A few facts on integrality *BRIEF VERSION*
Darij Grinberg
Version 6 (30 November 2010)

The purpose of this note is to collect some theorems and proofs related to integrality in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as considered in Part 1) and integrality over ideals (a less-known but still very useful notion; the book [2] is devoted to it) into one general notion - that of integrality over ideal semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the basic notion of integrality over rings by a suitable change of base ring (Theorem 7). This reduction allows to extend some standard properties of integrality over rings to the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more layer of generality. Its main result is a “relative” version of Theorem 7 (Theorem 11) and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also Theorem 7) a bit further by considering a generalization of powers of an ideal.

Part 5 (Generalizing a lemma by Lombardi) is about an auxiliary result Lombardi used in [3] to prove Kronecker’s Theorem. We extend this auxiliary result here.

This note is supposed to be self-contained (only linear algebra and basic knowledge about rings, ideals and polynomials is assumed).

This is an attempt to make the proofs as short as possible while keeping them easy to read. If you are stuck following one of the proofs, you can find a more detailed version in [4]. However, normally the proofs in [4] are over-detailed, making them harder to read than the ones below.

Preludium

Definitions and notations:

Definition 1. In the following, “ring” will always mean “commutative ring with unity”. We denote the set \{0, 1, 2, ...\} by \(\mathbb{N}\), and the set \{1, 2, 3, ...\} by \(\mathbb{N}^+\).

Definition 2. Let \(A\) be a ring. Let \(M\) be an \(A\)-module. If \(n \in \mathbb{N}\), and if \(m_1, m_2, \ldots, m_n\) are \(n\) elements of \(M\), then we define an \(A\)-submodule \(\langle m_1, m_2, \ldots, m_n \rangle_A\) of \(M\) by

\[
\langle m_1, m_2, \ldots, m_n \rangle_A = \left\{ \sum_{i=1}^{n} a_i m_i \mid (a_1, a_2, \ldots, a_n) \in A^n \right\}.
\]

1Kronecker’s Theorem. Let \(B\) be a ring (“ring” always means “commutative ring with unity” in this paper). Let \(g\) and \(h\) be two elements of the polynomial ring \(B[X]\). Let \(g_\alpha\) be any coefficient of the polynomial \(g\). Let \(h_\beta\) be any coefficient of the polynomial \(h\). Let \(A\) be a subring of \(B\) which contains all coefficients of the polynomial \(gh\). Then, the element \(g_\alpha h_\beta\) of \(B\) is integral over the subring \(A\).
Also, if S is a finite set, and m_s is an element of M for every $s \in S$, then we define an A-submodule $\langle m_s \mid s \in S \rangle_A$ of M by

$$\langle m_s \mid s \in S \rangle_A = \left\{ \sum_{s \in S} a_s m_s \mid (a_s)_{s \in S} \in A^S \right\}.$$

Of course, if m_1, m_2, \ldots, m_n are n elements of M, then

$$\langle m_1, m_2, \ldots, m_n \rangle_A = \langle m_s \mid s \in \{1, 2, \ldots, n\} \rangle_A.$$

We notice something almost trivial:

Module inclusion lemma. Let A be a ring. Let M be an A-module. Let N be an A-submodule of M. If S is a finite set, and m_s is an element of N for every $s \in S$, then $\langle m_s \mid s \in S \rangle_A \subseteq N$.

Definition 3. Let A be a ring, and let $n \in \mathbb{N}$. Let M be an A-module. We say that the A-module M is n-generated if there exist n elements m_1, m_2, \ldots, m_n of M such that $M = \langle m_1, m_2, \ldots, m_n \rangle_A$. In other words, the A-module M is n-generated if and only if there exists a set S and an element m_s of M for every $s \in S$ such that $|S| = n$ and $M = \langle m_s \mid s \in S \rangle_A$.

Definition 4. Let A and B be two rings. We say that $A \subseteq B$ if and only if

- (the set A is a subset of the set B)
- and (the inclusion map $A \to B$ is a ring homomorphism).

Now assume that $A \subseteq B$. Then, obviously, B is canonically an A-algebra. If u_1, u_2, ..., u_n are n elements of B, then we define an A-subalgebra $A[u_1, u_2, \ldots, u_n]$ of B by

$$A[u_1, u_2, \ldots, u_n] = \{ P(u_1, u_2, \ldots, u_n) \mid P \in A[X_1, X_2, \ldots, X_n] \}.$$

In particular, if u is an element of B, then the A-subalgebra $A[u]$ of B is defined by

$$A[u] = \{ P(u) \mid P \in A[X] \}.$$

Since $A[X] = \left\{ \sum_{i=0}^{m} a_i X^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, \ldots, a_m) \in A^{m+1} \right\}$, this becomes

$$A[u] = \left\{ \left(\sum_{i=0}^{m} a_i X^i \right)(u) \mid m \in \mathbb{N} \text{ and } (a_0, a_1, \ldots, a_m) \in A^{m+1} \right\}$$

where $\left(\sum_{i=0}^{m} a_i X^i \right)(u)$ means the polynomial $\sum_{i=0}^{m} a_i X^i$ evaluated at $X = u$.

$$= \left\{ \sum_{i=0}^{m} a_i u^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, \ldots, a_m) \in A^{m+1} \right\}$$

because $\left(\sum_{i=0}^{m} a_i X^i \right)(u) = \sum_{i=0}^{m} a_i u^i$.

1. Integrality over rings

Theorem 1. Let A and B be two rings such that $A \subseteq B$. Obviously, B is canonically an A-module (since $A \subseteq B$). Let $n \in \mathbb{N}$. Let $u \in B$. Then, the following four assertions \mathcal{A}, \mathcal{B}, \mathcal{C} and \mathcal{D} are pairwise equivalent:

Assertion \mathcal{A}: There exists a monic polynomial $P \in A[X]$ with deg $P = n$ and $P(u) = 0$.

Assertion \mathcal{B}: There exist a B-module C and an n-generated A-submodule U of C such that $uU \subseteq U$ and such that every $v \in B$ satisfying $vU = 0$ satisfies $v = 0$. (Here, C is an A-module, since C is a B-module and $A \subseteq B$.)

Assertion \mathcal{C}: There exists an n-generated A-submodule U of B such that $1 \in U$ and $uU \subseteq U$.

Assertion \mathcal{D}: We have $A[u] = \langle u^0, u^1, \ldots, u^{n-1} \rangle_A$.

Definition 5. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$. We say that the element u of B is n-integral over A if it satisfies the four equivalent assertions \mathcal{A}, \mathcal{B}, \mathcal{C} and \mathcal{D} of Theorem 1.

Hence, in particular, the element u of B is n-integral over A if and only if there exists a monic polynomial $P \in A[X]$ with deg $P = n$ and $P(u) = 0$.

Proof of Theorem 1. We will prove the implications $\mathcal{A} \implies \mathcal{C}$, $\mathcal{C} \implies \mathcal{B}$, $\mathcal{B} \implies \mathcal{A}$, $\mathcal{A} \implies \mathcal{D}$ and $\mathcal{D} \implies \mathcal{C}$.

Proof of the implication $\mathcal{A} \implies \mathcal{C}$. Assume that Assertion \mathcal{A} holds. Then, there exists a monic polynomial $P \in A[X]$ with deg $P = n$ and $P(u) = 0$. Since $P \in A[X]$ is a monic polynomial with deg $P = n$, there exist elements $a_0, a_1, \ldots, a_{n-1}$ of A such that $P(x) = X^n + \sum_{k=0}^{n-1} a_k X^k$. Thus, $P(u) = u^n + \sum_{k=0}^{n-1} a_k u^k$, so that $P(u) = 0$ becomes $u^n + \sum_{k=0}^{n-1} a_k u^k = 0$. Hence, $u^n = -\sum_{k=0}^{n-1} a_k u^k$.

Let U be the A-submodule $\langle u^0, u^1, \ldots, u^{n-1} \rangle_A$ of B. Then, U is an n-generated A-module (since $u^0, u^1, \ldots, u^{n-1}$ are n elements of U). Besides, $1 = u^0 \in U$. (Make sure you understand why this holds even when $n = 0$.)

Now, $u \cdot u^k \in U$ for any $k \in \{0, 1, \ldots, n-1\}$ (this is clear for all $k < n-1$, and for $k = n$ it follows from $u \cdot u^k = u \cdot u^{n-1} = u^n = -\sum_{k=0}^{n-1} a_k u^k \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A = U$). Hence,

$$uU = u \langle u^0, u^1, \ldots, u^{n-1} \rangle_A = \langle u \cdot u^0, u \cdot u^1, \ldots, u \cdot u^{n-1} \rangle_A \subseteq U$$

(since $u \cdot u^k \in U$ for any $k \in \{0, 1, \ldots, n-1\}$).

Thus, Assertion \mathcal{C} holds. Hence, we have proved that $\mathcal{A} \implies \mathcal{C}$.

Proof of the implication $\mathcal{C} \implies \mathcal{B}$. Assume that Assertion \mathcal{C} holds. Then, there exists an n-generated A-submodule U of B such that $1 \in U$ and $uU \subseteq U$. Every $v \in B$ satisfying $vU = 0$ satisfies $v = 0$ (since $1 \in U$ and $vU = 0$ yield $v \cdot \left(\sum_{k=0}^{n-1} a_k u^k \right) \in vU = 0$ and thus $v \cdot 1 = 0$, so that $v = 0$). Set $C = B$. Then, C is a B-module, and U is
an n-generated A-submodule of C (since U is an n-generated A-submodule of B, and $C = B$). Thus, Assertion \mathcal{B} holds. Hence, we have proved that $\mathcal{C} \implies \mathcal{B}$.

Proof of the implication $\mathcal{B} \implies \mathcal{A}$. Assume that Assertion \mathcal{B} holds. Then, there exist a B-module C and an n-generated A-submodule U of C such that $uU \subseteq U$ (where C is an A-module, since C is a B-module and $A \subseteq B$), and such that every $v \in B$ satisfying $vU = 0$ satisfies $v = 0$.

Since the A-module U is n-generated, there exist n elements m_1, m_2, \ldots, m_n of U such that $U = \langle m_1, m_2, \ldots, m_n \rangle_A$. For any $k \in \{1, 2, \ldots, n\}$, we have
\[
 um_k \in uU \quad (\text{since } m_k \in U) \\
 \subseteq U = \langle m_1, m_2, \ldots, m_n \rangle_A,
\]
so that there exist n elements $a_{k,1}, a_{k,2}, \ldots, a_{k,n}$ of A such that $um_k = \sum_{i=1}^{n} a_{k,i}m_i$.

We are now going to work with matrices over U (that is, matrices whose entries lie in U). This might sound somewhat strange, because U is not a ring; however, we can still define matrices over U just as one defines matrices over any ring. While we cannot multiply two matrices over U (because U is not a ring), we can define the product of a matrix over A with a matrix over U as follows: If $P \in A^{\alpha \times \beta}$ is a matrix over A, and $Q \in U^{\beta \times \gamma}$ is a matrix over U, then we define the product $PQ \in U^{\alpha \times \gamma}$ by
\[
 (PQ)_{x,y} = \sum_{z=1}^{\beta} P_{x,z}Q_{z,y} \quad \text{for all } x \in \{1, 2, \ldots, \alpha\} \text{ and } y \in \{1, 2, \ldots, \gamma\}.
\]
(Here, for any matrix T and any integers x and y, we denote by $T_{x,y}$ the entry of the matrix T in the x-th row and the y-th column.)

It is easy to see that whenever $P \in A^{\alpha \times \beta}$, $Q \in A^{\beta \times \gamma}$ and $R \in U^{\gamma \times \delta}$ are three matrices, then $(PQ)R = P(QR)$. The proof of this fact is exactly the same as the standard proof that the multiplication of matrices over a ring is associative.

Now define a matrix $V \in U^{n \times 1}$ by $V_{i,1} = m_i$ for all $i \in \{1, 2, \ldots, n\}$.

Define another matrix $S \in A^{n \times n}$ by $S_{k,i} = a_{k,i}$ for all $k \in \{1, 2, \ldots, n\}$ and $i \in \{1, 2, \ldots, n\}$.

