar and p < r

))
). Hence, p ≺w r is proven in Case 2.

Now, we have proven p ≺w r in each of the two Cases 1 and 2. Since these two Cases cover
all possibilities, we can thus conclude that p ≺w r always holds.

Now, let us forget that we fixed p, q and r. We thus have shown that if p, q and r are any
three elements of {1, 2, . . . , n} such that p ≺w q and q ≺w r, then p ≺w r. In other words, the
relation ≺w is transitive. Qed.

46Proof. It is known that any irreflexive transitive binary relation is antisymmetric. Thus, the
binary relation ≺w is antisymmetric (since it is irreflexive and transitive). Qed.
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it is clearly enough to show that this order is total. In other words, it is clearly
enough to prove that if p and q are two distinct elements of {1, 2, . . . , n}, then
either p ≺w q or q ≺w p. Let us prove this now.

Let p and q be two distinct elements of {1, 2, . . . , n}. We need to show that
either p ≺w q or q ≺w p.

We can WLOG assume that p ≤ q (since our situation is symmetric in p and q,
and thus we can interchange p with q to obtain p ≤ q). Assume this. Combining
p ≤ q with p ̸= q (since p and q are distinct), we obtain p < q.

The poset P is totally ordered. Hence, we have either ap < aq or ap = aq or
ap > aq. In other words, we must be in one of the following three cases:

Case 1: We have ap < aq.
Case 2: We have ap = aq.
Case 3: We have ap > aq.
Let us first consider Case 1. In this case, we have ap < aq. Hence,(

either ap < aq or
(
ap = aq and p < q

))
.

Now, we have p ≺w q if and only if
(
either ap < aq or

(
ap = aq and p < q

))
(according to the definition of the relation ≺w). Hence, we must have p ≺w q
(since we have

(
either ap < aq or

(
ap = aq and p < q

))
). Consequently, we have

either p ≺w q or q ≺w p. Thus, (either p ≺w q or q ≺w p) is proven in Case 1.
Let us now consider Case 2. In this case, we have ap = aq. Hence,

(
ap = aq and p < q

)
,

so that
(
either ap < aq or

(
ap = aq and p < q

))
.

Now, we have p ≺w q if and only if
(
either ap < aq or

(
ap = aq and p < q

))
(according to the definition of the relation ≺w). Hence, we must have p ≺w q
(since we have

(
either ap < aq or

(
ap = aq and p < q

))
). Consequently, we have

either p ≺w q or q ≺w p. Thus, (either p ≺w q or q ≺w p) is proven in Case 2.
Let us finally consider Case 3. In this case, we have ap > aq. Hence, aq < ap,

so that
(
either aq < ap or

(
aq = ap and q < p

))
.

Now, we have q ≺w p if and only if
(
either aq < ap or

(
aq = ap and q < p

))
(according to the definition of the relation ≺w). Hence, we must have q ≺w p
(since we have

(
either aq < ap or

(
aq = ap and q < p

))
). Consequently, we have

either p ≺w q or q ≺w p. Thus, (either p ≺w q or q ≺w p) is proven in Case 3.
Thus, (either p ≺w q or q ≺w p) is proven in each of the three Cases 1, 2 and 3.

Since these three Cases cover all possibilities, this yields that (either p ≺w q or q ≺w p)
always holds.

Now, let us forget that we fixed p and q. We thus have shown that if p and
q are any two distinct elements of {1, 2, . . . , n}, then either p ≺w q or q ≺w p.
Thus, the binary relation ≺w is the smaller relation of a total order on the set
{1, 2, . . . , n} (since we already know that the binary relation ≺w is the smaller
relation of a partial order on the set {1, 2, . . . , n}). This proves Proposition 6.8
(b).

Definition 6.9. Let P be a totally ordered poset. Let w = a1a2 · · · an be a word
over the poset P. We define the standardization of the word w as follows:
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Construct a binary relation ≺w on the set {1, 2, . . . , n} as in Proposition 6.8.
Then, Proposition 6.8 (b) shows that this relation is the smaller relation of a to-
tal order on the set {1, 2, . . . , n}. In other words, ({1, 2, . . . , n} ,≺w) is a totally
ordered set. Thus, there is a unique order isomorphism ({1, 2, . . . , n} ,≺w) →
({1, 2, . . . , n} ,<Z). We define the standard permutation of w as this order iso-
morphism, regarded as a permutation of {1, 2, . . . , n}. This standard permu-
tation is also denoted as the standardization of w.

Example 6.10. Let P be a three-element totally ordered poset {x, y, z} with
x < y < z. Let w be the word yzxy over the poset P. Then, the binary relation
≺w is the total order given by 3 ≺w 1 ≺w 4 ≺w 2. Hence, the unique order
isomorphism ({1, 2, . . . , n} ,≺w) → ({1, 2, . . . , n} ,<Z) sends 3 to 1, sends 1 to
2, sends 4 to 3, and sends 2 to 4. In other words, this unique order isomor-
phism is the permutation (2, 4, 1, 3) (written in one-line notation). Thus, the
standard permutation of the word w is this permutation (2, 4, 1, 3).

Proposition 6.11. Let P be a totally ordered poset. Let w = a1a2 · · · an be
a word over the poset P. Let s be the standard permutation of w. Let i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , n}.

(a) We have the following logical equivalence:

(s (i) < s (j)) ⇐⇒
(
either ai < aj or

(
ai = aj and i < j

))
.

(b) If i < j, then we have the following logical equivalence:

(s (i) < s (j)) ⇐⇒
(
ai ≤ aj

)
.

(c) If i ≥ j, then we have the following logical equivalence:

(s (i) < s (j)) ⇐⇒
(
ai < aj

)
.

(d) If s (i) < s (j), then ai ≤ aj.

Proof of Proposition 6.11. Recall a very basic property of order isomorphisms: If
(U,<U) and (V,<V) are two posets, if f is an order isomorphism (U,<U) →
(V,<V), and if p and q are two elements of U, then we have the following logical
equivalence:

(p <U q) ⇐⇒ ( f (p) <V f (q)) . (39)

(a) Construct a binary relation ≺w on the set {1, 2, . . . , n} as in Proposition
6.8. We recall that the standard permutation of w is the unique order isomor-
phism ({1, 2, . . . , n} ,≺w) → ({1, 2, . . . , n} ,<Z) (indeed, this is how it was de-
fined). In other words, s is the unique order isomorphism ({1, 2, . . . , n} ,≺w) →
({1, 2, . . . , n} ,<Z) (since s is the standard permutation of w). In particular, s
is an order isomorphism ({1, 2, . . . , n} ,≺w) → ({1, 2, . . . , n} ,<Z). Hence, for
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every two elements p and q of {1, 2, . . . , n}, we have the following logical equiv-
alence:

(p ≺w q) ⇐⇒ (s (p) <Z s (q)) . (40)

(Indeed, this follows from (39), applied to (U,<U) = ({1, 2, . . . , n} ,≺w), (V,<V) =
({1, 2, . . . , n} ,<Z) and f = s).

Applying (40) to p = i and q = j, we obtain the logical equivalence

(i ≺w j) ⇐⇒ (s (i) <Z s (j)) ⇐⇒ (s (i) < s (j))(
since the relation <Z on {1, 2, . . . , n}
is a restriction of the relation < on Z

)
.

Hence, we have the logical equivalence

(s (i) < s (j)) ⇐⇒ (i ≺w j) ⇐⇒
(
either ai < aj or

(
ai = aj and i < j

))
(because i ≺w j is equivalent to

(
either ai < aj or

(
ai = aj and i < j

))
(by the

definition of the relation ≺w)). This proves Proposition 6.11 (a).
(b) Assume that i < j. Proposition 6.11 (a) shows that we have the following

logical equivalence:

(s (i) < s (j)) ⇐⇒

either ai < aj or
(
ai = aj and i < j

)︸ ︷︷ ︸
this is equivalent to (ai=aj)

(since i<j is true)


⇐⇒

(
either ai < aj or ai = aj

)
⇐⇒

(
ai ≤ aj

)
.

This proves Proposition 6.11 (b).
(c) Assume that i ≥ j. Then, i < j is false. Proposition 6.11 (a) shows that we

have the following logical equivalence:

(s (i) < s (j)) ⇐⇒

either ai < aj or
(
ai = aj and i < j

)︸ ︷︷ ︸
this is false

(since i<j is false)


⇐⇒

(
either ai < aj or (false)

)
⇐⇒

(
ai < aj

)
.

