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The following is a note I have contributed to the Vietnamese inequality book

Pha.m V¼an Thua.n, Lê V�¬, Bâ´ t Ð¼ang Thú´ c Suy luân & Khám phá.

A rather small part of this note has appeared in section 4.8 of this book, supple-
mented with applications. What follows is the original note (slightly edited), focusing
rather on variations and possible extensions of the Vornicu-Schur inequality than on
applications. There are more such variations than you might think, and most of these
are rarely applied because of their low renownedness. I hope that it will be a source of
inspiration to �nd new results and new approaches to older inequalities.

The Schur inequality, as well as some of its generalizations subsumed under the
name "Vornicu-Schur inequality", are known to have some e¢ cient and unexpected
applications to proving inequalities. Here we are going to discuss some known ideas in
this �eld and some possible ways to proceed further.
First a convention: In the following, we will use the sign

P
for cyclic sums. This

means, in particular, that if a; b; c are three variables, and x; y; z are three variables
"corresponding" to a; b; c; and if f is a function of six variables, thenX

f (a; b; c; x; y; z) = f (a; b; c; x; y; z) + f (b; c; a; y; z; x) + f (c; a; b; z; x; y) :

For instance, X a

b
x2z =

a

b
x2z +

b

c
y2x+

c

a
z2y:

1. The Vornicu-Schur inequality

There are di¤erent things referred to as Vornicu-Schur inequality; here is a possible
collection of results:
Theorem 1 (Vornicu-Schur inequality, more properly called Vornicu-

Schur-Mildorf inequality, or just generalized Schur inequality). Let a; b; c
be three reals, and let x; y; z be three nonnegative reals. Then, the inequality

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) � 0

holds if one of the following (su¢ cient) conditions is ful�lled:
a) We have a � b � c and x � y:
b) We have a � b � c and z � y:
c) We have a � b � c and x+ z � y:
d) The reals a; b; c are nonnegative and satisfy a � b � c and ax � by:
e) The reals a; b; c are nonnegative and satisfy a � b � c and cz � by:
f) The reals a; b; c are nonnegative and satisfy a � b � c and ax+ cz � by:
g) The reals x; y; z are sidelengths of a triangle.
h) The reals x; y; z are the squares of the sidelengths of a triangle.
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i) The reals ax; by; cz are sidelengths of a triangle.
j) The reals ax; by; cz are the squares of the sidelengths of a triangle.
k) There exists a convex function t : I ! R+; where I is an interval containing the

reals a; b; c; such that x = t (a) ; y = t (b) ; z = t (c) :
Hereby, we denote by R+ the set of all nonnegative reals.
Proof of Theorem 1. It is clear that Theorem 1 a) and b) follow from Theorem 1 c)

(since each of the inequalities x � y and z � y yields x+ z � y), and that Theorem 1
d) and e) follow from Theorem 1 f) (since each of the inequalities ax � by and cz � by
implies ax + cz � by; as the reals a; b; c are nonnegative). Hence, we won�t have to
give separate proofs for Theorem 1 a), b), d), e).
c) Since a� b � 0 and a� c � b� c (both because of a � b � c), we have

x (a� b) (a� c) � x (a� b) (b� c) = �x (b� c) (b� a) :

Since c� a � b� a and c� b � 0 (again since a � b � c), we have

z (c� a) (c� b) � z (b� a) (c� b) = �z (b� c) (b� a) :

Hence,

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b)
� �x (b� c) (b� a) + y (b� c) (b� a)� z (b� c) (b� a)
= (y � (x+ z)) (b� c) (b� a) = ((x+ z)� y) (b� c) (a� b) :

Since (x+ z)� y � 0 (since x+ z � y) and b� c � 0 and a� b � 0 (since a � b � c),
it follows that

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) � 0:

This proves Theorem 1 c).
f) Since the reals cz; by; ax are nonnegative and we have ab � ca � bc (since

a � b � c) and cz+ ax � by; we can apply Theorem 1 c) to the reals ab; ca; bc; cz; by;
ax instead of a; b; c; x; y; z; respectively. We obtain

cz (ab� ca) (ab� bc) + by (ca� bc) (ca� ab) + ax (bc� ab) (bc� ca) � 0; or, equivalently,

abcz (c� a) (c� b) + abcy (b� c) (b� a) + abcx (a� b) (a� c) � 0; or, equivalently,

z (c� a) (c� b) + y (b� c) (b� a) + x (a� b) (a� c) � 0;

and Theorem 1 f) is proven.
g) This follows from Theorem 1 c), because we can WLOG assume that a � b � c

and then have x+ z � y by the triangle inequality, because x; y; z are the sidelengths
of a triangle.
Theorem 1 g) also follows from h) with a little work, but let us also give an

independent proof for Theorem 1 g): Since x; y; z are the sidelengths of a triangle, by
the triangle inequalities we have y+ z > x; z+x > y; x+ y > z; so that y+ z�x > 0;
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z + x� y > 0; x+ y � z > 0: Thus,

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) =
X

x (a� b) (a� c)

=
X 1

2
((z + x� y) + (x+ y � z)) (a� b) (a� c)

=
1

2

�X
(z + x� y) (a� b) (a� c) +

X
(x+ y � z) (a� b) (a� c)

�
=
1

2

�X
(y + z � x) (c� a) (c� b) +

X
(y + z � x) (b� c) (b� a)

�
=
1

2

X
(y + z � x) ((c� a) (c� b) + (b� c) (b� a)) = 1

2

X
(y + z � x) (b� c)2 � 0;

and Theorem 1 g) is proven.
h) We have to prove that

u2 (a� b) (a� c) + v2 (b� c) (b� a) + w2 (c� a) (c� b) � 0;

where u; v; w are the sidelengths of a triangle.
Since u; v; w are the sidelengths of a triangle, the triangle inequality yields v < u+w;

so that v2 < (u+ w)2 : We can WLOG assume that a � b � c; then, b � c � 0 and
b� a � 0; so that (b� c) (b� a) � 0: Thus, v2 < (u+ w)2 becomes v2 (b� c) (b� a) �
(u+ w)2 (b� c) (b� a) : Hence,

u2 (a� b) (a� c) + v2 (b� c) (b� a) + w2 (c� a) (c� b)
� u2 (a� b) (a� c) + (u+ w)2 (b� c) (b� a) + w2 (c� a) (c� b)
= u2 (a� b) (a� c) +

�
u2 (b� c) (b� a) + 2uw (b� c) (b� a) + w2 (b� c) (b� a)

�
+ w2 (c� a) (c� b)
= u2 ((a� b) (a� c) + (b� c) (b� a)) + 2uw (b� c) (b� a)
+ w2 ((b� c) (b� a) + (c� a) (c� b))
= u2 (b� a)2 + 2 � u (b� a) � w (b� c) + w2 (b� c)2 = (u (b� a) + w (b� c))2 � 0;

and Theorem 1 h) is proven.
i) Since the reals ax; by; cz are sidelengths of a triangle and therefore positive, and

x; y; z are nonnegative, it follows that a; b; c are positive. Now, we can obtain Theorem
1 i) by applying Theorem 1 g) to the reals ab; ca; bc; cz; by; ax instead of a; b; c; x; y;
z; respectively (the exact proof is similar to the proof of Theorem 1 f)).
j) Since the reals ax; by; cz are squares of the sidelengths of a triangle and therefore

positive, and x; y; z are nonnegative, it follows that a; b; c are positive. Now, we can
obtain Theorem 1 j) by applying Theorem 1 h) to the reals ab; ca; bc; cz; by; ax instead
of a; b; c; x; y; z; respectively (the exact proof is similar to the proof of Theorem 1 f)).
k) If two of the reals a; b; c are equal, then everything is trivial, so we can assume

that the reals a; b; c are pairwisely distinct. WLOG assume that a > b > c: Then,
b� c > 0 and a� b > 0; and

b =
ba� bc
a� c =

(b� c) a+ (a� b) c
a� c =

(b� c) a+ (a� b) c
(b� c) + (a� b) :
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Since b � c > 0 and a � b > 0; and since the function t is convex on the interval I
containing the reals a; b; c; we have

t (b) = t

�
(b� c) a+ (a� b) c
(b� c) + (a� b)

�
� (b� c) t (a) + (a� b) t (c)

(b� c) + (a� b) :

But if we had t (b) > t (a) and t (b) > t (c) ; then we would have

t (b) =
(b� c) t (b) + (a� b) t (b)

(b� c) + (a� b) >
(b� c) t (a) + (a� b) t (c)

(b� c) + (a� b) :

