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1. The Weyl algebra

e Let k be a field of characteristic 0.

© Let M be the free monoid with generators D and U. It consists
of words with entries in {D, U}, such as DUDDUUUD.

© Let VW be the Weyl algebra over k with generators D and U and
relation DU — UD = 1.

The Weyl algebra ¥V acts on the polynomial k [x| by D — i
yl alg poly y dx
and U — x. This action is faithful (since char k = 0).

There is a canonical monoid morphism ¢ : M — W sendin
P g
D, U to D, U.

@ Say that two words u and v in M are ¢-equivalent if ¢ (u) =
¢ (v) in W.

© Questions to be discussed (posed by Richard P. Stanley):
1. When are two words ¢-equivalent, in combinatorial terms?

2. How efficiently can we test ¢-equivalence?

3. How many ¢-equivalence classes are there, and how large
are they?

4. What is a minimal class of relations that generate ¢-equivalence?

5. What holds in other algebras or for other chark ?

* We shall answer 1, 2, 3 fully and 4, 5 partly.
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2. Words and paths

2.1. Definitions

© A word means a finite tuple of D’s and U’s. Thus, M is the set
of all words.

© A word u is called a prefix, suffix or factor of a word w if and
only if w = ug or w = pu or w = puq (respectively) for some
words p and q. These p and g can be empty.

@ We encode words as diagonal paths (short: paths) on the plane,
by reading each D as a step to the southeast (“downstep”) and
each U as a step to the northeast (“upstep”). For example, the
word UDUUDDD gives rise to the path

(0,0)

7,-1)

This is a many-to-1 correspondence, as the starting point can be
chosen freely. The standard path of a word w is the correspond-
ing diagonal path starting at (0,0).

The word corresponding to a given path p is denoted w (p),
and is called the reading word of p.

© A word is balanced if it has equally many U’s and D’s.

© Ifp = (popi,-.., pr) is a path, then
— the vertices of p are po, p1,..., Vi
— the NE-steps of p are the vertices p; of p with p; 7 pit1;
— the SE-steps of p are the vertices p; of p with p; \, pi+1.

For example, the above picture shows a path p = (po, p1,.--, p7)

with po 7 p1 NP2/ P37 Pa \ P5 \« Po "\« P7-
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2.2. The w involutions

© Let w: M — M be the map that reads a word right-to-left and
also changes each letter to the other possible letter (D — U and
Uu— D).

Formally, w is a monoid anti-automorphism.

* Pictorially, w is reflection across a vertical axis:

w

H

Likewise, let w : W — W be the algebra anti-automorphism
g p
sending D — U and U — D.

2.3. Balanced commutations and flips

© Balanced commutations and balanced flips are two ways to
transform a word v into another word w.

In a balanced commutation, we write our word v as v = pxyq
with two balanced factors x and y, and we set w := pyxq.

© In a balanced flip, we write our word v as v = pxq with a
balanced factor x, and we set w := pw (x) g.

* Both operations can be applicable to a word in many different
ways.
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¢ Example:
word | standard path
UuuubbubDDDUUDD
balanced commutation d balanced c?omn‘lutajcion
ubbuuuuubbubDbDDD
balanced flip 1 balaned ﬂip |
ubbuuuuubbubbDD

(NB: underlines and overlines mark the factors being trans-
formed).

2.4. Heights

@ The height ht (p) of a point p is its y-coordinate.

@ The initial height and the final height of a path p are the
heights of its starting and ending points.

© If p = (po,p1,...,p) is any diagonal path, then we associate
three Laurent polynomials (in the indeterminate z) to p:

izht(pi) , Z th(pi)’ Z th(pi) .
i=0

p;i is an NE-step of p p; is an SE-step of p

the height polynomial the NE-heighvt polynomial the SE-heigl:trpolynomial

These encode (respectively) the multiset of heights of all ver-
tices, of all NE-steps, and of all SE-steps of p.
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@ All concepts defined for paths can be applied to words (just
replace a word by its standard path).

* Example: For the word w = UDUUDDD, the heights are
shown in the following:

heights of SE-steps
1 2 1 0

(0,0)

0 0 1
heights of NE-steps

(The ending point is neither an SE-step nor an NE-step.) Thus,
the word w has

height polynomial D4 4202242t 02

=z +3+3z+2%
NE-height polynomial z° + z° + z! =2+ z;
SE-height polynomial z' + z* + z! +2° = 1 4+ 2z + 2.