This proves Proposition 6.11 (c).
(d) We have the following logical implication:

(s (i) < s (j)) ⇐⇒

either ai < aj or
(
ai = aj and i < j

)︸ ︷︷ ︸
this implies ai=aj


(by Proposition 6.11 (a))

=⇒
(
either ai < aj or ai = aj

)
⇐⇒

(
ai ≤ aj

)
.
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In other words, if s (i) < s (j), then ai ≤ aj. This proves Proposition 6.11 (d).

Next, let us show another simple property of standardization:

Proposition 6.12. Let P be a totally ordered poset. Let w = a1a2 · · · an be a
word over the poset P. Let s be the standard permutation of w. We regard the
permutation s as a word over the poset {1, 2, . . . , n} (where the partial order
on this poset is just the usual order inherited from Z) by writing s in one-line
notation. Then, the standard permutation of this word s is s again.

Before we prove this, let us prove a basic fact:

Lemma 6.13. Let n ∈ N. Let s and t be two permutations of {1, 2, . . . , n}.
Assume that every two elements i and j of {1, 2, . . . , n} satisfying i < j satisfy
the following logical equivalence:

(s (i) < s (j)) ⇐⇒ (t (i) < t (j)) . (41)

Then, s = t.

Lemma 6.13 is a restatement of the well-known fact that any permutation of
{1, 2, . . . , n} is uniquely determined by its set of inversions. However, for the
sake of completeness, let us give a self-contained proof of Lemma 6.13.

Proof of Lemma 6.13. Let u be the permutation s ◦ t−1 of {1, 2, . . . , n}. Then, u is
a bijection (since u is a permutation) and therefore an injection. It is easy to
see that every two elements i and j of {1, 2, . . . , n} satisfy the following logical
equivalence:

(i < j) ⇐⇒ (u (i) < u (j)) . (42)
47

Now, we are going to prove that u (k) = k for every k ∈ {1, 2, . . . , n}.

47Proof of (42): Let i and j be two elements of {1, 2, . . . , n}. We want to prove the equivalence
(42).

We must be in one of the following three cases:
Case 1: We have t−1 (i) < t−1 (j).
Case 2: We have t−1 (i) = t−1 (j).
Case 3: We have t−1 (i) > t−1 (j).
Let us first consider Case 1. In this case, we have t−1 (i) < t−1 (j). Thus, (41) (applied to

t−1 (i) and t−1 (j) instead of i and j) yields that we have the following logical equivalence:(
s
(
t−1 (i)

)
< s

(
t−1 (j)

))
⇐⇒

(
t
(
t−1 (i)

)
< t

(
t−1 (j)

))
. Thus, we have the following logical

equivalence:

(
s
(

t−1 (i)
)
< s

(
t−1 (j)

))
⇐⇒

t
(

t−1 (i)
)

︸ ︷︷ ︸
=i

< t
(

t−1 (j)
)

︸ ︷︷ ︸
=j

 ⇐⇒ (i < j) .
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Indeed, assume the contrary. Then, we don’t have
(u (k) = k for every k ∈ {1, 2, . . . , n}). Thus, there exists a k ∈ {1, 2, . . . , n} such
that u (k) ̸= k. Let p be the smallest such k.

We know that p is the smallest k ∈ {1, 2, . . . , n} such that u (k) ̸= k. Hence, if
k ∈ {1, 2, . . . , n} is such that u (k) ̸= k, then

k ≥ p. (43)

On the other hand, p is the smallest k ∈ {1, 2, . . . , n} such that u (k) ̸= k.
Hence, p is a k ∈ {1, 2, . . . , n} such that u (k) ̸= k. In other words, p ∈

Hence, we have the following logical equivalence:

(i < j) ⇐⇒

s
(

t−1 (i)
)

︸ ︷︷ ︸
=(s◦t−1)(i)

< s
(

t−1 (j)
)

︸ ︷︷ ︸
=(s◦t−1)(j)

 ⇐⇒

(s ◦ t−1
)

︸ ︷︷ ︸
=u

(i) <
(

s ◦ t−1
)

︸ ︷︷ ︸
=u

(j)


⇐⇒ (u (i) < u (j)) .

Thus, (42) is proven in Case 1.
Let us now consider Case 2. In this case, we have t−1 (i) = t−1 (j). Hence, i =

t

t−1 (i)︸ ︷︷ ︸
=t−1(j)

 = t
(
t−1 (j)

)
= j. Therefore, we do not have i < j. Also, u

 i︸︷︷︸
=j

 = u (j).

Thus, we do not have u (i) < u (j). Hence, we have neither i < j nor u (i) < u (j). Therefore,
we have the logical equivalence (i < j) ⇐⇒ (u (i) < u (j)). Thus, (42) is proven in Case 2.

Let us first consider Case 3. In this case, we have t−1 (i) > t−1 (j). Hence, if we had i = j,

then we would have t−1

 i︸︷︷︸
=j

 = t−1 (j), which would contradict t−1 (i) > t−1 (j). Thus,

we cannot have i = j. Moreover, u is an injection. Hence, if we had u (i) = u (j), then we
would have i = j, which would contradict the fact that we cannot have i = j. Hence, we
cannot have u (i) = u (j).

From t−1 (i) > t−1 (j), we obtain t−1 (j) < t−1 (i). Consequently, (41) (applied to
t−1 (j) and t−1 (i) instead of i and j) yields that we have the following logical equivalence:(
s
(
t−1 (j)

)
< s

(
t−1 (i)

))
⇐⇒

(
t
(
t−1 (j)

)
< t

(
t−1 (i)

))
. Thus, we have the following logical

equivalence:

(
s
(

t−1 (j)
)
< s

(
t−1 (i)

))
⇐⇒

t
(

t−1 (j)
)

︸ ︷︷ ︸
=j

< t
(

t−1 (i)
)

︸ ︷︷ ︸
=i

 ⇐⇒ (j < i) .

Hence, we have the following logical equivalence:

(j < i) ⇐⇒

s
(

t−1 (j)
)

︸ ︷︷ ︸
=(s◦t−1)(j)

< s
(

t−1 (i)
)

︸ ︷︷ ︸
=(s◦t−1)(i)

 ⇐⇒

(s ◦ t−1
)

︸ ︷︷ ︸
=u

(j) <
(

s ◦ t−1
)

︸ ︷︷ ︸
=u

(i)


⇐⇒ (u (j) < u (i)) .
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{1, 2, . . . , n} and u (p) ̸= p. Let q = u−1 (p). Then, u (q) = p. Also, p ̸= q 48.
Thus, u (q) = p ̸= q. Hence, q ≥ p (by (43), applied to k = q). Combined with
q ̸= p, this yields q > p. Thus, p < q. But (42) (applied to i = p and j = q) yields
that we have the following logical equivalence: (p < q) ⇐⇒ (u (p) < u (q)).
Thus, u (p) < u (q) holds (since p < q holds). Hence, u (p) < u (q) = p.

If we had u (u (p)) ̸= u (p), then we would have u (p) ≥ p (by (43), applied to
k = u (p)), which would contradict u (p) < p. Hence, we do not have u (u (p)) ̸=
u (p). In other words, we have u (u (p)) = u (p). Since u is an injection, this
yields u (p) = p. This contradicts u (p) < p.

This contradiction proves that our assumption was wrong. Hence, we have
shown that u (k) = k for every k ∈ {1, 2, . . . , n}. Thus, every k ∈ {1, 2, . . . , n}
satisfies u (k) = k = id (k). Hence, u = id. Since u = s ◦ t−1, this rewrites as
s ◦ t−1 = id. Thus, s = t. Lemma 6.13 is thus proven.

Proof of Proposition 6.12. Let t denote the standard permutation of s (where we
regard s as a word by writing s in one-line notation). Regarded as a word, the

Hence, we have the following logical equivalence:not j < i︸︷︷︸
this is equivalent to (u(j)<u(i))


⇐⇒ (not u (j) < u (i)) ⇐⇒ (u (j) ≥ u (i))

⇐⇒ (u (i) ≤ u (j)) ⇐⇒

u (i) < u (j) or u (i) = u (j)︸ ︷︷ ︸
this is equivalent to (false)

(since we cannot have u(i)=u(j))


⇐⇒ (u (i) < u (j) or (false)) ⇐⇒ (u (i) < u (j)) .

Thus, we have the following logical equivalence:

(u (i) < u (j))
⇐⇒ (not j < i) ⇐⇒ (j ≥ i) ⇐⇒ (i ≤ j)

⇐⇒

i < j or i = j︸︷︷︸
this is equivalent to (false)
(since we cannot have i=j)

 ⇐⇒ (i < j or (false)) ⇐⇒ (i < j) .

In other words, we have the logical equivalence (i < j) ⇐⇒ (u (i) < u (j)). Thus, (42) is
proven in Case 3.

