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1. Trivialities on isogonal lines

The aim of this note is to provide a rather detailled and general introduction into
isogonal conjugation with respect to a triangle. No new results of the author will be
presented, but some results published elsewhere will be proven in a (presumably) new
way.
Throughout this work, we will make use of directed angles modulo 180�: This is the

kind of angles referred to as "directed angles" in [1], 1.7, and we refer the reader to [1]
for their basic properties. (Also, [2], [3] and [4] provide introductions to this type of
angles.)
Two preliminary conventions are to be made at �rst:

� "Wrt" is an abbreviation for "with respect to".

� The A-altitude of a triangle ABC will mean the altitude of triangle ABC issuing
from its vertexA: Similarly, theA-median of triangleABC will mean the median
of triangle ABC issuing from its vertex A:
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Fig. 1
We start with a simple property of lines (Fig. 1):
Theorem 1. Let u and v be two lines which intersect at an Euclidean (i. e. not

in�nite) point P: Let p and q be two more lines through the point P: Let w and w0 be
the two angle bisectors of the angles formed by the lines u and v: Then, the following
four assertions A1; A2; A3 and A4 are pairwisely equivalent:
Assertion A1: We have ] (u; q) = �] (v; p) :
Assertion A2: We have ] (v; q) = �] (u; p) :
Assertion A3: The lines p and q are symmetric to each other wrt the line w:
Assertion A4: The lines p and q are symmetric to each other wrt the line w0:
Proof of Theorem 1. This proof is almost trivial; we are giving it here only for the

sake of completeness.
First, if assertion A1 holds, i. e. if ] (u; q) = �] (v; p) ; then

] (v; q) = ] (v; u)+] (u; q) = ] (v; u)+(�] (v; p)) = � (] (v; p)� ] (v; u)) = �] (u; p) ;

so assertion A2 also holds. Similarly, we show the converse: if assertion A2 holds, then
assertion A1 also holds. Thus, the assertions A1 and A2 are equivalent.
Now we will prove the equivalence of assertions A1 and A3: Since the line w is an

angle bisector of one of the angles between the lines u and v; we have ] (u; w) =
�] (v; w) : Now, assertion A1 states that ] (u; q) = �] (v; p) ; this rewrites as
] (u; w)+] (w; q) = � (] (v; w) + ] (w; p)) ; what, in view of] (u; w) = �] (v; w) ;
simpli�es to ] (w; q) = �] (w; p) : But since the lines w; p; q all pass through the
point P; this equation is equivalent to stating that the lines p and q are symmetric to
each other wrt the line w: This, however, is assertion A3: Thus we have shown that
the assertions A1 and A3 are equivalent; similarly we can prove the assertions A1 and
A4 to be equivalent. Hence, the equivalence of all four assertions A1; A2; A3 and A4
is established, and Theorem 1 is proven.
Based on Theorem 1 we make a de�nition: If one of the four assertions A1; A2; A3

and A4 holds - and therefore, according to Theorem 1, the three others hold as well -,
then we say that the line q is isogonal to the line p wrt the lines u and v:
For two lines p and q through the point P; we can easily see that the line q is

isogonal to the line p wrt the lines u and v if and only if the line p is isogonal to the
line q wrt the lines u and v: (In fact, the line q is isogonal to the line p wrt the lines u
and v if and only if ] (u; q) = �] (v; p) ; this is equivalent to ] (v; p) = �] (u; q) ;
and this holds if and only if the line p is isogonal to the line q wrt the lines u and v:)
Hence, the assertions "the line q is isogonal to the line p wrt the lines u and v " and
"the line p is isogonal to the line q wrt the lines u and v " are equivalent; thus, instead
of any of these assertions, we can simply say that "the lines p and q are isogonal to
each other wrt the lines u and v ".
Instead of saying "isogonal wrt the lines u and v ", we will often say "isogonal wrt

the angle UPV ", where U is a point on the line u (distinct from P ) and V is a point
on the line v (distinct from P ).
For each line p through the point P; there exists one and only one line q through

the point P which is isogonal to the line p wrt the lines u and v; in fact, this line q
must satisfy the equation ] (u; q) = �] (v; p) ; and this holds for one and only one
line q through the point P (this line can be constructed as a line through a given point
which forms a given angle with another given line). This line q which is isogonal to
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the line p wrt the lines u and v is called the isogonal (or isogonal line) of the line p
wrt the lines u and v; or, equivalently, the isogonal (or isogonal line) of the line p
wrt the angle UPV:

2. Isogonals and perpendicular bisectors

The next properties of isogonals we are going to show are not much harder to prove,
but turn out to be of remarkable usefulness:
Theorem 2. Let u and v be two lines intersecting at an Euclidean point P: Let T

be a point in the plane.
a) Let X and Y be the orthogonal projections of the point T on the lines u and v:

Then, the line XY is perpendicular to the isogonal of the line PT wrt the lines u and
v: (See Fig. 2.)
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b) Let X 0 and Y 0 be the re�ections of the point T in the lines u and v: Then, the

perpendicular bisector of the segment X 0Y 0 is the isogonal of the line PT wrt the lines
u and v: (See Fig. 3.)
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Proof of Theorem 2. Let r be the isogonal of the line PT wrt the lines u and v:

Then, ] (u; r) = �] (v; PT ) and ] (v; r) = �] (u; PT ) :
a) (See Fig. 4.) Since ]PXT = 90� and ]PY T = 90�; the points X and Y

lie on the circle with diameter PT: Thus, ]Y XP = ]Y TP; so that ] (XY ; u) =
] (TY ; PT ) : But TY ? v yields] (TY ; v) = 90�; so that] (XY ; u) = ] (TY ; PT ) =
] (TY ; v) + ] (v; PT ) = 90� + ] (v; PT ) :
Hence, ] (XY ; r) = ] (XY ; u)+] (u; r) = (90� + ] (v; PT ))+ (�] (v; PT )) =

90�: Thus, the line XY is perpendicular to the line r; that is, to the isogonal of the
line PT wrt the lines u and v: This proves Theorem 2 a).
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b) (See Fig. 5.) Since X 0 is the re�ection of the point T in the line u; we have

PX 0 = PT ; similarly, PY 0 = PT: Thus, PX 0 = PT = PY 0; what entails that the point
P is the center of the circle through the points X 0; T; Y 0: Thus, on the one hand, the
central angle theorem for directed angles modulo 180� yields ]PY 0X 0 = 90��]X 0TY 0:
On the other hand, PX 0 = PY 0 implies that P lies on the perpendicular bisector of
the segment X 0Y 0:
Since Y 0 is the re�ection of the point T in the line v; we get] (PY 0; v) = �] (PT ; v)

and TY 0 ? v; the latter yields ] (v; TY 0) = 90�: Similarly, ] (u; TX 0) = 90�: There-
fore,

] (PY 0; X 0Y 0) = ]PY 0X 0 = 90� � ]X 0TY 0 = 90� � ] (TX 0; TY 0) = ] (v; TY 0)� ] (TX 0; TY 0)

= ] (v; TX 0) = ] (v; u) + ] (u; TX 0) = ] (v; u) + 90�:

Consequently,

] (v; X 0Y 0) = ] (PY 0; X 0Y 0)� ] (PY 0; v) = (] (v; u) + 90�)� (�] (PT ; v))
= (] (PT ; v) + ] (v; u)) + 90� = ] (PT ; u) + 90�;

so that

] (r; X 0Y 0) = ] (v; X 0Y 0)� ] (v; r) = (] (PT ; u) + 90�)� (�] (u; PT ))
= (] (PT ; u) + 90�)� ] (PT ; u) = 90�:
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This means that the line r is perpendicular to the line X 0Y 0: Now, the perpendicu-
lar bisector of the segment X 0Y 0 is also perpendicular to the line X 0Y 0: Hence, the
perpendicular bisector of the segment X 0Y 0 is parallel to the line r: But since the per-
pendicular bisector of the segment X 0Y 0 and the line r have a common point (namely
P ), they can only be parallel if they coincide. Hence we see that the perpendicular
bisector of the segment X 0Y 0 coincides with the line r; that is, with the isogonal of the
line PT wrt the lines u and v: This proves Theorem 2 b) and thus completes the proof
of Theorem 2.
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Remark. (See Fig. 6.) As X is the orthogonal projection of the point T on the

line u; whereas X 0 is the re�ection of T in u; we see that X is the midpoint of the
segment TX 0: Similarly, Y is the midpoint of the segment TY 0: Thus, the line XY is a
midparallel in triangle X 0TY 0 and thus parallel to its side X 0Y 0: Hence, the assertion
that X 0Y 0 ? r (the crucial assertion in the proof of Theorem 2 b)) is equivalent to
the assertion that XY ? r (this is the assertion of Theorem 2 a)). This shows that
Theorems 2 a) and 2 b) can be derived from each other.
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Note that Theorem 2 will not only turn out useful to us in our study of isogonal

conjugates, but it can also be applied to olympiad problems like the IMO 2004 problem
5 ([8], post #2).

3. Isogonal conjugation wrt triangles
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Now we show the �rst serious result on isogonals, the isogonal conjugate theo-

rem:
Theorem 3. Let ABC be a triangle and P a point (distinct from the vertices A;

B; C). Then, the isogonals of the lines AP; BP; CP wrt the angles CAB; ABC; BCA
concur at one point Q: (See Fig. 7.)
It has to be noticed that this theorem is formulated for the projective plane - this

means that the point P can be an Euclidean or an in�nite point, and that the isogonals
of the lines AP; BP; CP wrt the angles CAB; ABC; BCA can concur at an Euclidean
or at an in�nite point as well.
Proof of Theorem 3.1 We distinguish between two cases:
Case 1: The point P is an Euclidean (i. e. not in�nite) point.
(See Fig. 8.) Let X 0; Y 0; Z 0 be the re�ections of the point P in the lines BC; CA;

AB:

1The following proof is basically the proof given in [9], apart from the di¤erence that [9] doesn�t
use directed angles.
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Since Y 0 and Z 0 are the re�ections of the point P in the lines CA and AB; according
to Theorem 2 b) it follows that the perpendicular bisector of the segment Y 0Z 0 is the
isogonal of the line AP wrt the lines CA and AB; that is, the isogonal of the line
AP wrt the angle CAB: Similarly, the perpendicular bisectors of the segments Z 0X 0

and X 0Y 0 are the isogonals of the lines BP and CP wrt the angles ABC and BCA:
Thus, the isogonals of the lines AP; BP; CP wrt the angles CAB; ABC; BCA are
the perpendicular bisectors of the segments Y 0Z 0; Z 0X 0; X 0Y 0 and thus concur at one
point - at the circumcenter of triangle X 0Y 0Z 0: This proves Theorem 3 in Case 1.