Then, for any $k \in \{1, 2, \ldots, n\}$, we have $u\underbrace{m_k}_{=V_{k,1}} = uV_{k,1} = (uV)_{k,1}$ and $\sum_{i=1}^{n} \underbrace{a_{k,i}m_i}_{=S_{k,i} = V_{i,1}} = S_{k,1}V_{i,1} = (SV)_{k,1}$, so that $um_k = \sum_{i=1}^{n} a_{k,i}m_i$ becomes $(uV)_{k,1} = (SV)_{k,1}$. Since this holds for every $k \in \{1, 2, \ldots, n\}$, we conclude that $uV = SV$. Thus,
\[
 0 = uV - SV = uI_nV - SV = (uI_n - S)V.
\]

Now, let $P \in A[X]$ be the characteristic polynomial of the matrix $S \in A^{n \times n}$. Then, P is monic, and $\deg P = n$. Besides, $P(X) = \det (XI_n - S)$, so that $P(u) = \det (XI_n - S)$.
\[P(u) \cdot V = \det (uI_n - S) \cdot V = (\underbrace{\det (uI_n - S) I_n}_\text{= adj}(uI_n - S) \cdot (uI_n - S)) \cdot V \]

\[= \text{adj} (uI_n - S) \cdot \left((uI_n - S) V \right) \]

\[= 0. \]

(since \((PQ) R = P (QR) \) for any \(P \in A^{\alpha \times \beta}, Q \in A^{\beta \times \gamma} \) and \(R \in U^{\gamma \times \delta} \))

Since the entries of the matrix \(V \) are \(m_1, m_2, \ldots, m_n \), this yields \(P(u) \cdot m_k = 0 \) for every \(k \in \{1, 2, \ldots, n\} \), and thus

\[P(u) \cdot U = P(u) \cdot \langle m_1, m_2, \ldots, m_n \rangle_A = \langle P(u) \cdot m_1, P(u) \cdot m_2, \ldots, P(u) \cdot m_n \rangle_A \]

\[= \langle 0, 0, \ldots, 0 \rangle_A \quad \text{(since } P(u) \cdot m_k = 0 \text{ for any } k \in \{1, 2, \ldots, n\}) \]

\[= 0. \]

This implies \(P(u) = 0 \) (since \(v = 0 \) for every \(v \in B \) satisfying \(vU = 0 \)). Thus, Assertion \(\mathcal{A} \) holds. Hence, we have proved that \(\mathcal{B} \implies \mathcal{A} \).

Proof of the implication \(\mathcal{A} \implies \mathcal{D} \). Assume that Assertion \(\mathcal{A} \) holds. Then, there exists a monic polynomial \(P \in A[X] \) with \(\deg P = n \) and \(P(u) = 0 \). Since \(P \in A[X] \) is a monic polynomial with \(\deg P = n \), there exist elements \(a_0, a_1, \ldots, a_{n-1} \) of \(A \) such that \(P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k \). Thus, \(P(u) = u^n + \sum_{k=0}^{n-1} a_k u^k \), so that \(P(u) = 0 \) becomes \(u^n + \sum_{k=0}^{n-1} a_k u^k = 0 \). Hence, \(u^n = -\sum_{k=0}^{n-1} a_k u^k \).

Let \(U \) be the \(A \)-submodule \(\langle u^0, u^1, \ldots, u^{n-1} \rangle_A \) of \(B \). As in the Proof of the implication \(\mathcal{A} \implies \mathcal{C} \), we can show that \(U \) is an \(n \)-generated \(A \)-module, and that \(1 \in U \) and \(uU \subseteq U \). Thus, induction over \(i \) shows that

\[u^i \in U \quad \text{for any } i \in \mathbb{N}, \quad (1) \]

and consequently

\[A[u] = \left\{ \sum_{i=0}^{m} a_i u^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, \ldots, a_m) \in A^{m+1} \right\} \subseteq U = \langle u^0, u^1, \ldots, u^{n-1} \rangle_A. \]

On the other hand, \(\langle u^0, u^1, \ldots, u^{n-1} \rangle_A \subseteq A[u] \). Hence, \(\langle u^0, u^1, \ldots, u^{n-1} \rangle_A = A[u] \). Thus, Assertion \(\mathcal{D} \) holds. Hence, we have proved that \(\mathcal{A} \implies \mathcal{D} \).

Proof of the implication \(\mathcal{D} \implies \mathcal{C} \). Assume that Assertion \(\mathcal{D} \) holds. Then, \(A[u] = \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \).

Let \(U \) be the \(A \)-submodule \(\langle u^0, u^1, \ldots, u^{n-1} \rangle_A \) of \(B \). Then, \(U \) is an \(n \)-generated \(A \)-module. Besides, \(1 = u^0 \in A[u] = \langle u^0, u^1, \ldots, u^{n-1} \rangle_A = U \). Finally, \(U = \langle u^0, u^1, \ldots, u^{n-1} \rangle_A = A[u] \) yields \(uU \subseteq U \). Thus, Assertion \(\mathcal{C} \) holds. Hence, we have proved that \(\mathcal{D} \implies \mathcal{C} \).

Now, we have proved the implications \(\mathcal{A} \implies \mathcal{D}, \mathcal{D} \implies \mathcal{C}, \mathcal{C} \implies \mathcal{B} \) and \(\mathcal{B} \implies \mathcal{A} \) above. Thus, all four assertions \(\mathcal{A}, \mathcal{B}, \mathcal{C} \) and \(\mathcal{D} \) are pairwise equivalent, and Theorem 1 is proven.
Theorem 2. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}^+$. Let $v \in B$. Let a_0, a_1, \ldots, a_n be $n + 1$ elements of A such that $\sum_{i=0}^{n} a_i v^i = 0$.

Let $k \in \{0, 1, \ldots, n\}$. Then, $\sum_{i=0}^{n-k} a_{i+k} v^i$ is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule $\langle v^0, v^1, \ldots, v^{n-1} \rangle_A$ of B. Then, U is an n-generated A-module, and $1 = v^0 \in U$.

Let $u = \sum_{i=0}^{n-k} a_{i+k} v^i$. Then,

$$0 = \sum_{i=0}^{n-k} a_i v^i = \sum_{i=0}^{k-1} a_i v^i + \sum_{i=k}^{n} a_i v^i = \sum_{i=0}^{k-1} a_i v^i + \sum_{i=0}^{n-k} a_{i+k} v^{i+k}$$

(here, we substituted $i + k$ for i in the second sum)

$$= \sum_{i=0}^{k-1} a_i v^i + v^k \sum_{i=0}^{n-k} a_{i+k} v^i = \sum_{i=0}^{k-1} a_i v^i + v^k u,$$

so that $v^k u = -\sum_{i=0}^{k-1} a_i v^i$.

Now, we are going to show that

$$uv^t \in U \quad \text{for any } t \in \{0, 1, \ldots, n-1\}. \quad (2)$$

Proof of (2). In fact, we have either $t < k$ or $t \geq k$. In the case $t < k$, the relation (2) follows from

$$uv^t = \sum_{i=0}^{n-k} a_i v^i \cdot v^t = \sum_{i=0}^{n-k} a_i v^{i+t} \in U$$

(since every $i \in \{0, 1, \ldots, n-k\}$ satisfies $i+t \in \{0, 1, \ldots, n-1\}$, and thus $\sum_{i=0}^{n-k} a_{i+k} v^{i+t} \in \langle v^0, v^1, \ldots, v^{n-1} \rangle_A = U$). In the case $t \geq k$, the relation (2) follows from

$$uv^t = u v^{k+(t-k)} = v^k u \cdot v^{t-k} = -\sum_{i=0}^{k-1} a_i v^i \cdot v^{t-k}$$

$$= -\sum_{i=0}^{k-1} a_i v^{i+(t-k)} \in U$$

(since every $i \in \{0, 1, \ldots, k-1\}$ satisfies $i+(t-k) \in \{0, 1, \ldots, n-1\}$, and thus $-\sum_{i=0}^{k-1} a_i v^{i+(t-k)} \in \langle v^0, v^1, \ldots, v^{n-1} \rangle_A = U$). Hence, (2) is proven in both possible cases, and thus the proof of (2) is complete.

Now,

$$uU = u \langle v^0, v^1, \ldots, v^{n-1} \rangle_A = \langle uv^0, uv^1, \ldots, uv^{n-1} \rangle_A \subseteq U \quad \text{(due to (2))}.$$
Altogether, U is an n-generated A-submodule of B such that $1 \in U$ and $uU \subseteq U$. Thus, $u \in B$ satisfies Assertion C of Theorem 1. Hence, $u \in B$ satisfies the four equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over A. Since $u = \sum_{i=0}^{n-k} a_{i+k} v^i$, this means that $\sum_{i=0}^{n-k} a_{i+k} v^i$ is n-integral over A. This proves Theorem 2.

Corollary 3. Let A and B be two rings such that $A \subseteq B$. Let $\alpha \in \mathbb{N}$ and $\beta \in \mathbb{N}$ be such that $\alpha + \beta \in \mathbb{N}^+$. Let $u \in B$ and $v \in B$. Let $s_0, s_1, \ldots, s_\alpha$ be $\alpha + 1$ elements of A such that $\sum_{i=0}^{\beta} s_i v^i = u$. Let $t_0, t_1, \ldots, t_\beta$ be $\beta + 1$ elements of A such that $\sum_{i=0}^{\beta} t_i v^{\beta-i} = uv^\beta$. Then, u is $(\alpha + \beta)$-integral over A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)

First proof of Corollary 3. Let $k = \beta$ and $n = \alpha + \beta$. Then, $k \in \{0, 1, \ldots, n\}$. Define $n + 1$ elements a_0, a_1, \ldots, a_n of A by

$$a_i = \begin{cases} t_{\beta-i}, & \text{if } i < \beta; \\ t_0 - s_0, & \text{if } i = \beta; \\ -s_{i-\beta}, & \text{if } i > \beta \end{cases}$$

for every $i \in \{0, 1, \ldots, n\}$.

Then,

$$\sum_{i=0}^{n} a_i v^i = \sum_{i=0}^{\alpha+\beta} a_i v^i = \sum_{i=0}^{\beta-1} a_i v^i + a_\beta v^\beta + \sum_{i=\beta+1}^{\alpha+\beta} a_i v^i$$

$$= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + (t_0 - s_0) v^\beta + \sum_{i=\beta+1}^{\alpha+\beta} (s_i v^i)$$

$$= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - s_0 v^\beta - \sum_{i=\beta+1}^{\alpha+\beta} s_i v^i = \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - \left(s_0 v^\beta + \sum_{i=\beta+1}^{\alpha+\beta} s_i v^{i+\beta} \right)$$

$$= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - s_0 v^\beta = \sum_{i=0}^{\beta-1} s_i v^{i+\beta} = \sum_{i=0}^{\beta-1} s_i v^{i+\beta} = u v^\beta$$

Then,

$$= 0.$$
Thus, Theorem 2 yields that \(\sum_{i=0}^{n-k} a_{i+k}v^i \) is \(n \)-integral over \(A \). But

\[
\sum_{i=0}^{n-k} a_{i+k}v^i = \sum_{i=0}^{n-\beta} a_{i+\beta}v^i = a_0 t_0 - s_0 = t_0 - s_0 + \sum_{i=1}^{n-\beta} a_{i+\beta}v^i = -s_{(i+\beta)-\beta} \text{ (by the definition of } a_{i+\beta})
\]

\[
= (t_0 - s_0) 1 + \sum_{i=1}^{n-\beta} \left(-s_{(i+\beta)-\beta} \right) v^i = t_0 - s_0 + \sum_{i=1}^{n-\beta} (-s_i)v^i = t_0 - \left(\sum_{i=0}^{n-\beta} s_i v^i \right)
\]

\[
= t_0 - \sum_{i=0}^{n-\beta} s_i v^i = t_0 - \sum_{i=0}^{\alpha} s_i v^i \quad \text{(since } n = \alpha + \beta \text{ yields } n - \beta = \alpha)\]

\[
= t_0 - u.
\]

Thus, \(t_0 - u \) is \(n \)-integral over \(A \). On the other hand, \(-t_0 \) is 1-integral over \(A \) (clearly, since \(-t_0 \in A \)). Thus, \((-t_0) + (t_0 - u) \) is \(n \cdot 1 \)-integral over \(A \) (by Theorem 5 (b) below, applied to \(x = -t_0 \), \(y = t_0 - u \) and \(m = 1 \)). In other words, \(-u \) is \(n \)-integral over \(A \).

On the other hand, \(-1 \) is 1-integral over \(A \) (trivially). Thus, \((-1) \cdot (-u) \) is \(n \cdot 1 \)-integral over \(A \) (by Theorem 5 (c) below, applied to \(x = -1 \), \(y = -u \) and \(m = 1 \)). In other words, \(u \) is \((\alpha + \beta) \)-integral over \(A \) (since \((-1) \cdot (-u) = u \) and \(n \cdot 1 = n = \alpha + \beta \)). This proves Corollary 3.

We will provide a second proof of Corollary 3 in Part 5.

Theorem 4. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \(v \in B \) and \(u \in B \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \). Assume that \(v \) is \(m \)-integral over \(A \), and that \(u \) is \(n \)-integral over \(A[v] \). Then, \(u \) is \(nm \)-integral over \(A \).

