
From Baltic Way to Feuerbach - a geometrical excursion
Darij Grinberg

1. Introduction

Though mathematical competitions highly contribute to the popularization of el-
ementary geometry among the mathematicians of tomorrow, the geometry one gets
confronted with in olympiads is rather a geometry of problems and tricks than a co-
herent theory. One solves proposed problems, using a number of more or less known
techniques, sometimes generalizing, but generally one is seldomly interested in system-
atics. Yet, Euclidean geometry is one of the most interconnected �elds in olympiad
mathematics. An example of such interconnections will be shown in this note. Starting
at a relatively easy competition problem, we set out for a trip through the world of
elementary geometry. Through a deeper exploration of the con�guration, we obtain
some additional remarkable results, which lead us to a milestone of triangle geometry
- the Feuerbach theorem about the tangency of the nine-point circle of a triangle with
its incircle. Finally, we will establish two rather elaborate properties of the point of
tangency using the results we obtained during our journey.
Readers wishing to improve their problem-solving skills are invited to consider some

of the theorems we will meet below as exercises to prove. Most of them, in fact, allow
for various di¤erent approaches, and the proofs presented in this note are by far not
the only possible ones.
Prerequisites of the journey are some interest in geometry and knowledge not far

above the high school level - besides the standard properties of cyclic quadrilaterals, the
four basic triangle centers and fundamental properties of similitude transformations,
the Euler line and the nine-point circle (also called Euler circle or Feuerbach circle)
of a triangle will be used (see [7], §1.7-§1.8, or [8], or lots of other sources the reader
could easily �nd). Furthermore, directed angles modulo 180� will be used throughout
the article - this kind of angles is introduced in [4], §1.7 (as directed angles), [5] and
[6].
Finally, a terminological convention: In the following, when a line g1; a circle k1

and a point P1 will be given, and both the line g1 and the circle k1 pass through the
point P1; we will often speak of the "point of intersection of the line g1 with the circle
k1 di¤erent from the point P1". What this means is clear if the line g1 and the circle
k1 indeed have two di¤erent points of intersection. However, if the line g1 touches the
circle k1; then this formulation will simply mean the point P1:

2. A problem from the Baltic Way 1995

We start our journey with a property of triangles which was given as problem 18
at the Baltic Way team contest 1995 ([1], [2], [3] i)):
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Theorem 1. Let ABC be a triangle, and B0 the midpoint of its side CA: Denote

by Hb the foot of the B-altitude of triangle ABC; and by P and Q the orthogonal
projections of the points A and C on the bisector of angle ABC: Then, the points Hb;
B0; P; Q lie on one circle. (See Fig. 1.)
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This is not a tough problem, and di¤erent proofs are possible. One of them starts

o¤ with a simple, but not uninteresting lemma:
Theorem 2. We have B0P k BC and B0Q k AB: (See Fig. 2.)
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Proof of Theorem 2. (See Fig. 3.) Let the line AP meet the line BC at a point

R: Since the point P lies on the bisector of angle ABC; we have ]ABP = �]RBP:
Furthermore, ]APB = �]RPB; since ]APB = 90� and ]RPB = 90�; and as we
are operating with directed angles modulo 180�; we have 90� = �90�: From ]ABP =
�]RBP; ]APB = �]RPB and BP = BP; it follows that triangles ABP and RBP
are inversely congruent, and thusAP = PR: In other words, the point P is the midpoint
of the segment AR: On the other hand, the point B0 is the midpoint of the segment
CA: Thus, the line B0P passes through the midpoints of two sides of triangle CAR; so
that B0P k CR; equivalently, B0P k BC: Similarly, B0Q k AB: Theorem 2 is proven.
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Now, the proof of Theorem 1 becomes really easy: (See Fig. 4.)
Since ]BHbC = 90� and ]BQC = 90�; the points Hb and Q lie on the circle with

diameter BC: Thus, ]BQHb = ]BCHb; what becomes ]PQHb = ]BCA: But as
Theorem 2 yields B0P k BC; we have ] (BC; CA) = ] (B0P ; CA) ; hence ]BCA =
]PB0Hb: Therefore, ]PQHb = ]BCA = ]PB0Hb; and this shows that the points Hb;
B0; P; Q are concyclic. This completes the proof of Theorem 1.
Playing around with the con�guration, one can come up with two more simple, but

notable properties:

5



A

B

C

P

Q

Hb

Fig. 5
Theorem 3. The triangles PHbQ and ABC are inversely similar. (See Fig. 5.)
Proof. As shown in the proof of Theorem 1, we have ]PQHb = ]BCA; thus

]PQHb = �]ACB: Similarly, ]QPHb = �]CAB: Thus, the triangles PHbQ and
ABC are inversely similar, what proves Theorem 3.
Theorem 4. We have B0P = B0Q: (See Fig. 2.)
Proof. According to Theorem 2, we have B0P k BC; so that ] (B0P ; PQ) =

] (BC; PQ) ; and B0Q k AB; so that ] (PQ; B0Q) = ] (PQ; AB) : But since the
line PQ is the bisector of angle ABC; we have ] (BC; PQ) = ] (PQ; AB) : Thus,
] (B0P ; PQ) = ] (PQ; B0Q) : Equivalently, ]B0PQ = ]PQB0: This shows that the
triangle PB0Q is isosceles with B0P = B0Q; and Theorem 4 is proven.
Now, we broaden our con�guration by adding a new point - the center of the circle

through the points Hb; B0; P; Q: The following theorem (partly contained in [3], ii))
identi�es this center:
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Theorem 5. The center B1 of the circle through the points Hb; B0; P; Q lies on the

nine-point circle of triangle ABC; and the line B0B1 is perpendicular to the bisector of
angle ABC:
In other words, the point B1 is the point of intersection of the nine-point circle of

triangle ABC with the perpendicular to the bisector of angle ABC through the point
B0 di¤erent from B0: (See Fig. 6.)
Proof. The point B1 is the center of the circle through the points Hb; B0; P; Q;

hence the circumcenter of triangle PB0Q; consequently, it lies on the perpendicular
bisector of the side PQ of this triangle. On the other hand, the point B0 lies on the
perpendicular bisector of this segment PQ; since B0P = B0Q by Theorem 4. Thus, the
line B0B1 is the perpendicular bisector of the segment PQ; thus, it is perpendicular to
the line PQ; i. e. to the bisector of angle ABC:
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It remains to prove that the point B1 lies on the nine-point circle of triangle ABC:

This can, e. g., be shown by chasing angles (Fig. 7): In addition to the midpoint B0

of the side CA of triangle ABC; we introduce the midpoint A0 of the side BC: The
nine-point circle of triangle ABC is known to pass through the midpoints A0 and B0

of the sides BC and CA and through the foot Hb of the B-altitude of triangle ABC:
Since ]BHbC = 90�; the point Hb lies on the circle with diameter BC: The center

of this circle is the midpoint A0 of the segment BC: Thus, A0Hb = A0C: Consequently,
triangle HbA0C is isosceles, so that ]A0HbC = ]HbCA0: On the other hand, the point
B1 is the center of the circle through the points Hb; B0; P; Q; this yields B1Hb = B1B0;
so that the triangle HbB1B0 is isosceles, and ]B0HbB1 = ]B1B0Hb: Finally, from
B0B1 ? PQ we conclude that ] (B0B1; PQ) = 90� = �90�: Thus,

]A0HbB1 = ]A0HbC + ]B0HbB1 = ]HbCA0 + ]B1B0Hb = ] (CA; BC) + ] (B0B1; CA)
= ] (B0B1; BC) = ] (B0B1; PQ) + ] (PQ; BC) = 90� + ] (PQ; BC) :

