
The one-sided cycle shuffles,
and other mysteries and

wonders of the symmetric
group algebra [talk slides]

Darij Grinberg
joint work with Nadia Lafrenière

George Washington University, 2023-04-10
(Sections 1–12);

Temple University, 2023-10-16 (Sections 1–15);
Uppsala Universitet, 2024-03-26;

CAGE seminar, 2025-04-17 (Sections 1–15)

Elements in the group algebra of a symmetric group Sn are known
to have an interpretation in terms of card shuffling. I will discuss a
new family of such elements, recently constructed by Nadia Lafrenière:

Given a positive integer n, we define n elements t1, t2, . . . , tn in the
group algebra of Sn by

ti = the sum of the cycles (i) , (i, i + 1) ,
(i, i + 1, i + 2) , . . . , (i, i + 1, . . . , n) ,

where the cycle (i) is the identity permutation. The first of them,
t1, is known as the top-to-random shuffle and has been studied by
Diaconis, Fill, Pitman (among others).

The n elements t1, t2, . . . , tn do not commute. However, we show
that they can be simultaneously triangularized in an appropriate ba-
sis of the group algebra (the "descent-destroying basis"). As a conse-

1



One-sided cycle shuffles (talk) page 2

quence, any rational linear combination of these n elements has ratio-
nal eigenvalues. The maximum number of possible distinct eigenval-
ues turns out to be the Fibonacci number fn+1, and underlying this
fact is a filtration of the group algebra connected to "lacunar subsets"
(i.e., subsets containing no consecutive integers).

This talk will include an overview of other families (both well-
known and exotic) of elements of these group algebras. I will also
briefly discuss the probabilistic meaning of these elements as well as
many tempting conjectures.

This is joint work with Nadia Lafrenière.
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***
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1. Finite group algebras

1.1. Finite group algebras

• This talk is mainly about a certain family of elements of the
group algebra of the symmetric group Sn. But I shall begin
with some generalities.

∗ Let k be any commutative ring (but k = Z is enough for most
of our results).

∗ Let G be a finite group. (It will be a symmetric group from the
next chapter onwards.)

∗ Let k [G] be the group algebra of G over k. Its elements are for-
mal k-linear combinations of elements of G. The multiplication
is inherited from G and extended bilinearly.

• Example: Let G be the symmetric group S3 on the set {1, 2, 3}.
For i ∈ {1, 2}, let si ∈ S3 be the simple transposition that swaps
i with i + 1. Then, in k [G] = k [S3], we have

(1 + s1) (1 − s1) = 1 + s1 − s1 − s2
1 = 1 + s1 − s1 − 1 = 0;

(1 + s2) (1 + s1 + s1s2) = 1 + s2 + s1 + s2s1 + s1s2 + s2s1s2 = ∑
w∈S3

w.

1.2. Left and right actions of u on k [G]

∗ For each u ∈ k [G], we define two k-linear maps

L (u) : k [G] → k [G] ,
x 7→ ux (“left multiplication by u”)

and

R (u) : k [G] → k [G] ,
x 7→ xu (“right multiplication by u”) .

(So L (u) (x) = ux and R (u) (x) = xu.)

• (Note: I will try to consistently use boldface letters for elements
of k [G], such as x and u here.)
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• Both L (u) and R (u) belong to the endomorphism ring Endk (k [G])
of the k-module k [G]. This ring is essentially a |G| × |G|-matrix
ring over k. Thus, L (u) and R (u) can be viewed as |G| × |G|-
matrices.

• Studying u, L (u) and R (u) is often (but not always) equivalent,
because the maps

L : k [G] → Endk (k [G]) and
R : (k [G])op︸ ︷︷ ︸

opposite ring

→ Endk (k [G])

are two injective k-algebra morphisms (known as the left and
right regular representations of the group G).

1.3. Minimal polynomials

∗ Each u ∈ k [G] has a minimal polynomial, i.e., a minimum-
degree monic polynomial P ∈ k [X] such that P (u) = 0. It is
unique when k is a field.

The minimal polynomial of u is also the minimal polynomial of
the endomorphisms L (u) and R (u).

• Proposition 1.1. Let u ∈ Z [G]. Then, the minimal polynomial
of u over Q is actually in Z [X], and is the minimal polynomial
of u over Z as well.

• Proof: Follow the standard proof that the minimal polynomial
of an algebraic number is in Z [X]. (Use Gauss’s Lemma.)

1.4. Left and right are usually conjugate

• Theorem 1.2. Assume that k is a field. Let u ∈ k [G]. Then,
L (u) ∼ R (u) as endomorphisms of k [G].

Note: The symbol ∼ means “conjugate to”. Thinking of these
endomorphisms as |G| × |G|-matrices, this is just similarity of
matrices.

• We will see a proof of this soon.

• Note: L (u) ∼ R (u) would fail if G was merely a monoid, or
if k was merely a commutative ring (e.g., for k = Q [t] and
G = S3).
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1.5. The antipode

• The antipode of the group algebra k [G] is defined to be the
k-linear map

S : k [G] → k [G] ,
g 7→ g−1 for each g ∈ G.

• Proposition 1.3. The antipode S is an involution (that is, S ◦ S =
id) and a k-algebra anti-automorphism (that is, S (ab) = S (b) ·
S (a) for all a, b).

• Lemma 1.4. Assume that k is a field. Let u ∈ k [G]. Then,
L (u) ∼ L (S (u)) in Endk (k [G]).

• Proof: Consider the standard basis (g)g∈G of k [G]. The matrix
representing the endomorphism L (S (u)) in this basis is the
transpose of the matrix representing L (u). But the Taussky–
Zassenhaus theorem says that over a field, each matrix A is
similar to its transpose AT.

• Lemma 1.5. Let u ∈ k [G]. Then, L (S (u)) ∼ R (u) in Endk (k [G]).

• Proof: We have R (u) = S ◦ L (S (u)) ◦ S and S = S−1.

• Proof of Theorem 1.2: Combine Lemma 1.4 with Lemma 1.5.

• Remark (Martin Lorenz). Theorem 1.2 generalizes to arbitrary
Frobenius algebras.

• Remark. Let u ∈ k [G]. Even if k = C, we don’t always have
u ∼ S (u) in k [G] (easy counterexample for G = C3).

https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/
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2. The symmetric group algebra

2.1. Symmetric groups

∗ Let N := {0, 1, 2, . . .}.

∗ Let [k] := {1, 2, . . . , k} for each k ∈ N.

∗ Now, fix a positive integer n, and let Sn be the n-th symmetric
group, i.e., the group of permutations of the set [n].

Multiplication in Sn is composition:

(αβ) (i) = (α ◦ β) (i) = α (β (i)) for all α, β ∈ Sn and i ∈ [n] .

(Warning: SageMath has a different opinion!)