Proof of Theorem 4. Since \(v \) is \(m \)-integral over \(A \), we have \(A[v] = \langle v^0, v^1, ..., v^{m-1} \rangle_A \) (this is the Assertion \(D \) of Theorem 1, stated for \(v \) and \(m \) in lieu of \(u \) and \(n \)).

Since \(u \) is \(n \)-integral over \(A[v] \), we have \((A[v])[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_{A[v]} \) (this is the Assertion \(D \) of Theorem 1, stated for \(A[v] \) in lieu of \(A \)).

Let \(S = \{0, 1, ..., n-1\} \times \{0, 1, ..., m-1\} \).

Let \(x \in (A[v])[u] \). Then, there exist \(n \) elements \(b_0, b_1, ..., b_{n-1} \) of \(A[v] \) such that \(x = \sum_{i=0}^{n-1} b_iu^i \) (since \(x \in (A[v])[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_{A[v]} \)). But for each \(i \in \{0, 1, ..., n-1\} \), there exist \(m \) elements \(a_{i,0}, a_{i,1}, ..., a_{i,m-1} \) of \(A \) such that \(b_i = \sum_{j=0}^{m-1} a_{i,j}v^j \) (because

8
\[b_i \in A \langle v \rangle = \langle v^0, v^1, \ldots, v^{n-1} \rangle_A. \] Thus,

\[x = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_{i,j} v^i u^j = \sum_{(i,j) \in \{0,1,\ldots,n-1\} \times \{0,1,\ldots,m-1\}} a_{i,j} v^i u^j = \sum_{(i,j) \in S} a_{i,j} v^i u^j \]

\[\in \langle v^i u^j \mid (i,j) \in S \rangle_A \quad \text{(since } a_{i,j} \in A \text{ for every } (i,j) \in S) \]

So we have proved that \(x \in \langle v^i u^j \mid (i,j) \in S \rangle_A \) for every \(x \in (A \langle v \rangle) \langle u \rangle. \) Thus, \((A \langle v \rangle) \langle u \rangle \subseteq \langle v^i u^j \mid (i,j) \in S \rangle_A\). Conversely, \(\langle v^i u^j \mid (i,j) \in S \rangle_A \subseteq (A \langle v \rangle) \langle u \rangle \) (this is trivial). Hence, \((A \langle v \rangle) \langle u \rangle = \langle v^i u^j \mid (i,j) \in S \rangle_A\). Thus, the \(A \)-module \((A \langle v \rangle) \langle u \rangle\) is \(nm \)-generated (since \(|S| = nm\)).

Let \(U = (A \langle v \rangle) \langle u \rangle \). Then, the \(A \)-module \(U \) is \(nm \)-generated. Besides, \(U \) is an \(A \)-submodule of \(B \), and we have \(1 \in U \) and \(uU \subseteq U \). Thus, the element \(u \) of \(B \) satisfies the Assertion \(C \) of Theorem 1 with \(n \) replaced by \(nm \). Hence, \(u \in B \) satisfies the four equivalent assertions \(A, B, C \) and \(D \) of Theorem 1, all with \(n \) replaced by \(nm \). Thus, \(u \) is \(nm \)-integral over \(A \). This proves Theorem 4.

Theorem 5. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \).

(a) Let \(a \in A \). Then, \(a \) is 1-integral over \(A \).

(b) Let \(x \in B \) and \(y \in B \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \). Assume that \(x \) is \(m \)-integral over \(A \), and that \(y \) is \(n \)-integral over \(A \). Then, \(x + y \) is \(nm \)-integral over \(A \).

(c) Let \(x \in B \) and \(y \in B \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \). Assume that \(x \) is \(m \)-integral over \(A \), and that \(y \) is \(n \)-integral over \(A \). Then, \(xy \) is \(nm \)-integral over \(A \).

Proof of Theorem 5.

(a) There exists a monic polynomial \(P \in A \langle x \rangle \) with \(\deg P = 1 \) and \(P \langle a \rangle = 0 \) (namely, the polynomial \(P \in A \langle x \rangle \) defined by \(P \langle x \rangle = X - a \)). Thus, \(a \) is 1-integral over \(A \). This proves Theorem 5 (a).

(b) Since \(y \) is \(n \)-integral over \(A \), there exists a monic polynomial \(P \in A \langle x \rangle \) with \(\deg P = n \) and \(P \langle y \rangle = 0 \). Since \(P \in A \langle x \rangle \) is a monic polynomial with \(\deg P = n \), there exists a polynomial \(\tilde{P} \in A \langle x \rangle \) with \(\deg \tilde{P} < n \) and \(P \langle x \rangle = X^n + \tilde{P} \langle x \rangle \).

Now, define a polynomial \(Q \in (A \langle x \rangle) \langle x \rangle \) by \(Q \langle x \rangle = P \langle x \rangle - x \). Then, \(\deg Q = \deg P \) (since shifting the polynomial \(P \) by the constant \(x \) does not change its degree), so that \(\deg Q = \deg P \). Furthermore, from \(Q \langle x \rangle = P \langle x \rangle - x \), we obtain \(Q \langle x + y \rangle = P \langle (x + y) - x \rangle = P \langle y \rangle = 0 \). Also, the polynomial \(Q \) is monic (since it is a translate of the monic polynomial \(P \)).

Hence, there exists a monic polynomial \(Q \in (A \langle x \rangle) \langle x \rangle \) with \(\deg Q = n \) and \(Q \langle x + y \rangle = 0 \). Thus, \(x + y \) is \(n \)-integral over \(A \langle x \rangle \). Thus, Theorem 4 (applied to \(v = x \) and \(u = x + y \)) yields that \(x + y \) is \(nm \)-integral over \(A \). This proves Theorem 5 (b).

(c) Since \(y \) is \(n \)-integral over \(A \), there exists a monic polynomial \(P \in A \langle x \rangle \) with \(\deg P = n \) and \(P \langle y \rangle = 0 \). Since \(P \in A \langle x \rangle \) is a monic polynomial with \(\deg P = n \), there exist elements \(a_0, a_1, \ldots, a_{n-1} \) of \(A \) such that \(P \langle x \rangle = X^n + \sum_{k=0}^{n-1} a_k X^k \). Thus,

\[P \langle y \rangle = y^n + \sum_{k=0}^{n-1} a_k y^k. \]
Now, define a polynomial $Q \in (A [x]) [X]$ by $Q (X) = X^n + \sum_{k=0}^{n-1} x^{n-k} a_k X^k$. Then,

$$Q (xy) = \sum_{k=0}^{n-1} x^{n-k} a_k (xy)^k = x^n y^n + \sum_{k=0}^{n-1} x^{n-k} y^k a_k y^k = x^n y^n + \sum_{k=0}^{n-1} x^{n-k} a_k y^k$$

Also, the polynomial $Q \in (A [x]) [X]$ is monic and $\deg Q = n$ (since $Q (X) = X^n + \sum_{k=0}^{n-1} x^{n-k} a_k X^k$). Thus, there exists a monic polynomial $Q \in (A [x]) [X]$ with $\deg Q = n$ and $Q (xy) = 0$. Thus, xy is n-integral over $A [x]$. Hence, Theorem 2 (applied to $v = x$ and $u = xy$) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}^+$ and $m \in \mathbb{N}$. Let $v \in B$. Let $b_0, b_1, ..., b_{n-1}$ be n elements of A, and let $u = \sum_{i=0}^{n-1} b_i v^i$. Assume that vu is m-integral over A. Then, u is nm-integral over A.

Proof of Corollary 6. Define $n + 1$ elements $a_0, a_1, ..., a_n$ of $A [vu]$ by

$$a_i = \begin{cases} -vu, & \text{if } i = 0; \\ b_{i-1}, & \text{if } i > 0 \end{cases}$$

for every $i \in \{0, 1, ..., n\}$.

Then, $a_0 = -vu$. Let $k = 1$. Then,

$$\sum_{i=0}^{n} a_i v^i = a_0 = -vu_0$$

(here, we substituted i for $i - 1$ in the sum)

$$= -vu + vu = 0.$$

Now, $A [vu]$ and B are two rings such that $A [vu] \subseteq B$. The $n + 1$ elements $a_0, a_1, ..., a_n$ of $A [vu]$ satisfy $\sum_{i=0}^{n} a_i v^i = 0$. We have $k = 1 \in \{0, 1, ..., n\}$.

Hence, Theorem 2 (applied to the ring $A [vu]$ in lieu of A) yields that $\sum_{i=0}^{n-k} a_{i+k} v^i$ is n-integral over $A [vu]$. But

$$\sum_{i=0}^{n-k} a_{i+k} v^i = \sum_{i=0}^{n-1} a_{i+1} v^i = \sum_{i=0}^{n-1} b_{(i+1)-1} v^i = \sum_{i=0}^{n-1} b_i v^i = u.$$
Hence, \(u \) is \(n \)-integral over \(A[vu] \). But \(vu \) is \(m \)-integral over \(A \). Thus, Theorem 4 (applied to \(vu \) in lieu of \(v \)) yields that \(u \) is \(nm \)-integral over \(A \). This proves Corollary 6.

2. Integrality over ideal semifiltrations

Definitions:

Definition 6. Let \(A \) be a ring, and let \((I_\rho)_{\rho \in \mathbb{N}}\) be a sequence of ideals of \(A \). Then, \((I_\rho)_{\rho \in \mathbb{N}}\) is called an ideal semifiltration of \(A \) if and only if it satisfies the two conditions

\[
I_0 = A; \\
I_a I_b \subseteq I_{a+b} \quad \text{for every } a \in \mathbb{N} \text{ and } b \in \mathbb{N}.
\]

Definition 7. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Then, we identify the polynomial ring \(A[Y] \) with a subring of the polynomial ring \(B[Y] \) (in fact, every element of \(A[Y] \) has the form \(\sum_{i=0}^{m} a_i Y^i \) for some \(m \in \mathbb{N} \) and \((a_0, a_1, \ldots, a_m) \in A^{m+1} \), and thus can be seen as an element of \(B[Y] \) by regarding \(a_i \) as an element of \(B \) for every \(i \in \{0, 1, \ldots, m\} \).

Definition 8. Let \(A \) be a ring, and let \((I_\rho)_{\rho \in \mathbb{N}}\) be an ideal semifiltration of \(A \). Consider the polynomial ring \(A[Y] \). Let \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) denote the \(A \)-submodule \(\sum_{i \in \mathbb{N}} I_i Y^i \) of the \(A \)-algebra \(A[Y] \). Then,

\[
A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] = \sum_{i \in \mathbb{N}} I_i Y^i
\]

\[
= \left\{ \sum_{i \in \mathbb{N}} a_i Y^i \mid (a_i \in I_i \text{ for all } i \in \mathbb{N}), \text{ and (only finitely many } i \in \mathbb{N} \text{ satisfy } a_i \neq 0) \right\}
\]

\[= \{ P \in A[Y] \mid \text{the } i\text{-th coefficient of the polynomial } P \text{ lies in } I_i \text{ for every } i \in \mathbb{N} \}.\]

It is very easy to see that \(1 \in A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) (due to \(1 \in A = I_0 \)) and that the \(A \)-submodule \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) of \(A[Y] \) is closed under multiplication (here we need to use \(I_i I_j \subseteq I_{i+j} \)). Hence, \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) is an \(A \)-subalgebra of the \(A \)-algebra \(A[Y] \). This \(A \)-subalgebra \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) is called the Rees algebra of the ideal semifiltration \((I_\rho)_{\rho \in \mathbb{N}}\).

Note that \(A = I_0 \) yields \(A \subseteq A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \).

Definition 9. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \((I_\rho)_{\rho \in \mathbb{N}}\) be an ideal semifiltration of \(A \). Let \(n \in \mathbb{N} \). Let \(u \in B \).

We say that the element \(u \) of \(B \) is \(n \)-integral over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \) if there exists some \((a_0, a_1, \ldots, a_n) \in A^{n+1} \) such that

\[
\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}.
\]
We start with a theorem which reduces the question of n-integrality over \(\left(A, (I_\rho)_{\rho \in \mathbb{N}} \right) \) to that of n-integrality over a ring\(^2\).

Theorem 7. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \((I_\rho)_{\rho \in \mathbb{N}} \) be an ideal semifiltration of \(A \). Let \(n \in \mathbb{N} \). Let \(u \in B \).

Consider the polynomial ring \(A[Y] \) and its \(A \)-subalgebra \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \) defined in Definition 8.

Then, the element \(u \) of \(B \) is \(n \)-integral over \(\left(A, (I_\rho)_{\rho \in \mathbb{N}} \right) \) if and only if the element \(uY \) of the polynomial ring \(B[Y] \) is \(n \)-integral over the ring \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \). (Here, \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \subseteq B[Y] \) because \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \subseteq A[Y] \) and we consider \(A[Y] \) as a subring of \(B[Y] \) as explained in Definition 7).