We have now proven (42) in each of the three Cases 1, 2 and 3. Since these three Cases
cover all possibilities, this yields that (42) always holds. Qed.

48Proof. Assume the contrary. Then, p = q, so that u

 p︸︷︷︸
=q

 = u (q) = p. This contradicts

u (p) ̸= p. This contradiction shows that our assumption was wrong, qed.
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permutation s has the form s = s (1) s (2) · · · s (n).
Let i and j be two elements of {1, 2, . . . , n} such that i < j. Then, Proposition

6.11 (b) (applied to {1, 2, . . . , n}, s, s (k) and t instead of P, w, ak and s) yields
that we have the following logical equivalence:

(t (i) < t (j)) ⇐⇒ (s (i) < s (j)) .

Now, let us forget that we fixed i and j. We thus have proven that every
two elements i and j of {1, 2, . . . , n} satisfying i < j satisfy the following logical
equivalence:

(t (i) < t (j)) ⇐⇒ (s (i) < s (j)) .

Lemma 6.13 (applied to t and s instead of s and t) thus shows that t = s. In
other words, t is s. In other words, the standard permutation of s is s (since t is
the standard permutation of s). This proves Proposition 6.12.

We can now prove Proposition 3.1. Indeed, let us prove a slightly stronger
claim:

Proposition 6.14. Let π be a special double poset. Let n be the size of the
special double poset π (that is, the size of the underlying set of π). Let w =
a1a2 · · · an be a word whose letters belong to a totally ordered alphabet A.

(a) The word w fits into π if and only if the standard permutation of w fits
into π.

(b) Write the special double poset π in the form (E,<1,<2). Let ω be the
labelling of the special double poset π. Let s be the standard permutation of
w. The word w fits into π if and only if the map s ◦ ω : E → {1, 2, . . . , n} is
an order homomorphism (E,<1) → {1, 2, . . . , n}. (Here, {1, 2, . . . , n} denotes
the poset ({1, 2, . . . , n} ,<), where the relation < is the smaller relation of Z.
In other words, {1, 2, . . . , n} = ({1, 2, . . . , n} ,<Z).)

Proposition 6.14 (a) is precisely Proposition 3.1.

Proof of Proposition 6.14. Write the special double poset π in the form (E,<1,<2).
Let ω be the labelling of the special double poset π.

The map ω is the labelling of the special double poset π = (E,<1,<2). In
other words, ω is the unique order isomorphism (E,<2) → {1, 2, . . . , n} (be-
cause the labelling of the special double poset (E,<1,<2) is the unique or-
der isomorphism (E,<2) → {1, 2, . . . , n} (by the definition of the labelling of
the special double poset (E,<1,<2))). In particular, ω is an order isomor-
phism (E,<2) → {1, 2, . . . , n}. In other words, ω is an order isomorphism
(E,<2) → ({1, 2, . . . , n} ,<). Hence, for any two elements p and q of E, we
have the following logical equivalence:

(p <2 q) ⇐⇒ (ω (p) < ω (q)) (44)

(by (39), applied to (U,<U) = (E,<2), (V,<V) = ({1, 2, . . . , n} ,<) and f = ω).
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The map ω is an order isomorphism, thus a bijection, and therefore an injec-
tion.

Let s be the standard permutation of w. Then, s is a permutation, hence a
bijection. Thus, the map s ◦ ω is a bijection (since it is the composition of the two
bijections s and ω). In particular, this yields that the map s ◦ ω is an injection.

Let η denote the map

E → A, e 7→ aω(e).

The definition of the notion of “the word a1a2 · · · an fits into π” yields the
following: The word a1a2 · · · an fits into π if and only if the map

E → A, e 7→ aω(e)

is a π-partition. In other words, the word a1a2 · · · an fits into π if and only if the
map η is a π-partition49. In other words, the word w fits into π if and only if the
map η is a π-partition (since w = a1a2 · · · an).

Definition 6.7 (applied to A and η instead of X and x) yields that η is a π-
partition if and only if any two elements e and e′ of E satisfy(

e <1 e′ implies η (e) ≤ η
(
e′
))

(45)

and (
e <1 e′ and e ≥2 e′ implies η (e) < η

(
e′
))

. (46)

(b) We are going to prove the following two logical implications:

(the word w fits into π)

=⇒ (the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}) (47)

and

(the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n})
=⇒ (the word w fits into π) . (48)

Proof of (47): We assume that the word w fits into π. We then want to show
that the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}.

Recall that the word w fits into π if and only if the map η is a π-partition.
Hence, the map η is a π-partition (since we know that the word w fits into π).
In other words, any two elements e and e′ of E satisfy (45) and (46)50.

Now, let e and e′ be two elements of E such that e ≤1 e′. We are going to
show that (s ◦ ω) (e) ≤ (s ◦ ω) (e′). This is obvious when e = e′ (because when

49since the map
E → A, e 7→ aω(e)

is the map η
50since we know that η is a π-partition if and only if any two elements e and e′ of E satisfy (45)

and (46)
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e = e′, then (s ◦ ω)

 e︸︷︷︸
=e′

 = (s ◦ ω) (e′)). Hence, for the rest of this proof, we

can WLOG assume that we don’t have e = e′. Assume this. Then, e ̸= e′ (since
not e = e′) and thus e <1 e′ (since e ≤1 e′ and e ̸= e′) and thus η (e) ≤ η (e′)
(by (45)). The definition of η yields η (e) = aω(e) and η (e′) = aω(e′). Thus,
aω(e) = η (e) ≤ η (e′) = aω(e′).

We must be in one of the following two cases:
Case 1: We have ω (e) < ω (e′).
Case 2: We have ω (e) ≥ ω (e′).
Let us first consider Case 1. In this case, we have ω (e) < ω (e′). Hence,

Proposition 6.11 (b) (applied to i = ω (e) and j = ω (e′)) yields that we have the
following logical equivalence:(

s (ω (e)) < s
(
ω
(
e′
)))

⇐⇒
(

aω(e) ≤ aω(e′)

)
.

Thus, we have s (ω (e)) < s (ω (e′)) (since we know that we have aω(e) ≤ aω(e′)).
Hence, (s ◦ ω) (e) = s (ω (e)) < s (ω (e′)) = (s ◦ ω) (e′). Thus, (s ◦ ω) (e) ≤
(s ◦ ω) (e′). We have thus proven (s ◦ ω) (e) ≤ (s ◦ ω) (e′) in Case 1.

Let us now consider Case 2. In this case, we have ω (e) ≥ ω (e′). If we had
ω (e) = ω (e′), then we would have e = e′ (since the map ω is an injection),
which would contradict e ̸= e′. Hence, we cannot have ω (e) = ω (e′). We thus
have ω (e) ̸= ω (e′). Combined with ω (e) ≥ ω (e′), this yields ω (e) > ω (e′).
Thus, ω (e′) < ω (e). But (44) (applied to p = e′ and q = e) yields that we have
the following logical equivalence: (e′ <2 e) ⇐⇒ (ω (e′) < ω (e)). Hence, e′ <2 e
holds (since ω (e′) < ω (e) holds). Thus, e >2 e′, so that e ≥2 e′. Therefore, (46)
yields η (e) < η (e′). Hence, aω(e) = η (e) < η (e′) = aω(e′).

But ω (e) ≥ ω (e′). Hence, Proposition 6.11 (c) (applied to i = ω (e) and
j = ω (e′)) yields that we have the following logical equivalence:(

s (ω (e)) < s
(
ω
(
e′
)))

⇐⇒
(

aω(e) < aω(e′)

)
.

Thus, we have s (ω (e)) < s (ω (e′)) (since we know that we have aω(e) < aω(e′)).
Hence, (s ◦ ω) (e) = s (ω (e)) < s (ω (e′)) = (s ◦ ω) (e′). Thus, (s ◦ ω) (e) ≤
(s ◦ ω) (e′). We have thus proven (s ◦ ω) (e) ≤ (s ◦ ω) (e′) in Case 2.

Hence, we have proven (s ◦ ω) (e) ≤ (s ◦ ω) (e′) in each of the two Cases
1 and 2. Since these two Cases cover all possibilities, we thus conclude that
(s ◦ ω) (e) ≤ (s ◦ ω) (e′) always holds.

Now, let us forget that we fixed e and e′. We thus have proven that if e and
e′ are any two elements of E such that e ≤1 e′, then (s ◦ ω) (e) ≤ (s ◦ ω) (e′). In
other words, the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}.
Thus, (47) is proven.