2.2. Symmetric group algebras

• What can we say about the group algebra k [Sn] that doesn’t
hold for arbitrary k [G]?

• There is a classical theory (“Young’s seminormal form”) of the
structure of k [Sn] when k has characteristic 0. Two modern
treatments are

– Adriano M. Garsia, Ömer Egecioglu, Lectures in Algebraic
Combinatorics, Springer 2020.

– Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure
theory for the group algebra of the symmetric group, ..., Com-
mentationes Mathematicae Universitatis Carolinae, 2016.

The best source I know (dated but readable and careful) is:

– Daniel Edwin Rutherford, Substitutional Analysis, Edinburgh
1948.

• Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of char-
acteristic 0, then

k [Sn] ∼= ∏
λ is a partition of n

M fλ
(k)︸ ︷︷ ︸

matrix ring

(as k-algebras) ,

where fλ is the number of standard Young tableaux of shape λ.

https://doi.org/10.1007/978-3-030-58373-6
https://doi.org/10.1007/978-3-030-58373-6
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://eudml.org/doc/287582
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• Proof: This follows from Young’s seminormal form. For the
shortest readable proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.

Alternatively, see §5.14 in my Introduction to the Symmetric Group
Algebra.

2.3. Antipodal conjugacy

∗ Theorem 2.2. Let k be a field of characteristic 0. Let u ∈ k [Sn].
Then, u ∼ S (u) in k [Sn].

• Proof: Again use Young’s seminormal form. Under the isomor-
phism k [Sn] ∼= ∏

λ is a partition of n
M fλ

(k), the matrices correspond-

ing to S (u) are the transposes of the matrices corresponding to
u (this follows from (2.3.40) in Garsia/Egecioglu). Now, use the
Taussky–Zassenhaus theorem again.

• Alternative proof: See §5.20 in my Introduction to the Symmetric
Group Algebra.

• Alternative proof: More generally, let G be an ambivalent finite
group (i.e., a finite group in which each g ∈ G is conjugate to
g−1). Let u ∈ k [G]. Then, u ∼ S (u) in k [G]. To prove this,
pass to the algebraic closure of k. By Artin–Wedderburn, it
suffices to show that u and S (u) act by similar matrices on each
irreducible G-module V. But this is easy: Since G is ambivalent,
we have V ∼= V∗ and thus

(u |V) ∼ (u |V∗) ∼ (S (u) |V)T ∼ (S (u) |V)

(by Taussky–Zassenhaus).

• Note. Characteristic 0 is needed!

https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
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3. The Young–Jucys–Murphy elements

• From now on, we shall discuss concrete elements in k [Sn].

∗ For any distinct elements i1, i2, . . . , ik of [n], let cyci1,i2,...,ik
be the

permutation in Sn that cyclically permutes i1 7→ i2 7→ i3 7→
· · · 7→ ik 7→ i1 and leaves all other elements of [n] unchanged.

• Note. We have cyci = id; cyci,j is a transposition.

∗ For each k ∈ [n], we define the k-th Young–Jucys–Murphy
(YJM) element

mk := cyc1,k + cyc2,k + · · ·+ cyck−1,k ∈ k [Sn] .

• Note. We have m1 = 0. Also, S (mk) = mk for each k ∈ [n].

∗ Theorem 3.1. The YJM elements m1, m2, . . . , mn commute: We
have mimj = mjmi for all i, j.

• Proof: Easy computational exercise.

∗ Theorem 3.2. The minimal polynomial of mk over Q divides

k−1

∏
i=−k+1

(X − i) = (X − k + 1) (X − k + 2) · · · (X + k − 1) .

(For k ≤ 3, some factors here are redundant.)

• First proof: Study the action of mk on each Specht module (sim-
ple Sn-module). See, e.g., G. E. Murphy, A New Construction of
Young’s Seminormal Representation ..., 1981 for details.

• Second proof (Igor Makhlin): Some linear algebra does the trick.
Induct on k using the facts that mk and mk+1 are simultane-
ously diagonalizable over C (since they are symmetric as real
matrices and commute) and satisfy skmk+1 = mksk + 1, where
sk := cyck,k+1. See https://mathoverflow.net/a/83493/ for de-
tails.

• More results and context can be found in §3.3 in Ceccherini-
Silberstein/Scarabotti/Tolli, Representation Theory of the Symmet-
ric Groups, 2010.

https://doi.org/10.1016/0021-8693(81)90205-2
https://doi.org/10.1016/0021-8693(81)90205-2
https://mathoverflow.net/a/83493/
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361


One-sided cycle shuffles (talk) page 10

• Question. Is there a self-contained algebraic/combinatorial proof
of Theorem 3.2 without linear algebra or representation the-
ory? (Asked on MathOverflow: https://mathoverflow.net/
questions/420318/ .)

• Theorem 3.3. For each k ∈ N, we can evaluate the k-th elemen-
tary symmetric polynomial ek at the YJM elements m1, m2, . . . , mn
to obtain

ek (m1, m2, . . . , mn) = ∑
σ∈Sn;

σ has exactly n−k cycles

σ.

• Proof: Nice homework exercise (once stripped of the algebra).
See Corollary 3.8.20 in my Introduction to the Symmetric Group
Algebra.

• There are formulas for other symmetric polynomials applied to
m1, m2, . . . , mn (see Garsia/Egecioglu).

• Theorem 3.4 (Murphy).

{ f (m1, m2, . . . , mn) | f ∈ k [X1, X2, . . . , Xn] symmetric}
= (center of the group algebra k [Sn]) .

• Proof: See any of:

– Gadi Moran, The center of Z [Sn+1] ..., 1992.

– G. E. Murphy, The Idempotents of the Symmetric Group ...,
1983, Theorem 1.9 (for the case k = Z, but the general case
easily follows).

– Ceccherini-Silberstein/Scarabotti/Tolli, Representation The-
ory of the Symmetric Groups, 2010, Theorem 4.4.5 (for the
case k = Q, but the proof is easily adjusted to all k).

https://mathoverflow.net/questions/420318/
https://mathoverflow.net/questions/420318/
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.ams.org/journals/tran/1992-332-01/S0002-9947-1992-1062873-1/
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
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A. The card shuffling point of view

• Permutations are often visualized as shuffled decks of cards:

Imagine a deck of cards labeled 1, 2, . . . , n.

A permutation σ ∈ Sn corresponds to the state in which the
cards are arranged σ (1) , σ (2) , . . . , σ (n) from top to bottom.

• A random state is an element ∑
σ∈Sn

aσσ of R [Sn] whose coeffi-

cients aσ ∈ R are nonnegative and add up to 1. This is inter-
preted as a distribution on the n! possible states, where aσ is the
probability for the deck to be in state σ.

• We drop the “add up to 1” condition, and only require that
∑

σ∈Sn

aσ > 0. The probabilities must then be divided by ∑
σ∈Sn

aσ.