Proof of Theorem 7. \(\implies \): Assume that \(u \) is \(n \)-integral over \(\left(A, (I_\rho)_{\rho \in \mathbb{N}} \right) \). Then, by Definition 9, there exists some \((a_0, a_1, ..., a_n) \in A^{n+1}\) such that

\[
\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.
\]

Then, there exists a monic polynomial \(P \in \left(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \right)[X] \) with \(\deg P = n \) and \(P(uY) = 0 \) (viz., the polynomial \(P(X) = \sum_{k=0}^{n} a_k Y^{n-k} X^k \)). Hence, \(uY \) is \(n \)-integral over \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \). This proves the \(\implies \) direction of Theorem 7.

\(\iff \): Assume that \(uY \) is \(n \)-integral over \(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \). Then, there exists a monic polynomial \(P \in \left(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \right)[X] \) with \(\deg P = n \) and \(P(uY) = 0 \). Since \(P \in \left(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \right)^{n+1} \), \(P \) satisfies \(\deg P = n \), there exists \((p_0, p_1, ..., p_n) \in \left(A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] \right)^{n+1} \) such that \(P(X) = \sum_{k=0}^{n} p_k X^k \). Besides, \(p_n = 1 \), since \(P \) is monic and \(\deg P = n \).

For every \(k \in \{0, 1, ..., n\} \), we have \(p_k \in A \left[\left(I_\rho \right)_{\rho \in \mathbb{N}} Y \right] = \sum_{i \in \mathbb{N}} I_i Y^i \), and thus, there exists a sequence \((p_{k,i})_{i \in \mathbb{N}} \in A^n \) such that \(p_k = \sum_{i \in \mathbb{N}} p_{k,i} Y^i \), such that \(p_{k,i} \in I_i \) for every \(i \in \mathbb{N} \), and such that only finitely many \(i \in \mathbb{N} \) satisfy \(p_{k,i} \neq 0 \). Thus, \(P(X) = \sum_{k=0}^{n} p_k X^k \) becomes \(P(uY) = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^i (uY)^k \) (since \(p_k = \sum_{i \in \mathbb{N}} p_{k,i} Y^i \)). Hence,

\[
P(uY) = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^i (uY)^k = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k.
\]

\(^2\)Theorem 7 is inspired by Proposition 5.2.1 in [2].
Therefore, $P(uY) = 0$ becomes $\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k = 0$. In other words, the polynomial
$$\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k \in B[Y]$$
equals 0. Hence, its coefficient before Y^n equals 0 as well.

But its coefficient before Y^n is $\sum_{k=0}^{n} p_{k,n-k} u^k$, so we get $\sum_{k=0}^{n} p_{k,n-k} u^k = 0$.

Note that
$$\sum_{i \in \mathbb{N}} p_{n,i} Y^i = p_n \left(\text{since } \sum_{i \in \mathbb{N}} p_{k,i} Y^i = p_k \text{ for every } k \in \{0, 1, \ldots, n\} \right)$$
$$= 1$$
in $A[Y]$, and thus $p_{n,0} = 1$.

Define an $(n + 1)$-tuple $(a_0, a_1, \ldots, a_n) \in A^{n+1}$ by $a_k = p_{k,n-k}$ for every $k \in \{0, 1, \ldots, n\}$. Then, $a_n = p_{n,0} = 1$. Besides, $\sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} p_{k,n-k} u^k = 0$. Finally, $a_k = p_{k,n-k} \in I_{n-k}$ (since $p_{k,i} \in I_i$ for every $i \in \mathbb{N}$) for every $k \in \{0, 1, \ldots, n\}$. In other words, $a_i \in I_{n-i}$ for every $i \in \{0, 1, \ldots, n\}$.

Altogether, we now know that
$$\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}.$$

Thus, by Definition 9, the element u is n-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$. This proves the \iff direction of Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltrations:

Theorem 8. Let A and B be two rings such that $A \subseteq B$. Let $(I_\rho)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A.

(a) Let $u \in A$. Then, u is 1-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$ if and only if $u \in I_1$.

(b) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$, and that y is n-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$.

Then, $x + y$ is nm-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$.

(c) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$, and that y is n-integral over A. Then, xy is nm-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$.

Proof of Theorem 8. (a) Very obvious.

(b) Consider the polynomial ring $A[Y]$ and its A-subalgebra $A[(I_\rho)_{\rho \in \mathbb{N}}]*Y$. Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral over $A[(I_\rho)_{\rho \in \mathbb{N}}]*Y$ (since x is m-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$). Also, Theorem 7 (applied to y instead of u) yields that yY is n-integral over $A[(I_\rho)_{\rho \in \mathbb{N}}]*Y$ (since y is n-integral.
over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \). Hence, Theorem 5 (b) (applied to \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right], B [Y], xY \) and \(yY \) instead of \(A, B, x \) and \(y \), respectively) yields that \(xY + yY \) is \(nm \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \). Since \(xY + yY = (x + y)Y \), this means that \((x + y)Y \) is \(nm \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \). Hence, Theorem 7 (applied to \(x + y \) and \(nm \) instead of \(u \) and \(n \)) yields that \(x + y \) is \(nm \)-integral over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \). This proves Theorem 8 (b).

(c) First, a trivial observation:

Lemma \(\mathcal{I} \): Let \(A, A' \) and \(B' \) be three rings such that \(A \subseteq A' \subseteq B' \). Let \(v \in B' \). Let \(n \in \mathbb{N} \). If \(v \) is \(n \)-integral over \(A \), then \(v \) is \(n \)-integral over \(A' \).

Now let us prove Theorem 8 (c).

Consider the polynomial ring \(A[Y] \) and its \(A \)-subalgebra \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \). Theorem 7 (applied to \(x \) and \(m \) instead of \(u \) and \(n \)) yields that \(xY \) is \(m \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) (since \(x \) is \(m \)-integral over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \)). On the other hand, Lemma \(\mathcal{I} \) (applied to \(A' = A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right], B' = B [Y] \) and \(v = y \)) yields that \(y \) is \(n \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \) (since \(y \) is \(n \)-integral over \(A \), and \(A \subseteq A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \subseteq B [Y] \)). Hence, Theorem 5 (c) (applied to \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right], B [Y] \) and \(xY \) instead of \(A, B \) and \(x \), respectively) yields that \(xY \cdot y \) is \(nm \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \). Since \(xY \cdot y = xyY \), this means that \(xyY \) is \(nm \)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] \). Hence, Theorem 7 (applied to \(xy \) and \(nm \) instead of \(u \) and \(n \)) yields that \(xy \) is \(nm \)-integral over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \). This proves Theorem 8 (c).

The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \((I_\rho)_{\rho \in \mathbb{N}}\) be an ideal semifiltration of \(A \).

Let \(v \in B \) and \(u \in B \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \).

(a) Then, \((I_\rho A [v])_{\rho \in \mathbb{N}}\) is an ideal semifiltration of \(A [v] \). \(^3\)

(b) Assume that \(v \) is \(m \)-integral over \(A \), and that \(u \) is \(n \)-integral over \((A [v], (I_\rho A [v])_{\rho \in \mathbb{N}}) \). Then, \(u \) is \(nm \)-integral over \((A, (I_\rho)_{\rho \in \mathbb{N}}) \).

Proof of Theorem 9. (a) This is evident. More generally (and still evidently):

Lemma \(\mathcal{J} \): Let \(A \) and \(A' \) be two rings such that \(A \subseteq A' \). Let \((I_\rho)_{\rho \in \mathbb{N}}\) be an ideal semifiltration of \(A \). Then, \((I_\rho A')_{\rho \in \mathbb{N}}\) is an ideal semifiltration of \(A' \).

(b) Again, we are going to use a rather trivial fact (for a proof, see [4]):

Lemma \(\mathcal{K} \): Let \(A, A' \) and \(B' \) be three rings such that \(A \subseteq A' \subseteq B' \). Let \(v \in B' \). Then, \(A' \cdot A [v] = A' [v] \).

\(^3\)Here and in the following, whenever \(A \) and \(B \) are two rings such that \(A \subseteq B \), whenever \(v \) is an element of \(B \), and whenever \(I \) is an ideal of \(A \), you should read the term \(IA [v] \) as \(I (A [v]) \), not as \((IA) [v] \). For instance, you should read the term \(I_\rho A [v] \) (in Theorem 9 (a)) as \(I_\rho (A [v]) \), not as \((I_\rho A) [v] \).

Now, we will show that $(A[v]) (I_\rho A[v]_{\rho \in \mathbb{N}} * Y) = (A[I_\rho]_{\rho \in \mathbb{N}} * Y)$.

In fact, Definition 8 yields

$$(A[v]) (I_\rho A[v]_{\rho \in \mathbb{N}} * Y) = \sum_{i \in \mathbb{N}} I_i A[v] \cdot Y^i = \sum_{i \in \mathbb{N}} I_i Y^i \cdot A[v] = A[I_\rho]_{\rho \in \mathbb{N}} * Y$$

(by Lemma K (applied to $A' = A[I_\rho]_{\rho \in \mathbb{N}}$ and $B' = (A[v])[Y]$)).

Note that (as explained in Definition 7) we can identify the polynomial ring $(A[v])[Y]$ with a subring of $B[Y]$ (since $A[v] \subseteq B$). Thus, $A[I_\rho]_{\rho \in \mathbb{N}} \subseteq (A[v])[Y]$ yields $A[I_\rho]_{\rho \in \mathbb{N}} \subseteq B[Y]$.

Besides, Lemma I (applied to $A[I_\rho]_{\rho \in \mathbb{N}}$, $B[Y]$ and m instead of A', B' and n) yields that v is m-integral over $A[I_\rho]_{\rho \in \mathbb{N}}$ (since v is m-integral over A, and $A \subseteq A[I_\rho]_{\rho \in \mathbb{N}} \subseteq B[Y]$).

Now, Theorem 7 (applied to $A[v]$ and $I_\rho A[v]_{\rho \in \mathbb{N}}$ instead of A and $I_\rho[I_\rho]_{\rho \in \mathbb{N}}$) yields that uY is n-integral over $(A[v]) I_\rho A[v]_{\rho \in \mathbb{N}}$ (since u is n-integral over $(A[v], I_\rho A[v]_{\rho \in \mathbb{N}})$).

Since $(A[v]) I_\rho A[v]_{\rho \in \mathbb{N}} * Y = (A[I_\rho]_{\rho \in \mathbb{N}} * Y)[v]$, this means that uY is n-integral over $(A[I_\rho]_{\rho \in \mathbb{N}} * Y)[v]$. Now, Theorem 4 (applied to $A[I_\rho]_{\rho \in \mathbb{N}} * Y$, $B[Y]$ and uY instead of A, B and u) yields that uY is nm-integral over $A[I_\rho]_{\rho \in \mathbb{N}} * Y$ (since v is m-integral over $A[I_\rho]_{\rho \in \mathbb{N}} * Y$, and uY is n-integral over $(A[I_\rho]_{\rho \in \mathbb{N}} * Y)[v]$). Thus, Theorem 7 (applied to nm instead of n) yields that u is nm-integral over $(A, I_\rho[I_\rho]_{\rho \in \mathbb{N}})$. This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.

(a) Then, $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.

(b) Let $(I_\rho)_{\rho \in \mathbb{N}}$ and $(J_\rho)_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Then, $(I_\rho J_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.

15
The proof of this is just basic axiom checking (see [4] for details).

Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that $A \subseteq B$. Let $(I_\rho)_{\rho \in \mathbb{N}}$ and $(J_\rho)_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Let $n \in \mathbb{N}$. Let $u \in B$.

We know that $(I_\rho J_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 (b)).

Consider the polynomial ring $A[Y]$ and its A-subalgebra $A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y\right]$. We will abbreviate the ring $A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y\right]$ by $A[t]$.

By Lemma J (applied to $A[t]$ and $(J_\tau)_{\tau \in \mathbb{N}}$ instead of A' and $(I_\rho)_{\rho \in \mathbb{N}}$), the sequence $(J_\tau A[t])_{\tau \in \mathbb{N}}$ is an ideal semifiltration of $A[t]$ (since $A \subseteq A[t]$) and since $(J_\tau)_{\tau \in \mathbb{N}} = (J_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A).

Then, the element u of B is n-integral over $A, (I_\rho J_\rho)_{\rho \in \mathbb{N}}$ if and only if the element uY of the polynomial ring $B[Y]$ is n-integral over $(A[t], (J_\tau A[t])_{\tau \in \mathbb{N}})$.

(Here, $A[t] \subseteq B[Y]$ because $A[t] = A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y\right] \subseteq A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7.)