Proof of (48): We assume that the map s ◦ ω is an order homomorphism
(E,<1) → {1, 2, . . . , n}. We are going to show that the word w fits into π.
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Let now e and e′ be any two elements of E. We will prove (45) and (46).
Proof of (45): Assume that e <1 e′. We are going to show that η (e) ≤ η (e′).
We have e <1 e′, so that e ≤1 e′. Thus, (s ◦ ω) (e) ≤ (s ◦ ω) (e′) (since the

map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}). But if we had
(s ◦ ω) (e) = (s ◦ ω) (e′), then we would have e = e′ (since the map s ◦ ω is an
injection), which would contradict e <1 e′. Thus, we do not have (s ◦ ω) (e) =
(s ◦ ω) (e′). In other words, we have (s ◦ ω) (e) ̸= (s ◦ ω) (e′). Combined with
(s ◦ ω) (e) ≤ (s ◦ ω) (e′), this yields (s ◦ ω) (e) < (s ◦ ω) (e′). Thus,

s (ω (e)) = (s ◦ ω) (e) < (s ◦ ω)
(
e′
)
= s

(
ω
(
e′
))

. (49)

Thus, Proposition 6.11 (d) (applied to i = ω (e) and j = ω (e′)) yields aω(e) ≤
aω(e′). But the definition of η yields η (e) = aω(e) and η (e′) = aω(e′). Hence,
η (e) = aω(e) ≤ aω(e′) = η (e′). Hence, η (e) ≤ η (e′) is shown. Thus, we have
proven (45).

Proof of (46): Assume that e <1 e′ and e ≥2 e′. We are going to show that
η (e) < η (e′).

We have e <1 e′. Hence, we can prove (49) (in the same way as we have proved
it in our above proof of (45)). Thus, we have s (ω (e)) < s (ω (e′)).

We have e ̸= e′ (since e <1 e′). Combined with e ≥2 e′, this yields e >2 e′,
so that e′ <2 e. But (44) (applied to p = e′ and q = e) yields that we have
the following logical equivalence: (e′ <2 e) ⇐⇒ (ω (e′) < ω (e)). Thus, we
have ω (e′) < ω (e) (since we have e′ <2 e). Hence, ω (e) > ω (e′), so that
ω (e) ≥ ω (e′). Thus, Proposition 6.11 (c) (applied to i = ω (e) and j = ω (e′))
yields that we have the following logical equivalence:(

s (ω (e)) < s
(
ω
(
e′
)))

⇐⇒
(

aω(e) < aω(e′)

)
.

Hence, we have aω(e) < aω(e′) (since we have s (ω (e)) < s (ω (e′))). But the
definition of η yields η (e) = aω(e) and η (e′) = aω(e′). Hence, η (e) = aω(e) <

aω(e′) = η (e′). Hence, η (e) < η (e′) is shown. Thus, we have proven (46).
Now, we have proven both (45) and (46).
Let us now forget that we fixed e and e′. We thus have shown that any two

elements e and e′ of E satisfy (45) and (46). In other words, the map η is a π-
partition51. In other words, the word w fits into π (since we know that the word
w fits into π if and only if the map η is a π-partition). This proves (48).

We now have proven both implications (47) and (48). Combining these two
implications, we obtain the logical equivalence

(the word w fits into π)

⇐⇒ (the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}) .

51since we know that η is a π-partition if and only if any two elements e and e′ of E satisfy (45)
and (46)
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In other words, Proposition 6.14 (b) is proven.
(a) Proposition 6.14 (b) yields that the word w fits into π if and only if the map

s ◦ ω : E → {1, 2, . . . , n} is an order homomorphism (E,<1) → {1, 2, . . . , n}. In
other words, we have the following logical equivalence:

(the word w fits into π)

⇐⇒ (the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}) .
(50)

But Proposition 6.12 shows that the standard permutation of the word s is s
again. Hence, we can also apply (50) to {1, 2, . . . , n}, s and s (k) instead of A, w
and ak. As a result, we obtain the following logical equivalence:

(the word s fits into π)

⇐⇒ (the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n}) .
(51)

Hence, we have the following logical equivalence:

(the word w fits into π)

⇐⇒ (the map s ◦ ω is an order homomorphism (E,<1) → {1, 2, . . . , n})
(by (50))

⇐⇒ (the word s fits into π) (by (51))
⇐⇒ (the standard permutation of w fits into π)

(since s is the standard permutation of w) .

In other words, Proposition 6.14 (a) is proven.

Now that we are already studying π-partitions, let us also prove Theorem 1
in [G]. Let us first give our own version of it (whose equivalence to Theorem 1
in [G], however, is rather obvious, unlike that of Proposition 3.1):

Theorem 6.15. Let X be a totally ordered alphabet. For every double poset D,
we let A (D) denote the set of all D-partitions into X.

Let π = (E,<1,<2) be a special double poset. Then, the sets A ((E,≺,<2)),
where ≺ runs over all linear extensions of π, are pairwise disjoint. The union
of these sets is A (π).

Theorem 6.15 is not only easily seen to be equivalent to Theorem 1 in [G], but
also quickly yields [GriRei15, Theorem 5.2.11].

Before we prove Theorem 6.15, let us state an auxiliary fact which itself might
be of some interest:
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Proposition 6.16. Let X be a totally ordered alphabet. For every double poset
D, we let A (D) denote the set of all D-partitions into X.

Let π = (E,<1,<2) be a special double poset. Let n be the size of the
special double poset π (that is, the size of the underlying set E of π). Let ω
be the labelling of the special double poset π. Thus, ω is the unique order
isomorphism (E,<2) → {1, 2, . . . , n} (by the definition of the labelling of the
special double poset (E,<1,<2)).

For every f : E → X, we let w ( f ) denote the word
f
(
ω−1 (1)

)
f
(
ω−1 (2)

)
· · · f

(
ω−1 (n)

)
. This word w ( f ) gives rise to a binary

relation ≺w( f ) on the set {1, 2, . . . , n} (defined according to Definition 6.9),

and this relation, in turn, gives rise to a binary relation
(
≺w( f )

)ω
on the set

E.
(a) If f ∈ A (π), then the binary relation

(
≺w( f )

)ω
is a linear extension of

π.
(b) If ≺ is any linear extension of π, then

A ((E,≺,<2)) =
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
.

Proof of Proposition 6.16. We know that the map ω is an order isomorphism (E,<2) →
({1, 2, . . . , n} ,<). Hence, for any two elements p and q of E, we have the follow-
ing logical equivalence:

(p <2 q) ⇐⇒ (ω (p) < ω (q)) (52)

(by (39), applied to (U,<U) = (E,<2), (V,<V) = ({1, 2, . . . , n} ,<) and f = ω).
The map ω is an order isomorphism, thus a bijection, thus an injection.
(a) Let f ∈ A (π). Then, f is an element of A (π). In other words, f is a π-

partition into X (since A (π) is the set of all π-partitions into X (by the definition
of A (π))).

Definition 6.7 (applied to x = f ) yields that the map f is a π-partition if and
only if any two elements e and e′ of E satisfy(

e <1 e′ implies f (e) ≤ f
(
e′
))

(53)

and (
e <1 e′ and e ≥2 e′ implies f (e) < f

(
e′
))

. (54)

Hence, any two elements e and e′ of E satisfy (53) and (54) (since f is a π-
partition).

Proposition 6.8 (b) (applied to w ( f ), f
(
ω−1 (k)

)
and X instead of w, ak and

P) yields that the binary relation ≺w( f ) is the smaller relation of a total order on
the set {1, 2, . . . , n}. Thus, Proposition 6.4 (applied to E, {1, 2, . . . , n}, ≺w( f ) and

ω instead of A, B, <B and f ) yields that the relation
(
≺w( f )

)ω
is the smaller

relation of a total order on E.
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We shall now show that this relation
(
≺w( f )

)ω
extends the first order <1 on

E.
For any two elements e and e′ of E, we have the following logical equivalence:(

e
(
≺w( f )

)ω
e′
)

⇐⇒
(
either f (e) < f

(
e′
)

or
(

f (e) = f
(
e′
)

and ω (e) < ω
(
e′
)))

. (55)

52

Now, let e and e′ be two elements of E such that e <1 e′. We are going to show

that e
(
≺w( f )

)ω
e′.

We now recall that <2 is a total order (since (E,<1,<2) is a special double
poset). Hence, we have either e <2 e′ or e ≥2 e′. In other words, we must be in

52Proof of (55): Let e and e′ be two elements of E. We need to prove the logical equivalence (55).
Define n elements a1, a2, . . ., an of X by

(
ak = f

(
ω−1 (k)

)
for every k ∈ {1, 2, . . . , n}

)
.

Then, a1a2 · · · an = f
(
ω−1 (1)

)
f
(
ω−1 (2)

)
· · · f

(
ω−1 (n)

)
= w ( f ).