A

B

C

P
Q

X'

Y'

Z'

Fig. 8
Case 2: The point P is an in�nite point. Then, the lines AP; BP; CP are parallel.
(See Fig. 9.) Let the isogonal of the line AP wrt the angle CAB meet the circum-

circle of triangle ABC at a point Q1 (apart from A). Since the lines AP and AQ1 are
isogonal to each other wrt the angle CAB; we have ] (CA; AQ1) = �] (AB; AP ) :
Since Q1 lies on the circumcircle of triangle ABC; we have ]AQ1C = ]ABC; thus
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] (AQ1; CQ1) = ] (AB; BC) : Hence,

] (CA; CQ1) = ] (CA; AQ1) + ] (AQ1; CQ1) = �] (AB; AP ) + ] (AB; BC)
= � (] (AB; AP )� ] (AB; BC)) = �] (BC; AP ) :

ButAP k CP yields] (BC; AP ) = ] (BC; CP ) ; and thus we obtain] (CA; CQ1) =
�] (BC; CP ) : This means that the line CQ1 is the isogonal of the line CP wrt the
angle BCA: In other words, the point Q1 lies on the isogonal of the line CP wrt the
angle BCA: Similarly, the point Q1 lies on the isogonal of the line BP wrt the angle
ABC: We already know that the point Q1 lies on the isogonal of the line AP wrt the
angle CAB: Thus, the isogonals of the lines AP; BP; CP wrt the angles CAB; ABC;
BCA concur at one point - namely, at the point Q1: Herewith we have not only proved
Theorem 3 in Case 2, but we have also shown that in this case - i. e. in the case when
the point P is in�nite -, the point of intersection of the isogonals of the lines AP; BP;
CP wrt the angles CAB; ABC; BCA lies on the circumcircle of triangle ABC (in fact,
this point of intersection is our point Q1 and lies, by its de�nition, on the circumcircle
of triangle ABC).
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Fig. 9
Now Theorem 3 is completely proven. Based on Theorem 3, we introduce a notion:
The point of intersection of the isogonals of the lines AP; BP; CP wrt the angles

CAB; ABC; BCA is called the isogonal conjugate of the point P wrt the triangle
ABC:
If Q is the isogonal conjugate of a point P wrt the triangle ABC; then the line AQ

is the isogonal of the line AP wrt the angle CAB: This means that the lines AP and
AQ are isogonal to each other wrt the angle CAB: This, in turn, shows that the line
AP is the isogonal of the line AQ wrt the angle CAB: Similarly, the lines BP and
CP are the isogonals of the lines BQ and CQ wrt the angles ABC and BCA: Now,
the point P is the point of intersection of the lines AP; BP; CP; so it therefore must
be the point of intersection of the isogonals of the lines AQ; BQ; CQ wrt the angles
CAB; ABC; BCA: Hence, the point P is the isogonal conjugate of the point Q wrt
the triangle ABC (as long as the point P doesn�t lie on any of the lines BC; CA; AB;
since otherwise, the point Q is one of the vertices A; B; C of triangle ABC; and thus
the isogonal conjugate of Q is not de�ned).
Thus we have shown that if Q is the isogonal conjugate of a point P wrt a triangle

ABC; then, in turn, the point P is the isogonal conjugate of the point Q wrt the
triangle ABC (as long as the point P doesn�t lie on any of the lines BC; CA; AB).
Thus, instead of saying that "the point Q is the isogonal conjugate of the point P wrt
the triangle ABC " or that "the point P is the isogonal conjugate of the point Q wrt
the triangle ABC ", we can say that "the points P and Q are isogonally conjugate
points wrt the triangle ABC ".
Some �rst properties of isogonal conjugates can be obtained by harvesting our proof

of Theorem 3. We start with the following fact:
Theorem 4. Let P and Q be two isogonally conjugate points wrt a triangle ABC:

Then, the point P is an in�nite point if and only if the point Q lies on the circumcircle
of triangle ABC: (See Fig. 10.)
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Proof of Theorem 4. In order to show Theorem 4, we have to prove two assertions:
Assertion 1: If the point P is an in�nite point, then the point Q lies on the

circumcircle of triangle ABC:
Assertion 2: If the point Q lies on the circumcircle of triangle ABC; then the point

P is an in�nite point.
Proof of Assertion 1. The point Q is the isogonal conjugate of P wrt triangle ABC;

that is, the point of intersection of the isogonals of the lines AP; BP; CP wrt the angles
CAB; ABC; BCA: But since the point P is an in�nite point, this point of intersection
must lie on the circumcircle of triangle ABC; as we saw in the proof of Theorem 3 in
Case 2. Thus, Q lies on the circumcircle of triangle ABC; and Assertion 1 is proven.
First proof of Assertion 2. Let P1 be the point of intersection of the line AP with

the line at in�nity. Let Q1 be the isogonal conjugate of this point P1 wrt triangle ABC:
Then, the line AQ1 is the isogonal of the line AP1 wrt the angle CAB: But since the
point Q is the isogonal conjugate of the point P wrt triangle ABC; the line AQ is
the isogonal of the line AP wrt the angle CAB: Since the lines AP1 and AP coincide,
their isogonals wrt the angle CAB must also coincide; i. e., the lines AQ1 and AQ
coincide. This means that the point Q1 lies on the line AQ: Since P1 is an in�nite
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point, the already established Assertion 1 shows that its isogonal conjugate Q1 lies on
the circumcircle of triangle ABC: Thus, the point Q1 is the point of intersection of the
line AQ with the circumcircle of triangle ABC (di¤erent from A). But since the point
Q lies on the circumcircle of triangle ABC; the point Q itself is the point of intersection
of the line AQ with the circumcircle of triangle ABC (di¤erent from A). Hence, the
points Q1 and Q coincide. Thus, the isogonal conjugates of these points Q1 and Q
wrt triangle ABC must also coincide; but the isogonal conjugate of Q1 is the point P1
(since we have de�ned Q1 as the isogonal conjugate of P1 wrt triangle ABC), and the
isogonal conjugate of Q is the point P: Hence, the points P1 and P coincide. Since P1
is an in�nite point, it follows that the point P is an in�nite point, and Assertion 2 is
proven.
Second proof of Assertion 2. We will show the following assertion, which is nothing

but Assertion 2 with P and Q interchanged:
Assertion 2�: If the point P lies on the circumcircle of triangle ABC; then the point

Q is an in�nite point.
This assertion 2� can be derived from our proof of Theorem 3 as follows: Since

the point P lies on the circumcircle of triangle ABC; it is an Euclidean point; thus,
according to the proof of Theorem 3 in Case 1, the isogonals of the lines AP; BP; CP
wrt the angles CAB; ABC; BCA are the perpendicular bisectors of the segments Y 0Z 0;
Z 0X 0; X 0Y 0: Since the point Q is the isogonal conjugate of the point P wrt triangle
ABC; it is the point of intersection of these isogonals, thus the point of intersection
of the perpendicular bisectors of the segments Y 0Z 0; Z 0X 0; X 0Y 0: Now, as the point
P lies on the circumcircle of triangle ABC; according to a well-known fact (Steiner
line theorem), the re�ections X 0; Y 0; Z 0 of the point P in the lines BC; CA; AB
lie on one line; the perpendicular bisectors of the segments Y 0Z 0; Z 0X 0; X 0Y 0 are all
perpendicular to this line X 0Y 0Z 0 and thus all parallel to each other. The point Q is
the point of intersection of these parallel perpendicular bisectors, therefore an in�nite
point (actually, it is the in�nite point of intersection of all lines perpendicular to the line
X 0Y 0Z 0 and can be regarded as the "circumcenter" of the degenerate triangle X 0Y 0Z 0).
Thus, Assertion 2� is proven, and therefore Assertion 2 as well. This completes our
proof of Theorem 4.

4. Re�ections and pedal circles

Another almost trivial consequence of the proof of Theorem 3 is the following fact
(Fig. 11):
Theorem 5. If P is an Euclidean point in the plane of triangle ABC; andX 0; Y 0; Z 0

are the re�ections of the point P in the lines BC; CA; AB; then the isogonal conjugate
Q of the point P wrt the triangle ABC is the circumcenter of triangle X 0Y 0Z 0; and
the lines AQ; BQ; CQ are the perpendicular bisectors of the sides Y 0Z 0; Z 0X 0; X 0Y 0

of this triangle.
Proof of Theorem 5. Since P is an Euclidean point, we can retrieve from our proof

of Theorem 3 in Case 1 the observation that the isogonals of the lines AP; BP; CP wrt
the angles CAB; ABC; BCA are the perpendicular bisectors of the segments Y 0Z 0;
Z 0X 0; X 0Y 0: But as the point Q is the isogonal conjugate of P wrt triangle ABC; the
lines AQ; BQ; CQ are the isogonals of the lines AP; BP; CP wrt the angles CAB;
ABC; BCA: Hence, the lines AQ; BQ; CQ are the perpendicular bisectors of the
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segments Y 0Z 0; Z 0X 0; X 0Y 0: The point Q; being the point of intersection of the lines
AQ; BQ; CQ; is therefore the point of intersection of the perpendicular bisectors of
the segments Y 0Z 0; Z 0X 0; X 0Y 0; thus the circumcenter of triangle X 0Y 0Z 0: This proves
Theorem 5.
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Fig. 11
Another easily accessible property of isogonals is the following one (Fig. 12):
Theorem 6. If P is an Euclidean point in the plane of a triangle ABC; if X; Y; Z

are the orthogonal projections of the point P on the lines BC; CA; AB; and if Q is the
isogonal conjugate of the point P wrt the triangle ABC; then AQ ? Y Z; BQ ? ZX;
CQ ? XY:
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Proof of Theorem 6. Since the points Y and Z are the orthogonal projections of

the point P on the lines CA and AB; according to Theorem 2 a) we see that the line
Y Z is perpendicular to the isogonal of the line AP wrt the lines CA and AB; that is,
to the isogonal of the line AP wrt the angle CAB: But as the point Q is the isogonal
conjugate of P wrt triangle ABC; the line AQ is the isogonal of the line AP wrt the
angle CAB: Hence, the line Y Z is perpendicular to the line AQ: Similarly, the lines
ZX and XY are perpendicular to the lines BQ and CQ; and Theorem 6 is veri�ed.
We slowly move to deeper waters and show two well-known but less obvious prop-