Proof of Theorem 11. In order to verify Theorem 11, we have to prove the \implies and \iff statements.

\implies: Assume that u is n-integral over $A, (I_\rho J_\rho)_{\rho \in \mathbb{N}}$. Then, by Definition 9 (applied to $(I_\rho J_\rho)_{\rho \in \mathbb{N}}$ instead of $(I_\rho)_{\rho \in \mathbb{N}}$), there exists some $(a_0, a_1, \ldots, a_n) \in A^{n+1}$ such that

$$
\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{n-i}J_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}.
$$

Note that $a_k Y^{n-k} \in A[t]$ for every $k \in \{0, 1, \ldots, n\}$ (because $a_k \in I_{n-k}J_{n-k} \subseteq I_{n-k}$ (since I_{n-k} is an ideal of A)). Thus, we can define an $(n+1)$-tuple $(b_0, b_1, \ldots, b_n) \in (A[t])^{n+1}$ by $b_k = a_k Y^{n-k}$ for every $k \in \{0, 1, \ldots, n\}$. This $(n+1)$-tuple satisfies

$$
\sum_{k=0}^{n} b_k \cdot (uY)^k = 0, \quad b_0 = 1, \quad \text{and} \quad b_i \in J_{n-i}A[t] \text{ for every } i \in \{0, 1, \ldots, n\}
$$

(as can be easily checked). Hence, by Definition 9 (applied to $A[t], B[Y], (J_\tau A[t])_{\tau \in \mathbb{N}}$, uY and (b_0, b_1, \ldots, b_n) instead of A, B, $(I_\rho)_{\rho \in \mathbb{N}}$, u and (a_0, a_1, \ldots, a_n)), the element uY is n-integral over $(A[t], (J_\tau A[t])_{\tau \in \mathbb{N}})$. This proves the \implies direction of Theorem 11.

\iff: Assume that uY is n-integral over $(A[t], (J_\tau A[t])_{\tau \in \mathbb{N}})$. Then, by Definition 9 (applied to $A[t], B[Y], (J_\tau A[t])_{\tau \in \mathbb{N}}$, uY and (p_0, p_1, \ldots, p_n) instead of A, B, $(I_\rho)_{\rho \in \mathbb{N}}$, u and (a_0, a_1, \ldots, a_n)), there exists some $(p_0, p_1, \ldots, p_n) \in (A[t])^{n+1}$ such that

$$
\sum_{k=0}^{n} p_k \cdot (uY)^k = 0, \quad p_n = 1, \quad \text{and} \quad p_i \in J_{n-i}A[t] \text{ for every } i \in \{0, 1, \ldots, n\}.
$$

16
For every \(k \in \{0, 1, \ldots, n\} \), we have
\[
p_k \in J_{n-k}A[I] = J_{n-k} \sum_{i \in \mathbb{N}} I_i Y^i = \sum_{i \in \mathbb{N}} \sum_{k=0}^{n} p_{k,i} Y^i = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^i \quad \left(\text{since } A[I] = A \left[(I_\rho)_{\rho \in \mathbb{N}} \ast Y \right] = \sum_{i \in \mathbb{N}} I_i Y^i \right)
\]
and thus, there exists a sequence \((p_{k,i})_{i \in \mathbb{N}} \in A^\mathbb{N}\) such that \(p_k = \sum_{i \in \mathbb{N}} p_{k,i} Y^i \), such that \(p_{k,i} \in I_i J_{n-k} \) for every \(i \in \mathbb{N} \), and such that only finitely many \(i \in \mathbb{N} \) satisfy \(p_{k,i} \neq 0 \). Thus,
\[
\sum_{k=0}^{n} p_k \cdot (uY)^k = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^i \cdot (uY)^k = \sum_{k=0}^{n} p_{k,i} Y^{i+k} u^k
\]
\[
= \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k.
\]
Hence, \(\sum_{k=0}^{n} p_k \cdot (uY)^k = 0 \) becomes \(\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k = 0 \). In other words, the polynomial
\[
\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^k \in B[Y]
\]
equals 0. Hence, its coefficient before \(Y^n \) equals 0 as well. But its coefficient before \(Y^n \) is \(\sum_{k=0}^{n} p_{k,n-k} u^k \). Hence, we obtain \(\sum_{k=0}^{n} p_{k,n-k} u^k = 0 \).

Note that
\[
\sum_{i \in \mathbb{N}} p_{n,i} Y^i = p_n \quad \left(\text{since } \sum_{i \in \mathbb{N}} p_{k,i} Y^i = p_k \text{ for every } k \in \{0, 1, \ldots, n\} \right)
\]
\[
= 1
\]
in \(A[Y] \), and thus \(p_{n,0} = 1 \).

Define an \((n + 1)\)-tuple \((a_0, a_1, \ldots, a_n) \in A^{n+1}\) by \(a_k = p_{k,n-k} \) for every \(k \in \{0, 1, \ldots, n\} \). Then, \(a_n = p_{n,0} = 1 \). Besides,
\[
\sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} p_{k,n-k} u^k = 0.
\]
Finally, \(a_k = p_{k,n-k} \in I_{n-k}J_{n-k} \) (since \(p_{k,i} \in I_i J_{n-k} \) for every \(i \in \mathbb{N} \)) for every \(k \in \{0, 1, \ldots, n\} \). In other words, \(a_i \in I_{n-i}J_{n-i} \) for every \(i \in \{0, 1, \ldots, n\} \).

Altogether, we now know that
\[
\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{n-i}J_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}.
\]
Thus, by Definition 9 (applied to \((I_\rho J_\rho)_{\rho \in \mathbb{N}}\) instead of \((I_\rho)_{\rho \in \mathbb{N}}\)), the element \(u \) is \(n \)-integral over \((A, (I_\rho J_\rho)_{\rho \in \mathbb{N}}) \). This proves the \(\Leftarrow \) direction of Theorem 11, and thus Theorem 11 is shown.

The reason why Theorem 11 generalizes Theorem 7 is the following triviality, mentioned here for the pure sake of completeness:
Theorem 12. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$.

We know that $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 (a)).

Then, the element u of B is n-integral over $(A, (A)_{\rho \in \mathbb{N}})$ if and only if u is n-integral over A.

Finally, let us generalize Theorem 8 (c):

Theorem 13. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ and $(J_{\rho})_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A.

Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$, and that y is n-integral over $(A, (J_{\rho})_{\rho \in \mathbb{N}})$. Then, xy is nm-integral over $(A, (I_{\rho}, J_{\rho})_{\rho \in \mathbb{N}})$.

Proof of Theorem 13. First, a trivial observation:

Lemma T': Let A, A' and B' be three rings such that $A \subseteq A' \subseteq B'$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $v \in B'$. Let $n \in \mathbb{N}$. If v is n-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$, then v is n-integral over $(A', (I_{\rho}A')_{\rho \in \mathbb{N}})$. (Note that $(I_{\rho}A')_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A', according to Lemma J.)

This is obvious upon unraveling the definitions of “n-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$” and of “$n$-integral over $(A', (I_{\rho}A')_{\rho \in \mathbb{N}})$”.

Now let us prove Theorem 13.

We have $(J_{\rho})_{\rho \in \mathbb{N}} = (J_{\tau})_{\tau \in \mathbb{N}}$. Hence, y is n-integral over $(A, (J_{\tau})_{\tau \in \mathbb{N}})$ (since y is n-integral over $(A, (J_{\rho})_{\rho \in \mathbb{N}})$).

Consider the polynomial ring $A[Y]$ and its A-subalgebra $A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right]$. We will abbreviate the ring $A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right]$ by $A[I]$. We have $A[I] \subseteq B[Y]$, because $A[I] = A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right] \subseteq A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7.

Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral over $A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right]$ (since x is m-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$). In other words, xY is m-integral over $A[I]$ (since $A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right] = A[I]$).

On the other hand, Lemma T' (applied to $A[I]$, $B[Y]$, $(J_{\tau})_{\tau \in \mathbb{N}}$ and y instead of A', B', $(I_{\rho})_{\rho \in \mathbb{N}}$ and v) yields that y is n-integral over $\left(A[I], (J_{\tau}A[I])_{\tau \in \mathbb{N}} \right)$ (since y is n-integral over $(A, (J_{\tau})_{\tau \in \mathbb{N}})$, and $A \subseteq A[I] \subseteq B[Y]$).

Hence, Theorem 8 (c) (applied to $A[I]$, $B[Y]$, $(J_{\tau}A[I])_{\tau \in \mathbb{N}}$, y, xY, m and n respectively) yields that $y \cdot xY$ is mn-integral over $\left(A[I], (J_{\tau}A[I])_{\tau \in \mathbb{N}} \right)$ (since y is n-integral over $\left(A[I], (J_{\tau}A[I])_{\tau \in \mathbb{N}} \right)$, and xY is m-integral over $A[I]$). Since $y \cdot xY = xyY$ and $mn = nm$, this means that xyY is nm-integral.
over \(\left(A_{[t]}, (J_r A_{[t]})_{\tau \in \mathbb{N}} \right) \). Hence, Theorem 11 (applied to \(xy \) and \(nm \) instead of \(u \) and \(n \)) yields that \(xy \) is \(nm \)-integral over \(\left(A, (I_\lambda J_\rho)_{\rho \in \mathbb{N}} \right) \). This proves Theorem 13.

4. Accelerating ideal semifiltrations

We start this section with an obvious observation:

Theorem 14. Let \(A \) be a ring. Let \((I_\rho)_{\rho \in \mathbb{N}} \) be an ideal semifiltration of \(A \). Let \(\lambda \in \mathbb{N} \). Then, \((I_{\lambda \rho})_{\rho \in \mathbb{N}} \) is an ideal semifiltration of \(A \).

I refer to \((I_{\lambda \rho})_{\rho \in \mathbb{N}} \) as the \(\lambda \)-acceleration of the ideal semifiltration \((I_\rho)_{\rho \in \mathbb{N}} \).

Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized once more:

Theorem 15. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \((I_\rho)_{\rho \in \mathbb{N}} \) and \((J_\rho)_{\rho \in \mathbb{N}} \) be two ideal semifiltrations of \(A \). Let \(n \in \mathbb{N} \). Let \(u \in B \). Let \(\lambda \in \mathbb{N} \).

We know that \((I_{\lambda \rho})_{\rho \in \mathbb{N}} \) is an ideal semifiltration of \(A \) (according to Theorem 14).

Hence, \((I_{\lambda \rho} J_\rho)_{\rho \in \mathbb{N}} \) is an ideal semifiltration of \(A \) (according to Theorem 10 (b), applied to \((I_{\lambda \rho})_{\rho \in \mathbb{N}} \) instead of \((I_\rho)_{\rho \in \mathbb{N}} \)).

Consider the polynomial ring \(A[Y] \) and its \(A \)-subalgebra \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \right] \).

We will abbreviate the ring \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \right] \) by \(A_{[t]} \).

By Lemma 7 (applied to \(A_{[t]} \) and \((J_r)_{\tau \in \mathbb{N}} \) instead of \(A' \) and \((I_\rho)_{\rho \in \mathbb{N}} \)), the sequence \((J_r A_{[t]})_{\tau \in \mathbb{N}} \) is an ideal semifiltration of \(A_{[t]} \) (since \(A \subseteq A_{[t]} \) and since \((J_r)_{\tau \in \mathbb{N}} = (J_\rho)_{\rho \in \mathbb{N}} \) is an ideal semifiltration of \(A \)).

Then, the element \(u \) of \(B \) is \(n \)-integral over \(\left(A, (I_{\lambda \rho} J_\rho)_{\rho \in \mathbb{N}} \right) \) if and only if the element \(u Y^\lambda \) of the polynomial ring \(B[Y] \) is \(n \)-integral over \(\left(A_{[t]}, (J_r A_{[t]})_{\tau \in \mathbb{N}} \right) \).

(Here, \(A_{[t]} \subseteq B[Y] \) because \(A_{[t]} = A \left[(I_\rho)_{\rho \in \mathbb{N}} \right] \subseteq A[Y] \) and we consider \(A[Y] \) as a subring of \(B[Y] \) as explained in Definition 7.)

Proof of Theorem 15. First, note that

\[
\sum_{\ell \in \mathbb{N}} I_\ell Y^\ell = \sum_{i \in \mathbb{N}} I_i Y^i \quad \text{(here we renamed } \ell \text{ as } i \text{ in the sum)}
\]

\[
= A \left[(I_\rho)_{\rho \in \mathbb{N}} \right] = A_{[t]}.
\]

In order to verify Theorem 15, we have to prove the \(\implies \) and \(\iff \) statements.