Let i = ω (e) and j = ω (e′). Then, the definition of ai yields ai = f

 ω−1 (i)︸ ︷︷ ︸
=e

(since i=ω(e))

 = f (e),

and the definition of aj yields aj = f

 ω−1 (j)︸ ︷︷ ︸
=e′

(since j=ω(e′))

 = f (e′).

Recall that w ( f ) = a1a2 · · · an. Hence, we have i ≺w( f ) j if and only if(
either ai < aj or

(
ai = aj and i < j

))
(due to the definition of “i ≺w( f ) j”). In other words,

we have the following logical equivalence:(
i ≺w( f ) j

)
⇐⇒

(
either ai < aj or

(
ai = aj and i < j

))
.

We have e
(
≺w( f )

)ω
e′ if and only if ω (e) ≺w( f ) ω (e′) (due to the definition of

“e
(
≺w( f )

)ω
e′”). Hence, we have the following logical equivalence:(

e
(
≺w( f )

)ω
e′
)

⇐⇒

ω (e)︸ ︷︷ ︸
=i

≺w( f ) ω
(
e′
)︸ ︷︷ ︸

=j

 ⇐⇒
(

i ≺w( f ) j
)

⇐⇒

either ai︸︷︷︸
= f (e)

< aj︸︷︷︸
= f (e′)

or

 ai︸︷︷︸
= f (e)

= aj︸︷︷︸
= f (e′)

and i︸︷︷︸
=ω(e)

< j︸︷︷︸
=ω(e′)




⇐⇒
(
either f (e) < f

(
e′
)

or
(

f (e) = f
(
e′
)

and ω (e) < ω
(
e′
)))

.

Thus, (55) is proven.
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one of the following two cases:
Case 1: We have e <2 e′.
Case 2: We have e ≥2 e′.
Let us first consider Case 1. In this case, we have e <2 e′. Applying (52) to

p = e and q = e′, we obtain the following logical equivalence: (e <2 e′) ⇐⇒
(ω (e) < ω (e′)). Hence, we have ω (e) < ω (e′) (since e <2 e′). But (53) shows
that f (e) ≤ f (e′) (since e <1 e′). Thus, either f (e) < f (e′) or f (e) = f (e′).
Hence, either f (e) < f (e′) or ( f (e) = f (e′) and ω (e) < ω (e′)) (because we

have i < j). Thus, we have e
(
≺w( f )

)ω
e′ (because of the equivalence (55)).

Hence, e
(
≺w( f )

)ω
e′ is proven in Case 1.

Let us now consider Case 2. In this case, we have e ≥2 e′. Hence, (54) shows
that f (e) < f (e′) (since e <1 e′). Hence, either f (e) < f (e′) or

( f (e) = f (e′) and ω (e) < ω (e′)). Thus, we have e
(
≺w( f )

)ω
e′ (because of the

equivalence (55)). Hence, e
(
≺w( f )

)ω
e′ is proven in Case 2.

Thus, e
(
≺w( f )

)ω
e′ is proven in each of the two Cases 1 and 2. Since these

two Cases cover all possibilities, this yields that e
(
≺w( f )

)ω
e′ always holds.

Let us now forget that we fixed e and e′. We thus have shown that if e and e′ are

any two elements of E such that e <1 e′, then e
(
≺w( f )

)ω
e′. Hence, the relation(

≺w( f )

)ω
extends the relation <1. Combining this with the fact that

(
≺w( f )

)ω

is the smaller relation of a total order on E, we conclude that
(
≺w( f )

)ω
is a total

order on E which extends the first order <1 of E. In other words,
(
≺w( f )

)ω
is

a linear extension of π (because this is how a linear extension of π is defined).
This proves Proposition 6.16 (a).

(b) Let ≺ be any linear extension of π. In other words, ≺ is a total order on E
which extends the first order <1 of E (because this is how a linear extension of
π is defined).

We are going to prove that

A ((E,≺,<2)) ⊆
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
(56)

and{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
⊆ A ((E,≺,<2)) .

(57)
Proof of (56): Let g ∈ A ((E,≺,<2)). We shall show that g ∈ A (π) and that

the binary relation
(
≺w( f )

)ω
equals ≺.

We know that g is an element of A ((E,≺,<2)). In other words, f is a
(E,≺,<2)-partition into X (since A ((E,≺,<2)) is the set of all (E,≺,<2)-partitions
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into X (by the definition of A ((E,≺,<2)))).
Definition 6.7 (applied to g, ≺ and (E,≺,<2) instead of x, <1 and π) yields

that the map g is a (E,≺,<2)-partition if and only if any two elements e and e′

of E satisfy (
e ≺ e′ implies g (e) ≤ g

(
e′
))

(58)

and (
e ≺ e′ and e ≥2 e′ implies g (e) < g

(
e′
))

. (59)

Hence, any two elements e and e′ of E satisfy (58) and (59) (since g is a (E,≺,<2)-
partition). Now, it is easy to see that any two elements e and e′ of E satisfy(

e <1 e′ implies g (e) ≤ g
(
e′
))

(60)
53 and (

e <1 e′ and e ≥2 e′ implies g (e) < g
(
e′
))

(61)
54. But Definition 6.7 (applied to x = g) yields that the map g is a π-partition
if and only if any two elements e and e′ of E satisfy (60) and (61). Hence, the
map g is a π-partition (since any two elements e and e′ of E satisfy (60) and
(61)). More precisely, g is a π-partition into X. In other words, g is an element
of A (π) (since A (π) is the set of all π-partitions into X (by the definition of
A (π))). That is, we have g ∈ A (π).

It is easy to see that any two elements e and e′ of E satisfying e ≺ e′ satisfy(
either g (e) < g

(
e′
)

or
(

g (e) = g
(
e′
)

and ω (e) < ω
(
e′
)))

(62)
55.
53Proof of (60): Let e and e′ be two elements of E. We need to prove (60). Assume that e <1 e′.

Then, e ≺ e′ (since the relation ≺ extends the first order <1 of E). Hence, g (e) ≤ g (e′)
(according to (58)). This proves (60).

54Proof of (61): Let e and e′ be two elements of E. We need to prove (61). Assume that e <1 e′

and e ≥2 e′. We have e <1 e′; therefore, e ≺ e′ (since the relation ≺ extends the first order <1
of E). Hence, g (e) < g (e′) (according to (59)). This proves (61).

55Proof of (62): Let e and e′ be two elements of E satisfying e ≺ e′. We need to prove (62).
We distinguish between two cases:
Case 1: We have ω (e) ≤ ω (e′).
Case 2: We don’t have ω (e) ≤ ω (e′).
Let us first consider Case 1. In this case, we have ω (e) ≤ ω (e′). If we have ω (e) = ω (e′),

then we have e = e′ (since ω is an injection), which contradicts e ≺ e′. Hence, we cannot
have ω (e) = ω (e′). We thus have ω (e) ̸= ω (e′). Combined with ω (e) ≤ ω (e′), this yields
ω (e) < ω (e′). Also, e ≺ e′, and thus g (e) ≤ g (e′) (due to (58)). In other words, either g (e) <
g (e′) or g (e) = g (e′). Hence, either g (e) < g (e′) or (g (e) = g (e′) and ω (e) < ω (e′))
(because we have ω (e) < ω (e′)). Thus, (62) is proven in Case 1.

Let us now consider Case 2. In this case, we don’t have ω (e) ≤ ω (e′). In other words, we
have ω (e) > ω (e′). In other words, ω (e′) < ω (e). Applying (52) to p = e′ and q = e, we ob-
tain the logical equivalence (e′ <2 e) ⇐⇒ (ω (e′) < ω (e)). Thus, we have e′ <2 e (since we
have ω (e′) < ω (e)). In other words, e >2 e′, so that e ≥2 e′. Recall also that e ≺ e′. Thus, (59)
shows that g (e) < g (e′). Hence, either g (e) < g (e′) or (g (e) = g (e′) and ω (e) < ω (e′)).
Thus, (62) is proven in Case 2.