erties of isogonal conjugates (Fig. 13):
Theorem 7. Let P and Q be two Euclidean isogonally conjugate points wrt a

triangle ABC: Let X; Y; Z be the orthogonal projections of the point P on the lines
BC; CA; AB; and let U; V; W be the orthogonal projections of the point Q on the
lines BC; CA; AB:
a) We have PX �QU = PY �QV = PZ �QW:
b) The points X; Y; Z; U; V; W lie on one circle centered at the midpointM of the

segment PQ:
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Proof of Theorem 7. a) Since P is the isogonal conjugate ofQ wrt the triangleABC;

the line AP is the isogonal of the line AQ wrt the angle CAB: Thus, ] (CA; AP ) =
�] (AB; AQ) ; that is, ]Y AP = �]WAQ: Furthermore, ]AY P = �]AWQ (since
]AY P = 90� and ]AWQ = 90�; and since we are working with directed angles modulo
180�; we have 90� = �90�). Thus, triangle AY P is oppositely similar to triangle AWQ:
Similarly, triangle AZP is oppositely similar to triangle AV Q: Thus, the quadrilateral
AY PZ; being formed by the triangles AY P and AZP; is oppositely similar to the
quadrilateral AWQV; being formed by the triangles AWQ and AV Q: This similitude
yields PY : PZ = QW : QV; hence PY � QV = PZ � QW: Analogous considerations
lead to PX �QU = PY �QV: Thus, PX �QU = PY �QV = PZ �QW; and Theorem 7
a) is proven.
b) (See Fig. 14.) The point Q is the isogonal conjugate of P wrt the triangle ABC:

Thus, according to Theorem 5, the point Q is the circumcenter of triangle X 0Y 0Z 0;
where X 0; Y 0; Z 0 are the re�ections of the point P in the lines BC; CA; AB: Hence,
QX 0 = QY 0 = QZ 0:
Since X is the orthogonal projection of the point P on the line BC; while X 0 is the

re�ection of P in BC; we see that X is the midpoint of the segment PX 0: On the other
hand, M is the midpoint of the segment PQ: Thus, the segment MX is a midparallel

in triangle PQX 0; so that MX =
QX 0

2
: Similarly, MY =

QY 0

2
and MZ =

QZ 0

2
:

Therefore, QX 0 = QY 0 = QZ 0 entails MX =MY =MZ:
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As the con�guration is symmetric in the points P and Q; we similarly obtainMU =
MV =MW:
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(See Fig. 15.) Since PX ? UX and QU ? UX; we have PX k QU ; thus,

the quadrilateral PXUQ is a trapezoid with the bases PX and QU: Hence, the line
through the midpoints of its legs PQ and UX is the midparallel of this trapezoid,
therefore is parallel to its base PX; and thus, since PX ? UX; perpendicular to the
line UX: Hence, this midparallel passes through the midpoint of the segment UX and
is perpendicular to the line UX; thus, it is the perpendicular bisector of the segment
UX: Since the midpoint of the segment PQ lies on this midparallel, we thus obtain that
the midpoint of the segment PQ lies on the perpendicular bisector of the segment UX:
The midpoint of the segment PQ is M ; thus, the point M lies on the perpendicular
bisector of the segment UX: This yieldsMU =MX: Together withMX =MY =MZ
and MU = MV = MW; this yields MX = MY = MZ = MU = MV = MW ; in
other words, the points X; Y; Z; U; V; W lie on one circle centered at M: This proves
Theorem 7 b).
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Theorem 7 b) is known as the pedal circle theorem, and the proof we have given

here is apparently new.

5. A result by Hatzipolakis, Yiu and Ehrmann

The following observations are mostly due to Jean-Pierre Ehrmann ([6]) and, to
smaller amounts, to Peter Scholze and me. We start with an interesting result of
Ehrmann (Fig. 16):
Theorem 8. Let P and Q be two Euclidean isogonally conjugate points wrt a

triangle ABC: Then, the isogonal of the line AP wrt the angle BPC and the isogonal
of the line AQ wrt the angle BQC are symmetric to each other wrt the line BC:
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Proof of Theorem 8. (See Fig. 17.) Let X 0; Y 0; Z 0 be the re�ections of the point P

in the lines BC; CA; AB; and let U 0 be the re�ection of the point Q in the line BC:
Then, the point Q is, in turn, the re�ection of U 0 in the line BC: Since the points Q
and X 0 are the re�ections of the points U 0 and P in the line BC; the line QX 0 is the
re�ection of the line U 0P (or, in other words, of the line PU 0) in the line BC: This
means that the lines PU 0 and QX 0 are symmetric to each other wrt the line BC:
According to Theorem 5, the point Q is the circumcenter of triangle X 0Y 0Z 0; thus

the center of the circle through the points X 0; Y 0; Z 0: Hence, by the central angle
theorem for directed angles modulo 180�; we have ]QX 0Z 0 = 90��]Z 0Y 0X 0: In other
words, ] (QX 0; Z 0X 0) = 90� � ] (Y 0Z 0; X 0Y 0) : Furthermore, Theorem 5 tells us that
the lines AQ; BQ; CQ are the perpendicular bisectors of the segments Y 0Z 0; Z 0X 0;
X 0Y 0; this yields AQ ? Y 0Z 0; BQ ? Z 0X 0; CQ ? X 0Y 0; and thus ] (Y 0Z 0; AQ) = 90�;
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] (BQ; Z 0X 0) = 90� and ] (X 0Y 0; CQ) = 90�: Hence,

] (BQ; QX 0) = ] (BQ; Z 0X 0)� ] (QX 0; Z 0X 0) = 90� � (90� � ] (Y 0Z 0; X 0Y 0))

= ] (Y 0Z 0; X 0Y 0) = ] (Y 0Z 0; AQ)� ] (X 0Y 0; AQ)

= 90� � ] (X 0Y 0; AQ) = ] (X 0Y 0; CQ)� ] (X 0Y 0; AQ) = ] (AQ; CQ)
= �] (CQ; AQ) :

Thus, the line QX 0 is the isogonal of the line AQ wrt the angle BQC: Similarly, the
line PU 0 is the isogonal of the line AP wrt the angle BPC: Since we know that the
lines PU 0 and QX 0 are symmetric to each other wrt the line BC; we have thus proven
that the isogonal of the line AP wrt the angle BPC and the isogonal of the line AQ
wrt the angle BQC are symmetric to each other wrt the line BC: Theorem 8 is thus
established.
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The preceeding theorem is a crucial lemma in the proof of a result that was con-

jectured by Antreas P. Hatzipolakis, veri�ed using computer algebra by Paul Yiu ([7])
and proven synthetically by Jean-Pierre Ehrmann ([6]):
Theorem 9. Let P be a point in the plane of a triangle ABC: The lines AP; BP;

CP intersect the lines BC; CA; AB at the points A0; B0; C 0: Let Q be the isogonal
conjugate of the point P wrt the triangle ABC: Then, the re�ections of the lines AQ;
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BQ; CQ in the lines B0C 0; C 0A0; A0B0 concur at one point. (See Fig. 18.)
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Proof of Theorem 9. Again, we follow the proof given by Ehrmann in [6], rewriting

it in a more elementary fashion.
(See Fig. 19.) Let A1; B1; C1; P1 be the isogonal conjugates of the points A; B; C;

P wrt the triangle A0B0C 0:
Since P1 is the isogonal conjugate of P wrt triangle A0B0C 0; the line A0P1 is the

isogonal of the line A0P wrt the angle C 0A0B0: Since A1 is the isogonal conjugate of A
wrt triangle A0B0C 0; the line A0A1 is the isogonal of the line A0A wrt the angle C 0A0B0:
Since the lines A0P and A0A coincide, their isogonals wrt the angle C 0A0B0 must also
coincide; i. e., the lines A0P1 and A0A1 coincide. Hence, the points A0; A1; P1 are
collinear. Similarly, the points B0; B1 and P1 are collinear, and the points C 0; C1 and
P1 are collinear.
Since B1 is the isogonal conjugate of B wrt triangle A0B0C 0; the line A0B1 is the

isogonal of the line A0B wrt the angle C 0A0B0: Since C1 is the isogonal conjugate of C
wrt triangle A0B0C 0; the line A0C1 is the isogonal of the line A0C wrt the angle C 0A0B0:
Since the lines A0B and A0C coincide, their isogonals wrt the angle C 0A0B0 must also
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coincide; this means that the lines A0B1 and A0C1 coincide. In other words, the points
A0; B1; C1 are collinear. Similarly, the points B0; C1; A1 are collinear, and the points
C 0; A1; B1 are collinear.
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Since Q is the isogonal conjugate of the point P wrt triangle ABC; the line AQ is

the isogonal of the line AP wrt the angle CAB:
(See Fig. 20.) Since A and A1 are isogonally conjugate points wrt the triangle

A0B0C 0; Theorem 8 yields that the isogonal of the line A0A wrt the angle B0AC 0 and
the isogonal of the line A0A1 wrt the angle B0A1C 0 are symmetric to each other wrt the
line B0C 0: Now, the isogonal of the line A0A wrt the angle B0AC 0 is the isogonal of the
line AP wrt the angle CAB (since the line A0A is the line A0P; and the angle B0AC 0 is
the angle CAB), and this is the line AQ: Further, the isogonal of the line A0A1 wrt the
angle B0A1C 0 is the isogonal of the line A1P1 wrt the angle C1A1B1 (since the line A0A1
is the line A1P1; and the angle B0A1C 0 is the angle C1A1B1). Thus we obtained that
the line AQ and the isogonal of the line A1P1 wrt the angle C1A1B1 are symmetric to
each other wrt the line B0C 0: In other words, the re�ection of the line AQ in the line
B0C 0 is the isogonal of the line A1P1 wrt the angle C1A1B1: Similarly, the re�ections
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of the lines BQ and CQ in the lines C 0A0 and A0B0 are the isogonals of the lines B1P1
and C1P1 wrt the angles A1B1C1 and B1C1A1: Altogether, the re�ections of the lines
AQ; BQ; CQ in the lines B0C 0; C 0A0; A0B0 are the isogonals of the lines A1P1; B1P1;
C1P1 wrt the angles C1A1B1; A1B1C1; B1C1A1; and thus they concur at one point - at
the isogonal conjugate of the point P1 wrt the triangle A1B1C1: Theorem 9 is proven.
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6. Re�ections in perpendicular bisectors