Since the line PQ is the bisector of angle ABC; we have ] (PQ; BC) = ] (AB; PQ) ;
and this becomes ]A0HbB1 = 90� + ] (AB; PQ) :
Since the points A0 and B0 are the midpoints of the sides BC and CA of trian-

gle ABC; the line A0B0 is parallel to the line AB: Consequently, ] (A0B0; B0B1) =
] (AB; B0B1) ; and

]A0B0B1 = ] (A0B0; B0B1) = ] (AB; B0B1) = ] (AB; PQ)� ] (B0B1; PQ)
= ] (AB; PQ)� (�90�) = 90� + ] (AB; PQ) = ]A0HbB1:
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Thus, the points A0; B0; Hb and B1 are concyclic. In other words, the point B1 lies on
the circle through the points A0; B0; Hb; i. e. on the nine-point circle of triangle ABC:
This completes our proof of Theorem 5.

3. The incenter

Now we move to deeper waters and enhance the con�guration by a new point; we
start with a fact �rst noted by Grobber in [2]:
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Theorem 6. Let the incircle of triangle ABC touch its side CA at a point Y:

Then, this point Y is the incenter of triangle PHbQ: (See Fig. 8.)
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Proof. Let I 0 be the incenter of triangle PHbQ: Theorem 6 asserts that Y = I 0:
(See Fig. 9.) Let I be the incenter of triangle ABC: This incenter I must obviously

lie on the bisector of angle ABC; this means, on the line through the points B; P; Q:
Since the incircle of triangle ABC has the center I and touches the side CA at the

point Y; we have IY ? CA; so that ]AY I = 90�: Together with ]API = 90�; this
shows that the points Y and P lie on the circle with diameter AI: Hence, ]Y PI =
]Y AI: In other words, ]Y PQ = �]IAC:
Now, according to Theorem 3, the triangles PHbQ and ABC are inversely similar; i.

e., there exists an indirect similitude which maps triangle ABC to triangle PHbQ: This
similitude, of course, must also map the incenter I of triangle ABC to the incenter I 0 of
triangle PHbQ; and since directed angles change their sign under an indirect similitude,
this point I 0 satis�es ]I 0PQ = �]IAC: Comparison with ]Y PQ = �]IAC yields
]I 0PQ = ]Y PQ; thus, the point Y lies on the line I 0P: Similarly, the point Y lies on
the line I 0Q: But the lines I 0P and I 0Q have only one point in common, namely I 0;
thus, Y = I 0; what proves Theorem 6.
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(See Fig. 10.) Now, we denote byO the circumcenter of triangleABC: Furthermore,

we note that the point B1 is the circumcenter of triangle PHbQ (being the center of the
circle through the points Hb; B0; P; Q). The indirect similitude which maps triangle
ABC to triangle PHbQ must map the incenter I of triangle ABC to the incenter Y
of triangle PHbQ and the circumcenter O of triangle ABC to the circumcenter B1
of triangle PHbQ: Since directed angles change their sign under indirect similitudes,
we thus have ] (Y B1; QP ) = �] (IO; CA) : As the line QP coincides with the line
BI; this becomes ] (Y B1; BI) = �] (IO; CA) ; or, equivalently, ] (Y B1; BI) =
] (CA; IO) :
Using the alternative description of the point B1 which was given in Theorem 5,

the result just obtained can be stated as follows:
Theorem 7. Let ABC be a triangle, I its incenter, O its circumcenter, and B0

the midpoint of its side CA: Further, let Y be the point of tangency of the incircle of
triangle ABC with its side CA; and let B1 be the point of intersection of the nine-point
circle of triangle ABC with the perpendicular to the bisector of angle ABC through
the point B0 di¤erent from B0: Then, ] (Y B1; BI) = ] (CA; IO) :
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4. Nine-point circle and incircle

A

B

C

B'

C'

A'