We have now proven (62) in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this shows that (62) always holds, qed.
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Now, let i and j be any two elements of E. We are going to prove that we have

the logical equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j).
In the proof of Proposition 6.16 (a), we have shown that for every f ∈ A (π)

and every two elements e and e′ of E, the logical equivalence (55) holds. Thus,
(55) (applied to f = g, e = i and e′ = j) shows that we have the following logical
equivalence:(

i
(
≺w(g)

)ω
j
)

⇐⇒ (either g (i) < g (j) or (g (i) = g (j) and ω (i) < ω (j))) (63)

(since we have g ∈ A (π)). Also, (55) (applied to f = g, e = j and e′ = i) shows
that we have the following logical equivalence:(

j
(
≺w(g)

)ω
i
)

⇐⇒ (either g (j) < g (i) or (g (j) = g (i) and ω (j) < ω (i))) . (64)

Now, let us recall that ≺ is a total order. Thus, we have either i ≺ j or i = j or
j ≺ i. In other words, we must be in one of the following three cases:

Case 1: We have i ≺ j.
Case 2: We have i = j.
Case 3: We have j ≺ i.
Let us first consider Case 1. In this case, we have i ≺ j. Hence, (62) (applied

to e = i and e′ = j) yields

(either g (i) < g (j) or (g (i) = g (j) and ω (i) < ω (j))) .

Therefore, we have i
(
≺w(g)

)ω
j (according to the equivalence (63)). Thus, both

statements
(

i
(
≺w(g)

)ω
j
)

and (i ≺ j) hold. Therefore, we have the equivalence(
i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j). Hence, the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒
(i ≺ j) is proven in Case 1.

Let us now consider Case 2. In this case, we have i = j. Hence, we have nei-

ther
(

i
(
≺w(g)

)ω
j
)

nor (i ≺ j) (because both
(
≺w(g)

)ω
and ≺ are total orders).

Therefore, we have the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j). Hence, the

equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j) is proven in Case 2.
Let us finally consider Case 3. In this case, we have j ≺ i. Hence, (62) (applied

to e = j and e′ = i) yields

(either g (j) < g (i) or (g (j) = g (i) and ω (j) < ω (i))) .

Thus, we have j
(
≺w(g)

)ω
i (according to the equivalence (64)). Therefore, we

do not have i
(
≺w(g)

)ω
j (since the relation

(
≺w(g)

)ω
is asymmetric (because
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(
≺w(g)

)ω
is a total order)). Also, we have j ≺ i, and thus we do not have

i ≺ j (since the relation ≺ is asymmetric (because ≺ is a total order)). Hence,

we have neither
(

i
(
≺w(g)

)ω
j
)

nor (i ≺ j) (because both
(
≺w(g)

)ω
and ≺ are

total orders). Therefore, we have the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j).

Hence, the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j) is proven in Case 3.

We thus have proven the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j) in each of
the three Cases 1, 2 and 3. Since these three Cases cover all possibilities, this

yields that the equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j) always holds.
Now, let us forget that we fixed i and j. We thus have proven the logical

equivalence
(

i
(
≺w(g)

)ω
j
)

⇐⇒ (i ≺ j) for all i ∈ E and j ∈ E. In other words,

the binary relation
(
≺w(g)

)ω
equals ≺.

So we know that g ∈ A (π), and that the binary relation
(
≺w(g)

)ω
equals

≺. In other words, g is an element f of A (π) such that the binary relation(
≺w( f )

)ω
equals ≺. In other words,

g ∈
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
.

Let us now forget that we fixed g. We thus have shown that

g ∈
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
for every

g ∈ A ((E,≺,<2)). In other words,

A ((E,≺,<2)) ⊆
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
.

This proves (56).

Proof of (57): Let g ∈
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
.

Then, g is an element f of A (π) such that the binary relation
(
≺w( f )

)ω
equals

≺. In other words, g is an element of A (π), and the binary relation
(
≺w(g)

)ω

equals ≺.
In the proof of Proposition 6.16 (a), we have shown that for every f ∈ A (π)

and every two elements e and e′ of E, the logical equivalence (55) holds. We are
going to use this in the following.

We are going to prove that g ∈ A ((E,≺,<2)). In order to do so, we shall
show that any two elements e and e′ of E satisfy (58) and (59).

Let e and e′ be two elements of E. Let us first prove (58).
Indeed, we assume that e ≺ e′. Then, we have e ≺ e′. In other words,

e
(
≺w(g)

)ω
e′ (since the binary relation

(
≺w(g)

)ω
equals ≺). But recall that
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g ∈ A (π). Thus, we can apply (55) to f = g. As a result, we conclude that the
following logical equivalence holds:(

e
(
≺w(g)

)ω
e′
)

⇐⇒
(
either g (e) < g

(
e′
)

or
(

g (e) = g
(
e′
)

and ω (e) < ω
(
e′
)))

.

Therefore, we have(
either g (e) < g

(
e′
)

or
(

g (e) = g
(
e′
)

and ω (e) < ω
(
e′
)))

(since we have e
(
≺w(g)

)ω
e′). Consequently, we have(

either g (e) < g
(
e′
)

or g (e) = g
(
e′
))

(because of the logical implication
(g (e) = g (e′) and ω (e) < ω (e′)) =⇒ (g (e) = g (e′))). In other words, g (e) ≤
g (e′). This proves (58).

Let us next prove (59).
Indeed, we assume that e ≺ e′ and e ≥2 e′. Then, it is easy to see that ω (e) <

ω (e′) is false56. Now, recall that e ≺ e′. In other words, e
(
≺w(g)

)ω
e′ (since

the binary relation
(
≺w(g)

)ω
equals ≺). But recall that g ∈ A (π). Thus, we

can apply (55) to f = g. As a result, we conclude that the following logical
equivalence holds:(

e
(
≺w(g)

)ω
e′
)

⇐⇒

either g (e) < g
(
e′
)

or

g (e) = g
(
e′
)

and ω (e) < ω
(
e′
)︸ ︷︷ ︸

this is false
(since ω(e)<ω(e′) is false)




⇐⇒

either g (e) < g
(
e′
)

or
(

g (e) = g
(
e′
)

and (false)
)︸ ︷︷ ︸

this is false


⇐⇒

(
either g (e) < g

(
e′
)

or (false)
)

⇐⇒
(

g (e) < g
(
e′
))

.

Hence, we have g (e) < g (e′) (since we have e
(
≺w(g)

)ω
e′). This proves (59).

56Proof. Assume the contrary. Then, we have ω (e) < ω (e′). Applying (52) to p = e and q = e′,
we obtain the logical equivalence (e <2 e′) ⇐⇒ (ω (e) < ω (e′)). Hence, we have e <2 e′

(since we have ω (e) < ω (e′)). But this contradicts e ≥2 e′. This contradiction shows that our
assumption was wrong, qed.
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Now, let us forget that we fixed e and e′. We thus have proven that any two
elements e and e′ of E satisfy (58) and (59).

But Definition 6.7 (applied to g, ≺ and (E,≺,<2) instead of x, <1 and π)
yields that the map g is a (E,≺,<2)-partition if and only if any two elements
e and e′ of E satisfy (58) and (59). Hence, g is a (E,≺,<2)-partition (since we
know that any two elements e and e′ of E satisfy (58) and (59)). More precisely, g
is a (E,≺,<2)-partition into X. In other words, g is an element of A ((E,≺,<2))
(since A ((E,≺,<2)) is the set of all (E,≺,<2)-partitions into X (by the definition
of A ((E,≺,<2)))). Thus, g ∈ A ((E,≺,<2)).

Let us now forget that we fixed g. We thus have shown that g ∈ A ((E,≺,<2))
for every

g ∈
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
. In other words,{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
⊆ A ((E,≺,<2)) .

This proves (57).
We thus have proven the inclusions (56) and (57). Combining these two inclu-

sions, we obtain

A ((E,≺,<2)) =
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
.

This proves Proposition 6.16 (b).

Proof of Theorem 6.15. We have

A ((E,≺,<2)) =
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
for every linear extension ≺ of π (due to Proposition 6.16 (b)).

The sets
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
, where ≺ runs

over all linear extensions of π, are pairwise disjoint (since the binary relation(
≺w( f )

)ω
is uniquely determined by f ). In other words, the sets A ((E,≺,<2)),

where ≺ runs over all linear extensions of π, are pairwise disjoint (because

A ((E,≺,<2)) =
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals ≺

}
for ev-

ery linear extension ≺ of π). Thus, in order to prove Theorem 6.15, it remains
to show that the union of these sets is A (π). In other words, it remains to show
that ⋃

≺ is a linear
extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
= A (π) . (65)
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But we have

A (π) ⊆
⋃

≺ is a linear
extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
57. Combining this with⋃

≺ is a linear
extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
︸ ︷︷ ︸

⊆A(π)

⊆
⋃

≺ is a linear
extension of π

A (π) ⊆ A (π) ,

we obtain⋃
≺ is a linear

extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
= A (π) .

This proves (65). Thus, the proof of Theorem 6.15 is complete.