As an application of isogonal conjugates, we are now going to prove some properties
of the re�ections of a point in the perpendicular bisectors of a triangle noted by José
Carlos Chávez Sandoval in [5]. We start with some trivial facts:
Theorem 10. Let P be an Euclidean point in the plane of a triangle ABC; and

let D; E; F be the re�ections of this point P in the perpendicular bisectors of the
segments BC; CA; AB:
a) The points P; D; E; F lie on one circle centered at the circumcenter O of triangle

ABC:
b) Triangle DEF is oppositely similar to triangle ABC: (See Fig. 21.)
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Proof of Theorem 10. a) The circumcenter O of triangle ABC lies on the perpen-

dicular bisector of its side BC: The point D is the re�ection of the point P in this
perpendicular bisector. Thus, OD = OP: Similarly, OE = OP and OF = OP: Con-
sequently, OP = OD = OE = OF; so that the points P; D; E; F lie on one circle
centered at O; and Theorem 10 a) is proven.
b) As the points P; D; E; F lie on one circle, we have ]FDE = ]FPE: But

as the point E is the re�ection of P in the perpendicular bisector of CA; the line
PE is perpendicular to the perpendicular bisector of CA: In turn, the perpendicular
bisector of CA is perpendicular to the line CA: Hence, the line PE is parallel to
the line CA: Similarly, the line PF is parallel to the line AB: Thus, ] (PF ; PE) =
] (AB; CA) ; what becomes ]FPE = ]BAC: Hence, ]FDE = ]FPE = ]BAC =
�]CAB: Similarly, ]DEF = �]ABC: Consequently, the triangles DEF and ABC
are oppositely similar, and Theorem 10 b) is proven.
Now we come to a nontrivial property of triangle DEF: Before we formulate it we

de�ne a traditional notion in triangle geometry:
If S is the centroid of triangle ABC; and T is an arbitrary point in the plane, then
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the image of the point T under the homothety with center S and factor �1
2
is called

the complement of the point T wrt the triangle ABC:
Now we show a theorem by José Carlos Chávez Sandoval ([5]):
Theorem 11. Let P be an Euclidean point in the plane of a triangle ABC; and

let D; E; F be the re�ections of this point P in the perpendicular bisectors of the
segments BC; CA; AB: Denote by AM ; BM ; CM the midpoints of the segments BC;
CA; AB; and by DM ; EM ; FM the midpoints of the segments EF; FD; DE: Let Q
be the isogonal conjugate of the point P wrt the triangle ABC; and let Q0 be the
complement of the point Q wrt the triangle ABC: Then, the lines AMDM ; BMEM ;
CMFM pass through the point Q0: (See Fig. 22.)
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Proof of Theorem 11. (See Fig. 23.) Since AM is the midpoint of the side BC

of triangle ABC; the segment AAM is the A-median of this triangle; thus, it passes
through the centroid S of triangle ABC and is divided by this centroid in the ratio

2 : 1: This means, we have
AS

SAM
= 2 (with directed segments). On the other hand,

the point Q0 is the complement of the point Q wrt triangle ABC; thus the image of the
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point Q under the homothety with center S and factor �1
2
; this means that the point

Q0 lies on the line SQ and satis�es SQ0 = �1
2
� SQ; so that 2 � SQ0 = �SQ = QS; and

QS

SQ0
= 2: Comparing this with

AS

SAM
= 2; we get

AS

SAM
=
QS

SQ0
; so that, by Thales,

AMQ
0 k AQ:
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(See Fig. 24.) Now, let Z 0 be the re�ection of the point P in the line AB: Then,

]Z 0AB = �]PAB: On the other hand, the re�ection wrt the perpendicular bisector
of the segment AB maps the points A and B to the points B and A; respectively,
and the point P to the point F (because the point F was de�ned as the re�ection
of the point P in the perpendicular bisector of the segment AB). Since re�ection
wrt a line changes the sign of angles (but leaves them invariant in other respects),
we thus have ]FBA = �]PAB: Together with ]Z 0AB = �]PAB; this results in
]FBA = ]Z 0AB; that means, ] (BF ; AB) = ] (AZ 0; AB) : Therefore, BF k AZ 0:
Similarly, AF k BZ 0: Thus, the quadrilateral AFBZ 0 is a parallelogram. Using vectors,
this rewrites as

��!
AZ 0 =

��!
FB:
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(See Fig. 25.) After we have introduced the re�ection Z 0 of the point P in the line

AB; we also denote by Y 0 the re�ection of the point P in the line CA: Similarly to��!
AZ 0 =

��!
FB; we can then show

��!
AY 0 =

��!
EC: Furthermore, according to Theorem 5, the

line AQ is the perpendicular bisector of the segment Y 0Z 0; consequently, the midpoint
X 0
M of the segment Y 0Z 0 lies on AQ:

On the other hand, since X 0
M is the midpoint of the segment Y 0Z 0; we have

���!
AX 0

M =��!
AY 0 +

��!
AZ 0

2
: Since

��!
AY 0 =

��!
EC and

��!
AZ 0 =

��!
FB; this becomes

���!
AX 0

M =

��!
EC +

��!
FB

2
:

Since AM is the midpoint of the segment BC; we have

����!
DMAM =

���!
DMB +

���!
DMC

2
=

����!
DMF +

��!
FB

�
+
���!
EC ����!EDM

�
2

:

But since DM is the midpoint of the segment EF; we have
���!
DMF =

���!
EDM ; so this

simpli�es to

����!
DMAM =

����!
EDM +

��!
FB

�
+
���!
EC ����!EDM

�
2

=

��!
EC +

��!
FB

2
=
���!
AX 0

M :

Thus, DMAM k AX 0
M : Since the line AX

0
M coincides with the line AQ; we thus get

DMAM k AQ: On the other hand, we know that AMQ0 k AQ: Therefore, DMAM k
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AMQ
0: Now, the lines DMAM and AMQ0 have a common point (the point AM), and

thus can only be parallel if they coincide. As a consequence, the lines DMAM and
AMQ

0 coincide, i. e., the point Q0 lies on the line AMDM : Similarly, we may show
that the point Q0 lies on the lines BMEM and CMFM ; and the proof of Theorem 11 is
�nished.
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7. More on isogonal conjugates and re�ections

The following theorem sheds light on a familiar con�guration - re�ections of a point
in the sides of a triangle and its isogonal conjugate, see Theorem 5 - from a new,
symmetric viewpoint:2

Theorem 12. Let A; B; C; D be four distinct points in the plane, and let A0; B0;
C 0; D0 be four distinct points in the plane. Then, the following four assertions B1; B2;
B3 and B4 are pairwisely equivalent:

2Of course, the point D in the following has nothing to do with the point D from Theorems 10
and 11, and the points A0; B0; C 0 in the following have nothing to do with the points A0; B0; C 0 from
Theorem 9.
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Assertion B1: The points A; B; C; D are the circumcenters of triangles B0C 0D0;
C 0D0A0; D0A0B0; A0B0C 0:
Assertion B2: The lines AB; BC; CD; DA; AC; BD are the perpendicular bisec-

tors of the segments C 0D0; D0A0; A0B0; B0C 0; B0D0; A0C 0:
Assertion B3: The points A0; A0; A0; B0; B0; B0; C 0; C 0; C 0; D0; D0; D0 are the

re�ections of the points B0; C 0; D0; C 0; D0; A0; D0; A0; B0; A0; B0; C 0 in the lines CD;
DB; BC; DA; AC; CD; AB; BD; DA; BC; CA; AB:
Assertion B4: The points A0; B0; C 0; D0 are the isogonal conjugates of the points

A; B; C; D wrt the triangles BCD; CDA; DAB; ABC:
(See Fig. 26.)
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Proof of Theorem 12. First, we show the equivalence of the assertions B1 and B2:
If Assertion B1 holds, then the points A; B; C; D are the circumcenters of triangles

B0C 0D0; C 0D0A0; D0A0B0; A0B0C 0: Then, since the circumcenter of a triangle lies on
the perpendicular bisectors of its sides, the point A; being the circumcenter of triangle
B0C 0D0; must lie on the perpendicular bisector of the segment C 0D0: Similarly, the
point B must lie on the perpendicular bisector of the segment C 0D0: Hence, the line
AB is the perpendicular bisector of the segment C 0D0: Similarly, the lines BC; CD;
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DA; AC; BD are the perpendicular bisectors of the segments D0A0; A0B0; B0C 0; B0D0;
A0C 0; and thus Assertion B2 is ful�lled.
Conversely, if Assertion B2 holds, then the lines AB; BC; CD; DA; AC; BD are

the perpendicular bisectors of the segments C 0D0; D0A0; A0B0; B0C 0; B0D0; A0C 0: Hence,
the point A; being the point of intersection of the lines AB; AC; DA; must be the point
of intersection of the perpendicular bisectors of the segments C 0D0; B0D0; B0C 0; and
thus the circumcenter of the triangle B0C 0D0: Similarly, the points B; C; D are the
circumcenters of the triangles C 0D0A0; D0A0B0; A0B0C 0: Thus, Assertion B1 must hold.
Hence, we have shown that the assertions B1 and B2 are equivalent.
The equivalence of the assertions B3 and B2 evidently follows from the following

obvious fact: If P1 and P2 are two distinct points and g1 is a line, then the point P2 is
the re�ection of the point P1 in the line g1 if and only if the line g1 is the perpendicular
bisector of the segment P1P2:
Altogether we have now shown that the assertions B1; B2 and B3 are pairwisely

equivalent. In order to verify the equivalence of all four assertions B1; B2; B3 and B4; it
remains to prove that the assertions B3 and B4 are equivalent. In order to prove this,
we have to establish two auxiliary results:
Auxiliary result 1. If Assertion B4 holds, then so does Assertion B3:
Auxiliary result 2. If Assertion B3 holds, then so does Assertion B4:
Proof of Auxiliary result 1. Assume that Assertion B4 holds. Then, particularly,

the point B0 is the isogonal conjugate of the point B wrt triangle CDA: Thus, the
line AB0 is the isogonal of the line AB wrt the angle DAC: Hence, ] (AC; AB0) =
�] (DA; AB) : Equivalently, ]CAB0 = �]DAB: Similarly, ]CAD0 = �]BAD:
Thus, ]CAB0 = �]DAB = � (�]BAD) = �]CAD0: Now, if B01 is the re�ection
of the point D0 in the line AC; then ]CAB01 = �]CAD0; so that ]CAB01 = ]CAB0:
Hence, the point B01 lies on the line AB