Fig. 11
Theorem 7 di¤ers in some respect from the results before: The points Hb; P and Q

don�t occur anymore; it�s mainly a property of the incircle and the nine-point circle of
the triangle ABC: This suggests a connection to a famous theorem of triangle geometry,
the Feuerbach theorem (see, e. g., [7], §5.6, theorem 5.61):
Theorem 8. The nine-point circle of any triangle ABC touches the incircle of

triangle ABC: (See Fig. 11.)
In its more general form, the Feuerbach theorem states that the nine-point circle of

triangle ABC touches its incircle and its three excircles; however, we will only prove
the tangency with the incircle (i. e. the assertion of Theorem 8) below, as the proof
of the tangency with the excircles can be done in a completely analogous way - our
observations are, thanks to the use of directed angles modulo 180�; independent of the
arrangement, and transferring them from the incircle to an excircle comes down to just
replacing some internal angle bisectors by external angle bisectors.
Now, we are going to prove Theorem 8 with the help of our Theorem 7.
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(See Fig. 12.) First, we extend our con�guration to a symmetric one:
Let A0; B0; C 0 be the midpoints of the sides BC; CA; AB of triangle ABC: Then,

the lines B0C 0; C 0A0; A0B0 are parallel to the sidelines BC; CA; AB; respectively.
Furthermore, the points A0; B0; C 0 lie on the nine-point circle of triangle ABC:
(See Fig. 13.) Let X; Y; Z be the points of tangency of the incircle of triangle

ABC with its sides BC; CA; AB: Then, the points Y and Z are symmetric to each
other with respect to the bisector of angle CAB; thus, the line Y Z is perpendicular to
the bisector of the angle CAB; i. e. to the line AI (since the point I is the incenter of
triangle ABC). Similarly, the lines ZX and XY are perpendicular to the bisectors of
the angles ABC and BCA; i. e. to the lines BI and CI; respectively.
(See Fig. 12 again.) Let A1; B1; C1 be the points of intersection of the nine-point

circle of triangle ABC with the perpendiculars to the bisectors of angles CAB; ABC;
BCA through the points A0; B0; C 0 di¤erent from A0; B0; C 0; respectively.
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Theorem 7 yields] (Y B1; BI) = ] (CA; IO) : Similarly, we can get] (ZC1; CI) =

] (AB; IO) and ] (XA1; AI) = ] (BC; IO) : This entails

] (Y B1; ZC1) = ] (Y B1; BI) + ] (BI; CI)� ] (ZC1; CI)
= ] (CA; IO) + ] (BI; CI)� ] (AB; IO)
= (] (CA; IO)� ] (AB; IO)) + ] (BI; CI) = ] (CA; AB) + ] (BI; CI)
= (] (CA; BI) + ] (BI; AB)) + ] (BI; CI)
= (] (CA; BI) + ] (BI; CI)) + ] (BI; AB) = ] (CA; CI) + ] (BI; AB) :

Now, as the lines CI and BI are the bisectors of angles BCA and ABC; we have
] (CA; CI) = ] (CI; BC) and ] (BI; AB) = ] (BC; BI) ; so that

] (Y B1; ZC1) = ] (CA; CI)+] (BI; AB) = ] (CI; BC)+] (BC; BI) = ] (CI; BI) :

(See Fig. 13.) From ZX ? BI; we conclude that ] (BI; ZX) = 90�; and from
XY ? CI; we get ] (CI; XY ) = 90�: Hence,

] (Y B1; ZC1) = ] (CI; BI) = ] (CI; XY ) + ] (XY ; ZX)� ] (BI; ZX)
= 90� + ] (XY ; ZX)� 90� = ] (XY ; ZX) = ]Y XZ:

14



A

B

CB'Y

A'C'

