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The purpose of this note is to present a proof of Hall�s matching theorem (also
called marriage theorem) which I have not encountered elsewhere in literature - what
yet does not mean that it is necessarily new.
We refer to Hall�s theorem in the following form:

Theorem 1 (Hall). Let n be a positive integer. Let � be a bipartite graph
whose set of vertices consists of n blue vertices B1; B2; :::; Bn and n green
vertices G1; G2; :::; Gn: Then, the graph � has a perfect matching if and

only if every subset J � f1; 2; :::; ng satis�es
����S
i2J
N (Gi)

���� � jJ j :
Some notations used in this theorem require explanations:

� A bipartite graph is a (simple, non-directed) graph with each vertex colored either
green or blue such that every edge of the graph connects a blue vertex and a green
vertex.

� A perfect matching of the bipartite graph � means a permutation � of the set
f1; 2; :::; ng such that for every j 2 f1; 2; :::; ng ; the vertex Bj is connected to the
vertex G�(j):

� The number of elements of a �nite set X is denoted by jXj :

� Finally, if A is a vertex of our graph �; then a neighbour of A means any other
vertex of � which is connected to A by an edge. We denote by N (A) the set of
all neighbours of A:

Proofs of Theorem 1 abound in literature - see, e. g., Chapter 11 of [1], Theorem
12.2 in [2], or Theorem 2.1.2 in [3]. Here we are going to sketch a proof (a complete
and detailed, yet horrible to read presentation of this proof can be found in [4]) which
is longer than most of these, but applies an idea apparently new, and potentially
interesting for further study.

Proof of Theorem 1. In order to show Theorem 1, we have to verify two assertions:
Assertion 1. If the graph � has a perfect matching, then every subset J �

f1; 2; :::; ng satis�es
����S
i2J
N (Gi)

���� � jJ j :
1



Assertion 2. If the graph � has no perfect matching, then there exists a subset

J � f1; 2; :::; ng which does not satisfy
����S
i2J
N (Gi)

���� � jJ j :
The almost trivial proof of Assertion 1 is left to the reader. The interesting part

is the proof of Assertion 2. Before we come to this proof, we de�ne some notations
concerning matrices:

� For a matrix A; we denote by A
�
j
i

�
the entry in the j-th column and the i-th

row of A: [This is usually denoted by Aij:]

� Let A be a matrix with u rows and v columns. Let j1; j2; :::; jk be some pairwisely
distinct integers from the set f1; 2; :::; vg ; and let i1; i2; :::; il be some pairwisely

distinct integers from the set f1; 2; :::; ug : Then, we denote by A
�
j1; j2; :::; jk
i1; i2; :::; il

�
the

matrix with l rows and k columns which is de�ned as follows: For any integers p 2
f1; 2; :::; lg and q 2 f1; 2; :::; kg ; we have

�
A

�
j1; j2; :::; jk
i1; i2; :::; il

���
q
p

�
= A

�
jq
ip

�
:

Informally speaking, A
�
j1; j2; :::; jk
i1; i2; :::; il

�
is the matrix formed by the intersections of

the columns numbered j1; j2; :::; jk with the rows numbered i1; i2; :::; il of the
matrix A; but the order of these columns and rows depends on the order of the
integers j1; j2; :::; jk and the order of the integers i1; i2; :::; il:

Such a matrix A
�
j1; j2; :::; jk
i1; i2; :::; il

�
is called a minor of the matrix A:

Examples: 0@ a b c d
a0 b0 c0 d0

a00 b00 c00 d00

1A�2; 4
1; 3

�
=

�
b d
b00 d00

�
;

0@ a b c
a0 b0 c0

a00 b00 c00

1A� 3; 1
1; 2; 3

�
=

0@ c a
c0 a0

c00 a00

1A :
Note that, thus, for any matrix A; the matrix A

�
j

i

�
is the 1�1 matrix consisting

of the only element A
�
j
i

�
:

� If m is a positive integer, and r 2 f1; 2; :::;mg ; then the notation j1; j2; :::; bjr;
:::; jm is going to mean "the numbers j1; j2; :::; jm with the number jr left out"
(i. e. "the numbers j1; j2; :::; jr�2; jr�1; jr+1; jr+2; :::; jm ").