0: Similarly, the point B01 lies on the line CB
0:

But the lines AB0 and CB0 have only one point in common, namely the point B0:
Thus, since the point B01 lies on both of these lines, we must have B

0
1 = B

0: Since we
have introduced the point B01 as the re�ection of the point D

0 in the line AC; we thus
conclude that the point B0 is the re�ection of the point D0 in the line AC: Similarly,
the points A0; A0; A0; B0; B0; C 0; C 0; C 0; D0; D0; D0 are the re�ections of the points B0;
C 0; D0; C 0; A0; D0; A0; B0; A0; B0; C 0 in the lines CD; DB; BC; DA; CD; AB; BD;
DA; BC; CA; AB: In other words, Assertion B3 holds. This proves Auxiliary result 1.
First proof of Auxiliary result 2. Assume that Assertion B3 is valid. Since the

assertions B1; B2 and B3 are equivalent, it thus follows that Assertions B1 and B2 hold
as well; i. e., the points A; B; C; D are the circumcenters of triangles B0C 0D0; C 0D0A0;
D0A0B0; A0B0C 0; and the lines AB; BC; CD; DA; AC; BD are the perpendicular
bisectors of the segments C 0D0; D0A0; A0B0; B0C 0; B0D0; A0C 0:
Since the lines DA; AB; AC are the perpendicular bisectors of the segments B0C 0;

C 0D0; B0D0; we have DA ? B0C 0; AB ? C 0D0; AC ? B0D0; so that ] (DA; B0C 0) =
90�; ] (AB; C 0D0) = 90�; ] (B0D0; AC) = 90�: Thus,

] (DA; AB) = ] (DA; B0C 0) + ] (B0C 0; AB) = 90� + ] (B0C 0; AB)
= ] (AB; C 0D0) + ] (B0C 0; AB) = ] (B0C 0; C 0D0) = ]B0C 0D0:

On the other hand, since A is the circumcenter of triangle B0C 0D0; thus the center
of a circle through the points B0; C 0; D0; the central angle theorem yields ]D0B0A =
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90� � ]B0C 0D0: Hence,

] (AC; AB0) = ] (B0D0; AB0)� ] (B0D0; AC) = ]D0B0A� 90�

= (90� � ]B0C 0D0)� 90� = �]B0C 0D0:

Comparing this with] (DA; AB) = ]B0C 0D0; we infer] (AC; AB0) = �] (DA; AB) :
Thus, the line AB0 is the isogonal of the line AB wrt the angle DAC: Similarly, the
lines CB0 and DB0 are the isogonals of the lines CB and DB wrt the angles ACD
and CDA: Thus, the point B0 is the point of intersection of the isogonals of the lines
CB; DB; AB wrt the angles ACD; CDA; DAC: In other words, the point B0 is the
isogonal conjugate of the point B wrt the triangle CDA: Similarly, the points C 0; D0;
A0 are the isogonal conjugates of the points C; D; A wrt the triangles DAB; ABC;
BCD: Hence, Assertion B4 holds; this proves Auxiliary result 2.
Second proof of Auxiliary result 2. It is particularly easy to prove Auxiliary result

2 basing on Theorem 5:
Assume that Assertion B3 holds. Then, in particular, the point A0 is the re�ection

of the point B0 in the line CD: Hence, DA0 = DB0: Similarly, DB0 = DC 0: Thus,
DA0 = DB0 = DC 0; and this signi�es that the point D is the circumcenter of triangle
A0B0C 0:
Since we assumed Assertion B3 to hold, the points A0; B0; C 0 are the re�ections of

the point D0 in the lines BC; CA; AB: Thus, after Theorem 5, the isogonal conjugate
of the point D0 wrt triangle ABC is the circumcenter of triangle A0B0C 0: But as we
know that the point D is the circumcenter of triangle A0B0C 0; it follows that the point
D is the isogonal conjugate of the point D0 wrt triangle ABC: Hence, in turn, the point
D0 is the isogonal conjugate of the point D wrt triangle ABC: Similarly, the points A0;
B0; C 0 are the isogonal conjugates of the points A; B; C wrt triangles BCD; CDA;
DAB: Therefore, Assertion B4 holds. This again proves Auxiliary result 2.
This completes the proof of Theorem 12.
An easy consequence of Theorem 12 is (Fig. 27):
Theorem 13. Let P be an Euclidean point in the plane of triangle ABC; and let

X 0; Y 0; Z 0 be the re�ections of this point P in the lines BC; CA; AB: Let Q be the
isogonal conjugate of the point P wrt triangle ABC: Then, the points X 0; Y 0; Z 0 are
the isogonal conjugates of the points A; B; C wrt the triangles BQC; CQA; AQB:
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Proof of Theorem 13. (See Fig. 28.) Since Y 0 is the re�ection of the point P in

the line CA; we have AY 0 = AP: Similarly, AZ 0 = AP: Therefore, AY 0 = AP = AZ 0;
thus, the point A is the circumcenter of triangle Y 0Z 0P: Similarly, BZ 0 = BP = BX 0

and CX 0 = CP = CY 0; what yields that the points B and C are the circumcenters
of triangles Z 0PX 0 and PX 0Y 0: Further, according to Theorem 5, the point Q is the
circumcenter of triangle X 0Y 0Z 0: Altogether, we see that the points A; B; C; Q are
the circumcenters of triangles Y 0Z 0P; Z 0PX 0; PX 0Y 0; X 0Y 0Z 0: Thus, the four distinct
points A; B; C; Q and the four distinct points X 0; Y 0; Z 0; P ful�ll the Assertion B1
of Theorem 12. But since, according to Theorem 12, the Assertion B1 is equivalent
to Assertion B4; these points must therefore also satisfy Assertion B4: In other words,
the points X 0; Y 0; Z 0; P are the isogonal conjugates of the points A; B; C; Q wrt
the triangles BCQ; CQA; QAB; ABC: Equivalently, the points X 0; Y 0; Z 0; P are the
isogonal conjugates of the points A; B; C; Q wrt the triangles BQC; CQA; AQB;
ABC: This implies Theorem 13.
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Theorem 13 simpli�es our proof of Theorem 8 given above. In fact, according to

Theorem 13, the point X 0 is the isogonal conjugate of the point A wrt triangle BQC;
what immediately yields that the line QX 0 is the isogonal of the line QA (that is, the
line AQ) wrt the angle BQC; this was a crucial result in the proof of Theorem 8.
[Thanks to Marcello Tarquini for reminding me of this shortcut.]

8. Isogonal conjugates of basic centers

It is useful to identify the isogonal conjugates of known triangle centers. We start
with a trivial fact:
Theorem 14. Let P be a point in the plane of a triangle ABC: Then, the isogonal

conjugate of the point P wrt triangle ABC coincides with the point P if and only if
the point P is the incenter or one of the three excenters of triangle ABC: (See Fig.
29.)
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Proof of Theorem 14. According to the de�nition of isogonals, the isogonal of the

line AP wrt the angle CAB coincides with the line AP if and only if ] (AB; AP ) =
�] (CA; AP ) : But this is equivalent to the line AP being either the internal or the
external angle bisector of the angle CAB: Hence, the isogonal of the line AP wrt the
angle CAB coincides with the line AP if and only if the line AP is either the internal
or the external angle bisector of the angle CAB: Similarly, the isogonal of the line BP
wrt the angle ABC coincides with the line BP if and only if the line BP is either the
internal or the external angle bisector of the angle ABC; and the isogonal of the line
CP wrt the angle BCA coincides with the line CP if and only if the line CP is either
the internal or the external angle bisector of the angle BCA:
The isogonal conjugate of the point P wrt triangle ABC is the point of intersection

of the isogonals of the lines AP; BP; CP wrt the angles CAB; ABC; BCA: Conse-
quently, the isogonal conjugate of the point P wrt triangle ABC coincides with the
point P if and only if the isogonals of the lines AP; BP; CP wrt the angles CAB;
ABC; BCA intersect at the point P; i. e. if and only if the isogonals of the lines AP;
BP; CP wrt the angles CAB; ABC; BCA coincide with the lines AP; BP; CP: As we
know, this is equivalent to the lines AP; BP; CP being the internal or external angle
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bisectors of the angles CAB; ABC; BCA: But there are exactly four points P in the
plane of triangle ABC such that the lines AP; BP; CP are the internal or external
angle bisectors of the angles CAB; ABC; BCA; and these points are the incenter and
the three excenters of triangle ABC: Thus it is proven that the isogonal conjugate of
the point P wrt triangle ABC coincides with the point P if and only if the point P is
the incenter or one of the three excenters of triangle ABC: This proves Theorem 14.
A slightly less trivial fact is the following (Fig. 30):
Theorem 15. Let O be the circumcenter and H the orthocenter of a triangle

ABC: Then, the points O and H are isogonally conjugate points wrt triangle ABC:
In brief: The circumcenter and the orthocenter of any triangle are isogonally con-

jugate points wrt this triangle.
First proof of Theorem 15. Being the circumcenter of triangle ABC; the point O is

the center of a circle through the points A; B; C: Thus, according to the central angle
theorem, ]CAO = 90� � ]ABC: On the other hand, since H is the orthocenter of
triangle ABC; we know that AH ? BC; so that ] (AH; BC) = 90�; and therefore

] (AB; AH) = ] (AB; BC)� ] (AH; BC) = ]ABC � 90� = � (90� � ]ABC)
= �]CAO = �] (CA; AO) :