* Lemma: Balanced commutations and balanced flips leave all
three polynomials (NE-height, SE-height, height) as well as the
final height unchanged.
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3. The main theorems

© Equivalence Theorem.

Let u and v be two words in M. Then, the following seven
statements are equivalent:

Sp: The words u and v are ¢-equivalent (that is, ¢ (1) = ¢ (v)).

Spot: The elements ¢ (1) and ¢ (v) act equally on the polynomial
ring k [x]. (Reminder: D acts as %, and U as x.)

Sne: The words u and v have the same final height and the same
NE-height polynomial (i.e., the multiset of heights of the
NE-steps of u is the same as for v).

Sse: The words 1 and v have the same final height and the same
SE-height polynomial (i.e., the multiset of heights of the
SE-steps of u is the same as for v).

She: The words u and v have the same final height and the same
height polynomial (i.e., the multiset of heights of all ver-
tices of u is the same as for v).

Scomm: The word u can be transformed into v by balanced com-
mutations.

Ship: The word u can be transformed into v by balanced flips.

© Reflection Theorem. Each balanced word u is ¢-equivalent to
w (u).

* Consequence (word problem): The ¢-equivalence of two words
u,v of length < n can be tested in O (1) time and memory.

* Remark (easy part of the Equivalence Theorem): The lemma
on the previous page shows that S; = §; for all i € {¢, pol}
and j € {NE, SE, ht}.

* Remark: The implication Scomm == &y is essentially known.

Indeed, Dixmier (1968) observed that the Weyl algebra W is Z-
graded (degU = 1 and degD = —1) and that its 0-th graded
component W, is commutative (being spanned by the powers
of DU). Hence, any two balanced words (upon application of
¢) commute (as they lie in W,). Thus, balanced commutations
don’t change the ¢-image.

* There are also other connections to existing results; see below.



https://doi.org/10.24033/bsmf.1667
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4. Up-normal words

* To prove the main theorems, we need some more concepts.

© A word w is called

— rising if it has at least as many U’s as D’s;

— falling if it has at most as many U’s as D'’s.

Note that balanced = rising A falling.

© A down-zig means a word of the form UD*U for some k > 2.
Pictorially:

© A word w € M is said to be up-normal if it is rising and con-
tains no down-zig as a factor.

¢ Crucial lemmas.

1. Every up-normal word has the form
D* (UD)"U (UD)™U --- (UD)"U D"

for some nonnegative integers a,b,h and 1,72, ..., 1.

2. An up-normal word w is uniquely determined by its final
height and its height polynomial.

3. The height, NE-height and SE-height polynomials of a word
w mutually determine each other, as long as the final height
of w is known.

4. If a rising word w is not up-normal, then we can write w as
w = upqu, where u and v are two words, where p is a bal-
anced word starting with a U, and where g is a balanced
word starting with a D. (Thus, we can make w lexicograph-
ically smaller by applying a balanced commutation.)

* These easily yield:
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* Proposition. Let w € M be a rising word. Then, there exists a
unique up-normal word ¢t € M that can be obtained from w by
balanced commutations.

* Hence, Spt = Scomm €asily follows for rising w. If w is falling,
then apply the same argument to w (w).

* Also, Scomm = Spip because any balanced commutation can
be written as three balanced flips:

pg... — wp)g... — w(p)w(q)...

* Altogether, S, . .., Sqip are thus equivalent.
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5. Height polynomials and the Weyl action

* To link §p and Sy with S3, ..., Sgip, we need the following easy
fact:

e Proposition. Let w be a word and p = (po, p1, - .., px) be a path
corresponding to it. Let h; := ht(p;) for each i € {0,1,...,k}.
Then, for each s € Z, we have

(¢ (w)) (x°) = ( I (s -+ hy — hi+1)) xSt
p; is an SE-step of p

Here, we let W act on the Laurent polynomial ring k [x,x ]
(extending the action on k [x] in the obvious way).

e An w-reflected version also holds.

* Thus, Spo1 = Ssg can be proved by uniqueness of roots of a
polynomial.

The rest of the proofs are easy.
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6. Enumeration

6.1. All words

© For 0 <k < n,leta(n, k) be the number of p-equivalence classes
of words with k many D’s and n — k many U'’s.