• For instance, 1 + cyc1,2,3 corresponds to the random state in

which the deck is sorted as 1, 2, 3 with probability
1
2

and sorted

as 2, 3, 1 with probability
1
2

.

• An R-vector space endomorphism of R [Sn], such as L (u) or
R (u) for some u ∈ R [Sn], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.

• For example, if k > 1, then the right multiplication R (mk) by
the YJM element mk corresponds to swapping the k-th card with
some card above it chosen uniformly at random.

• Transposing such a matrix performs a time reversal of a random
shuffle.
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4. Top-to-random and random-to-top
shuffles

∗ Another family of elements of k [Sn] are the k-top-to-random
shuffles

Bk := ∑
σ∈Sn;

σ−1(k+1)<σ−1(k+2)<···<σ−1(n)

σ

defined for all k ∈ {0, 1, . . . , n}. Thus,

Bn−1 = Bn = ∑
σ∈Sn

σ;

B1 = cyc1 + cyc1,2 + cyc1,2,3 + · · ·+ cyc1,2,...,n;
B0 = id .

• As a random shuffle, Bk (to be precise, R (Bk)) takes the top k
cards and moves them to random positions.

• B1 is known as the top-to-random shuffle or the Tsetlin library.

(Why “library”? Instead of a deck of cards, think of a bookshelf.
Then, B1 is taking the leftmost book and placing it in a random
position.)

• Theorem 4.1 (Diaconis, Fill, Pitman). We have

Bk+1 = (B1 − k)Bk for each k ∈ {0, 1, . . . , n − 1} .

• Corollary 4.2. The n + 1 elements B0, B1, . . . , Bn commute and
are polynomials in B1, namely

Bk =
k−1

∏
i=0

(B1 − i) for each k ∈ {0, 1, . . . , n} .

• Theorem 4.3 (Wallach). The minimal polynomial of B1 over Q

is

∏
i∈{0,1,...,n−2,n}

(X − i) = (X − n)
n−2

∏
i=0

(X − i) .

• These are not hard to prove in this order. See https://mathoverflow.
net/questions/308536 for the details.

https://mathoverflow.net/questions/308536
https://mathoverflow.net/questions/308536
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• More can be said: in particular, the multiplicities of the eigen-
values 0, 1, . . . , n − 2, n of R (B1) over Q are known.

• The antipodes S (B0) , S (B1) , . . . , S (Bn) are known as the random-
to-top shuffles and have the same properties (since S is an al-
gebra anti-automorphism).

• Main references:

– Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic
Continuation of Generalized Jacquet Integrals, 1988, Appendix.

– Persi Diaconis, James Allen Fill and Jim Pitman, Analysis of
Top to Random Shuffles, 1992.

https://doi.org/10.2969/aspm/01410123
https://doi.org/10.2969/aspm/01410123
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
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5. Random-to-random shuffles

• Here is a further family. For each k ∈ {0, 1, . . . , n}, we let

Rk := ∑
σ∈Sn

noninvn−k (σ) · σ,

where noninvn−k (σ) denotes the number of (n − k)-element sub-
sets of [n] on which σ is increasing.

• Theorem 5.1 (Reiner, Saliola, Welker). The n + 1 elements
R0, R1, . . . , Rn commute (but are not polynomials in R1 in gen-
eral).

• Theorem 5.2 (Dieker, Saliola, Lafrenière). The minimal poly-
nomial of each Rk over Q is a product of X − i’s for distinct
integers i. For example, the one of R1 divides

n2

∏
i=0

(X − i) .

The exact factors can be given in terms of certain statistics on
Young diagrams.

• Main references:

– Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.

– A.B. Dieker, F.V. Saliola, Spectral analysis of random-to-random
Markov chains, 2018.

– Nadia Lafrenière, Valeurs propres des opérateurs de mélanges
symétrisés, thesis, 2019.

• Question: Simpler proofs? (Even commutativity takes a dozen
pages!)

• Answer: Yes! See:

– Sarah Brauner, Patricia Commins, Darij Grinberg, Franco
Saliola, The q-deformed random-to-random family in the Hecke
algebra, draft (2025).

We actually generalize Theorems 5.1 and 5.2 to the Hecke alge-
bra, building on prior work on R1:

https://arxiv.org/abs/1102.2460
https://arxiv.org/abs/1102.2460
https://doi.org/10.1016/j.aim.2017.10.034
https://doi.org/10.1016/j.aim.2017.10.034
https://arxiv.org/abs/1912.07718
https://arxiv.org/abs/1912.07718
https://www.cip.ifi.lmu.de/~grinberg/algebra/r2r2.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/r2r2.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/r2r2.pdf


One-sided cycle shuffles (talk) page 15

– Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chi-
ang, Patricia Commins, Veronica Lang, Spectrum of random-
to-random shuffling in the Hecke algebra, arXiv:2407.08644.

• Question (Reiner): How big is the subalgebra of Q [Sn] gener-
ated by R0, R1, . . . , Rn ? Some small values:

n 1 2 3 4 5 6 7 8 9 10 11

dim (Q [R0, R1, . . . , Rn]) 1 2 4 7 15 30 54 95 159 257 400

(sequence not in the OEIS as of 2025-01-29).

• Remark 5.3. We have

Rk =
1
k!

· S (Bk) · Bk,

but this is just a first step, since the Bk don’t commute with the
S (Bk).

• Generalization (implicit in Reiner, Saliola, Welker). For each
k ∈ {0, 1, . . . , n}, we let

R̃k := ∑
σ∈Sn

∑
I⊆[n];

|I|=n−k;
σ increases on I

σ ⊗ ∏
i∈I

xi

in the twisted group algebra

T := k [Sn]⊗ k [x1, x2, . . . , xn]

with multiplication (σ ⊗ f ) (τ ⊗ g) = στ ⊗ τ−1 ( f ) g.

Then, the R̃1, R̃2, . . . , R̃n commute.

• This twisted group algebra T acts on k [x1, x2, . . . , xn] in two
ways: by multiplication ((σ ⊗ f ) (p) = σ ( f p)) or by differenti-
ation (( f ⊗ σ) (p) = σ ( f (∂) (p))). (In either case, the Sn part
permutes the variables.)

• Question: Simpler proof for this generalization?

https://arxiv.org/abs/2407.08644
https://arxiv.org/abs/2407.08644
https://arxiv.org/abs/2407.08644


One-sided cycle shuffles (talk) page 16

6. Somewhere-to-below shuffles

∗ In 2021, Nadia Lafrenière defined the somewhere-to-below shuf-
fles t1, t2, . . . , tn by setting

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn]

for each ℓ ∈ [n]. (These tℓ are called tℓ in my papers.)

∗ Thus, t1 = B1 and tn = id.

• As a card shuffle, tℓ takes the ℓ-th card from the top and moves
it further down the deck.