\(\implies \): Assume that \(u \) is \(n \)-integral over \(\left(A, (I_{\lambda \rho} J_\rho)_{\rho \in \mathbb{N}} \right) \). Then, by Definition 9 (applied to \((I_{\lambda \rho} J_\rho)_{\rho \in \mathbb{N}} \) instead of \((I_\rho)_{\rho \in \mathbb{N}} \)), there exists some \((a_0, a_1, \ldots, a_n) \in A^{n+1} \) such that

\[
\sum_{k=0}^n a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{\lambda(n-i)} J_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}.
\]
Note that $a_k Y^{λ(n-k)} ∈ A_{[t]}$ for every $k ∈ \{0, 1, \ldots, n\}$ (because $a_k ∈ I_{λ(n-k)} J_{n-k} ⊆ I_{λ(n-k)}$ (since $I_{λ(n-k)}$ is an ideal of A) and thus $a_k Y^{λ(n-k)} ∈ I_{λ(n-k)} Y^{λ(n-k)} ⊆ \sum_{i ∈ \mathbb{N}} I_i Y^i = A_{[t]}$). Thus, we can find an $(n + 1)$-tuple $(b_0, b_1, \ldots, b_n) ∈ (A_{[t]})^{n+1}$ satisfying

$$\sum_{k=0}^{n} b_k \cdot (u Y^{λ})^k = 0, \quad b_n = 1, \quad \text{and} \quad b_i ∈ J_{n-i} A_{[t]} \text{ for every } i ∈ \{0, 1, \ldots, n\}.$$

Hence, by Definition 9 (applied to $A_{[t]}$, $B [Y]$, $(J_{τ} A_{[t]})_{τ ∈ \mathbb{N}}$, $u Y^{λ}$ and (b_0, b_1, \ldots, b_n) instead of A, B, $(I_ρ)_{ρ ∈ \mathbb{N}}$, u and (a_0, a_1, \ldots, a_n)), the element $u Y^{λ}$ is n-integral over $(A_{[t]}, (J_{τ} A_{[t]})_{τ ∈ \mathbb{N}})$. This proves the $⇒$ direction of Theorem 15.

\iff: Assume that $u Y^{λ}$ is n-integral over $(A_{[t]}, (J_{τ} A_{[t]})_{τ ∈ \mathbb{N}})$. Then, by Definition 9 (applied to $A_{[t]}$, $B [Y]$, $(J_{τ} A_{[t]})_{τ ∈ \mathbb{N}}$, $u Y^{λ}$ and (p_0, p_1, \ldots, p_n) instead of A, B, $(I_ρ)_{ρ ∈ \mathbb{N}}$, u and (a_0, a_1, \ldots, a_n)), there exists some $(p_0, p_1, \ldots, p_n) ∈ (A_{[t]})^{n+1}$ such that

$$\sum_{k=0}^{n} p_k \cdot (u Y^{λ})^k = 0, \quad p_n = 1, \quad \text{and} \quad p_i ∈ J_{n-i} A_{[t]} \text{ for every } i ∈ \{0, 1, \ldots, n\}.$$

For every $k ∈ \{0, 1, \ldots, n\}$, we have

$$p_k ∈ J_{n-k} A_{[t]} = J_{n-k} \sum_{i ∈ \mathbb{N}} I_i Y^i \quad \left(\text{since } A_{[t]} = \sum_{i ∈ \mathbb{N}} I_i Y^i\right) \quad = \sum_{i ∈ \mathbb{N}} I_{n-k} I_i Y^i = \sum_{i ∈ \mathbb{N}} I_i J_{n-k} Y^i,$$

and thus, there exists a sequence $(p_{k,i})_{i ∈ \mathbb{N}} ∈ A^N$ such that $p_k = \sum_{i ∈ \mathbb{N}} p_{k,i} Y^i$, such that $p_{k,i} ∈ I_i J_{n-k}$ for every $i ∈ \mathbb{N}$, and such that only finitely many $i ∈ \mathbb{N}$ satisfy $p_{k,i} ≠ 0$. Thus,

$$\sum_{k=0}^{n} p_k \cdot (u Y^{λ})^k = \sum_{k=0}^{n} \sum_{i ∈ \mathbb{N}} p_{k,i} Y^i \cdot (u Y^{λ})^k \quad = \sum_{k=0}^{n} \sum_{i ∈ \mathbb{N}} p_{k,i} u^k Y^{i+λk}.$$

Hence, $\sum_{k=0}^{n} p_k \cdot (u Y^{λ})^k = 0$ becomes $\sum_{k=0}^{n} \sum_{i ∈ \mathbb{N}} p_{k,i} u^k Y^{i+λk} = 0$. In other words, the polynomial $\sum_{k=0}^{n} \sum_{i ∈ \mathbb{N}} p_{k,i} u^k Y^{i+λk} ∈ B [Y]$ equals 0. Hence, its coefficient before $Y^{λn}$ equals 0 as well. But its coefficient before $Y^{λn}$ is $\sum_{k=0}^{n} p_{k,λ(n-k)} u^k$. Hence, $\sum_{k=0}^{n} p_{k,λ(n-k)} u^k$ equals 0.

\footnote{Namely, the $(n+1)$-tuple $(b_0, b_1, \ldots, b_n) ∈ (A_{[t]})^{n+1}$ defined by $(b_k = a_k Y^{λ(n-k)}$ for every $k ∈ \{0, 1, \ldots, n\})$ satisfies this. The proof is very easy (see [4] for details).}
Note that
\[\sum_{i \in \mathbb{N}} p_{n,i} Y^i = p_n \quad \left(\text{since } \sum_{i \in \mathbb{N}} p_{k,i} Y^i = p_k \text{ for every } k \in \{0, 1, \ldots, n\} \right) \]
\[= 1 \]
in \(A[Y] \), and thus the coefficient of the polynomial \(\sum_{i \in \mathbb{N}} p_{n,i} Y^i \) before \(Y^0 \) is 1; but the coefficient of the polynomial \(\sum_{i \in \mathbb{N}} p_{n,i} Y^i \) in \(A[Y] \) before \(Y^0 \) is \(p_{n,0} \); hence, \(p_{n,0} = 1 \).

Define an \((n+1)\)-tuple \((a_0, a_1, \ldots, a_n) \in A^{n+1}\) by \(a_k = p_{k, \lambda(n-k)} \) for every \(k \in \{0, 1, \ldots, n\} \). Then, \(a_n = p_{n,0} = 1 \). Besides,
\[\sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} p_{k, \lambda(n-k)} u^k = 0. \]
Finally, \(a_k = p_{k, \lambda(n-k)} \in I_{\lambda(n-k)} J_{n-k} \) (since \(p_{k,i} \in I_i J_{n-k} \) for every \(i \in \mathbb{N} \)) for every \(k \in \{0, 1, \ldots, n\} \). In other words, \(a_i \in I_{\lambda(n-i)} J_{n-i} \) for every \(i \in \{0, 1, \ldots, n\} \).

Altogether, we now know that
\[\sum_{k=0}^{n} a_k u^k = 0, \quad a_n = 1, \quad \text{and} \quad a_i \in I_{\lambda(n-i)} J_{n-i} \text{ for every } i \in \{0, 1, \ldots, n\}. \]

Thus, by Definition 9 (applied to \((I_{\lambda\rho} J_{\rho})_{\rho \in \mathbb{N}}\) instead of \((I_{\rho})_{\rho \in \mathbb{N}}\)), the element \(u \) is \(n \)-integral over \((A, (I_{\lambda\rho} J_{\rho})_{\rho \in \mathbb{N}}) \). This proves the \(\iff \) direction of Theorem 15, and thus completes the proof.

A particular case of Theorem 15:

Theorem 16. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \((I_{\rho})_{\rho \in \mathbb{N}}\) be an ideal semifiltration of \(A \). Let \(n \in \mathbb{N} \). Let \(u \in B \). Let \(\lambda \in \mathbb{N} \).

We know that \((I_{\lambda\rho})_{\rho \in \mathbb{N}}\) is an ideal semifiltration of \(A \) (according to Theorem 14).

Consider the polynomial ring \(A[Y] \) and its \(A \)-subalgebra \(A \left[(I_{\rho})_{\rho \in \mathbb{N}} \ast Y \right] \) defined in Definition 8.

Then, the element \(u \) of \(B \) is \(n \)-integral over \((A, (I_{\lambda\rho})_{\rho \in \mathbb{N}}) \) if and only if the element \(uY^\lambda \) of the polynomial ring \(B[Y] \) is \(n \)-integral over the ring \(A \left[(I_{\rho})_{\rho \in \mathbb{N}} \ast Y \right] \). (Here, \(A \left[(I_{\rho})_{\rho \in \mathbb{N}} \ast Y \right] \subseteq B[Y] \) because \(A \left[(I_{\rho})_{\rho \in \mathbb{N}} \ast Y \right] \subseteq A[Y] \) and we consider \(A[Y] \) as a subring of \(B[Y] \) as explained in Definition 7).

Proof of Theorem 16. Theorem 10 (a) states that \((A)_{\rho \in \mathbb{N}}\) is an ideal semifiltration of \(A \).

We will abbreviate the ring \(A \left[(I_{\rho})_{\rho \in \mathbb{N}} \ast Y \right] \) by \(A[I] \).

We have the following five equivalences:
• The element u of B is n-integral over $\left(A, (I_{\lambda\rho})_{\rho \in \mathbb{N}}\right)$ if and only if the element u of B is n-integral over $\left(A, (I_{\lambda\rho}A)_{\rho \in \mathbb{N}}\right)$ (since $I_{\lambda\rho} = I_{\lambda\rho}A$).

• The element u of B is n-integral over $\left(A, (I_{\lambda\rho}A)_{\rho \in \mathbb{N}}\right)$ if and only if the element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $\left(A_{[\ell]}, (AA_{[\ell]})_{\tau \in \mathbb{N}}\right)$ (according to Theorem 15, applied to $(A)_{\rho \in \mathbb{N}}$ instead of $(J_{\rho})_{\rho \in \mathbb{N}}$).

• The element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $\left(A_{[\ell]}, (AA_{[\ell]})_{\tau \in \mathbb{N}}\right)$ if and only if the element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $\left(A_{[\ell]}, (AA_{[\ell]})_{\tau \in \mathbb{N}}\right)$ (by Theorem 12, applied to $A_{[\ell]}$, $B[Y]$ and uY^{λ} instead of A, B and u).

• The element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $A_{[\ell]}$ if and only if the element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)$ (since $A_{[\ell]} = A \left[\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)\right]$).

Combining these five equivalences, we obtain that the element u of B is n-integral over $\left(A, (I_{\lambda\rho})_{\rho \in \mathbb{N}}\right)$ if and only if the element uY^{λ} of the polynomial ring $B[Y]$ is n-integral over $A \left[\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)\right]$. This proves Theorem 16.

Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $n \in \mathbb{N}^+$. Let $v \in B$. Let a_0, a_1, ..., a_n be $n + 1$ elements of A such that $\sum_{i=0}^{n} a_i v^i = 0$ and $a_i \in I_{n-\ell}$ for every $i \in \{0, 1, ..., n\}$.

Let $k \in \{0, 1, ..., n\}$. We know that $(I_{(n-k)\rho})_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 14, applied to $\lambda = n - k$).

Then, $\sum_{i=0}^{n-k} a_{i+k} v^i$ is n-integral over $\left(A, (I_{(n-k)\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 17. Consider the polynomial ring $A[Y]$ and its A-subalgebra $A \left[\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)\right]$ defined in Definition 8. We have $A \left[\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)\right] \subseteq B[Y]$, because $A \left[\left((I_{\rho})_{\rho \in \mathbb{N}} * Y\right)\right] \subseteq A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7.
As usual, note that
\[
\sum_{\ell \in \mathbb{N}} I_\ell Y^\ell = \sum_{i \in \mathbb{N}} I_i Y^i \quad \text{(here we renamed } \ell \text{ as } i \text{ in the sum)}
\]
\[
= A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right].
\]
In the ring \(B[Y]\), we have
\[
\sum_{i=0}^{n} a_i Y^{n-i} \cdot (vY)^i = \sum_{i=0}^{n} a_i Y^{n-i} Y^i v^i = Y^n \sum_{i=0}^{n} a_i v^i = 0.
\]

Besides, \(a_i Y^{n-i} \in A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\) for every \(i \in \{0, 1, \ldots, n\}\) (since \(a_i Y^{n-i} \in I_{n-i} Y^{n-i} \subseteq \sum_{i=0}^{n} I_\ell Y^\ell = A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\)). Hence, Theorem 2 (applied to \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right], B[Y], vY\) and \(a_i Y^{n-i}\) instead of \(A, B, v\) and \(a_i\)) yields that \(\sum_{i=0}^{n-k} a_{i+k} Y^{n-(i+k)} (vY)^i\) is \(n\)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\). Since
\[
\sum_{i=0}^{n-k} a_{i+k} Y^{n-(i+k)} (vY)^i = \sum_{i=0}^{n-k} a_{i+k} Y^{n-(i+k)} Y^i v^i = \sum_{i=0}^{n-k} a_{i+k} v^i \cdot Y^{n-k},
\]
this means that \(\sum_{i=0}^{n-k} a_{i+k} v^i \cdot Y^{n-k}\) is \(n\)-integral over \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\).