57Proof. Let g ∈ A (π). Then, the binary relation
(
≺w(g)

)ω
is a linear ex-

tension of π (according to Proposition 6.16 (a), applied to f = g). Thus,{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals

(
≺w(g)

)ω}
is a summand in the union⋃

≺ is a linear
extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
. As a consequence,

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals

(
≺w(g)

)ω}
⊆

⋃
≺ is a linear

extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
.

But g is an element f of A (π) such that the binary relation
(
≺w( f )

)ω
equals

(
≺w(g)

)ω
(since

g is an element of A (π), and since the binary relation
(
≺w(g)

)ω
equals

(
≺w(g)

)ω
). In other

words,

g ∈
{

f ∈ A (π) | the binary relation
(
≺w( f )

)ω
equals

(
≺w(g)

)ω}
⊆

⋃
≺ is a linear

extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
.

Let us now forget that we fixed g. We thus have shown that every g ∈ A (π) satisfies

g ∈ ⋃
≺ is a linear

extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
. In other words,

A (π) ⊆
⋃

≺ is a linear
extension of π

{
f ∈ A (π) | the binary relation

(
≺w( f )

)ω
equals ≺

}
,

qed.
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7. Some brief remarks

7.1. How nondegenerate is the form?

As mentioned in the errata above, the bilinear form ⟨·, ·⟩ on ZD gives rise to a
Hopf algebra homomorphism ZD → (ZD)∗ which is not bijective. However,
[Foissy11, Theorem 36 1.] shows that this homomorphism is at least injective; it
becomes bijective upon base change from Z to a characteristic-0 field.

We can in fact say a bit more. For any double poset E = (E,<1,<2), we define
its relational weight rlw (E) to be the integer

rlw (E) := (# of pairs (i, j) ∈ E × E such that i <1 j)
− (# of pairs (i, j) ∈ E × E such that i <2 j) .

It is easy to see the following (essentially a result of Foissy in [Foissy11, proof of
Theorem 36 1.]):

Proposition 7.1. Let E and F be two double posets. Let F̃ be the double poset
obtained from F by swapping its two orders (i.e.: if F = (F,<1,<2), then
F̃ = (F,<2,<1)). Then:

(a) If rlw (E) > rlw
(

F̃
)

, then there exists no picture from E to F, and thus
we have ⟨E, F⟩ = 0.

(b) If rlw (E) = rlw
(

F̃
)

, then the pictures from E to F are precisely the

double poset isomorphisms from E to F̃.
(c) If rlw (E) = rlw

(
F̃
)

but not E ∼= F̃ as double posets, then ⟨E, F⟩ = 0.

(d) If E ∼= F̃ as double posets, then ⟨E, F⟩ = |Aut E|, where Aut E is the
group of automorphisms of the double poset E.

Proof sketch. Write the double posets E and F as E = (E,<1,<2) and F =
(F,<1,<2). (Do not worry about the double meaning of the notations <1 and
<2; the context will always make clear on which poset we are working on.)

(a) Let ϕ : E → F be a picture. Consider the map

from {pairs (i, j) ∈ E × E such that i <1 j}
to {pairs (u, v) ∈ F × F such that u <2 v}

that sends each pair (i, j) to (ϕ (i) , ϕ (j)). This map is well-defined (since ϕ is a
picture, so that i <1 j entails ϕ (i) <2 ϕ (j)) and injective (since ϕ is bijective).
Hence,

(# of pairs (i, j) ∈ E × E such that i <1 j)
≤ (# of pairs (u, v) ∈ F × F such that u <2 v) .
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Similarly, using ϕ−1 instead of ϕ, we obtain

(# of pairs (i, j) ∈ F × F such that i <1 j)
≤ (# of pairs (u, v) ∈ E × E such that u <2 v) .

Adding these two inequalities together, we find

(# of pairs (i, j) ∈ E × E such that i <1 j)
+ (# of pairs (i, j) ∈ F × F such that i <1 j)

≤ (# of pairs (u, v) ∈ F × F such that u <2 v)
+ (# of pairs (u, v) ∈ E × E such that u <2 v) .

In other words,

(# of pairs (i, j) ∈ E × E such that i <1 j)
− (# of pairs (u, v) ∈ E × E such that u <2 v)

≤ (# of pairs (u, v) ∈ F × F such that u <2 v)
− (# of pairs (i, j) ∈ F × F such that i <1 j) .

This inequality can be rewritten as rlw (E) ≤ rlw
(

F̃
)

(since its left hand side is

rlw (E), while its right hand side is rlw
(

F̃
)

).
Forget that we fixed ϕ. We thus have shown that if ϕ : E → F is any picture,

then rlw (E) ≤ rlw
(

F̃
)

. Hence, if rlw (E) > rlw
(

F̃
)

, then there exists no picture
from E to F, and thus we have ⟨E, F⟩ = 0 by the definition of the pairing ⟨, ⟩.
This proves Proposition 7.1 (a).

(b) Assume that rlw (E) = rlw
(

F̃
)

. Let ϕ : E → F be a picture. Revisit the
above proof of Proposition 7.1 (a), and note that the new assumption rlw (E) =
rlw

(
F̃
)

means that equality must hold in all relevant inequalities. Hence, in
particular, the map

from {pairs (i, j) ∈ E × E such that i <1 j}
to {pairs (u, v) ∈ F × F such that u <2 v}

that sends each pair (i, j) to (ϕ (i) , ϕ (j)) must not only be injective, but also be
surjective (otherwise, the inequality that it leads to would be a strict inequality),
and hence bijective. In other words, for any pair (i, j) ∈ E × E, we have i <1 j if
and only if ϕ (i) <2 ϕ (j) (since ϕ is a bijection). In other words, the map ϕ is an
order isomorphism from (E,<1) to (F,<2). Similarly, the map ϕ−1 is an order
isomorphism from (F,<1) to (E,<2). In other words, ϕ is an order isomorphism
from (E,<2) to (F,<1).

Now we know that ϕ is both an order isomorphism from (E,<1) to (F,<2)
and an order isomorphism from (E,<2) to (F,<1). In other words, ϕ is a double
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poset isomorphism from (E,<1,<2) to (F,<2,<1). In other words, ϕ is a double
poset isomorphism from E to F̃ (since E = (E,<1,<2) and F̃ = (F,<2,<1)).

Forget that we fixed ϕ. We thus have shown that each picture ϕ : E → F is
a double poset isomorphism from E to F̃. Conversely, it is easy to see that any
double poset isomorphism from E to F̃ is a picture ϕ : E → F. Combining these
two facts, we conclude that the pictures ϕ : E → F are precisely the double poset
isomorphisms from E to F̃. This proves Proposition 7.1 (b).

(c) Assume that rlw (E) = rlw
(

F̃
)

but not E ∼= F̃ as double posets. As
we recall, ⟨E, F⟩ is defined as the number of all pictures ϕ : E → F. But these
pictures are precisely the double poset isomorphisms from E to F̃ (by Proposition
7.1 (b)), and the number of these isomorphisms is 0 (since we don’t have E ∼= F̃
as double posets). Hence, we conclude that ⟨E, F⟩ = 0. This proves Proposition
7.1 (c).

(d) Assume that E ∼= F̃ as double posets. Then, of course, rlw (E) = rlw
(

F̃
)

.
As we recall, ⟨E, F⟩ is defined as the number of all pictures ϕ : E → F. But these
pictures are precisely the double poset isomorphisms from E to F̃ (by Proposition
7.1 (b)), and these are clearly in bijection with the double poset isomorphisms
from E to E (since E ∼= F̃ as double posets), i.e., with the automorphisms of the
double poset E. Hence, we conclude that ⟨E, F⟩ is the number of all automor-
phisms of the double poset E. In other words, ⟨E, F⟩ = |Aut E|, where Aut E is
the group of automorphisms of the double poset E. This proves Proposition 7.1
(d).

Proposition 7.1 tells us something about the Gram matrix58 of the bilinear
form ⟨, ⟩ on the basis D of ZD: Namely, this matrix is upper-triangular up to a
permutation of its rows (or columns), and its diagonal entries (after this permu-
tation) are the numbers |Aut E| for all double posets E. Since these numbers are
not all invertible in Z (in fact, some of them are larger than 1), we conclude that
the form ⟨, ⟩ fails to be nondegenerate; however, it becomes nondegenerate if we
change our base ring from Z to a characteristic-0 field.