• Their linear combinations

λ1t1 + λ2t2 + · · ·+ λntn with λ1, λ2, . . . , λn ∈ k

are called one-sided cycle shuffles and also have a probabilistic
meaning when λ1, λ2, . . . , λn ≥ 0.

• Fact: t1, t2, . . . , tn do not commute for n ≥ 3. For n = 3, we have

[t1, t2] = cyc1,2 + cyc1,2,3 − cyc1,3,2 − cyc1,3 .

• However, they come pretty close to commuting!

∗ Theorem 6.1 (Lafreniere, G., 2022). There exists a basis of the
k-module k [Sn] in which all of the endomorphisms
R (t1) , R (t2) , . . . , R (tn) are represented by upper-triangular ma-
trices.
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7. The descent-destroying basis

• This basis is not hard to define, but I haven’t seen it before.

∗ For each w ∈ Sn, we let

Des w := {i ∈ [n − 1] | w (i) > w (i + 1)} (the descent set of w) .

∗ For each i ∈ [n − 1], we let si := cyci,i+1.

∗ For each I ⊆ [n − 1], we let

G (I) := (the subgroup of Sn generated by the si for i ∈ I) .

∗ For each w ∈ Sn, we let

aw := ∑
σ∈G(Des w)

wσ ∈ k [Sn] .

In other words, you get aw by breaking up the word w into
maximal decreasing factors and re-sorting each factor arbitrar-
ily (without mixing different factors). (The aw are called aw in
my papers.)

∗ The family (aw)w∈Sn
is a basis of k [Sn] (by triangularity).

• For instance, for n = 3, we have

a[123] = [123] ;
a[132] = [132] + [123] ;
a[213] = [213] + [123] ;
a[231] = [231] + [213] ;
a[312] = [312] + [132] ;
a[321] = [321] + [312] + [231] + [213] + [132] + [123] .

∗ Theorem 7.1 (Lafrenière, G.). For any w ∈ Sn and ℓ ∈ [n], we
have

awtℓ = µw,ℓaw + ∑
v∈Sn;
v≺w

λw,ℓ,vav

for some nonnegative integer µw,ℓ, some integers λw,ℓ,v and a
certain partial order ≺ on Sn.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-
triangular with respect to the basis (aw)w∈Sn

.
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• Examples:

– For n = 4, we have

a[4312]t2 = a[4312] + a[4321] − a[4231] − a[3241] − a[2143]︸ ︷︷ ︸
subscripts are ≺[4312]

.

– For n = 3, the endomorphism R (t1) is represented by the
matrix

a[321] a[231] a[132] a[213] a[312] a[123]

a[321] 3 1 1 1
a[231] 1 −1 1
a[132] 1
a[213] 1
a[312] 1
a[123] 1

(empty cells = zero entries). For instance, the last column
means a[123]t1 = a[123] + a[231].

• Corollary 7.2. The eigenvalues of these endomorphisms
R (t1) , R (t2) , . . . , R (tn) and of all their linear combinations

R (λ1t1 + λ2t2 + · · ·+ λntn)

are integers as long as λ1, λ2, . . . , λn are.

• How many different eigenvalues do they have?

• R (t1) = R (B1) has only n eigenvalues: 0, 1, . . . , n − 2, n, as we
have seen before. The other R (tℓ)’s have even fewer.

• But their linear combinations R (λ1t1 + λ2t2 + · · ·+ λntn) can
have many more. How many?
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8. Lacunar sets and Fibonacci numbers

∗ A set S of integers is called lacunar if it contains no two consec-
utive integers (i.e., we have s + 1 /∈ S for all s ∈ S).

∗ Theorem 8.1 (combinatorial interpretation of Fibonacci num-
bers, folklore). The number of lacunar subsets of [n − 1] is the
Fibonacci number fn+1.

(Recall: f0 = 0, f1 = 1, fn = fn−1 + fn−2.)

∗ Theorem 8.2. When λ1, λ2, . . . , λn ∈ C are generic, the number
of distinct eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn) is fn+1. In
this case, the endomorphism R (λ1t1 + λ2t2 + · · ·+ λntn) is di-
agonalizable.

• Note that fn+1 ≪ n!.

∗ We prove this by finding a filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

of the k-module k [Sn] such that each R (tℓ) acts as a scalar
on each of its quotients Fi/Fi−1. In matrix terms, this means
bringing R (tℓ) to a block-triangular form, with the diagonal
blocks being “scalar times I” matrices.

• It is only natural that the quotients should correspond to the
lacunar subsets of [n − 1].

• Let us approach the construction of this filtration.
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9. The F (I) and the Fibonacci filtration

∗ For each I ⊆ [n], we set

sum I := ∑
i∈I

i

and

Î := {0} ∪ I ∪ {n + 1} (“enclosure” of I)

and

I ′ := [n − 1] \ (I ∪ (I − 1)) (“non-shadow” of I)

and

F (I) := {q ∈ k [Sn] | qsi = q for all i ∈ I ′} ⊆ k [Sn] .

In probabilistic terms, F (I) consists of those random states of
the deck that do not change if we swap the i-th and (i + 1)-st
cards from the top as long as neither i nor i + 1 is in I. To put it
informally: F (I) consists of those random states that are “fully
shuffled” between any two consecutive Î-positions.

• Example: If n = 11 and I = {3, 6, 7}, then Î = {0, 3, 6, 7, 12} and
I ′ = {1, 4, 8, 9, 10} and

F (I) = {q ∈ k [S11] | qs1 = qs4 = qs8 = qs9 = qs10 = q} .

Illustrating this:

0 1 2 3 4 5 6 7 8 9 10 11 12

(black = I; grey = I − 1; blue = Î \ I; lightblue = n;
white = I ′).

∗ For any ℓ ∈ [n], we let mI,ℓ be the distance from ℓ to the next-
higher element of Î. In other words,

mI,ℓ :=
(

smallest element of Î that is ≥ ℓ
)
− ℓ ∈ {0, 1, . . . , n} .
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In our above example,

(mI,1, mI,2, . . . , mI,11) = (2, 1, 0, 2, 1, 0, 0, 4, 3, 2, 1) .

For another example, if n = 5 and I = {2, 3}, then Î = {0, 2, 3, 6}
and

(mI,1, mI,2, mI,3, mI,4, mI,5) = (1, 0, 0, 2, 1) .

• We note that, for any ℓ ∈ [n], we have the equivalence

mI,ℓ = 0 ⇐⇒ ℓ ∈ Î ⇐⇒ ℓ ∈ I.

∗ Crucial Lemma 9.1. Let I ⊆ [n] and ℓ ∈ [n]. Then,

qtℓ ∈ mI,ℓq + ∑
J⊆[n];

sum J<sum I

F (J)

︸ ︷︷ ︸
Think of these as

“lower-order terms”

for each q ∈ F (I) .