But Theorem 16 (applied to \(u = \sum_{i=0}^{n-k} a_{i+k} v^i\) and \(\lambda = n - k\)) yields that \(\sum_{i=0}^{\frac{n}{2}} a_{i+k} v^i\) is \(n\)-integral over \((A, (I_{(n-k)}_\rho)_{\rho \in \mathbb{N}})\) if and only if \(\sum_{i=0}^{n-k} a_{i+k} v^i \cdot Y^{n-k}\) is \(n\)-integral over the ring \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\). Since we know that \(\sum_{i=0}^{n-k} a_{i+k} v^i \cdot Y^{n-k}\) is \(n\)-integral over the ring \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \star Y \right]\), this yields that \(\sum_{i=0}^{n-k} a_{i+k} v^i\) is \(n\)-integral over \((A, (I_{(n-k)}_\rho)_{\rho \in \mathbb{N}})\). This proves Theorem 17.

\section{5. Generalizing a lemma by Lombardi}

Now, we are going to generalize Theorem 2 from \[3\] (which is the main result of \[3\])\footnote{Caveat: The notion “integral over \((A, J)\)” defined in \[3\] has nothing to do with our notion “\(n\)-integral over \((A, (I_n)_{n \in \mathbb{N}})\)” .} First, a very technical lemma:

\textbf{Lemma 18.} Let \(A\) and \(B\) be two rings such that \(A \subseteq B\). Let \(x \in B\).

Let \(m \in \mathbb{N}\) and \(n \in \mathbb{N}\). Let \(u \in B\). Let \(\mu \in \mathbb{N}\) and \(\nu \in \mathbb{N}\) be such that \(\mu + \nu \in \mathbb{N}^+\). Assume that
\[
u^n \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^\nu \rangle_A \quad (3)
\]
and that
\[u^m x^\mu \in \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^\mu \rangle_A + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A. \]
(4)

Then, \(u \) is \((n\mu + m\nu)\)-integral over \(A \).

The proof of this lemma is not difficult but rather elaborate. For a completely detailed writeup of this proof, see [4]. Here let me give the skeleton of the proof of Lemma 18. Let
\[S = (\{0, 1, \ldots, n - 1\} \times \{0, 1, \ldots, \mu - 1\}) \cup (\{0, 1, \ldots, m - 1\} \times \{\mu, \mu + 1, \ldots, \mu + \nu - 1\}). \]
Clearly, \(|S| = n\mu + m\nu\) and
\[j < \mu + \nu \text{ for every } (i, j) \in S. \quad (5) \]

Let \(U \) be the \(A \)-submodule \(\langle u^i x^j \mid (i, j) \in S \rangle_A \) of \(B \). Then, \(U \) is an \((n\mu + m\nu)\)-generated \(A \)-module (since \(|S| = n\mu + m\nu\)). Besides, clearly,
\[u^i x^j \in U \text{ for every } (i, j) \in S. \quad (6) \]

Now, we will show that
\[\text{every } i \in \mathbb{N} \text{ and } j \in \mathbb{N} \text{ satisfying } j < \mu + \nu \text{ satisfy } u^i x^j \in U. \quad (7) \]

The proof of (7) can be done either by double induction (over \(i \) and over \(j \)) or by the minimal principle. The induction proof has the advantage that it is completely constructive, but it is clumsy (I give this induction proof in [4]). So, for the sake of brevity, the proof I am going to give here is by the minimal principle:

For the sake of contradiction, we assume that (7) is not true. Then, let \((I, J)\) be the lexicographically smallest pair \((i, j) \in \mathbb{N}^2 \) satisfying \(j < \mu + \nu \) but not satisfying \(u^i x^j \in U \). Then, \(J < \mu + \nu \) but \(u^I x^J \notin U \), and since \((I, J)\) is the lexicographically smallest such pair, we have
\[u^I x^J \in U \text{ for every } j \in \mathbb{N} \text{ such that } j < J \quad (8) \]
and
\[u^i x^j \in U \text{ for every } i \in \mathbb{N} \text{ and } j \in \mathbb{N} \text{ such that } i < I \text{ and } j < \mu + \nu. \quad (9) \]

Now, (8) rewrites as
\[\langle u^I \rangle_A \cdot \langle x^0, x^1, \ldots, x^{J-1} \rangle_A \subseteq U, \]
(10)
and (9) rewrites as
\[\langle u^0, u^1, \ldots, u^{I-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu+\nu-1} \rangle_A \subseteq U. \]
(11)
Also note that \(J < \mu + \nu \) yields \(J \leq \mu + \nu - 1 \) (since \(J \) and \(\mu + \nu \) are integers).

We distinguish between the following four cases (it is clear that at least one of them must hold):
- **Case 1:** We have \(I \geq m \wedge J \geq \mu \).
Case 2: We have $I < m \land J \geq \mu$.
Case 3: We have $I \geq n \land J < \mu$.
Case 4: We have $I < n \land J < \mu$.

In Case 1, we have $I - m \geq 0$ (since $I \geq m$) and $J - \nu \geq 0$ (since $J \geq \mu$), thus

$$\begin{align*}
&\frac{u^I}{u^I-u^m} \cdot \frac{x^J}{x^J-x^{J-\mu}} \\
&= \frac{u^I}{u^I-u^m} \cdot \frac{x^J}{x^J-x^{J-\mu}} \\
&\quad \in \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A \\
&\quad = \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A \\
&\quad \subseteq \langle u^0, u^1, \ldots, u^{J-\mu-1} \rangle_A (\text{since } J \leq \mu + \nu - 1) \\
&\quad + u^I \cdot \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A x^{J-\mu} \\
&\quad \subseteq U \text{ by } (11) \\
&\subseteq U + \langle u^0, u^1, \ldots, u^{J-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A + \langle u^I \rangle_A \cdot \langle x^0, x^1, \ldots, x^{J-1} \rangle_A \\
&\quad \subseteq U + \langle u^0, u^1, \ldots, u^{J-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A + \langle u^I \rangle_A \cdot \langle x^0, x^1, \ldots, x^{J-1} \rangle_A \\
&\quad \subseteq U \text{ by } (11) \\
&\subseteq U + U + U \subseteq U \text{ (since } U \text{ is an } A\text{-module)}.
\end{align*}$$

Thus, we have proved that $u^I x^J \in U$ holds in Case 1.

In Case 2, we have $(I, J) \in \mathcal{S}$ and thus $u^I x^J \in U$ (by (6), applied to I and J instead of i and j). Thus, we have proved that $u^I x^J \in U$ holds in Case 2.

In Case 3, we have $I - n \geq 0$ (since $I \geq n$) and $J + \nu \leq \mu + \nu - 1$ (since $J < \mu$ yields $J + \nu < \mu + \nu$, and since $J + \nu$ and $\mu + \nu$ are integers), thus

$$\begin{align*}
&\frac{u^I}{u^I-u^m} \cdot \frac{x^J}{x^J-x^{J-\mu}} \\
&= \frac{u^I}{u^I-u^m} \cdot \frac{x^J}{x^J-x^{J-\mu}} \\
&\quad \in \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\nu} \rangle_A + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\nu} \rangle_A \\
&\quad \subseteq \langle u^0, u^1, \ldots, u^{J-\mu-1} \rangle_A (\text{since } J \leq \mu + \nu - 1) \\
&\quad + u^I \cdot \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A x^{J-\mu} \\
&\quad \subseteq U \text{ by } (11) \\
&\subseteq U + \langle u^0, u^1, \ldots, u^{J-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A + \langle u^I \rangle_A \cdot \langle x^0, x^1, \ldots, x^{J-1} \rangle_A \\
&\quad \subseteq U + \langle u^0, u^1, \ldots, u^{J-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A + \langle u^I \rangle_A \cdot \langle x^0, x^1, \ldots, x^{J-1} \rangle_A \\
&\quad \subseteq U \text{ by } (11) \\
&\subseteq U + U + U \subseteq U \text{ (since } U \text{ is an } A\text{-module)}.
\end{align*}$$

Thus, we have proved that $u^I x^J \in U$ holds in Case 3.

In Case 4, we have $(I, J) \in \mathcal{S}$ and thus $u^I x^J \in U$ (by (6), applied to I and J instead of i and j). Thus, we have proved that $u^I x^J \in U$ holds in Case 4.
Therefore, we have proved that \(u^i x^j \in U \) holds in each of the four cases 1, 2, 3 and 4. Hence, \(u^i x^j \in U \) always holds, contradicting \(u^i x^j \notin U \). This contradiction completes the proof of (7).

Now that (7) is proven, we can easily conclude that \(uU \subseteq U \). Furthermore, applying (7) to \(i = 0 \) and \(j = 0 \) readily yields \(1 \in U \). Altogether, \(U \) is an \((n\mu + m\nu) \)-generated \(A \)-submodule of \(B \) such that \(1 \in U \) and \(uU \subseteq U \). Thus, \(u \in B \) satisfies Assertion \(C \) of Theorem 1 with \(n \) replaced by \(n\mu + m\nu \). Hence, \(u \in B \) satisfies the four equivalent assertions \(A, B, C \) and \(D \) of Theorem 1 with \(n \) replaced by \(n\mu + m\nu \). Consequently, \(u \) is \((n\mu + m\nu) \)-integral over \(A \). This proves Lemma 18.

We record a weaker variant of Lemma 18:

Lemma 19. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \(x \in B \) and \(y \in B \) be such that \(xy \in A \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \). Let \(u \in B \). Let \(\mu \in \mathbb{N} \) and \(\nu \in \mathbb{N} \) be such that \(\mu + \nu \in \mathbb{N}^+ \). Assume that

\[
\langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A \subseteq \langle x^0, x^1, \ldots, x^{\nu} \rangle_A
\]

and that

\[
u^n \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\nu} \rangle_A
\]

Then, \(u \) is \((n\mu + m\nu) \)-integral over \(A \).

Proof of Lemma 19. (Again, the same proof with more details can be found in [4].) We have

\[
\langle y^0, y^1, \ldots, y^\mu \rangle_A x^\mu \subseteq \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A
\]

since every \(i \in \{0, 1, \ldots, \mu\} \) satisfies

\[
y^i \underbrace{x^\mu}_{=x^{\mu-i}x^i} = x^i y^i \underbrace{x^{\mu-i}}_{=(xy)^i \in A, \text{ since } xy \in A} \in \langle x^{\mu-i} \rangle_A
\]

\[
\subseteq \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A.
\]

Besides,

\[
\langle y^1, y^2, \ldots, y^\mu \rangle_A x^\mu \subseteq \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A
\]

since every \(i \in \{1, 2, \ldots, \mu\} \) satisfies

\[
y^i x^\mu \in \langle x^{\mu-i} \rangle_A \subseteq \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A \quad \text{(by (15))}
\]

Now, (13) yields

\[
u^n x^\mu \in \left(\langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle y^0, y^1, \ldots, y^\mu \rangle_A + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle y^1, y^2, \ldots, y^\mu \rangle_A \right) x^\mu
\]

\[
= \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle y^0, y^1, \ldots, y^\mu \rangle_A x^\mu + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle y^1, y^2, \ldots, y^\mu \rangle_A x^\mu
\]

\[
\subseteq \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A \quad \text{(by (13))}
\]

\[
\subseteq \langle x^0, x^1, \ldots, x^{n-1} \rangle_A \quad \text{(by (16))}
\]

\[
\subseteq \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu} \rangle_A + \langle u^0, u^1, \ldots, u^m \rangle_A \cdot \langle x^0, x^1, \ldots, x^{\mu-1} \rangle_A
\]
In other words, (4) holds. Also, (3) holds (because (12) holds, and because (3) is the same as (12)). Thus, Lemma 18 yields that \(u \) is \((n\mu + m\nu)\)-integral over \(A \). This proves Lemma 19.