Hence, the inequalities t (b) > t (a) and t (b) > t (c) cannot both hold; hence, either
t (a) � t (b) or t (c) � t (b) : Since x = t (a) ; y = t (b) ; z = t (c) ; this becomes: Either
x � y or z � y: If x � y; we can apply Theorem 1 a); if z � y; we can apply Theorem
1 b). Thus, Theorem 1 k) is proven.
The Vornicu-Schur inequality is also called the generalized Schur inequality, since

the actual Schur inequality easily follows from it:
Theorem 2 (Schur inequality). a) Let a; b; c be three positive reals, and r a

real. Then, the inequality

ar (a� b) (a� c) + br (b� c) (b� a) + cr (c� a) (c� b) � 0

holds.
b) Let a; b; c be three reals, and r an even nonnegative integer. Then, the inequality

ar (a� b) (a� c) + br (b� c) (b� a) + cr (c� a) (c� b) � 0

holds.
Proof of Theorem 2. a)We can WLOG assume that a � b � c: If r � 0; then a � b

yields ar � br; so the inequality in question follows from Theorem 1 a); if r � 0; then
b � c yields cr � br; so the inequality in question follows from Theorem 1 b).
b) This follows from Theorem 1 k), applied to the convex function t : R ! R+

de�ned by t (u) = ur:
The main strength of the Vornicu-Schur inequality is that the various criteria cover a

lot of di¤erent cases. When you face a (true) inequality of the type
P
x (a� b) (a� c) �

0; chances are high that the terms x; y; z satisfy one of the criteria of Theorem 1. Even
apparent curiousities like Theorem 1 h) can be of use:
Exercise. Prove that for any three nonnegative reals a; b; c; we have�

b2 � c2
�2
+
�
c2 � a2

�2
+
�
a2 � b2

�2 � 4 (b� c) (c� a) (a� b) (a+ b+ c) :
Hint. Rewrite this inequality in the form

P
(a+ b)2 (a� b) (a� c) � 0:

Exercise. Prove that if a; b; c are sidelengths of a triangle, then a2b (a� b) +
b2c (b� c) + c2a (c� a) � 0: [This is IMO 1983 problem 6.]
Hint. Rewrite this as

P
c (a+ b� c) (a� b) (a� c) � 0: Now, this follows from

Theorem 1 g) once it is shown that c (a+ b� c) ; a (b+ c� a) ; b (c+ a� b) are the
sidelengths of a triangle.
Exercise. Prove that if a; b; c are sidelengths of a triangle, and t � 1 is a real,

then
(t+ 1)

X
a3b �

X
ab3 + tabc (a+ b+ c) :
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Hint. This inequality was posted on MathLinks and received pretty ugly proofs.
But we can do better: First, show that it is enough to prove it for t = 1; now, for t = 1;
it becomes

P
b (b+ a) (a� b) (a� c) � 0; what follows from

P
b2 (a� b) (a� c) � 0

and
P
ba (a� b) (a� c) � 0: The �rst of these inequalities follows from Theorem 1 h);

the second one is equivalent to
P
a2b (a� b) � 0; what is the previous exercise.

2. A generalization with odd functions

There is a simple generalization of parts a), b), c), g), k) of Theorem 1:
Theorem 3. Let J � R be an interval, and let p : J ! R be an odd, monotonically

increasing function such that p (t) � 0 for all nonnegative t 2 J and p (t) � 0 for all
nonpositive t 2 J: Let a; b; c be three reals, and let x; y; z be three nonnegative reals.
Then, the inequality

x � p (a� b) � p (a� c) + y � p (b� c) � p (b� a) + z � p (c� a) � p (c� b) � 0

holds if the numbers a� b; a� c; b� c; b� a; c� a; c� b lie in the interval J and one
of the following (su¢ cient) conditions is ful�lled:
a) We have a � b � c and x � y:
b) We have a � b � c and z � y:
c) We have a � b � c and x+ z � y:
d) The reals x; y; z are sidelengths of a triangle.
e) There exists a convex function t : I ! R+; where I is an interval containing the

reals a; b; c; such that x = t (a) ; y = t (b) ; z = t (c) :
The proof of this theorem is analogous to the proofs of the respective parts of