• Proof: Expand qtℓ by the definition of tℓ, and break up the result-
ing sum into smaller bunches using the interval decomposition

[ℓ, n] = [ℓ, ik − 1] ⊔ [ik, ik+1 − 1] ⊔ [ik+1, ik+2 − 1] ⊔ · · · ⊔
[
ip, n

]
(where ik < ik+1 < · · · < ip are the elements of I larger or equal
to ℓ). The [ℓ, ik − 1] bunch gives the mI,ℓq term; the others live
in appropriate F (J)’s.

See the paper for the details.

∗ Thus, we obtain a filtration of k [Sn] if we label the subsets I of
[n] in the order of increasing sum I and add up the respective
F (I)s.

On each subquotient of this filtration, tℓ acts as a scalar mI,ℓ.

• Unfortunately, this filtration has 2n, not fn+1 terms.

∗ Fortunately, that’s because many of its terms are redundant.
The ones that aren’t correspond precisely to the I’s that are la-
cunar subsets of [n − 1]:

• Lemma 9.2. Let k ∈ N. Then,

∑
J⊆[n];

sum J<k

F (J) = ∑
J⊆[n−1] is lacunar;

sum J<k

F (J) .
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• Proof: If J ⊆ [n] contains n or fails to be lacunar, then F (J) is a
submodule of some F (K) with sum K < sum J. (Exercise!)

• Now, we let Q1, Q2, . . . , Q fn+1 be the fn+1 lacunar subsets of
[n − 1], listed in such an order that

sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum
(
Q fn+1

)
.

Then, define a k-submodule

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi) of k [Sn]

for each i ∈ [0, fn+1] (so that F0 = 0). The resulting filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

(which we call the Fibonacci filtration of k [Sn]) satisfies the
properties we need:

• Theorem 9.3. For each i ∈ [ fn+1] and ℓ ∈ [n], we have

Fi · (tℓ − mQi,ℓ) ⊆ Fi−1

(so that R (tℓ) acts on Fi/Fi−1 as multiplication by mQi,ℓ).

• Proof: Lemma 9.1 + Lemma 9.2.

• Lemma 9.4. The quotients Fi/Fi−1 are nontrivial for all i ∈
[ fn+1].

• Proof: See below.

∗ Corollary 9.5. Let k be a field, and let λ1, λ2, . . . , λn ∈ k.
Then, the eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn) are the lin-
ear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar.

• Theorem 8.2 easily follows by some linear algebra.

• More generally, this holds not just for linear combinations λ1t1 +
λ2t2 + · · · + λntn but for any noncommutative polynomials in
t1, t2, . . . , tn.
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10. Back to the basis

• The descent-destroying basis (aw)w∈Sn
is compatible with our

filtration:

∗ Theorem 10.1. For each I ⊆ [n], the family (aw)w∈Sn; I′⊆Des w is a
basis of the k-module F (I).

∗ If w ∈ Sn is any permutation, then the Q-index of w is defined
to be the smallest i ∈ [ fn+1] such that Q′

i ⊆ Des w. We call this
Q-index Qind w.

• Proposition 10.2. Let w ∈ Sn and i ∈ [ fn+1]. Then, Qind w = i if
and only if Q′

i ⊆ Des w ⊆ [n − 1] \ Qi.

• Note: The numbering Q1, Q2, . . . , Q fn+1 of the lacunar subsets
of [n − 1] is not unique; we just picked one. The Q-index i =
Qind w of a w ∈ Sn depends on this numbering. However, the
corresponding lacunar set Qi does not, since Proposition 10.2
determines it canonically (it is the unique lacunar L ⊆ [n − 1]
satisfying L′ ⊆ Des w ⊆ [n − 1] \ L).

Thus, think of this set Qi as the “real” index of w. But i is easier
to work with.

(You can get rid of the numbering altogether if you allow filtra-
tions indexed by a poset.)

∗ Theorem 10.3. For each i ∈ [0, fn+1], the k-module Fi is free
with basis (aw)w∈Sn; Qind w≤i.

∗ Corollary 10.4. For each i ∈ [ fn+1], the k-module Fi/Fi−1 is free
with basis (aw)w∈Sn; Qind w=i.

• This yields Lemma 9.4 and also leads to Theorem 7.1, made
precise as follows:

∗ Theorem 10.5 (Lafrenière, G.). For any w ∈ Sn and ℓ ∈ [n], we
have

awtℓ = µw,ℓaw + ∑
v∈Sn;

Qind v<Qind w

λw,ℓ,vav

for some nonnegative integer µw,ℓ and some integers λw,ℓ,v.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-
triangular with respect to the basis (aw)w∈Sn

as long as the per-
mutations w ∈ Sn are ordered by increasing Q-index.
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11. The multiplicities

• In Corollary 9.5, we found the eigenvalues of the endomor-
phism R (λ1t1 + λ2t2 + · · ·+ λntn). With Corollary 10.4, we can
also find their algebraic multiplicities. To state a formula for
them, we need a definition:

∗ For each i ∈ [ fn+1], we set

δi := (the number of all w ∈ Sn satisfying Qind w = i) .

∗ Corollary 11.1 (approximate version). Assume that k is a field.
Let λ1, λ2, . . . , λn ∈ k. Then, the endomorphism R (λ1t1 + λ2t2 + · · ·+ λntn)
has eigenvalues

λI := λ1mI,1 +λ2mI,2 + · · ·+λnmI,n for all lacunar I ⊆ [n − 1] .

Each such eigenvalue has algebraic multiplicity δi, where i ∈
[ fn+1] is such that I = Qi. If several such eigenvalues happen
to coincide, then their algebraic multiplicities must be added
together.

• Corollary 11.1 (pedantic version). Assume that k is a field. Let
λ1, λ2, . . . , λn ∈ k. For each i ∈ [ fn+1], we let

gi :=
n

∑
ℓ=1

λℓmQi,ℓ ∈ k.

Let κ ∈ k. Then, the algebraic multiplicity of κ as an eigenvalue
of the endomorphism R (λ1t1 + λ2t2 + · · ·+ λntn) equals

∑
i∈[ fn+1];

gi=κ

δi.

• Can we compute the δi explicitly? Yes!

∗ Theorem 11.2. Let i ∈ [ fn+1]. Then:

(a) Write the set Qi in the form Qi =
{

i1 < i2 < · · · < ip
}

, and
set i0 = 1 and ip+1 = n + 1. Let jk = ik − ik−1 for each
k ∈ [p + 1]. Then,

δi =

(
n

j1, j2, . . . , jp+1

)
︸ ︷︷ ︸

multinomial
coefficient

·
p+1

∏
k=2

(jk − 1) .
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(b) We have δi | n!.

• Note. This reminds of the hook-length formula for standard
tableaux, but is much simpler.
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12. Variants

• Most of what we said about the somewhere-to-below shuffles tℓ
can be extended to their antipodes S (tℓ) (the “below-to-somewhere
shuffles”). For instance:

• Theorem 12.1. There exists a basis of the k-module k [Sn] in
which all of the endomorphisms R (S (t1)) , R (S (t2)) , . . . , R (S (tn))
are represented by upper-triangular matrices.

