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The purpose of this note is to provide a synthetic proof of a theorem found by Eric Danneels and

presented in Hyacinthos message #10135. The theorem goes at follows:
Theorem 1. Let P and Q be two points in the plane of a triangle ABC.
The parallels to the lines AP, BP, CP through the point Q intersect the lines BC, CA, AB at the points

U, V, W.
The parallels to the lines BC, CA, AB through the point Q intersect the lines AP, BP, CP at the points

U
�
, V

�
, W

�
.

Then, the lines UU
�
, VV

�
, WW

�
concur at one point.

Note. This point is called the paracevian perspector of the points P and Q with respect to the triangle
ABC. (See Fig. 1.)

Now, Theorem 1 turns out to be by far not as easy to prove as it is formulated. Here is a synthetic
proof:

Let A
�
, B

�
, C

�
be the points of intersection of the lines AP, BP, CP with the lines BC, CA, AB. In

other words, we construct the cevian triangle A
�
B

�
C

�
of the point P with respect to the triangle ABC.

Let the lines A
�
Q, B

�
Q, C

�
Q intersect the lines B

�
C

�
, C

�
A

�
, A

�
B

�
in the points X, Y, Z.

The parallels to the lines UU
�
, VV

�
, WW

�
through the points A

�
, B

�
, C

�
meet the lines B

�
C

�
, C

�
A

�
, A

�
B

�
in the points X

�
, Y

�
, Z

�
.

(See Fig. 2.) At first we will prove that the lines A
�
X

�
, B

�
Y

�
, C

�
Z

�
are concurrent.
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Let the lines QV

�
and B

�
Y

�
meet at F. The parallel to the line CA through the point B meets the lines

A
�
B

�
, B

�
C

�
, B

�
Y and B

�
Y

�
at the points T, S, G and G

�
, respectively. In the following, we will use directed

segments, where the lines QV
�
, CA, ST, being all parallel to each other, are assumed to have the same

direction.
We have QV

�
V � B � and QV � �

VB � . Hence, the quadrilateral QVB � V � is a parallelogram, and we get
QV � � VB � . On the other hand, B � F � VV � and FV � � B � V, so that the quadrilateral V � VB � F is a
parallelogram, and we get V � F � VB � .

Now, from QV � � VB � and V � F � VB � , it follows that QV � � V � F. In other words, the point V � is the
midpoint of the segment QF. But since the lines ST and QV � are parallel to each other (both of them being
parallel to CA), we have GB : BG � � QV � : V � F. Now, from QV � � V � F, we have QV � : V � F � 1; thus,
we conclude GB : BG � � 1, and consequently GB � BG � . Therefore, the point B is the midpoint of the
segment GG � .
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On the other hand, ST � CA yields

SB
B � A 	

BC �
AC � and BT

CB � 	
BA �
CA � , so that

SB 	 B � A 
 BC �
AC � and BT � CB � 
 BA �

CA � .

Consequently,

SB
BT

�
B � A 
 BC �

AC �
CB � 
 BA �

CA �
� B � A 
 BC � 
 CA �

CB � 
 BA � 
 AC � � CA �
BA � 
 BC �

AC � 
 B � A
CB �

� CA �
 A � B �
BC �
 C � A �


 AB �
 B � C �
CA �
A � B �

BC �
C � A �

AB �
B � C .

But since the lines AA � , BB � , CC � concur (at the point P), the Ceva theorem shows that

CA �
A � B �

BC �
C � A �

AB �
B � C � 1.     (1)

Thus, we also have SB
BT � 1, so that SB � BT. In other words, B is the midpoint of the segment ST.

Now, GB � BG � and SB � BT, so we have SG � � SB � BG � � BT � GB � GT and
G � T � BT � BG � � SB � GB � SG. Therefore,

SG �
G � T � GT

SG
.     (2)

Moreover, since ST � CA, we have



TB �
B � A � �

BC
CA �

and C � B �
B � S �

C � A
AB

.

    (3)

    (4)

Now we will use an analogue of the Menelaos theorem, applying to quadrilaterals instead of triangles:
Menelaos theorem for quadrilaterals. If A1,2� , A2,3� , A3,4� , A4,1� are four collinear points on the sides

A1A2, A2A3, A3A4, A4A1 of a quadrilateral A1A2A3A4, then

A1A1,2�
A1,2� A2

� A2A2,3�
A2,3� A3

� A3A3,4�
A3,4� A4

� A4A4,1�
A4,1� A1 � 1.

Note. The number on the right hand side of this equation is indeed 1 (not � 1 in contrast to the classical
Menelaos theorem for triangles).

Now, we apply the Menelaos theorem for quadrilaterals to the quadrilateral A � C � ST, with the collinear
points Y � , B � , G � , B � on its sides A � C � , C � S, ST, TA � , respectively:

A � Y �
Y � C �

� C � B �
B � S

� SG �
G � T

� TB �
B � A � � 1.

Using (2), (3), (4), we can rewrite this as

A � Y �
Y � C �

� C � A
AB

� GT
SG

� BC
CA � � 1.     (5)

On the other hand, we can apply the Menelaos theorem for quadrilaterals to the quadrilateral A � C � ST,
with the collinear points Y, B � , G, B � on its sides A � C � , C � S, ST, TA � , respectively, and obtain

A � Y
YC �

� C � B �
B � S

� SG
GT

� TB �
B � A � � 1.