We will make use of a method of computing determinants called developing a de-
terminant along a row. This method states that for any k � k matrix U and any
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s 2 f1; 2; :::; kg ; we have

detU =
kX
r=1

(�1)s+r � U
�
r
s

�
� det

�
U

�
1; 2; :::; br; :::; k
1; 2; :::; bs; :::; k

��
: (1)

Now, to our proof of Assertion 2. We assume that the graph � has no perfect
matching. In order to prove Assertion 2, we have to �nd a subset J � f1; 2; :::; ng

which does not satisfy

����S
i2J
N (Gi)

���� � jJ j :
Let K be an arbitrary �eld (for instance, Q). Let L be the �eld of all rational

functions of n2 indeterminates X1;1; X1;2; :::; Xn;n (one indeterminate Xi;j for each pair
(i; j) 2 f1; 2; :::; ng2) over K:
Then, L = K (X1;1; X1;2; :::; Xn;n) :
We de�ne a matrix S 2 Mn (L) by setting

S

�
j
i

�
=

�
Xi;j; if Gj 2 N (Bi) ;
0; if Gj =2 N (Bi)

for any two i and j from the set f1; 2; :::; ng :

This matrix S stores all information about the bipartite graph � in it: For any blue
vertex Bi and any green vertex Gj; we can tell whether Bi and Gj are connected from

the entry S
�
j
i

�
of this matrix (in fact, the vertices Bi and Gj are connected if and

only if S
�
j
i

�
6= 0).

Since the graph � has no perfect matching, it is easy to see that detS = 0 (in
fact, by the de�nition of the determinant as a sum over permutations, we have detS =P
�2Sn

sign� �
nQ
i=1

S

�
� (i)
i

�
; but for any permutation � 2 Sn the product

nQ
i=1

S

�
� (i)
i

�
has at least one of its factors being equal to 0; because otherwise this permutation �
would be a perfect matching of �). Thus, the columns of the matrix S are linearly
dependent.
Therefore, we can �nd a minimal family of linearly dependent columns of the matrix

S: That means, we can �nd a subset fj1; j2; :::; jkg of f1; 2; :::; ng such that the k
columns of the matrix S numbered j1; j2; :::; jk are linearly dependent, but for every
u 2 f1; 2; :::; kg ; the k � 1 columns of the matrix S numbered j1; j2; :::; bju; :::; jk are
linearly independent.

It is easy to conclude from this that the matrix S
�
j1; j2; :::; jk
1; 2; :::; n

�
has rank k � 1:

Hence, this matrix has k � 1 linearly independent rows, and every row of this matrix
is a linear combination of these k � 1 rows.
So let the rows numbered i1; i2; :::; ik�1 be k � 1 linearly independent rows of

the matrix S
�
j1; j2; :::; jk
1; 2; :::; n

�
: Then, every row of the matrix S

�
j1; j2; :::; jk
1; 2; :::; n

�
is a linear

combination of these k�1 rows i1; i2; :::; ik�1: In other words, for every i 2 f1; 2; :::; ng ;
there exist elements �i; 1; �i; 2; :::; �i; k�1 of L such that the i-th row of the matrix

S

�
j1; j2; :::; jk
1; 2; :::; n

�
is the sum of �i; v times the iv-th row of this matrix over all v 2
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f1; 2; :::; k � 1g : This means that

S

�
ju
i

�
=

k�1X
v=1

�i; vS

�
ju
iv

�
for every u 2 f1; 2; :::; kg :

Now, we will show that for each r 2 f1; 2; :::; kg ; we have det
 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
6=

0: In fact, assume that this is not the case. Then, there exists some r 2 f1; 2; :::; kg

such that det

 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
= 0: Hence, for this r; the k � 1 columns of

the matrix S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#
are linearly dependent. In other words, the columns

j1; j2; :::; bjr; :::; jk of the matrix S � 1; 2; :::; n

i1; i2; :::; ik�1

�
are linearly dependent. This means

that there exist elements �1; �2; :::; b�r; :::; �k of L which are not all equal to 0 such
that the sum of �u times the ju-th column of the matrix S