• We can also use left instead of right multiplication:

• Theorem 12.2. There exists a basis of the k-module k [Sn] in
which all of the endomorphisms L (t1) , L (t2) , . . . , L (tn) are rep-
resented by upper-triangular matrices.

• These follow from Theorem 6.1 using dual bases, transpose ma-
trices and Proposition 1.3. No new combinatorics required!

• Question. Do we have L (tℓ) ∼ R (tℓ) in Endk (k [Sn]) when k
is not a field?

• Remark. The similarity tℓ ∼ S (tℓ) in k [Sn] holds when char k =
0, but not for general fields k. (E.g., it fails for k = F2 and n = 4
and ℓ = 1.)
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13. Commutators

• The simultaneous trigonalizability of the endomorphisms
R (t1) , R (t2) , . . . , R (tn) yields that their pairwise commutators
are nilpotent. Hence, the pairwise commutators

[
ti, tj

]
are also

nilpotent.

• Question. How small an exponent works in
[
ti, tj

]∗
= 0 ?

∗ Theorem 13.1. We have
[
ti, tj

]j−i+1
= 0 for any 1 ≤ i ≤ j ≤ n.

∗ Theorem 13.2. We have
[
ti, tj

]⌈(n−j)/2⌉+1
= 0 for any i, j ∈ [n].

• Depending on i and j, one of the exponents is better than the
other.

Conjecture. The better one is optimal! (Checked for all n ≤ 12.)

∗ Stronger results hold, replacing powers by products.

∗ Several other curious facts hold: For example,

ti+1ti = (ti − 1) ti and ti+2 (ti − 1) = (ti − 1) (ti+1 − 1)

and

tn−1 [ti, tn−1] = 0 and [ti, tn−1]
[
tj, tn−1

]
= 0

for all i and j.

• All this is completely elementary but surprisingly hard to prove
(dozens of pages of manipulations with sums and cycles). The
proofs can be found in arXiv:2309.05340v2 aka

https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b2.pdf

• What is “really” going on? No idea...

http://arxiv.org/abs/2309.05340v2
https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b2.pdf
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14. Representation theory

• Where groups go, representations are not far away...

If you know representation theory, you will have asked yourself
two questions:

1. The F (I) and the Fi are left ideals of k [Sn]; how do they
decompose into Specht modules?

2. How do t1, t2, . . . , tn act on a given Specht module?

• We can answer these (when k is a field):

• The answer uses symmetric functions, specifically:

– Let sλ be the Schur function for a partition λ.

– Let hm = s(m) be the m-th complete homogeneous symmet-
ric function for each m ≥ 0.

– Let zm = s(m−1,1) = hm−1h1 − hm for each m > 1.

• For each lacunar subset I of [n − 1], we define a symmetric func-
tion

zI := hi1−1

k

∏
j=2

zij−ij−1 (over Z) ,

where i1, i2, . . . , ik are the elements of I ∪ {n + 1} in increasing
order (so that ik = n + 1 and I = {i1 < i2 < · · · < ik−1}).

This is a skew Schur function corresponding to a disjoint union
of hooks: e.g., if n = 11 and I = {3, 6, 8}, then the skew shape
is

i1 − 1
i2 − i1 − 1

1
i3 − i2 − 1

1
i4 − i3 − 1

1

• For each lacunar I ⊆ [n − 1] and each partition λ of n, we let cI
λ

be the coefficient of sλ in the Schur expansion of zI.

This is a nonnegative integer (actually a Littlewood–Richardson
coefficient, since zI is a skew Schur function).
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• Theorem 14.1. Let ν be a partition. Let λ1, λ2, . . . , λn ∈ k. Then,
the one-sided cycle shuffle λ1t1 + λ2t2 + · · ·+ λntn acts on the
Specht module Sν as a linear map with eigenvalues

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n

for all lacunar I ⊆ [n − 1] satisfying cI
ν ̸= 0,

and the multiplicity of each such eigenvalue is cI
ν in the generic

case (i.e., if no two I’s produce the same linear combination;
otherwise the multiplicities of colliding eigenvalues should be
added together).

If all these linear combinations are distinct, then this linear map
is diagonalizable.

• Theorem 14.2 (lazy version). Let k be a field of characteristic
0. Let i ∈ [ fn+1]. As a representation of Sn, the quotient module
Fi/Fi−1 has Frobenius characteristic zQi .

• Theorem 14.2 (careful version, true in every characteristic).
Let i ∈ [ fn+1]. Consider the lacunar subset Qi of [n − 1]. Let
i1, i2, . . . , ik be the elements of Qi ∪ {n + 1} in increasing order.
Then, as representations of Sn, we have

Fi/Fi−1
∼= Hi1−1 ∗ Zi2−i1 ∗ Zi3−i2 ∗ · · · ∗ Zik−ik−1︸ ︷︷ ︸

the first factor is an H,
while all others are Z ’s

,

where ∗ means induction product (that is, U ∗V = Ind
Si+j
Si×Sj

(U ⊗ V)),
and where Hm is the trivial 1-dimensional representation of Sm,
whereas Zm is the reflection representation of Sm (that is, km

modulo the span of (1, 1, . . . , 1)).

• Proofs appear in:

– Darij Grinberg, The representation theory of somewhere-to-below
shuffles, draft 2025.

Theorem 14.2 is proved by directly constructing an isomorphism;
Theorem 14.1 is obtained from it by applying a Hom-functor
Homk[Sn] (−, Sν) to the Fibonacci filtration (to obtain a filtration
of Sν).

https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b3.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b3.pdf
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15. Conjectures and questions

• Question. What can be said about the k-subalgebra k [t1, t2, . . . , tn]
of k [Sn] ? Note:

n 1 2 3 4 5 6 7 8

dim (Q [t1, t2, . . . , tn]) 1 2 4 9 23 66 212 761

(this sequence is not in the OEIS as of 2025-04-16).

Also, the Lie subalgebra L (t1, t2, . . . , tn) of Q [Sn] has dimensions

n 1 2 3 4 5 6 7

dim (L (t1, t2, . . . , tn)) 1 2 4 8 20 59 196

(also not in the OEIS).

• Question (“Is there a q-deformation?”). Much of the above
(e.g., Theorems 10.5, 13.1, 13.2) seems to still hold if Q [Sn] is
replaced by the Iwahori–Hecke algebra (but t1, t2, . . . , tn are de-
fined in the exact same way, with w replaced by Tw). Even
dim (Q [t1, t2, . . . , tn]) appears to be the same for the Hecke alge-
bra, suggesting that all identities come from the Hecke algebra.
Why?