Theorem 1 (for the proof of Theorem 3 d), we have to apply Theorem 3 c)).
As a particular case of Theorem 3, the following result (due to Mildorf?) can be

obtained:
Theorem 4. Let k be a nonnegative integer. Let a; b; c be three reals, and let x;

y; z be three nonnegative reals. Then, the inequality

x (a� b)k (a� c)k + y (b� c)k (b� a)k + z (c� a)k (c� b)k � 0

holds if one of the following (su¢ cient) conditions is ful�lled:
a) We have a � b � c and x � y:
b) We have a � b � c and z � y:
c) We have a � b � c and x+ z � y:
d) The reals x; y; z are sidelengths of a triangle.
e) There exists a convex function t : I ! R+; where I is an interval containing the

reals a; b; c; such that x = t (a) ; y = t (b) ; z = t (c) :
Proof of Theorem 4. If k is even, then k-th powers are always nonnegative and thus

the inequality in question is obviously true. If k is odd, then the function p : R! R
de�ned by p (t) = tk is an odd, monotonically increasing function such that p (t) � 0 for
all nonnegative t 2 R and p (t) � 0 for all nonpositive t 2 R: And thus, the assertion
of Theorem 4 follows from Theorem 3.
Exercise. a) For any triangle ABC; prove the inequality

x sin
A�B
2

sin
A� C
2

+ y sin
B � C
2

sin
B � A
2

+ z sin
C � A
2

sin
C �B
2

� 0
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aa) for x = y = z = 1:
ab) for x = sinA0; y = sinB0; z = sinC 0; where A0; B0; C 0 are the angles of another

triangle A0B0C 0:
ac) for x = sin A

2
; y = sin B

2
; z = sin C

2
:

b) For an acute-angled triangle ABC; prove the inequality

x sin (A�B) sin (A� C) + y sin (B � C) sin (B � A) + z sin (C � A) sin (C �B) � 0

ba), bb), bc), for the same values of x; y; z as in a).
bd) for x = cosA; y = cosB; z = cosC:
c) Prove ba), bb), bc) not only for an acute-angled triangle ABC; but also for a

triangle ABC all of whose angles are � 120�:
d) Create some more inequalities of this kind.

3. The convexity approach

All the conditions given in Theorem 1 for the inequality
P
x (a� b) (a� c) � 0 to

hold are just su¢ cient, none of them is necessary. We could wonder how a necessary
and su¢ cient condition looks like. The answer is given by the following result:
Theorem 5. Let a; b; c; x; y; z be six reals.
a) The inequality

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) � 0

holds if we can �nd a convex function u : I ! R; where I is an interval containing the
reals a; b; c; which satis�es x = (b� c)2 u (a) ; y = (c� a)2 u (b) ; z = (a� b)2 u (c) :
b) The inequality

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) � 0

holds if we can �nd a concave function u : I ! R; where I is an interval containing the
reals a; b; c; which satis�es x = (b� c)2 u (a) ; y = (c� a)2 u (b) ; z = (a� b)2 u (c) :
c) If the reals a; b; c are pairwisely distinct, then the "if" in parts a) and b) can

be replaced by "if and only if".
Proof of Theorem 5. a) If two of the reals a; b; c are equal, then everything is

trivial, so we can assume that the reals a; b; c are pairwisely distinct. We can WLOG
assume that a > b > c:
The inequality in question,

P
x (a� b) (a� c) � 0; rewrites asX

(b� c)2 u (a) � (a� b) (a� c) � 0; what is equivalent toX
(b� c)2 u (a) � (� (a� b) (c� a)) � 0; what is equivalent to

� (b� c) (c� a) (a� b) �
X

(b� c)u (a) � 0:

Since a > b > c; we have b�c > 0; c�a < 0; a�b > 0; so that� (b� c) (c� a) (a� b) >
0; so this inequality is equivalent to

P
(b� c)u (a) � 0:

Now,

b =
ba� bc
a� c =

(b� c) a+ (a� b) c
a� c =

(b� c) a+ (a� b) c
(b� c) + (a� b) :
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Since b � c > 0 and a � b > 0; and since the function u is convex on the interval I
containing the reals a; b; c; we have

u (b) = u

�
(b� c) a+ (a� b) c
(b� c) + (a� b)

�
� (b� c)u (a) + (a� b)u (c)

(b� c) + (a� b) ;

so that

(b� c)u (a) + (a� b)u (c) � ((b� c) + (a� b))u (b) = � (c� a)u (b) ;

so that (b� c)u (a)+(c� a)u (b)+(a� b)u (c) � 0; or, equivalently,
P
(b� c)u (a) �

0: Theorem 5 a) is proven.
The proof of Theorem 5 b) is analogous to the proof of Theorem 5 a), and the

proof of Theorem 5 c) is left to the reader.
One of the consequences of Theorem 5 is:
Theorem 6. Let a; b; c be three positive reals, and r a real. Then, for r � 1 and

for r � 0 we have

ar (b� c)2 (a� b) (a� c) + br (c� a)2 (b� c) (b� a) + cr (a� b)2 (c� a) (c� b) � 0;

while for 0 � r � 1 we have

ar (b� c)2 (a� b) (a� c) + br (c� a)2 (b� c) (b� a) + cr (a� b)2 (c� a) (c� b) � 0:

Proof of Theorem 6. Apply Theorem 5 to x = (b� c)2 u (a) ; y = (c� a)2 u (b) ;
z = (a� b)2 u (c) ; where u : R+! R+ is the function de�ned by u (t) = tr: For r � 1
and for r � 0; the function u is convex, so we can apply Theorem 5 a); for 0 � r � 1;
the function u is concave and we must apply Theorem 5 b).
Note that Theorem 6 for r � 0 has been stated by Spanferkel on MathLinks.

4. Vornicu-Schur and SOS

In the proof of Theorem 1 g), we noticed the identityX
x (a� b) (a� c) = 1

2

X
(y + z � x) (b� c)2 :

This identity relates the Vornicu-Schur inequality to the SOS principle. Indeed, The-
orems 1 a), b), c), g) can be easily proven using SOS with this identity. Therefore,
a number of proofs done using Vornicu-Schur can be rewritten using SOS, and vice
versa.
Exercise. Prove using Theorem 1 c) (though this is overkill) the following inequal-

ity: If a; b; c; x; y; z are six nonnegative reals satisfying a � b � c and x � y � z;
then

x (b� c)2 (b+ c� a) + y (c� a)2 (c+ a� b) + z (a� b)2 (a+ b� c) � 0:

5. One more degree of freedom
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Here is an example of how certain criteria for
P
x (a� b) (a� c) � 0 can be ex-

tended to more free parameters:
Theorem 7. Let a; b; c; x; y; z be six nonnegative reals, and u and v two reals.
a) If u � 1 and v � 1; and the number arrays (a; b; c) and (x; y; z) are equally

sorted, then

x (a� ub) (a� vc) + y (b� uc) (b� va) + z (c� ua) (c� vb) � 0:

b) If u � 1 and v � 1; and the number arrays (a; b; c) and (x; y; z) are oppositely
sorted, then

x (a� ub) (a� vc) + y (b� uc) (b� va) + z (c� ua) (c� vb) � 0:

Proof of Theorem 7. a) We have to prove that
P
x (a� ub) (a� vc) � 0: Since

u � 1; we have u = 1� U for some real U � 0; and similarly v = 1� V for some real
V � 0: Thus,X

x (a� ub) (a� vc) =
X

x (a� (1� U) b) (a� (1� V ) c) =
X

x ((a� b) + Ub) ((a� c) + V c)

=
X

(x (a� b) (a� c) + x (a� b)V c+ xUb (a� c) + xUbV c)

=
X

(x (a� b) (a� c) + V x (a� b) c+ Ux (a� c) b+ UV xbc)

=
X

x (a� b) (a� c) + V
X

x (a� b) c+ U
X

x (a� c) b+ UV
X

xbc:

Since the number arrays (a; b; c) and (x; y; z) are equally sorted, we can WLOG as-
sume that a � b � c and then have x � y; so that Theorem 1 a) yields

P
x (a� b) (a� c) �

0: Also, trivially,
P
xbc � 0: Hence, in order to prove that

P
x (a� ub) (a� vc) �

0; it will be enough to show that
P
x (a� b) c � 0 and

P
x (a� c) b � 0: ButP

x (a� b) c =
P
x (ca� bc) =

P
x�ca�

P
x�bc � 0; because

P
x�ca �

P
x�bc by the

rearrangement inequality (in fact, since the number arrays (a; b; c) and (x; y; z) are
equally sorted, and the number arrays (a; b; c) and (bc; ca; ab) are oppositely sorted,
it follows that the number arrays (bc; ca; ab) and (x; y; z) are oppositely sorted, so
that