We can actually rescale the form ⟨, ⟩ to make it nondegenerate: Namely, we
define a new bilinear form ⟨, ⟩′ : ZD × ZD → Z by

⟨E, F⟩′ :=
|{pictures α : E → F}|

|Aut E| (66)

for all double posets E and F. We claim the following:
58If f : V × V → k is a bilinear form on a k-module V, then its Gram matrix on a given basis

(b1, b2, . . . , bm) of V is the matrix
(

f
(
bi, bj

))
i,j∈{1,2,...,m} ∈ km×m. Of course, this definition

applies (with the obvious changes) to infinite bases as well. One of the main uses of Gram
matrices is in determining whether a bilinear form is nondegenerate: A bilinear form f :
V × V → k on a finite-dimensional k-vector space V over a field k is nondegenerate if and
only if its Gram matrix (on any given basis) is invertible. We shall use a variant of this
result here, in which V is infinite-dimensional but graded, and we use the graded version of
nondegeneracy.
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Proposition 7.2. (a) This form ⟨, ⟩′ is well-defined (i.e., the fraction on the right
hand side of (66) really is an integer).

(b) However, this new bilinear form ⟨, ⟩′ is no longer symmetric.
(c) Nevertheless, it still satisfies

⟨EF, G⟩′ = ⟨E ⊗ F, δG⟩′

for any three double posets E, F, G.
(d) But it does not satisfy ⟨G, EF⟩′ = ⟨δG, E ⊗ F⟩′, so it does not make the

Hopf algebra ZD self-dual.

Proof idea. (a) Let E and F be two double posets. Then, the automorphism group
Aut E of the double poset E acts freely on the set of all pictures α : E → F. (The
action is a right action by composition: αφ = α ◦ φ for any picture α : E → F
and any automorphism φ ∈ Aut E.) Hence, |{pictures α : E → F}| is a multiple
of |Aut E|. Thus, the fraction on the right hand side of (66) really is an integer.
This proves Proposition 7.2 (a).

(b) This is easy to see: Let E = ({1, 2} ,<∅,<∅) and F = ({1, 2} ,<∅,<Z),
where <∅ is the antichain partial order (i.e., no two distinct elements are com-
parable). Then, |Aut E| = 2 but |Aut F| = 1 (since the second order of F dis-
tinguishes the two elements). But ⟨E, F⟩ = 2 (indeed, since the first orders on
both E and F are antichains, it is clear that the pictures from E to F are just the

bijections from E to F). Hence, ⟨E, F⟩′ = 2
2

but ⟨F, E⟩′ = 2
1

, which of course is

not the same. Thus, the form ⟨, ⟩′ is not symmetric. This proves Proposition 7.2
(b).

(c) This follows from ⟨EF, G⟩ = ⟨E ⊗ F, δG⟩, which is proved on page 3, once
we show that Aut (EF) ∼= Aut E × Aut F. But the latter is a nice exercise (show
that the second order on EF forces any automorphism of EF to send E to E and
F to F).

(d) Easy counterexample omitted.

7.2. What is the kernel of Γ ?

What is the kernel of the morphism Γ : ZD → QSym from Theorem 2.2?

7.3. The kernel of L

Note that it is not hard to describe the kernel of the map L : ZDS → ZS (defined
on page 7). Namely:

Proposition 7.3. The kernel of the map L : ZDS → ZS is spanned by all
elements of the form

[E + (a <1 b)] + [E + (b <1 a)]− E (67)
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where E = (E,<1,<2) is a special double poset and a and b are two incom-
parable elements of (E,<1). Here, the notation “[E + (a <1 b)]” means the
double poset E with its first order <1 extended so that a becomes smaller
than b (and thus all elements that are ≤1 a become smaller than all elements
that are ≥1 b). Likewise, the notation “[E + (b <1 a)]” is to be understood.
(The second orders of all three posets are the same.)

Proof idea. It is easy to see that any element of the form (67) lies in the kernel of
L, since any linear extension of E is either a linear extension of [E + (a <1 b)] or
a linear extension of [E + (b <1 a)] (but not both).

It remains to show that these elements span Ker L. For this, it suffices to
show that any isomorphism class E of a special double poset can be reduced
to a linear combination of double total orders (i.e., double posets whose both
orders are total) by adding a few elements of the form (67). This can be proved
by induction on the number of incomparable pairs in the first order of E (that
is, pairs (a, b) ∈ E × E that satisfy neither a <1 b nor b <1 a). In fact, each of
the two double posets [E + (a <1 b)] and [E + (b <1 a)] has fewer incomparable
pairs in its first order than E does, and so we can apply the induction hypothesis
to them.

The elements of the form (67) have another peculiar property:

Proposition 7.4. Let E = (E,<1,<2) be a double poset, and let F be a special
double poset. Let a and b be two elements of E that are incomparable in the
poset (E,<1). Then,

([E + (a <1 b)] + [E + (b <1 a)]− E) ◦ F = 0.

(See Proposition 7.3 for the meaning of [E + (a <1 b)] and [E + (b <1 a)].)

Proof idea. Write E and F as E = (E,<E1,<E2) and F = (F,<F1,<F2). Then,
Lemma 6.5 (d) yields

E ◦ F = ∑
ϕ is an increasing

bijection (E,<E1)→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)
;

[E + (a <1 b)] ◦ F = ∑
ϕ is an increasing

bijection
(

E,<[E+(a<1b)]

)
→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)
;

[E + (b <1 a)] ◦ F = ∑
ϕ is an increasing

bijection
(

E,<[E+(b<1a)]

)
→(F,<F2)

(
E, (<F1)

ϕ ,<E2

)
.

But an increasing bijection ϕ : (E,<E1) → (F,<F2) is either an increasing
bijection from ([E + (a <1 b)] ,<1) to (F,<F2) or an increasing bijection from
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([E + (b <1 a)] ,<1) to (F,<F2) (depending on whether it satisfies ϕ (a) <F2
ϕ (b) or satisfies ϕ (b) <F2 ϕ (a) (in fact, one of these two inequalities must hold,
since F is special)). Hence, the above equalities yield

[E + (a <1 b)] ◦ F + [E + (b <1 a)] ◦ F = E ◦ F.

This proves Proposition 7.4.

Corollary 7.5. The kernel of the map L : ZDS → ZS is the Jacobson radical
of the nonunital algebra (ZDS, ◦).

Proof idea. Consider the internal multiplication ◦ on ZS given by multiplying
permutations of the same size: i.e., by

σ ◦ τ =

{
στ, if σ, τ ∈ Sn for the same n;
0, if σ ∈ Sn and τ ∈ Sm for n ̸= m.

The algebra (ZS, ◦) is just the direct product of the group rings of the symmetric
groups Sn for all n ≥ 0. As such, it is “almost unital” (its unity would be the
sum of all identity permutations, if this sum was not infinite); it is a nonunital
Frobenius algebra (with the Jöllenbeck scalar product being the Frobenius form),
and its Jacobson radical is 0 (by Maschke’s theorem). The map L : ZDS → ZS
is a surjective ring morphism from the nonunital ring (ZDS, ◦) to the nonunital
ring (ZS, ◦).

If a ∈ Ker L, then Proposition 7.3 shows that a is a linear combination of
elements of the form (67), and therefore Proposition 7.4 shows that a ◦ F = 0 for
each special double poset F; hence, a ◦ b = 0 for each b ∈ ZDS. In particular, we
thus have a ◦ b = 0 for each a ∈ Ker L. This shows that the ideal Ker L of ZDS
is nilpotent. Hence, Ker L is contained in the Jacobson radical of (ZDS, ◦).

Conversely, any element of the Jacobson radical of (ZDS, ◦) must be mapped
to an element of the Jacobson radical of (ZS, ◦) under the map L (since L is a
surjective ring morphism). But the Jacobson radical of (ZS, ◦) is 0. Thus, any
element of the Jacobson radical of (ZDS, ◦) must be mapped to 0 under the
map L. In other words, the Jacobson radical of (ZDS, ◦) is contained in Ker L.
Altogether, Corollary 7.5 is proved.

Corollary 7.5 is somewhat reminiscent of the projection map NSym → Sym,
whose kernel is (at least in characteristic 0) the Jacobson radical of the nonunital
algebra that is NSym under the internal product. (This was originally proved
by Solomon in the language of descent algebras; it served as a foundation for
the Garsia-Reutenauer study of the descent algebra [GarReu89, Theorem 1.1].)
Can we do the Garsia-Reutenauer descent-algebra theory for ZDS instead of the
descent algebra?
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7.4. Weirder questions

Here are two open-ended questions that crossed my mind:

• Can double posets be seen as bimodules over some sort of algebra, and the
internal product correspond to tensoring these bimodules? Or what other
categorical reason is there for the associativity of the internal product?

• When do two double posets (E,<1,<2) and (F,<1,<2) satisfy

(number of pictures from (E,<1,<2) to (F,<1,<2))

= (number of pictures from (E,<1,>2) to (F,<1,>2)) ?

This would generalize a symmetry of the Littlewood–Richardson coeffi-
cients.
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