Something trivial now:

Lemma 20. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \(x \in B \). Let \(n \in \mathbb{N} \). Let \(u \in B \). Assume that \(u \) is \(n \)-integral over \(A [x] \). Then, there exists some \(\nu \in \mathbb{N} \) such that

\[
u^n \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^\nu \rangle_A.
\]

The *proof of Lemma 20* (again, axiomatized in [4]) goes as follows: Since \(u \) is \(n \)-integral over \(A [x] \), there exists a monic polynomial \(P \in (A [x]) [X] \) with \(\deg P = n \) and \(P(u) = 0 \). Denoting the coefficients of this polynomial \(P \) by \(\alpha_0, \alpha_1, \ldots, \alpha_n \) (where \(\alpha_n = 1 \)), the equation \(P(u) = 0 \) becomes \(u^n = -\sum_{i=0}^{n-1} \alpha_i u^i \). Note that \(\alpha_i \in A [x] \) for all \(i \). Now, there exists some \(\nu \in \mathbb{N} \) such that \(\alpha_i \in \langle x^0, x^1, \ldots, x^\nu \rangle_A \) for every \(i \in \{0, 1, \ldots, n-1\} \) (because for each \(i \in \{0, 1, \ldots, n-1\} \), we have \(\alpha_i \in A [x] = \bigcup_{\nu=0}^{\infty} \langle x^0, x^1, \ldots, x^\nu \rangle_A \), so that \(\alpha_i \in \langle x^0, x^1, \ldots, x^\nu \rangle_A \) for some \(\nu_i \in \mathbb{N} \); now take \(\nu = \max \{\nu_0, \nu_1, \ldots, \nu_{n-1}\} \). This \(\nu \) then satisfies

\[
u^n = -\sum_{i=0}^{n-1} \alpha_i u^i = -\sum_{i=0}^{n-1} u^i \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^\nu \rangle_A,
\]

and Lemma 20 is proven.

A consequence of Lemmata 19 and 20 is the following theorem:

Theorem 21. Let \(A \) and \(B \) be two rings such that \(A \subseteq B \). Let \(x \in B \) and \(y \in B \) be such that \(xy \in A \). Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \). Let \(u \in B \). Assume that \(u \) is \(n \)-integral over \(A [x] \), and that \(u \) is \(m \)-integral over \(A [y] \). Then, there exists some \(\lambda \in \mathbb{N} \) such that \(u \) is \(\lambda \)-integral over \(A \).

Proof of Theorem 21. Since \(u \) is \(n \)-integral over \(A [x] \), Lemma 20 yields that there exists some \(\nu \in \mathbb{N} \) such that

\[
u^n \in \langle u^0, u^1, \ldots, u^{n-1} \rangle_A \cdot \langle x^0, x^1, \ldots, x^\nu \rangle_A.
\]

In other words, (12) holds.

Since \(u \) is \(m \)-integral over \(A [y] \), Lemma 20 (with \(x, n \) and \(\nu \) replaced by \(y, m \) and \(\mu \)) yields that there exists some \(\mu \in \mathbb{N} \) such that

\[
u^m \in \langle u^0, u^1, \ldots, u^{m-1} \rangle_A \cdot \langle y^0, y^1, \ldots, y^\mu \rangle_A.
\]

Hence, (13) holds as well (because (17) is even stronger than (13)).

Since both (12) and (13) hold, Lemma 19 yields that \(u \) is \((n\mu + m\nu)\)-integral over \(A \). Thus, there exists some \(\lambda \in \mathbb{N} \) such that \(u \) is \(\lambda \)-integral over \(A \) (namely, \(\lambda = n\mu + m\nu \)). This proves Theorem 21.

We record a generalization of Theorem 21 (which will turn out to be easily seen equivalent to Theorem 21):
Theorem 22. Let A and B be two rings such that $A \subseteq B$. Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Let $u \in B$. Assume that u is n-integral over $A[x]$, and that u is m-integral over $A[y]$. Then, there exists some $\lambda \in \mathbb{N}$ such that u is λ-integral over $A[xy]$.

Since u is n-integral over $A[x]$, Lemma \mathcal{I} (applied to B, $(A[xy])[x]$, $A[x]$ and u instead of B^\prime, A^\prime, A and v) yields that u is n-integral over $(A[xy])[x]$.

Since u is m-integral over $A[y]$, Lemma \mathcal{I} (applied to B, $(A[xy])[y]$, $A[y]$, m and u instead of B^\prime, A^\prime, A, n and v) yields that u is m-integral over $(A[xy])[y]$.

Now, Theorem 21 (applied to $A[xy]$ instead of A) yields that there exists some $\lambda \in \mathbb{N}$ such that u is λ-integral over $A[xy]$ (because $xy \in A[xy]$, because u is n-integral over $(A[xy])[x]$, and because u is m-integral over $(A[xy])[y]$). This proves Theorem 22.

Theorem 22 has a “relative version”:

Theorem 23. Let A and B be two rings such that $A \subseteq B$. Let $(I_\rho)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $x \in B$ and $y \in B$.

(b) Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Let $u \in B$. Assume that u is n-integral over $(A[x], (I_\rho A[x])_{\rho \in \mathbb{N}})$, and that u is m-integral over $(A[y], (I_\rho A[y])_{\rho \in \mathbb{N}})$.

Then, there exists some $\lambda \in \mathbb{N}$ such that u is λ-integral over $(A[xy], (I_\rho A[xy])_{\rho \in \mathbb{N}})$.

Proof of Theorem 23. (a) Since $(I_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, Lemma \mathcal{J} (applied to $A[x]$ instead of A^\prime) yields that $(I_\rho A[x])_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $A[x]$.

Since $(I_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, Lemma \mathcal{J} (applied to $A[y]$ instead of A^\prime) yields that $(I_\rho A[y])_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $A[y]$.

Since $(I_\rho)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, Lemma \mathcal{J} (applied to $A[xy]$ instead of A^\prime) yields that $(I_\rho A[xy])_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $A[xy]$.

Thus, Theorem 23 (a) is proven.

(b) We formulate a lemma:

Lemma \mathcal{N}: Let A and B be two rings such that $A \subseteq B$. Let $v \in B$. Let $(I_\rho)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Consider the polynomial ring $A[Y]$ and its A-subalgebra $A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]$. We have $A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right] \subseteq A[Y]$, and (as explained in Definition 7) we can identify the polynomial ring $A[Y]$ with a subring of $(A[v])[Y]$ (since $A \subseteq A[v]$).

Hence, $A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right] \subseteq (A[v])[Y]$. On the other hand, $(A[v]) \left[(I_\rho A[v])_{\rho \in \mathbb{N}} * Y \right] \subseteq (A[v])[Y]$.

(a) We have

$$(A[v]) \left[(I_\rho A[v])_{\rho \in \mathbb{N}} * Y \right] = \left(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right] \right)[v].$$
Let $u \in B$. Let $n \in \mathbb{N}$. Then, the element u of B is n-integral over $(A [v], (I_\rho A [v])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is n-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [v]$.

Proof of Lemma \mathcal{N} (a) We have proven Lemma \mathcal{N} (a) during the proof of Theorem 9 (b).

(b) Theorem 7 (applied to $A [v]$ and $(I_\rho A [v])_{\rho \in \mathbb{N}}$ instead of A and $(I_\rho)_{\rho \in \mathbb{N}}$) yields that the element u of B is n-integral over $(A [v], (I_\rho A [v])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is n-integral over the ring $(A [v]) \left[(I_\rho A [v])_{\rho \in \mathbb{N}} * Y \right]$. In other words, the element u of B is n-integral over $(A [v], (I_\rho A [v])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is n-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [v]$ (because Lemma \mathcal{N} (a) yields $(A [v]) \left[(I_\rho A [v])_{\rho \in \mathbb{N}} * Y \right] = (A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [v]$). This proves Lemma \mathcal{N} (b).

Now, let us prove Theorem 23 (b). In fact, for every $v \in B$, we can consider the polynomial ring $(A [v]) [Y]$ and its $A [v]$-subalgebra $(A [v]) \left[(I_\rho A [v])_{\rho \in \mathbb{N}} * Y \right]$. We have $(A [v]) \left[(I_\rho A [v])_{\rho \in \mathbb{N}} * Y \right] \subseteq (A [v]) [Y]$, and (as explained in Definition 7) we can identify the polynomial ring $(A [v]) [Y]$ with a subring of $B [Y]$ (since $A [v] \subseteq B$). Hence, $(A [v]) \left[(I_\rho A [v])_{\rho \in \mathbb{N}} * Y \right] \subseteq B [Y]$.

Lemma \mathcal{N} (b) (applied to x instead of v and n) yields that the element u of B is n-integral over $(A [x], (I_\rho A [x])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is n-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [x]$. But since the element u of B is n-integral over $(A [x], (I_\rho A [x])_{\rho \in \mathbb{N}})$, this yields that the element uY of the polynomial ring $B [Y]$ is n-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [x]$.

Lemma \mathcal{N} (b) (applied to y and m instead of v and n) yields that the element u of B is m-integral over $(A [y], (I_\rho A [y])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is m-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [y]$. But since the element u of B is m-integral over $(A [y], (I_\rho A [y])_{\rho \in \mathbb{N}})$, this yields that the element uY of the polynomial ring $B [Y]$ is m-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [y]$.

Since uY is n-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [y]$, and since uY is m-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [y]$, Theorem 22 (applied to $A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]$, $B [Y]$ and uY instead of A, B and u) yields that there exists some $\lambda \in \mathbb{N}$ such that uY is λ-integral over $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [y]$.

Lemma \mathcal{N} (b) (applied to xy and λ instead of v and n) yields that the element u of B is λ-integral over $(A [xy], (I_\rho A [xy])_{\rho \in \mathbb{N}})$ if and only if the element uY of the polynomial ring $B [Y]$ is λ-integral over the ring $(A \left[(I_\rho)_{\rho \in \mathbb{N}} * Y \right]) [xy]$. But since the element
of the polynomial ring $B[Y]$ is λ-integral over the ring \(A \left[(I_\rho)_{\rho \in \mathbb{N}} \right] [xy] \),
this yields that the element u of B is λ-integral over \(A[xy], (I_\rho A[xy])_{\rho \in \mathbb{N}} \). Thus, Theorem 23 (b) is proven.

We notice that Corollary 3 can be derived from Lemma 18:

Second proof of Corollary 3. Let $n = 1$. Let $m = 1$. We have

$$u^n \in \langle u^0, u^1, ..., u^{n-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\alpha \rangle_A$$

and

$$u^m v^\beta \in \langle u^0, u^1, ..., u^{m-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\beta \rangle_A + \langle u^0, u^1, ..., u^m \rangle_A \cdot \langle v^0, v^1, ..., v^{\beta-1} \rangle_A$$

Thus, Lemma 18 (applied to v, β and α instead of x, μ and ν) yields that u is $(n\beta + m\alpha)$-integral over A. This means that u is $(\alpha + \beta)$-integral over A (because $n\beta + m\alpha = 1\beta + 1\alpha = 1\beta + \alpha = \alpha + \beta$). This proves Corollary 3 once again.

In how far does this all generalize Theorem 2 from [3]? Actually, Theorem 2 from [3] can be easily reduced to the case when $J = 0$ (by passing from the ring A to its localization A_{1+J}) and in this case it easily follows from Lemma 18.

References

https://www.jmilne.org/math/CourseNotes/ant.html

^6because

$$u^n = u^1 = u = \sum_{i=0}^{\alpha} s_i \in A \cdot \langle v^0, v^1, ..., v^\alpha \rangle_A = A \cdot \langle v^0, v^1, ..., v^\alpha \rangle_A$$

$$= \langle u^0, u^1, ..., u^{n-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\alpha \rangle_A$$

(since $A = \langle 1 \rangle_A = \langle u^0 \rangle_A = \langle u^0, u^1, ..., u^{n-1} \rangle_A$, as $n = 1$)

^7because

$$u^m v^\beta = u^m = \sum_{i=0}^{\beta} t_i v^{\beta-i} = \sum_{i=0}^{\beta} t_{\beta-i} v^{\beta-(\beta-i)}$$

(here we substituted $\beta - i$ for i in the sum)

$$= \sum_{i=0}^{\beta} t_{\beta-i} v^{\beta-i} \in \langle v^0, v^1, ..., v^\beta \rangle_A = A \cdot \langle v^0, v^1, ..., v^\beta \rangle_A$$

$$= \langle u^0, u^1, ..., u^{m-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\beta \rangle_A$$

(since $A = \langle 1 \rangle_A = \langle u^0 \rangle_A = \langle u^0, u^1, ..., u^{m-1} \rangle_A$, as $m = 1$) and

$$\langle u^0, u^1, ..., u^{m-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\beta \rangle_A \subseteq \langle u^0, u^1, ..., u^{m-1} \rangle_A \cdot \langle v^0, v^1, ..., v^\beta \rangle_A + \langle u^0, u^1, ..., u^m \rangle_A \cdot \langle v^0, v^1, ..., v^{\beta-1} \rangle_A$$

^8Remark (added in 2019): I am no longer sure about this statement. So I don’t know whether Lemma 18 really generalizes Theorem 2 from [3].