* Easy fact. We have
a(n,0)=a(n,n)=1 and a(nk)=a(nn—k).
e Theorem. For n > 2k > 0, we have
a(n,k) =a(n—1,k)+a(n—2,k—1).
* Proposition. For k > 0, we have

a(2k, k) = (k+3)2"2 and a(2k+1,k) = (k+2)2k1.

e Theorem. We have

- (1 —3tx? + t2x*) (1 — tx?)?
Y ) aln k)it = (1—tx — tx2) (1 — x — tx2)(1 — 2tx2)?

n>0 0<k<n

or equivalently

k.n (1 — tx2>3
LY R = e g o

n>0 0<k<n/2

e Theorem. For all n and k with 0 < k < n/2, we have

k J— -
Z —j+1) (n ;{ 1>.

* Corollary. The total number of ¢-equivalence classes of words
of length n > 0 is

n (3n +42)2"/273,  if n even,

Y a(nk) =2 Fuy —

Lok =2 L {(n +15)2173)/2,if n odd.
Fibonacci

n 0123 4 5 6 7 8 9 10
Ya(nk)|1 2 4 8 15 28 50 90 156 274 466
k
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6.2.

c-Dyck words

e Fix a constant ¢ > 0, and let M. C M be the set of words

6.3.

whose every prefix has at least c times as many U’s as D’s. This
is a submonoid of M.

Let a.(n, k) be the number of ¢-equivalence classes of words in
M. that consist of k D’s and n — k U’s.

Lemma. For every real constant ¢ > 1 and any positive integers
nand k withn —1 > (¢ + 1)k, we have

ac(n,k) =a.(n—1,k)+a.(n—2,k—1).

Theorem. If c is a positive integer and n, k are positive integers
with n > (c 4 1)k, then

ac(n, k) = (”_£_1> —(c—z)kf<”_’f_1).

j=0 J

In particular,
k _k_
(n k 1) and
j=0 J
n—k—1
k V4

both of which can be proved bijectively.

a(n,k) =Y
(n, k) =

The size of an equivalence class

Theorem. Let w € M be a word with NE-height polynomial

Y a;z' and SE-height polynomial Y b;z. Then, the size of the
i€Z I€Z
¢-equivalence class containing w is

T (ﬂi + biyo — 1) (b—i +a_ip— 1)
i>0 bii2 a_i-2

(a(’;; boy, if w is balanced;
(aOJbeOO_l), if w is rising and non-balanced;

(uOJF:OO_l), if w is falling and non-balanced.
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7. Bond percolation

* Consider again the number of all ¢-equivalence classes of words
of length n:

n 01234 5 6 7 8 9 10
Ya(nk)|1 2 4 8 15 28 50 90 156 274 466
k

This agrees with OEIS sequence A006727 “Bond percolation se-
ries for square lattice” up to n = 11 (but no further). Why?

* Bond percolation on the directed square lattice is one of the
fundamental problems in statistical physics.

In our language:

— Fix a number p € [0,1].
— Consider the integer lattice Z2.
— A site is a lattice point (i, j) with i = jmod 2.

— The NE-arcs and the SE-arcs are called bonds. They con-
nect sites.

— Each bond is open with probability p and closed with
probability 1 — p (all bonds are independent).

— Fluid is dropped at the origin (0,0) and flows left-to-right
across open bonds.

— Which sites end up wet (i.e., eventually get some fluid)?

e We are interested in the infinite sum
S(p):= ) Prob (thesite (i,j) ends up wet)
sites (i,f)

and its finite approximations

Su(p):= ) Prob (thesite (i,j) ends up wet).

sites (i,]);
i<n

The latter is an explicit polynomial in p.

The former is a power series, and can be found as the coeffi-
cientwise limit lim S, (p).
n—oo



https://oeis.org/A006727
https://oeis.org/A006727
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* OEIS sequence A006727 “Bond percolation series for square lat-
tice” is the sequence of coefficients of this series

S(p) =1+2p+4p*+8p° + 15p* +28p° + - - - .
Why do they agree with }_a(n, k) upton =117
k

There is some relation: ) a(n, k) is the total # of ¢-equivalence
k
classes of paths from (0,0) to all sites (i, ) with i = n.

Is there a clearer connection?

* Note that S (p) has some negative coefficients, e.g. —48816119038p>°.



https://oeis.org/A006727
https://oeis.org/A006727
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8. The rook theory connection

* The Weyl algebra W is known to be connected to rook theory.
@ Recall the standard definitions:

— A cell is a pair (i, ]) of positive integers, drawn as a 1 x 1-
square.