Division by SG
GT

yields

A � Y
YC �

� C � B �
B � S

� TB �
B � A � �

GT
SG

.

After (3) and (4), we can rewrite this as

A � Y
YC �

� C � A
AB

� BC
CA � �

GT
SG

.

This can be considered as an expression for GT
SG

, and substituting this expression in (5), we obtain

A � Y �
Y � C �

� C � A
AB

� A � Y
YC �

� C � A
AB

� BC
CA �

� BC
CA � � 1, i. e.

A � Y �
Y � C �

� A � Y
YC �

� C � A
AB

2 � BC
CA �

2

� 1, i. e.

A � Y �
Y � C �

� A � Y
YC �

� C � A
CA �

2 � BC
AB

2

� 1.

Similarly,

B � Z �
Z � A �

� B � Z
ZA �

� A � B
AB �

2 � CA
BC

2

� 1;

C � X �
X � B �

� C � X
XB �

� B � C
BC �

2 � AB
CA

2

� 1.

Multiplying these three equations, we obtain



A � Y �
Y � C � �

A � Y
YC � �

C � A
CA �

2

�
BC
AB

2

�
B � Z �
Z � A � �

B � Z
ZA � �

A � B
AB �

2

�
CA
BC

2

�
C � X �
X � B � �

C � X
XB � �

B � C
BC �

2

�
AB
CA

2 �
1 � 1 � 1

�
1.

After a rearrangement of the terms on the left hand side, this equation becomes

C � X �
X � B � �

B � Z �
Z � A � �

A � Y �
Y � C � �

C � X
XB � �

B � Z
ZA � �

A � Y
YC �

�
C � A
CA � �

A � B
AB � �

B � C
BC �

2

�
BC
AB �

CA
BC �

AB
CA

2 �
1.     (6)

Now,

C � X
XB � �

B � Z
ZA � �

A � Y
YC �

�
1

after the Ceva theorem, since the lines A � X, B � Y, C � Z concur (at Q). Furthermore,

C � A
CA � �

A � B
AB � �

B � C
BC �

� A � B
CA � �

C � A
BC � �

B � C
AB �

�
1 : CA �

A � B �
BC �
C � A �

AB �
B � C�

1 : 1 (since CA �
A � B �

BC �
C � A �

AB �
B � C

�
1 after (1))

�
1.

And finally, obviously

BC
AB �

CA
BC �

AB
CA

�
1.

Hence, the equation (6) takes the form

C � X �
X � B � �

B � Z �
Z � A � �

A � Y �
Y � C � � 1 � 12

� 12
�

1,

so that

C � X �
X � B � �

B � Z �
Z � A � �

A � Y �
Y � C �

�
1.

With the help of the Ceva theorem, this shows that the lines A � X � , B � Y � , C � Z � concur at one point. Call this
point R.
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Now, let R � be the midpoint of the segment QR, and let M be the midpoint of the segment QB � . Since

the quadrilateral QVB � V � is a parallelogram, its diagonals QB � and VV � bisect each other. Hence, the
midpoint M of the segment QB � is simultaneously the midpoint of the segment VV � . Thus, this point M lies
on the line VV � . Now, as the line VV � is parallel to the line B � Y � , we can say that the line VV � is the parallel
to the line B � Y � through the point M.

Since R � and M are the midpoints of the sides QR and QB � of triangle RQB � , we have R � M � RB � , or,
equivalently, R � M � B � Y � . Thus, the point R � lies on the parallel to the line B � Y � through the point M. But
we already know that the parallel to the line B � Y � through the point M is the line VV � . Hence, the point R �
lies on the line VV � . Similarly, the same point R � lies on the lines WW � and UU � , and it follows that the
lines UU � , VV � , WW � concur at one point (the point R � ). This completes the proof of Theorem 1. (See Fig.
5.)
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Finally, we consider a remarkable special case of Theorem 1, namely the case when P is the

orthocenter of triangle ABC. In this case, the lines AP, BP, CP are the altitudes of triangle ABC. In other
words, AP � BC, BP � CA and CP � AB.

Since QU  AP and AP � BC, it follows that QU � BC; thus, U is the orthogonal projection of the
point Q on the side BC of triangle ABC. Similarly, V and W are the orthogonal projections of the point Q
on the sides CA and AB. Further, since QU !  BC and AP � BC, we have QU ! � AP; thus, U ! is the
orthogonal projection of the point Q on the line AP, i. e. on the altitude of triangle ABC issuing from A.
Similarly, V ! and W ! are the orthogonal projections of the point Q on the altitudes issuing from B and C,
respectively. Altogether, this allows us to apply Theorem 1 and state the conclusion in the following way:

Theorem 2. Let Q be an arbitrary point in the plane of a triangle ABC.
Let U, V, W be the orthogonal projections of the point Q on the sides BC, CA, AB of triangle ABC.
Let U ! , V ! , W ! be the orthogonal projections of the point Q on the altitudes of triangle ABC issuing

from the vertices A, B, C.
Then, the lines UU ! , VV ! , WW ! concur at one point. (See Fig. 6.)



A

B

C

P

Q

V

U

W '

U'

V '

W

Fig. 6