(Verified for Corollary 9.5 and Theorem 10.5, with the integers
mI,ℓ replaced by q-integers [mI,ℓ]q. More details in forthcoming
work...)
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16. The Gaudin Bethe subalgebras

• We now leave the topic of one-sided cycle shuffles, and return
to surveying other (families of) elements of k [Sn].

• The following was found (at least in a significant case) by Mukhin,
Tarasov and Varchenko (2013), and recently extended and re-
proved by Purbhoo (2022) and Karp and Purbhoo (2023).

• Definition. Let z1, z2, . . . , zn be any n + 2 elements of k.

For any subset T of [n], we set

α+
T := ∑

σ∈ST

σ ∈ k [Sn]

(where ST is embedded into Sn in the obvious way: all elements
/∈ T are fixed).

• Theorem 16.1 (Mukhin/Tarasov/Varchenko/Purbhoo). Set

β+
k (u) := ∑

T⊆[n];
|T|=k

α+
T ∏

m∈[n]\T
(zm + u) for any k ∈ N and u ∈ k.

Then, β+
i (u) and β+

j (v) commute for all i, j ∈ N and u, v ∈ k.

• More generally:

• Theorem 16.2 (Karp/Purbhoo). Fix i, j ∈ N and u, v ∈ k. Fix a
class function φ on the symmetric group Si, and a class function
ψ on the symmetric group Sj. For any i-element subset T of [n],
set

α
φ
T := ∑

σ∈ST

φ (σ) σ ∈ k [Sn] ,

where φ is transported onto ST via any bijection [i] → T (the
choice does not matter). Set

β
φ
i (u) := ∑

T⊆[n];
|T|=i

α
φ
T ∏

m∈[n]\T
(zm + u) .

Similarly define β
ψ
j (v). Then, β

φ
i (u) and β

ψ
j (v) commute.

• The proofs are not very long but surprisingly complicated. A
major ingredient is the group version of antipodal conjugacy:
Each permutation σ ∈ Sn is conjugate to its inverse. (A trickier
refinement of this is used.)

https://arxiv.org/abs/1004.4248
https://arxiv.org/abs/1004.4248
https://arxiv.org/abs/2207.05743
https://arxiv.org/abs/2309.04645v1
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• Both Mukhin/Tarasov/Varchenko and Purbhoo prove further
results about the (commutative) subalgebra of k [Sn] generated
by the β

φ
i (u). In particular, Purbhoo shows that the subalgebra

generated by β+
i (u) is that generated by β

sign
i (u).

• Question: Simpler proofs?
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17. Excendances and anti-excedances

• Definition. Let σ ∈ Sn be a permutation. Then, we define

exc σ := (# of i ∈ [n] such that σ (i) > i) and
anxc σ := (# of i ∈ [n] such that σ (i) < i)

(the “excedance number” and the “anti-excedance number” of
σ).

• Conjecture 17.1. For any a, b ∈ N, define

Xa,b := ∑
σ∈Sn;

exc σ=a;
anxc σ=b

σ ∈ k [Sn] .

Then, the elements Xa,b for all a, b ∈ N commute (for fixed n).

• Checked for all n ≤ 7 using SageMath. Inspired by the Mukhin
/Tarasov/Varchenko results from the previous section (thanks
Theo Douvropoulos for the idea!).

• The antipode plays well with these elements:

S (Xa,b) = Xb,a.

• Question. What can be said about the (commutative) k-subalgebra
k [Xa,b | a, b ∈ {0, 1, . . . , n}] of k [Sn] ? Note:

n 1 2 3 4 5 6

dim (Q [Xa,b]) 1 2 4 10 26 76
.

So far, this looks like the # of involutions in Sn, which is exactly
the dimension of the Gelfand–Zetlin subalgebra (generated by
the Young–Jucys–Murphy elements)!

What is the exact relation?
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18. Riffle shuffles

• For a change, here is something classical.

• For each k ∈ N, we define an element

Sk := ∑
i=(i1,i2,...,ik)∈Nk;

i1+i2+···+ik=n

∑
σ∈Sn;

σ is increasing on
every i-interval

σ

of k [Sn]. Here, for any k-tuple i = (i1, i2, . . . , ik) ∈ Nk satisfying
i1 + i2 + · · ·+ ik = n, the i-intervals are the intervals of lengths
i1, i2, . . . , ik into which the set [n] is subdivided (i.e., the inter-
vals

[
i1 + i2 + · · ·+ ij−1 + 1, i1 + i2 + · · ·+ ij

]
for all 0 < j ≤ k).

(Recall that 0 ∈ N, so that these intervals may be empty.)

This Sk is called the k-riffle shuffle. Roughly speaking, it corre-
sponds to cutting the deck into k piles of sizes i1, i2, . . . , ik and
shuffling them back together arbitrarily. (This description is a
bit imprecise, as it ignores probabilities.)

• Theorem 18.1 (e.g., Gerstenhaber/Schack 1991). The elements
S0, S1, S2, . . . commute. Moreover,

SiSj = Sij for all i, j ∈ N.

• Proof using Hopf algebras: It suffices to show that S (Si) · S
(
Sj
)
=

S
(
Sij

)
for all i, j ∈ N (where S is the antipode, sending each

σ ∈ Sn to σ−1).

The symmetric group algebra k [Sn] acts faithfully on the ten-
sor power V⊗n of any free k-module V of rank ≥ n (by per-
muting the tensorands). This tensor power V⊗n is the n-th
degree part of the tensor algebra T (V), which is a cocommu-
tative connected graded Hopf algebra (∆ = unshuffle coprod-
uct). Now, the action of S (Si) on V⊗i is just the convolution
id⋆i = id ⋆ id ⋆ · · · ⋆ id︸ ︷︷ ︸

i times

: T (V) → T (V) (restricted to V⊗i). So it

remains to prove that id⋆i ◦ id⋆j = id⋆(ij). But this can be done
easily using cocommutativity.

• Remark: These id⋆i are known as Adams operations, and are
defined on any bialgebra. The equality id⋆i ◦ id⋆j = id⋆(ij) holds
for any commutative or cocommutative bialgebra.



One-sided cycle shuffles (talk) page 35

• Theorem 18.2. The minimal polynomial of Si is a divisor of(
X − i1) (X − i2) · · · (X − in) .

• Theorem 18.3. If k is a field of characteristic 0, the subalgebra of
k [Sn] generated (= spanned) by S0, S1, S2, . . . is n-dimensional
as a k-vector space, and is isomorphic to a product of n copies
of k. It is called the Eulerian subalgebra of k [Sn], and its de-
composing idempotents are the famous Eulerian idempotents.

• Reference: Loday, Cyclic homology, 2nd edition 1998, §4.5.