P
x � ca �

P
x � bc). Similarly,

P
x (a� c) b � 0: Hence, the proof of Theorem 7

a) is complete.
The proof of Theorem 7 b) is analogous.
Note that about certain particular cases, more can be said:
Exercise. If a; b; c are three nonnegative reals, and k a real, then prove that

(a� kb) (a� kc)
a

+
(b� kc) (b� ka)

b
+
(c� ka) (c� kb)

c
� 0:

6. More variables?

A very natural question to ask is whether the Vornicu-Schur inequality (with any
of its criteria) can be extended to more than three variables. Few is known about this
yet. The �rst result of this kind is probably problem 1 of the IMO 1971:
Exercise. a) Let n be a positive integer. Show that the inequality

nX
i=1

Y
1�j�n; j 6=i

(ai � aj) � 0
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holds for every n reals a1; a2; :::; an if and only if n = 2; n = 3 or n = 5:
b) Why doesn�t this change if we replace "reals" by "positive reals"?
Apart from this, I have not seen any notable success in extending Vornicu-Schur to

several variables. Any new result would be a considerable progress here, since there are
few methods known to prove inequalities for several variables and a generalized Schur
inequality will be a new one.

7. Sum � Sum � Sum � Sum inequalities

Here is a quite useful consequence of Theorem 1:
Theorem 8. Let a; b; c be three reals, and let x; y; z be three nonnegative reals.

Then, the inequality

(azx+ bxy + cyz) (axy + byz + czx) � (yz + zx+ xy) (bcyz + cazx+ abxy)

holds if one of the following (su¢ cient) conditions is ful�lled:
a) We have a � b � c and x � y:
b) We have a � b � c and z � y:
c) We have a � b � c and x+ z � y:
d) The reals a; b; c are nonnegative and satisfy a � b � c and ax � by:
e) The reals a; b; c are nonnegative and satisfy a � b � c and cz � by:
f) The reals a; b; c are nonnegative and satisfy a � b � c and ax+ cz � by:
g) The reals x; y; z are sidelengths of a triangle.
h) The reals x; y; z are the squares of the sidelengths of a triangle.
i) The reals ax; by; cz are sidelengths of a triangle.
j) The reals ax; by; cz are the squares of the sidelengths of a triangle.
k) There exists a convex function t : I ! R+; where I is an interval containing the

reals a; b; c; such that x = t (a) ; y = t (b) ; z = t (c) :
Proof of Theorem 8. According to Theorem 1, each of the conditions a), b), c),

d), e), f), g), h), i), j), k) yields

x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b) � 0:

Now,

(azx+ bxy + cyz) (axy + byz + czx)� (yz + zx+ xy) (bcyz + cazx+ abxy)
=
X

azx � axy +
X

azx � byz +
X

azx � czx�
X

yz � bcyz �
X

yz � cazx�
X

yz � abxy

= xyz
X

xa2 + xyz
X

zab+
X

z2x2ca�
X

y2z2bc� xyz
X

zca� xyz
X

yab

= xyz
X

xa2 + xyz
X

xbc+
X

y2z2bc�
X

y2z2bc� xyz
X

xab� xyz
X

xca

= xyz
X�

xa2 + xbc� xab� xca
�
= xyz

X
x (a� b) (a� c)

= xyz|{z}
�0; since x; y; z are nonnegative

(x (a� b) (a� c) + y (b� c) (b� a) + z (c� a) (c� b))| {z }
�0

;

and thus

(azx+ bxy + cyz) (axy + byz + czx) � (yz + zx+ xy) (bcyz + cazx+ abxy) :
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This proves Theorem 8.
Often, Theorem 8 is easier to apply in the following form:
Theorem 9. Let a; b; c be three reals, and let x; y; z be three nonnegative reals.

Then, the inequality

(ay + bz + cx) (az + bx+ cy) � (x+ y + z) (xbc+ yca+ zab)

holds if one of the following (su¢ cient) conditions is ful�lled:
a) We have a � b � c and x � y:
b) We have a � b � c and z � y:
c) We have a � b � c and yz + xy � zx:
d) The reals a; b; c are nonnegative and satisfy a � b � c and ay � bx:
e) The reals a; b; c are nonnegative and satisfy a � b � c and cy � bz:
f) The reals a; b; c are nonnegative and satisfy a � b � c and ayz + cxy � bzx:
g) The reals yz; zx; xy are sidelengths of a triangle.
h) The reals yz; zx; xy are the squares of the sidelengths of a triangle.
i) The reals ayz; bzx; cxy are sidelengths of a triangle.
j) The reals ayz; bzx; cxy are the squares of the sidelengths of a triangle.
k) There exists a convex function t : I ! R+; where I is an interval containing the

reals a; b; c; such that yz = t (a) ; zx = t (b) ; xy = t (c) :
Proof of Theorem 9. The conditions a), b), c), d), e), f), g), h), i), j), k) of