— A board is a finite set of cells, e.g.,

— A rook placement of a board B is a subset S of B such that
no two cells in S lie in the same row or column.

— The k-th rook number 7, (B) of a board B is the number of
k-element rook placements of B.

For example, the above example board has o (B) = 1 and
r1(B)=|B|=6and r;(B) =8 and r (B) = 0 for all k > 2.

— Two boards B and C are said to be rook-equivalent if they
share the same rook numbers (i.e., if 7, (B) = r, (C) for all
k € IN).

— A well-known class of boards are the Ferrers boards:
If w is a word in M, then the Ferrers board B, is a con-
tiguous set of cells, whose bottom and right boundaries are
straight lines, whereas the rest of its boundary is a jagged
path that (when walked from southwest to northeast) takes

a north-step for each D in w and an east-step for each U in
w (reading the word w from left to right).

For instance, if w = UDDUDUUDUD, then

D
u
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Theorem (Navon 1973). Let w € M be any word that contains
n many D’s and m many U’s. Then, in VW, we have

min{m,n}

¢p(w)= Y 1 (By,)U" D" "
k=0

Consequently:

Equivalence Theorem +. Let u and v be two words in M. As-
sume that # and v have the same # of U’s and the same # of D'’s.
Then, the seven statements Sy, Spo, - - ., Spip 0f the Equivalence
Theorem are also equivalent to the following statement:

— R1: The boards B, and B, are rook-equivalent.

Remark: The Ferrers board B, “does not see” any U’s at the
beginning of w and any D’s at the end of w. Thus, ¢-equivalence
is stronger than rook-equivalence in general. Hence the need for
the extra assumption in the Equivalence Theorem +.

Remark: The implication R = &, is folklore among rook
theorists. What else follows from rook theory?

— A classical result of Foata and Schiitzenberger (1970) shows
that each Ferrers board is rook-equivalent to a unique “in-
creasing Ferrers board”. These “increasing Ferrers boards”
are somewhat similar to our up-normal words, but not
quite in bijection.

— Foata and Schiitzenberger have their own kind of moves
that they use to normalize a Ferrers board modulo rook
equivalence: the “(k, k’')-transforms”. These appear to be
close relatives of our balanced flips.

© Rook equivalence has a surprising interpretation (Haglund 1998

and Cotardo/Gruica/Ravagnani 2023):

For any finite field F, any nonnegative integers n and k, and any

board B C {1,2,... ,n}z, we define P, (B/F) to be the number
of n X n-matrices A € F"*" of rank k such that all entries of A
in cells outside of B are zero.



https://doi.org/10.1007/BF02828687
https://irma.math.unistra.fr/~foata/paper/pub13.pdf
https://doi.org/10.1006/aama.1998.0582
https://arxiv.org/abs/2312.02508v1
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* Example:

D
D
u

OO O OO
NS OO O
STt OO
O X N OO
QL »w & R O

e Equivalence Theorem ++. Let u and v be two words in M
that have the same # of U’s and the same # of D’s. Then, the
seven statements Sy, Spol, - - -, Spip Of the Equivalence Theorem
are also equivalent to the following statements:

— R1: The boards B, and B, are rook-equivalent.

— R,: For any finite field F and any k € IN, we have P (B, /F) =
P (B,/F).

— R3: For any finite field F, we have P; (B,/F) = P; (B,/F).
* The proofs follow from Cotardo/Gruica/Ravagnani 2023, which

also gives some further equivalent conditions (Corollary 3.2 loc.
cit.).



https://arxiv.org/abs/2312.02508v1
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O. lrreducible balanced words

* The Equivalence Theorem shows that ¢-equivalence is “gener-
ated” by balanced commutations.

e But do we need all balanced commutations, or can we make do
with a proper subset?

e The latter is the case. I don’t know what the smallest sufficient
set of balanced commutations is (I don’t think it is even unique),
but here is one that suffices:

* We define special classes of balanced words:

— A UIB word means a balanced word that begins with a U
and whose standard path never returns to the x-axis before
its ending point.

— A DIB word means a balanced word that begins with a D
and whose standard path never returns to the x-axis before
its ending point.

Examples:

UIB DIB neither neither

e An irreducible balanced commutation means a balanced com-
mutation pxyq — pyxq in which one of the words x and y is
UIB and the other is DIB.