• Question. How does the Eulerian subalgebra look like for gen-
eral k ?

https://doi.org/10.1007/978-3-662-11389-9
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19. Row-to-row sums

∗ Definition. A set composition of [n] is defined to mean a tuple
U = (U1, U2, . . . , Uk) of disjoint nonempty subsets of [n] such
that U1 ∪ U2 ∪ · · · ∪ Uk = [n]. We set ℓ (U) = k and call k the
length of U.

∗ Definition. Let SC (n) be the set of all set compositions of [n].

∗ Definition. If A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk) are
two set compositions of [n] having the same length, then we
define the row-to-row sum

∇B,A := ∑
w∈Sn;

w(Ai)=Bi for all i

w in k [Sn] .

• Easy properties:

– We have ∇B,A = 0 unless |Ai| = |Bi| for all i.
– We have ∇B,A = ∇Bσ,Aσ for any σ ∈ Sk (acting on set com-

positions by permuting the blocks).

– We have S (∇B,A) = ∇A,B.

∗ Theorem 19.1. Let A = k [Sn]. Let k ∈ N. We define two
k-submodules Ik and Jk of A by

Ik := span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and

Jk := A · span
{

α−
U | U is a (k + 1) -element subset of [n]

}
· A,

where
α−

U := ∑
σ∈SU

(−1)σ σ ∈ k [Sn] .

Then:

– Both Ik and Jk are ideals of A, and are preserved under S.

– We have

Ik = J ⊥
k = LAnnJk = RAnnJk and

Jk = I⊥
k = LAnn Ik = RAnn Ik.

Here, U⊥ means orthogonal complement wrt the standard
bilinear form on A, whereas LAnn and RAnn mean left
and right annihilators.
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– The k-module Ik is free of rank = # of (1, 2, . . . , k + 1)-
avoiding permutations in Sn.

– The k-module Jk is free of rank = # of (1, 2, . . . , k + 1)-
nonavoiding permutations in Sn.

– The quotients A/Jk and A/Ik are also free, with the same
ranks as Ik and Jk (respectively), and with bases consisting
of (residue classes of) the relevant permutations.

– If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik ×Jk as k-algebras.

• This is not hard to show using representation theory if k = C

(or Q), but the characteristic-free case needs to be done from
scratch.

• Remark. The Murphy basis of A consists of the elements ∇B,A
for the standard set compositions A and B of [n]. Here, “stan-
dard” means that the blocks are the rows of a standard Young
tableau (in particular, they must be of partition shape).

This is a cellular basis of A. Thus, the Specht modules are
quotients of spans of certain subfamilies of this basis.

(This was done for Hecke algebras in: G. E. Murphy, On the
Representation Theory of the Symmetric Groups and Associated Hecke
Algebras, 1991. Our ∇B,A correspond to his xs,t for q = 1.)

• Question. How far can we develop the representation theory of
Sn using this approach? (e.g., prove the LR rule?)

https://core.ac.uk/download/pdf/82422274.pdf
https://core.ac.uk/download/pdf/82422274.pdf
https://core.ac.uk/download/pdf/82422274.pdf
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20. Row-to-row sums of length 2

• The elements ∇B,A are fairly general, and in fact each w ∈ Sn
can be written as ∇B,A for some A and B. But some things can
be said when ℓ (A) = ℓ (B) ≤ 2.

∗ Definition. If A and B are two subsets of [n], then we set

∇B,A := ∑
w∈Sn;

w(A)=B

w in k [Sn] .

This is ∇B,A for A = (A, [n] \ A) and B = (B, [n] \ B).

∗ Theorem 20.1. The minimal polynomial of each ∇B,A over Q is
a product of linear factors.

• Example. For n = 5, the minimal polynomial of ∇{1,2},{2,3} is
(x − 12) (x − 2) x (x + 4).

• More generally:

∗ Theorem 20.2. Fix any A ⊆ [n]. Then, the minimal polynomial
of any Q-linear combination of ∇B,A with B ranging over the
subsets of [n] is a product of linear factors.

• This can be proved using a filtration (albeit not of A).

• Questions. What are the linear factors (i.e., the eigenvalues)? (I
have a complicated sum formula.)

What is the characteristic polynomial? (i.e., what are the multi-
plicities of the eigenvalues?)

• The proofs of Theorems 20.1 and 20.2 rely on the following fact:

• Proposition 20.3 (product formula). Let A, B, C, D be four sub-
sets of [n] such that |A| = |B| and |C| = |D|. Then,

∇D,C∇B,A = ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V,

where

ωB,C := |B ∩ C|! · |B \ C|! · |C \ B|! · |[n] \ (B ∪ C)|! ∈ Z.
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• Proof. Nice exercise in enumeration!

• Digression. Define a free k-module with basis (∆B,A)A,B⊆[n] with |A|=|B|,
where the ∆B,A are formal symbols. Define a multiplication on
D by

∆D,C∆B,A := ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∆U,V.

• Theorem 20.4. This D is a nonunital algebra (i.e., associative).

• Question. Is this algebra unital when n! is invertible in k ?

• Question. What is this algebra really? (It is a free k-module of

rank
(

2n
n

)
, so it might be a diagram algebra – e.g., a nonunital

Z-form of the planar rook algebra?)
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21. Philosophical questions

• Why is so much happening in k [Sn] ? In particular:

• Why do so many elements commute? Are there any general
methods for proving commutativity?

• Why do so many elements have integer eigenvalues (i.e., fac-
toring minimal polynomials)?

• Methods I have seen so far:

– Explicit multiplication rules: proves commutativity for Bk,
eigenvalues for ∇B,A, and various properties for elements
in the descent algebra (Solomon Mackey rule).

– Faithful action on V⊗n: proves commutativity for Si, Ri
(Lafrenière’s approach).

– Preserved filtration: proves eigenvalues and simultaneous
trigonalizability for ti; can theoretically be used for com-
mutativity as well when the elements generate an S-invariant
subalgebra (via Okounkov-Vershik involution trick), but
haven’t seen that happen.

– Bijective brute-force: proves commutativity for mk, β
φ
k .

– Action on irreps (= Specht modules): proves eigenvalues
for mk, Ri.

– Diagonalization: proves eigenvalues for mk (Young semi-
normal basis), Ri.

– Faithful action on something else (e.g., Gelfand model, poly-
nomial ring via divided symmetrization, etc.): would be
nice to see a use, but have not encountered yet.

– Transfer principles (e.g., §3.1 in Mukhin/Tarasov/Varchenko
arXiv:0906.5185v1): would be really great to see.

– Recognition as polynomials in simpler commuting elements:
would be nice to see.

– Okounkov–Vershik lemma (centralizer of multiplicity-free
branching): would be nice to see.

– Categorization (replacing Sn = Bij ([n] , [n]) by Inj ([n] , [m])
or Surj ([n] , [m]), just like square matrices are a particular
case of rectangular matrices): would be great to see!

Any additions to this list are welcome!

https://arxiv.org/abs/0906.5185v1
https://arxiv.org/abs/0906.5185v1
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