Theorem 9 are equivalent to the conditions a), b), c), d), e), f), g), h), i), j), k) of
Theorem 8 for the reals yz; zx; xy instead of x; y; z: Hence, if one of the conditions
a), b), c), d), e), f), g), h), i), j), k) of Theorem 9 is ful�lled, then we can apply
Theorem 8 to the reals yz; zx; xy instead of x; y; z; and we obtain

(a � xy � yz + b � yz � zx+ c � zx � xy) (a � yz � zx+ b � zx � xy + c � xy � yz)
� (zx � xy + xy � yz + yz � zx) (bc � zx � xy + ca � xy � yz + ab � yz � zx) :

This simpli�es to

x2y2z2 (ay + bz + cx) (az + bx+ cy) � x2y2z2 (x+ y + z) (xbc+ yca+ zab) :

Hence, we obtain

(ay + bz + cx) (az + bx+ cy) � (x+ y + z) (xbc+ yca+ zab)

unless one of the reals x; y; z is 0: However, in the case when one of the reals x; y; z
is 0; Theorem 9 is pretty easy to prove. Thus, Theorem 9 is completely proven.
Another useful corollary of Theorem 8 is:
Theorem 10. Let a; b; c; x; y; z be six nonnegative reals. Then, the inequality

(ay + bz + cx) (az + bx+ cy) � (yz + zx+ xy) (bc+ ca+ ab)

holds if one of the following (su¢ cient) conditions is ful�lled:

a) We have
x

a
� y

b
� z

c
and x � y:

b) We have
x

a
� y

b
� z

c
and z � y:

c) We have
x

a
� y

b
� z

c
and x+ z � y:
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d) We have
x

a
� y

b
� z

c
and a � b:

e) We have
x

a
� y

b
� z

c
and c � b:

f) We have
x

a
� y

b
� z

c
and a+ c � b:

g) The reals x; y; z are sidelengths of a triangle.
h) The reals x; y; z are the squares of the sidelengths of a triangle.
i) The reals a; b; c are sidelengths of a triangle.
j) The reals a; b; c are the squares of the sidelengths of a triangle.
Proof of Theorem 10. Applying Theorem 8 to the nonnegative reals

x

a
;
y

b
;
z

c
; a;

b; c instead of a; b; c; x; y; z; respectively, we see that, if these reals
x

a
;
y

b
;
z

c
; a; b; c

satisfy one of the conditions a), b), c), d), e), f), g), h), i), j), k) of Theorem 8, the
inequality �x

a
ca+

y

b
ab+

z

c
bc
��x
a
ab+

y

b
bc+

z

c
ca
�

� (bc+ ca+ ab)
�y
b
� z
c
� bc+ z

c
� x
a
� ca+ x

a
� y
b
� ab
�

holds. This inequality simpli�es to

(ay + bz + cx) (az + bx+ cy) � (yz + zx+ xy) (bc+ ca+ ab) :

This is exactly the inequality claimed by Theorem 10. Now, the conditions a), b), c),
g), h) of Theorem 8, applied to the nonnegative reals

x

a
;
y

b
;
z

c
; a; b; c instead of a; b;

c; x; y; z; respectively, are equivalent to the conditions d), e), f), i), j) of Theorem 10
for the reals a; b; c; x; y; z: Hence, Theorem 10 d), e), f), i), j) is proven. In order
to prove Theorem 10 a), b), c), g), h), we apply Theorem 10 e), d), f), i), j) to the
nonnegative reals z; y; x; c; b; a instead of the reals a; b; c; x; y; z; respectively. Thus,
Theorem 10 is completely proven.
Exercise. Prove that, if we replace "six nonnegative reals" by "six reals" in The-

orem 10, then Theorem 10 g), h), i), j) will still remain true. [Note that Theorem 10
j) for arbitrary reals is problem 2.2.23 in Vasile Cîrtoaje, Algebraic Inequalities - Old
and New Methods, Gil 2006.]
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