Hence, the line AH is the isogonal of the line AO wrt the angle CAB: Similarly, the
lines BH and CH are the isogonals of the lines BO and CO wrt the angles ABC and
BCA: Thus, the point H; being the point of intersection of these lines AH; BH; CH;
must be the isogonal conjugate of the point O wrt triangle ABC: This proves Theorem
15.
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Second proof of Theorem 15. (See Fig. 31.) Let BM and CM be the midpoints

of the sides CA and AB of triangle ABC: Then, BMCM k BC: On the other hand,
since the circumcenter O of triangle ABC lies on the perpendicular bisectors of its
sides CA and AB; the midpoints BM and CM of these sides CA and AB must be the
orthogonal projections of the point O on the lines CA and AB: Hence, by Theorem
2 a) (applied to the two lines CA and AB and the point O in the plane), the line
BMCM is perpendicular to the isogonal of the line AO wrt the lines CA and AB; i. e.
wrt the angle CAB: In other words: The isogonal of the line AO wrt the angle CAB
is perpendicular to the line BMCM : Since BMCM k BC; this isogonal must therefore
be perpendicular to the line BC; and since this isogonal passes through the point A;
we can conclude that it is the A-altitude of triangle ABC and thus passes through its
orthocenter H: So the point H lies on the isogonal of the line AO wrt the angle CAB:
Similarly, the point H lies on the isogonals of the lines BO and CO wrt the angles
ABC and BCA: Thus, the point H is the point of intersection of these isogonals, i.
e. the isogonal conjugate of the point O wrt triangle ABC: Once again Theorem 15 is
proven.
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At this point, we mention an easy consequence of Theorem 15 which will be of use

to us later (Fig. 32):
Theorem 16. Let AH ; BH ; CH be the feet of the altitudes of triangle ABC from

the vertices A; B; C: Let O be the circumcenter of triangle ABC: Then, AO ? BHCH ;
BO ? CHAH ; CO ? AHBH :
Proof of Theorem 16. Obviously, the orthocenter H of triangle ABC lies on the

altitude of triangle ABC from the vertex A: The point AH is the foot of this altitude.
Thus, the point AH is the orthogonal projection of the point H on the line BC: Simi-
larly, the points BH and CH are the orthogonal projections of the point H on the lines
CA and AB: By Theorem 15, the point O is the isogonal conjugate of the point H
wrt triangle ABC: Thus, applying Theorem 6 to the point H in the plane of triangle
ABC; we get AO ? BHCH ; BO ? CHAH ; CO ? AHBH : This proves Theorem 16.
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Theorem 16 can also be directly shown through an angle chase.

9. Symmedians and antiparallels

(See Fig. 33.) Let S be the centroid of triangle ABC: Then, the lines AS; BS; and
CS are the A-median, the B-median, and the C-median of triangle ABC; respectively.
The isogonals of these medians AS; BS; CS wrt the angles CAB; ABC; BCA are called
the A-symmedian, B-symmedian, C-symmedian of triangle ABC; respectively,
and altogether referred to as the three symmedians of triangleABC: As a consequence
of their de�nition, these symmedians of triangle ABC intersect at one point, namely
at the isogonal conjugate of the point S wrt triangle ABC: This isogonal conjugate of
the point S wrt triangle ABC is called the symmedian point of triangle ABC and
will be denoted by K in the following. Then, as the A-symmedian, the B-symmedian,
and the C-symmedian of triangle ABC intersect at the point K; they are the lines AK;
BK; and CK:
In brief: The symmedian point of a triangle is the point of intersection of its

symmedians, and it is the isogonal conjugate of the centroid of this triangle wrt this
triangle.
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We won�t discuss further properties of the symmedian point here, but we use the

occasion to give an introduction into the often utilized concept of antiparallels wrt a
side of a triangle:
Let ABC be a triangle, and g a line in the plane. The line g is said to be antipar-

allel to BC wrt the triangle ABC if and only if it is parallel to the tangent to the
circumcircle of triangle ABC at the point A: In this case, one also uses to say that the
line g is an antiparallel to the side BC of triangle ABC:
Similarly, we de�ne when a line is called antiparallel to CA or to AB wrt triangle

ABC; or, in other words, when it is an antiparallel to the side CA or to the side AB
of triangle ABC:
An important remark about this notion of antiparallelism is that the meaning of

the word "antiparallel", in contrast to the meaning of the word "parallel", depends
on the triangle ABC: Just to say that two lines are antiparallel to each other doesn�t
make sense; one can only say that a line is antiparallel to a side of a triangle wrt this
triangle. Accordingly, in the formulation "the line g is an antiparallel to the side BC
of triangle ABC ", one cannot omit the clause "of triangle ABC ", since it
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speci�es the triangle of reference for the notion "antiparallel".
Clearly, through any point there exists exactly one antiparallel to the side BC of

triangle ABC (in fact, by its de�nition, an antiparallel to the side BC of triangle ABC
means a parallel to the tangent to the circumcircle of triangle ABC at the point A; and
through any point there exists exactly one parallel to this tangent). Similarly, through
any point there exists exactly one antiparallel to the side CA of triangle ABC and
exactly one antiparallel to the side AB of triangle ABC:
The basic advantage of the notion of antiparallelism are the many equivalent criteria

for a line to be antiparallel to a side of a triangle. Some of these criteria are given by
the following theorem3:
Theorem 17. Let ABC be a triangle, and let g be a line in the plane. Consider

the following ten assertions:
Assertion E0: The line g is antiparallel to BC wrt triangle ABC:
Assertion E1: The line g is parallel to the tangent to the circumcircle of triangle

ABC at the point A:
Assertion E2: The line g is perpendicular to the line AO; where O is the circum-

center of triangle ABC:
Assertion E3: We have ] (CA; g) = ] (BC; AB) :
Assertion E4: We have ] (AB; g) = ] (BC; CA) :
Assertion E5: The line g is parallel to the line BHCH ; where BH and CH are the

feet of the B-altitude and the C-altitude of triangle ABC: 4

Assertion E6: If P and Q are the points of intersection of the line g with the lines
CA and AB; then the triangles APQ and ABC are oppositely similar.
Assertion E7: If P and Q are the points of intersection of the line g with the lines

CA and AB; then there exists a circle which meets the line CA at the points C and P
and meets the line AB at the points B and Q: 5

Assertion E8: If P and Q are the points of intersection of the line g with the lines
CA and AB; then AB � AQ = AC � AP; where the segments are directed.
Assertion E9: If P and Q are the points of intersection of the line g with the lines

CA and AB; then the midpoint of the segment PQ lies on the A-symmedian of triangle

3Of course, the points P and Q from Theorem 17 have nothing to do with the points P and Q
from the above results on isogonal conjugates.

4If triangle ABC is right-angled at A; then these feet BH and CH both coincide with the vertex
A; in this case, the line BHCH is to be understood as the tangent to the circumcircle of triangle ABC
at the point A:

5Hereby, the following convention applies:
If a circle k touches a line g at a point T; then we say that the circle k meets the line g at the points

T and T:
This convention clari�es how the Assertion E7 is to be understood if e. g. the point P coincides

with the point C: In this case, Assertion E7 states that there exists a circle which meets the line CA
at the points C and C (that is, touches the line CA at the point C) and meets the line AB at the
points B and Q:
This is the reason why the formulation "there exists a circle which meets the line CA at the points

C and P and meets the line AB at the points B and Q " is superior to the shorter formulation "the
points B; C; P; Q lie on one circle". In fact, if P 6= C and Q 6= B; these formulations are equivalent,
but e. g. in the case when the point P coincides with the point C; the points B; C; P; Q always
lie on one circle; hence, if we had used the formulation "the points B; C; P; Q lie on one circle" for
Assertion E7; then this Assertion E7 would not be equivalent to E0 in the case P = C (and similarly
in the case Q = B as well).
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ABC:
Then, we have:
a) The six assertions E0; E1; E2; E3; E4 and E5 are pairwisely equivalent.
b) If the line g doesn�t pass through the point A; then the ten assertions E0; E1; E2;

E3; E4; E5; E6; E7; E8 and E9 are pairwisely equivalent.
(See Fig. 34 for Assertions E1; E2; E3; E4; Fig. 36 for Assertion E5; Fig. 37 for

Assertions E6; E7; E8; and Fig. 38 for Assertion E9:)
Theorem 17 yields, altogether, nine criteria for a line to be antiparallel to BC wrt

triangle ABC: Similar criteria hold for antiparallelism to CA or to AB:

A

B

C

Og

tA

Fig. 34
Our proof of Theorem 17 will require a fact which slightly extends the intersect-

ing chords theorem, the intersecting secants theorem, and the intersecting secant and
tangent theorem:
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Theorem 18. Let u and v be two lines which intersect at an Euclidean point P:

Let U and U 0 be two points on the line u distinct from P; and let V and V 0 be two
points on the line v distinct from P: Then, the following three assertions D1; D2 and
D3 are pairwisely equivalent:
Assertion D1: The triangles PUV and PV 0U 0 are oppositely similar.
Assertion D2: There exists a circle which meets the line u at the points U and U 0

and meets the line v at the points V and V 0: 6

Assertion D3: We have PU � PU 0 = PV � PV 0; where the segments are directed.
(See Fig. 35.)
Proof of Theorem 18.7 We consider only the case when U 6= U 0 and V 6= V 0: The
6Hereby, the same convention applies as in Assertion E7 of Theorem 17.
7This proof is given here but for the sake of consequence in our application of directed angles

modulo 180�: In fact, the equivalence of Assertions D1 and D3 is a trivial corollary of a well-known
similitude criterion which states that two triangles P1P2P3 and Q1Q2Q3 are oppositely similar if and
only if \P1P2P3 = �\Q1Q2Q3 und P1P2 : P2P3 = Q1Q2 : Q2Q3: But here, the sign \ stands for
directed angles modulo 360�; such a similitude criterion cannot hold for directed angles modulo 180�:
As we aim at using directed angles modulo 180� throughout this paper, we will prove this equivalence
in a di¤erent way.
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cases U = U 0 and V = V 0 can be handled in the same way, with the only di¤erence
that here and there instead of chordal angles, we have angles between a chord and a
tangent.
First we show the equivalence of the Assertions D1 and D2:
Assertion D1 states that triangles PUV and PV 0U 0 are oppositely similar. This is

equivalent to ]PUV = �]PV 0U 0 (in fact, if triangles PUV and PV 0U 0 are oppositely
similar, then ]PUV = �]PV 0U 0; and conversely, if ]PUV = �]PV 0U 0; then, to-
gether with ]UPV = �]V 0PU 0; this yields the opposite similarity of triangles PUV
and PV 0U 0). But ]PUV = �]PV 0U 0 rewrites as ]U 0UV = ]U 0V 0V; and this equa-
tion holds if and only if the points U; V; U 0 and V 0 lie on one circle. Since U 6= U 0

and V 6= V 0; the points U; V; U 0 and V 0 lie on one circle if and only if there exists a
circle which meets the line u at the points U and U 0 and meets the line v at the points
V and V 0: The latter is Assertion D2: Combining these steps, we realize that we have
proven the equivalence of Assertions D1 and D2:
Now we are going to prove the equivalence of Assertions D2 and D3:
If Assertion D2 holds, then there exists a circle which meets the line u at the points