�
1; 2; :::; n

i1; i2; :::; ik�1

�
over all

u 2 f1; 2; :::; br; :::; kg equals 0: Equivalently,X
1�u�k; u 6=r

�u � S
�
ju
iv

�
= 0

for each v 2 f1; 2; :::; k � 1g : Then, for every i 2 f1; 2; :::; ng ; using the relation

S

�
ju
i

�
=

k�1P
v=1

�i; vS

�
ju
iv

�
which holds for every u 2 f1; 2; :::; kg ; we obtain

X
1�u�k; u 6=r

�u � S
�
ju
i

�
=

X
1�u�k; u 6=r

�u �
k�1X
v=1

�i; vS

�
ju
iv

�

=

k�1X
v=1

�i; v
X

1�u�k; u 6=r

�u � S
�
ju
iv

�
| {z }

=0

= 0:

In other words, the sum of �u times the ju-th column of the matrix S over all u 2
f1; 2; :::; br; :::; kg equals 0: This yields that the columns of the matrix S numbered j1;
j2; :::; bjr; :::; jk are linearly dependent. But this contradicts to the fact that for every
u 2 f1; 2; :::; kg ; the k � 1 columns of the matrix S numbered j1; j2; :::; bju; :::; jk are
linearly independent. This contradiction yields that our assumption was wrong. Thus,
we have proven that for each r 2 f1; 2; :::; kg ; we have

det

 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
6= 0: (2)

Now let J = fj1; j2; :::; jkg : Then, we are going to prove that
S
i2J
N (Gi) �

�
Bi1 ; Bi2 ; :::; Bik�1

	
:
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In fact, we are going to prove this by contradiction: Assume that
S
i2J
N (Gi) ��

Bi1 ; Bi2 ; :::; Bik�1
	
does not hold. Then, there exists a vertex T of the graph � which

lies in
S
i2J
N (Gi) but not in

�
Bi1 ; Bi2 ; :::; Bik�1

	
:

From T 2
S
i2J
N (Gi) ; it follows that there exists some j 2 J with T 2 N (Gj) :

Thus, T is a blue vertex of the graph �; so that T = Bei for some ei 2 f1; 2; :::; ng : But
since T =2

�
Bi1 ; Bi2 ; :::; Bik�1

	
; we must have ei =2 fi1; i2; :::; ik�1g :

Besides, since j 2 J = fj1; j2; :::; jkg ; there exists an q 2 f1; 2; :::; kg such that
j = jq: Since T = Bei and j = jq; the relation T 2 N (Gj) becomes Bei 2 N �Gjq� :
Thus, Gjq 2 N (Bei) : Hence,

S

�
jqei
�
=

�
Xei;jq ; if Gjq 2 N (Bei) ;
0; if Gjq =2 N (Bei) = Xei;jq :

Since the numbers i1; i2; :::; ik�1 are pairwisely distinct (because the rows of the

matrix S
�
j1; j2; :::; jk
1; 2; :::; n

�
numbered i1; i2; :::; ik�1 are linearly independent) and we haveei =2 fi1; i2; :::; ik�1g ; we can conclude that the numbers i1; i2; :::; ik�1; ei are pair-

wisely distinct. Now consider the square matrix S
�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
�
: This matrix is a

k � k matrix, but its rank is � k � 1 (in fact, this matrix is a minor of the matrix

S

�
j1; j2; :::; jk
1; 2; :::; n

�
; so its rank must be � to the rank of S

�
j1; j2; :::; jk
1; 2; :::; n

�
; which is known

to be k � 1). Hence, the determinant of this matrix must be 0; that is,

det

�
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
��

= 0: (3)

But on the other hand, by developing the determinant of the matrix S
�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
�

along its last (that is, its k-th) row (i. e., by applying the formula (1) to U =