* Theorem. Any two ¢-equivalent words can be transformed into
each other by a sequence of irreducible balanced commutations.
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10. Other algebras

e What if we replace the Weyl algebra W =k (D,U | DU — UD = 1)
by other algebras?

10.1. Multivariate Weyl algebras

@ For any n € IN, there is an n-Weyl algebra )V, defined as the
k-algebra given by 2n generators Dy, D,,...,D,, Uy, U,, ..., U,
and relations

DZU] = U]Dl for all i 75 j;
D;U;, = U;D; +1 for all i;
D;D; = D;D; for all i, j;
Uillj = U]Ul- for all i, ]

This is = the k-algebra of differential operators on the polyno-
mial ring k [x1, x2,. .., x,].

e It is also = the n-fold tensor power W*" of the original Weyl
algebra W.

Any word in the Dy, D;,...,D,, U, Uy, ..., U, corresponds to a
tensor product w; @ wy, ® - - - ® wy, of n words w; € M.

The following theorem reduces the ¢-equivalence problem to
that in M:

e Theorem. Let uy,uy,...,u,,01,0s,...,0, be 2n words in M.
Then,

P (1) D¢ () @---R¢ () = ¢ (v1) QP (v2) @+ -- R (v,) In W
if and only if
¢ (u;) = ¢ (v;) for all i.

10.2. Characteristic p
e Hitherto we have assumed that the field k has characteristic 0.

e If k has characteristic p # 0 instead, some things go south:

— the words UP*!'D and UDU? become p-equivalent despite
not satisfying Sng, - . ., Ship;
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— the action of WV on k [x] is no longer faithful.

The implications S, ..., Spip = Sy = Spa still hold, but
both arrows are proper implications.
e Actually, U? and D? are central in W if chark = p.

Thus, we get an additional kind of commutations where we
swap a UF or DF factor with any neighboring factor.

Question: Do these suffice? If not, what transformations are
needed?

e The Weyl algebra W in characteristic p also has three quotients

W™= W/ (WUPW), W_ =W/ (WDFW),
W= = W/ (OWUPW + WDPW),

and we can study a variant of ¢-equivalence on each of them.

* Question: Find analogues of the main theorems for W, W~,
W_ and W_.

10.3. Down-up algebras

e We now return to the case when k is a field of characteristic 0.

@ The Weyl algebra W has several deformations and variations.
One of the most general is the down-up algebra A («, B, y) (due
to Benkart/Roby 1998), defined for any three scalar parameters
«, B,y € k. It is the k-algebra with generators D and U and the
two relations

D*U = «DUD + BUD? + yD and
DU? = aUDU + BU*D + yU.

e Examples:

- A(2,—1,0) is the homogenized Weyl algebra (with gen-
erators D and U and relations [D, DU — UD| = 0 and
[U, DU — UD] = 0). This is also the universal envelop-
ing algebra U ($)) of the Heisenberg Lie algebra $.

— A(2,—1,-2) = U(sh).
e Ifa+ B =7—p=1,then W is a quotient of A («, B, 7).



https://doi.org/10.1006/jabr.1998.7511

Monomial identities in the Weyl algebra (talk) page 21

e Define a map ¢ : M — A(a,B,7v) in the same way as we de-
fined ¢ : M — W. Surprisingly:

* Proposition: If two words u and v in M are ¢-equivalent for
W, then they are also ¢-equivalent for A («, B, ).

* We can show that the converse holds whenevera +8 =y — 8 =
1, but we suspect that it holds in more cases.

But not always! e.g., not in:

1. the case («,B8,7) = (0,1,0) (here, we have ¢ (DU?) =
¢ (U*D));

2. more generally, the case « = v = 0 and arbitrary p (here
we have ¢ (DU*D) = ¢ (U*D*U?));

3. the case («,) = (0,—1) and arbitrary < (here we have
p (DU*) = ¢ (D))

4. the case (a,8) = (—
¢ (DU7) = ¢ (U°D));

5. the case («, ) = (1,—1) and arbitrary < (here we have
¢ (DU°) = ¢ (U°D)).

1,—1) and arbitrary < (here we have

10.4. Bonus question: Hecke algebras

e Question: Consider the Hecke algebra H, (q) of the symmetric
group S,, where g is an indeterminate (i.e., generic). When do
two words i1iy . .. iy and ji} . . . j, over the alphabet {1,2,...,n — 1}

satisfy T, Tj, - T, = T;, Tj, - - - Tj, ?
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