U and U 0 and meets the line v at the points V and V 0: The power of the point P wrt
this circle equals PU � PU 0 on the one hand, and equals PV � PV 0 on the other hand.
Thus, PU � PU 0 = PV � PV 0; so that Assertion D3 is valid.
Conversely: If we assume Assertion D3 to hold, then PU � PU 0 = PV � PV 0: Now,

let V 01 be the point of intersection of the circle through the points U; U
0 and V with

the line v di¤erent from V: 8 Then, this circle meets the line u at the points U and
U 0 and meets the line v at the points V and V 01 : Consequently, the power of the point
P wrt this circle equals PU � PU 0 on the one hand, and equals PV � PV 01 on the other
hand. Thus, PU � PU 0 = PV � PV 01 : Comparison with PU � PU 0 = PV � PV 0 yields
PV � PV 01 = PV � PV 0; thus PV 01 = PV 0 (since PV 6= 0). Since the points V 01 and V 0
both lie on the line v and since we use directed segments, this entails that the points
V 01 and V

0 coincide. The fact that the circle through the points U; U 0 and V meets the
line u at the points U and U 0 and meets the line v at the points V and V 01 can now be
rewritten as follows: The circle through the points U; U 0 and V meets the line u at the
points U and U 0 and meets the line v at the points V and V 0: Thus, Assertion D2 is
ful�lled.
Hence, we have shown the equivalence of Assertions D2 and D3: Altogether, we

subsume that all three Assertions D1; D2 and D3 are equivalent, and Theorem 18 is
proven.
Proof of Theorem 17. a) The equivalence of Assertions E0 and E1 is a paraphrase

of the de�nition of antiparallelism.
In order to show the equivalence of Assertions E1 and E2; it is enough to show that

the tangent to the circumcircle of triangle ABC at the point A is perpendicular to the
line AO: But this is clear, since O is the center of this circumcircle.

8If this circle happens to touch the line v; then we set V 01 = V:

43



A

B

C

O

g

BH

CH

Fig. 36
The equivalence of Assertions E1 and E3 can be proven as follows: (See Fig. 35.) Let

tA be the tangent to the circumcircle of triangle ABC at the point A: Then, Assertion
E1 states that g k tA: This is equivalent to ] (CA; g) = ] (CA; tA) : But since tA is
the tangent to the circumcircle of triangle ABC at the point A; while ]CBA is the
chordal angle of the chord CA in this circumcircle, we have ] (CA; tA) = ]CBA; what
rewrites as ] (CA; tA) = ] (BC; AB) : Hence, the equation ] (CA; g) = ] (CA; tA)
is equivalent to the equation ] (CA; g) = ] (BC; AB) : But this equation is Assertion
E3: Hence it is shown that Assertion E1 is equivalent to Assertion E3:
An analogous argument shows the equivalence of the Assertions E1 and E4:
In order to prove the equivalence of the Assertions E2 and E5; it is obviously su¢ cient

to verify that AO ? BHCH : But this follows from Theorem 16.9

Altogether, we have proven all six Assertions E0; E1; E2; E3; E4 and E5 to be equiv-
alent. Thus, the proof of Theorem 17 a) is complete.

9The relation AO ? BHCH also holds in the case when triangle ABC is right-angled at A: In fact,
in this case we have speci�ed that the line BHCH is the tangent to the circumcircle of triangle ABC
at the point A; and this tangent is perpendicular to the line AO (as we already saw).
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b) As Theorem 17 a) is already demonstrated, we know that the Assertions E0; E1;

E2; E3; E4 and E5 are all equivalent. It just remains to prove the equivalence of the
Assertions E6; E7; E8 and E9 to these Assertions in the case when the line g doesn�t pass
through the point A:
First we establish the equivalence of Assertions E3 and E6:
If Assertion E3 holds, then ] (CA; g) = ] (BC; AB) ; this rewrites as ]APQ =

�]ABC: On the other hand, ]PAQ = �]BAC: Hence, the triangles APQ and ABC
are oppositely similar, so that Assertion E6 is valid.
Conversely: If Assertion E6 holds, then triangles APQ and ABC are oppositely

similar, what yields ]APQ = �]ABC: In other words, ] (CA; g) = ] (BC; AB) :
Hence, Assertion E3 is valid.
Thus we have shown the equivalence of the Assertions E3 and E6:
The equivalence of the Assertions E6; E7 and E8 follows from Theorem 18, applied

to the two lines CA and AB which intersect at the Euclidean point A; the two points
P and C on the line CA distinct from A; and the two points Q and B on the line AB
distinct from A:

45



A

B

C

g

P

Q

K
M0

AM

Fig. 38
Altogether, we now know that the nine Assertions E0; E1; E2; E3; E4; E5; E6; E7 and

E8 are all pairwisely equivalent. In order to prove the equivalence of all ten Assertions
E0; E1; E2; E3; E4; E5; E6; E7; E8 and E9; it therefore su¢ ces to prove the equivalence of
the Assertions E0 and E9: This proof is obtained by showing the following two auxiliary
results:
Auxiliary result 1. If Assertion E0 holds, then Assertion E9 holds.
Auxiliary result 2. If Assertion E9 holds, then Assertion E0 holds.
Proof of Auxiliary result 1. (See Fig. 38.) Assume that Assertion E0 holds. As

we already know that Assertion E0 is equivalent to Assertion E6; it thus follows that
Assertion E6 holds as well. That is, the triangles APQ and ABC are oppositely similar.
In oppositely similar triangles, corresponding points form oppositely equal angles. Let
M0 be the midpoint of the segment PQ; and AM the midpoint of the segment BC:
Then, the pointsM0 andAM are corresponding points in the oppositely similar triangles
APQ and ABC (being the midpoints of their respective sides PQ and BC). Hence,
they form oppositely equal angles; particularly, ]PAM0 = �]BAAM : In other words,
] (CA; AM0) = �] (AB; AAM) : Hence, the line AM0 is the isogonal of the line AAM
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wrt the angle CAB: But since AM is the midpoint of the segment BC; the line AAM
is the A-median of triangle ABC: Therefore, the line AM0 is the isogonal of the A-
median of triangle ABC wrt the angle CAB; hence the A-symmedian of triangle ABC:
Consequently, the pointM0 lies on the A-symmedian of triangle ABC: SinceM0 is the
midpoint of the segment PQ; this is exactly Assertion E9: Thus, Auxiliary result 1 is
proven.
Proof of Auxiliary result 2. (See Fig. 39. This �gure is intentionally drawn wrong

in order not to tempt to unfounded conclusions.) Assume that Assertion E9 is valid. In
other words, the midpoint M0 of the segment PQ lies on the A-symmedian of triangle
ABC:
Let the antiparallel to the side BC of triangle ABC through the pointM0 intersect

the lines CA and AB at the points P 0 and Q0: Since the line P 0Q0 is antiparallel to
BC wrt triangle ABC; it ful�lls Assertion E0 of Theorem 17. As we have already
shown that Assertion E0 implies Assertion E9 (this was our Auxiliary result 1), we thus
conclude that this line P 0Q0 ful�lls Assertion E9: That is: The midpoint of the segment
P 0Q0 lies on the A-symmedian of triangle ABC:
Hence, the midpoint of the segment P 0Q0 is the point of intersection of the line P 0Q0

with the A-symmedian of triangle ABC: But this point of intersection is the pointM0:
Therefore, the midpoint of the segment P 0Q0 must be the point M0:
Since M0 is the midpoint of the segment PQ; the re�ection with respect to the

point M0 maps the point P to the point Q: Since M0 is the midpoint of the segment
P 0Q0; the re�ection with respect to the point M0 maps the point P 0 to the point Q0:
Now, if the points P and P 0 were distinct, then the points Q and Q0 would therefore
be distinct as well (since a re�ection maps distinct points to distinct points), and we
would have QQ0 k PP 0 (since a re�ection maps a line to a parallel line); but this cannot
be true, since the lines QQ0 and PP 0 are the lines AB and CA; and we have AB , CA:
Hence, the points P and P 0 cannot be distinct, i. e. we must have P = P 0: Similarly,
Q = Q0: As we know that the line P 0Q0 is antiparallel to BC wrt triangle ABC; we can
thus conclude that the line PQ is antiparallel to BC wrt triangle ABC: This means
that Assertion E0 holds. Thus, Auxiliary result 2 is proven.
This completes the proof of Theorem 17.
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The notion of antiparallelism is mostly applied in the theory of Tucker circles, but

can also often be used to simplify some standard ways of conclusion in elementary
geometry.

10. Isogonal conjugates of Kiepert points

A means for identi�cation of isogonal conjugates is the following fact (Fig. 40):
Theorem 19. Let ABC be a triangle, and let P and Q be two points on the

perpendicular bisector of the segment BC:
a) The following �ve assertions F1; F2; F3; F4 and F5 are pairwisely equivalent:
Assertion F1: We have ]ABP = ]ACQ:
Assertion F2: We have ]ACP = ]ABQ:
Assertion F3: We have ]BCP + ]BCQ = ]BAC:
Assertion F4: We have ]PBC + ]QBC = ]BAC:
Assertion F5: The points P and Q are inverse to each other wrt the circumcircle

of triangle ABC:
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b) If one of the �ve Assertions F1; F2; F3; F4 and F5 holds, then the lines AP and

AQ are isogonal to each other wrt the angle CAB:
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Proof of Theorem 19. a) (See Fig. 41.) Let O be the center of the circumcircle of

triangle ABC: Then, O is the center of a circle through the points A; B; C; hence, by
the central angle theorem, ]ABO = 90� � ]BCA:
The circumcenter O of triangle ABC obviously lies on the perpendicular bisector

of its side BC: On the other hand, we know that the points P and Q lie on this
perpendicular bisector. Hence, the points O; P; Q lie on one line, namely on the
perpendicular bisector of the segment BC: Thus, OQ ? BC; so that ] (OQ; BC) =
90�: Hence,

]BQO = ] (BQ; OQ) = ] (BQ; BC)� ] (OQ; BC) = ]QBC � 90�;

thus ]QBC = ]BQO + 90�: Since the point Q lies on the perpendicular bisector
of the segment BC; we have BQ = CQ; this means that triangle BQC is isosceles,
and satis�es ]QBC = ]BCQ: Hence, ]QBC = ]BQO + 90� becomes ]BCQ =
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]BQO + 90�: Consequently,