S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
�
and s = k), we obtain

det

�
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
��

=
kX
r=1

(�1)k+r �
�
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
���

r
k

�
� det

��
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
���

1; 2; :::; br; :::; k
1; 2; :::;bk; :::; k

��
(hereby, of course, 1; 2; :::; bk; :::; k is just a complicated notation for 1; 2; :::; k � 1).
This monstrous equation simpli�es to

det

�
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
��

=
kX
r=1

(�1)k+r � S
�
jrei
�
� det

 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
: (4)
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Denote dr = det

 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
for every r 2 f1; 2; :::; kg : Then, (2)

yields dr 6= 0 for every r 2 f1; 2; :::; kg ; while (4) transforms into

det

�
S

�
j1; j2; :::; jk

i1; i2; :::; ik�1;ei
��

=

kX
r=1

(�1)k+r � S
�
jrei
�
� dr:

Comparing this with (3), we obtain

0 =
kX
r=1

(�1)k+r � S
�
jrei
�
� dr:

This rewrites as

0 =
X

1�r�k; r 6=q

(�1)k+r � S
�
jrei
�
� dr + (�1)k+q � S

�
jqei
�
� dq:

Hence,

(�1)k+q � S
�
jqei
�
� dq = �

X
1�r�k; r 6=q

(�1)k+r � S
�
jrei
�
� dr:

Since (�1)k+q 6= 0 and dq 6= 0 (because dr 6= 0 for every r 2 f1; 2; :::; kg), we can divide
this equation by (�1)k+q � dq; and obtain

S

�
jqei
�
=

�
P

1�r�k; r 6=q
(�1)k+r � S

�
jrei
�
� dr

(�1)k+q � dq
: (5)

Now, there are �ve easy facts:

For every r 2 f1; 2; :::; kg ; we have (�1)k+r 2 K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: (6)

We have (�1)k+q 2 K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: (7)

For every r 2 f1; 2; :::; kg ; we have dr 2 K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: (8)

We have dq 2 K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: (9)

For every r 2 f1; 2; :::; kg with r 6= q; we have

S

�
jrei
�
2 K

�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: (10)

The proofs of these �ve facts are very easy: Firstly, (6) and (7) are trivial.

For the proof of (8), note that dr = det

 
S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#!
is the determi-

nant of the matrix S

"
j1; j2; :::; bjr; :::; jk
i1; i2; :::; ik�1

#
whose entries all have the form S

�
jx
iy

�
=
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�
Xiy ;jx ; if Gjx 2 N

�
Biy
�
;

0; if Gjx =2 N
�
Biy
� and thus lie in K

�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
(because

Xiy ;jx lies in K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
; since ei =2 fi1; i2; :::; ik�1g yields iy 6= ei).

Hence, the determinant dr of this matrix also lies in K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
;

and (8) is proven.
The relation (9) obviously follows from (8).

The relation (10) follows from S

�
jrei
�
=

�
Xei;jr ; if Gjr 2 N (Bei) ;
0; if Gjr =2 N (Bei) and Xei;jr 2

K
�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
(the latter because r 6= q yields jr 6= jq).

From (6), (7), (8), (9) and (10) together, it follows that

�
P

1�r�k; r 6=q
(�1)k+r � S

�
jrei
�
� dr

(�1)k+q � dq
2 K

�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
:

Using (5), this transforms into S
�
jqei
�
2 K

�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
: But this

is wrong, because we know that S
�
jqei
�
= Xei;jq =2 K

�
X1;1; X1;2; :::; dXei;jq ; :::; Xn;n

�
:

Hence, we have obtained a contradiction.
This contradiction shows that our assumption was wrong. Hence, we do haveS

i2J
N (Gi) �

�
Bi1 ; Bi2 ; :::; Bik�1

	
: Thus,

����S
i2J
N (Gi)

���� � ���Bi1 ; Bi2 ; :::; Bik�1	�� = k � 1:
But jJ j = jfj1; j2; :::; jkgj = k: Hence,

����S
i2J
N (Gi)

���� � k � 1 < k = jJ j :
Thus, the subset J � f1; 2; :::; ng does not satisfy

����S
i2J
N (Gi)

���� � jJ j : This proves
Assertion 2, and therefore completes the proof of Theorem 1.
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