]ACQ = ]BCQ� ]BCA = (]BQO + 90�)� ]BCA
= (90� � ]BCA) + ]BQO = ]ABO + ]BQO = ]ABO � ]OQB:

Consider the two lines OP and OB which intersect at the Euclidean point O;
further, consider the two points P and Q on the line OP distinct from O; and the two
points B and B on the line OB distinct from O: We can apply Theorem 18 to these
lines and points. Assertion D1 of Theorem 18 then states that the triangles OPB and
OBQ are oppositely similar, and Assertion D3 states that OP �OQ = OB �OB (where
the segments are directed). As Theorem 18 ensures that the Assertions D1 and D3 are
equivalent, we thus get:
Auxiliary result 1. The triangles OPB and OBQ are oppositely similar if and only

if OP �OQ = OB �OB:
Now we can show the equivalence of the Assertions F1 and F5:
If Assertion F1 holds, then ]ABP = ]ACQ: Since ]ABP = ]ABO + ]OBP

and ]ACQ = ]ABO�]OQB; this becomes ]ABO+]OBP = ]ABO�]OQB; so
that ]OBP = �]OQB: Furthermore, it is evident that ]BOP = �]QOB: Hence,
the triangles OPB and OBQ are oppositely similar. According to Auxiliary result 1,
this entails OP � OQ = OB � OB; that is, OP � OQ = OB2: Now, we know that the
points O; P; Q lie on one line, and that O is the center and OB is the radius of the
circumcircle of triangle ABC: Hence, the equation OP � OQ = OB2 signi�es that the
points P and Q are inverse to each other wrt the circumcircle of triangle ABC: Thus,
Assertion F5 must hold.
Conversely: Assume that Assertion F5 holds. This means that the points P and Q

are inverse to each other wrt the circumcircle of triangle ABC: Since O is the center
and OB is the radius of this circumcircle, this yields OP �OQ = OB2: In other words,
OP � OQ = OB � OB: According to Auxiliary result 1, we thus conclude that the
triangles OPB and OBQ are oppositely similar, so that ]OBP = �]OQB: Hence,
]ABP = ]ABO + ]OBP = ]ABO � ]OQB = ]ACQ; and thus Assertion F1 is
valid.
Thus we have shown that Assertions F1 and F5 are equivalent. In a similar way we

can prove that Assertions F2 and F5 are equivalent.
As seen above, ]QBC = ]BCQ: Thus,

] (BQ; CP ) = ] (BC; CP ) + ] (BQ; BC) = ]BCP + ]QBC = ]BCP + ]BCQ;

so that

]ACP � ]ABQ = ] (AC; CP )� ] (AB; BQ) = (] (AC; BQ) + ] (BQ; CP ))� ] (AB; BQ)
= ] (BQ; CP )� (] (AB; BQ)� ] (AC; BQ)) = ] (BQ; CP )� ] (AB; AC)
= (]BCP + ]BCQ)� ]BAC:

Consequently, we have ]ACP = ]ABQ if and only if ]BCP + ]BCQ = ]BAC: In
other words, Assertion F2 is equivalent to Assertion F3:
We have ]QBC = ]BCQ and similarly ]PBC = ]BCP: Thus, the equation

]BCP + ]BCQ = ]BAC is equivalent to the equation ]PBC + ]QBC = ]BAC:
In other words, Assertion F3 is equivalent to Assertion F4:
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Altogether, we have proven the equivalence of all �ve Assertions F1; F2; F3; F4 and
F5; thus, Theorem 19 a) is veri�ed.
b) Assume that one of the �ve Assertions F1; F2; F3; F4 and F5 holds. Since,

according to Theorem 19 a), all these �ve Assertions are equivalent, we can therefore
conclude that Assertion F1 holds, i. e. we have ]ABP = ]ACQ:
(See Fig. 42.) Since the point P lies on the perpendicular bisector of the segment

BC; we have PB = PC: The circle with center P and radius PB = PC passes through
the points B and C; let BP and CP be the points of intersection of this circle with the
lines AB and CA di¤erent from B and C: Then, PBP = PCP = PB = PC:
Since PBP = PB; the triangle BPBP is isosceles, so that ]BBPP = ]PBBP :

Hence, ]ABPP = ]BBPP = ]PBBP = �]ABP = �]ACQ:
On the other hand, the points B; C; BP and CP lie on one circle (namely, on

the circle with center P and radius PB = PC); thus, ]BBPCP = ]BCCP : This
yields ]ABPCP = ]BBPCP = ]BCCP = �]ACB: Similarly, ]ACPBP = �]ABC:
Consequently, the triangles ACPBP and ABC are oppositely similar.
From ]ABPP = �]ACQ and ]ABPCP = �]ACB; it follows that

]CPBPP = ]ABPP�]ABPCP = (�]ACQ)�(�]ACB) = � (]ACQ� ]ACB) = �]BCQ:

Similarly, ]BPCPP = �]CBQ: Thus, the triangles PCPBP and QBC are oppositely
similar.
Since triangle ACPBP is oppositely similar to triangle ABC; and triangle PCPBP

is oppositely similar to triangle QBC; the quadrilateral ACPPBP formed by the tri-
angles ACPBP and PCPBP is oppositely similar to the quadrilateral ABQC formed
by the triangles ABC and QBC: Consequently, ]CPAP = �]BAQ: In other words,
] (CA; AP ) = �] (AB; AQ) : Thus, the line AP is the isogonal of the line AQ wrt
the angle CAB: This proves Theorem 19 b), and thus concludes the proof of Theorem
19.
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Theorem 19 can be used to obtain a result about the isogonal conjugates of the

so-called Kiepert points of the triangle. These points are de�ned as follows:
(See Fig. 43.) Let ' be an arbitrary angle. On the sides BC; CA; AB of triangle

ABC; we erect isosceles triangles BA'C; CB'A; AC'B with the bases BC; CA; AB
and the equal base angle

]BCA' = ]A'BC = ]CAB' = ]B'CA = ]ABC' = ]C'AB = ':

The Kiepert theorem states that the lines AA'; BB'; CC' concur at one point. We
denote this point by K'; and call it the '-Kiepert point of triangle ABC: Occasion-
ally, triangle A'B'C' is referred to as the '-Kiepert triangle of triangle ABC:
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Fig. 43
(See Fig. 44.) Let A0'; B

0
'; C

0
' be the inverses of the points A'; B'; C' in the

circumcircle of triangle ABC: Let O be the center of this circumcircle.
Since triangle BA'C is isosceles with base BC; we have BA' = CA'; thus, the

point A' lies on the perpendicular bisector of the segment BC: The circumcenter O
of triangle ABC also lies on the perpendicular bisector of its side BC: Thus, the line
OA' is the perpendicular bisector of the segment BC: Now, the point A0' is the inverse
of the point A' in the circumcircle of triangle ABC and therefore lies on the line OA'
(since O is the center of this circumcircle). Thus, the point A0' lies on the perpendicular
bisector of the segment BC:
Now as we know that the points A' and A0' both lie on the perpendicular bisector

of the segment BC; we can apply Theorem 19 to them. Since the points A' and A0'
are inverse to each other wrt the circumcircle of triangle ABC; they ful�ll Assertion
F5 of Theorem 19. Since, according to Theorem 19 a), the Assertions F3 and F5 are
equivalent, they therefore also ful�ll Assertion F3; that is, we have ]BCA'+]BCA0' =
]BAC: Furthermore, according to Theorem 19 b), the validity of Assertion F5 implies
that the lines AA' and AA0' are isogonal to each other wrt the angle CAB:
Since ]BCA' = '; the equation ]BCA' + ]BCA0' = ]BAC becomes ' +
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]BCA0' = ]BAC; thus ]BCA0' = ]BAC � ': Since the point A0' lies on the per-
pendicular bisector of the segment BC; we have BA0' = CA0'; thus, triangle BA

0
'C

is isosceles with base BC; and this yields ]BCA0' = ]A0'BC: Combining this with
]BCA0' = ]BAC�'; we obtain ]BCA0' = ]A0'BC = ]BAC�': Similarly, triangle
CB0'A is isosceles with base CA and ful�lls ]CAB0' = ]B0'CA = ]CBA � '; and
triangle AC 0'B is isosceles with base AB and ful�lls ]ABC 0' = ]C 0'AB = ]ACB�':

A

B

C

Cϕ

Aϕ

Bϕ

Kϕ
Cϕ'

Aϕ'

Bϕ'

Kϕ'

Fig. 44
Since the lines AA' and AA0' are isogonal to each other wrt the angle CAB; the

line AA0' is the isogonal of the line AA' wrt the angle CAB: Now, the line AA' is the
line AK': Hence, the line AA0' is the isogonal of the line AK' wrt the angle CAB:
Similarly, the lines BB0' and CC

0
' are the isogonals of the lines BK' and CK' wrt the

angles ABC and BCA: Thus, altogether, the lines AA0'; BB
0
'; CC

0
' are the isogonals

of the lines AK'; BK'; CK' wrt the angles CAB; ABC; BCA; and hence they concur
at one point, namely at the isogonal conjugate of the point K' wrt triangle ABC:
Summing up, we see:
Theorem 20. Let ABC be a triangle, and ' an arbitary angle. On the sides BC;

CA; AB of triangle ABC; we erect isosceles triangles BA'C; CB'A; AC'B with the
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bases BC; CA; AB and the equal base angle

]BCA' = ]A'BC = ]CAB' = ]B'CA = ]ABC' = ]C'AB = ':

Then, the lines AA'; BB'; CC' concur at one point: the '-Kiepert point K' of
triangle ABC:
Let A0'; B

0
'; C

0
' be the inverses of the points A'; B'; C' in the circumcircle of

triangle ABC: Then, the triangles BA0'C; CB
0
'A; AC

0
'B are isosceles with the bases

BC; CA; AB and the base angles ]BCA0' = ]A0'BC = ]BAC � '; ]CAB0' =
]B0'CA = ]CBA� '; ]ABC 0' = ]C 0'AB = ]ACB � ': The lines AA0'; BB0'; CC 0'
concur at one point, namely at the isogonal conjugate of the point K' wrt the triangle
ABC:
Using the theory of Tucker circles, we can show that this isogonal conjugate lies on

the Brocard axis of triangle ABC; which is the line joining the circumcenter and the
symmedian point of triangle ABC:
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