Z

X

B1

C1

A1

F

Fig. 14
(See Fig. 14.) Now, let F be the point of intersection of the line B1Y with the

incircle of triangle ABC di¤erent from Y: Then, ]Y FZ = ]Y XZ: But, as we showed
above, ] (Y B1; ZC1) = ]Y XZ: Thus, ]Y FZ = ] (Y B1; ZC1) ; or, equivalently,
] (Y B1; FZ) = ] (Y B1; ZC1) : This yields that the lines FZ and ZC1 are parallel.
Since they have a common point (the point Z), they must therefore coincide; i. e., the
point F lies on the line C1Z: Similarly, we show that the point F lies on the line A1X:
We note for our further reasoning that the point F lies on the incircle of triangle

ABC and is the point of intersection of the three lines A1X; B1Y; C1Z:
Now, we are going to show a simple lemma:
Theorem 9. The triangles A1B1C1 and XY Z are homothetic.
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Proof of Theorem 9. (See Fig. 15.) Since the points B0; C 0; B1; C1 all lie on the nine-

point circle of triangle ABC; we have ]B1C1C 0 = ]B1B0C 0; thus ] (B1C1; C 0C1) =
] (B0B1; B0C 0) : Now, the lines B0B1 and ZX are both perpendicular to the bisector
of angle ABC; thus, B0B1 k ZX: Similarly, C 0C1 k XY:
From C 0C1 k XY; it follows that ] (B1C1; C 0C1) = ] (B1C1; XY ) ; while B0B1 k

ZX andB0C 0 k BC yield] (B0B1; B0C 0) = ] (ZX; BC) : Thus, the equation] (B1C1; C 0C1) =
] (B0B1; B0C 0) becomes ] (B1C1; XY ) = ] (ZX; BC) : Now, the angle ] (ZX; BC)
is the angle between the chord ZX of the incircle of triangle ABC and the tangent
BC to this incircle at the point X; and thus, according to the tangent-chordal angle
theorem, equals to the angle ]ZY X subtended by the chord ZX: Hence, we have
] (B1C1; XY ) = ]ZY X; or, equivalently, ] (B1C1; XY ) = ] (Y Z; XY ) : Thus,
B1C1 k Y Z: Similarly, C1A1 k ZX and A1B1 k XY: Hence, the triangles A1B1C1
and XY Z are homothetic, and Theorem 9 is proven.
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(See Fig. 16.) Consider the two homothetic triangles A1B1C1 and XY Z: Their ho-

mothetic center must be the point of intersection of the three lines A1X; B1Y; C1Z; so
it is the point F: Thus, there exists a homothety with center F which maps the triangle
XY Z to the triangle A1B1C1: Of course, this homothety must then map the circum-
circle of triangle XY Z to the circumcircle of triangle A1B1C1: Since the circumcircle of
triangle XY Z is the incircle of triangle ABC; and the circumcircle of triangle A1B1C1
is the nine-point circle of triangle ABC; we thus conclude that our homothety with
center F transforms the incircle of triangle ABC into the nine-point circle of triangle
ABC: On the other hand, the homothety �xes the point F (since it is the center of the
homothety). Thus, as the point F lies on the incircle of triangle ABC; its image under
the homothety - i. e. the point F again - must lie on the image of the incircle - i. e.
on the nine-point circle of triangle ABC: Therefore, the point F is a common point of
the incircle and the nine-point circle of triangle ABC: Moreover, since our homothety
with center F maps the incircle to the nine-point circle and leaves the point F �xed, it
must map the tangent to the incircle at the point F to the tangent to the nine-point
circle at the point F ; on the other hand, the tangent to the incircle at the point F
is a line through the center F of our homothety and thus must remain �xed under
the homothety. Hence, the tangent to the incircle at the point F must coincide with
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the tangent to the nine-point circle at the point F: In other words, the incircle and
the nine-point circle of triangle ABC have a common tangent at their common point
F: Therefore, they must touch each other at the point F: This not only establishes
Theorem 8, but also yields a characterization of the point of tangency F :
Theorem 10. The point of tangency F of the incircle and the nine-point circle of

triangle ABC is the homothetic center of the homothetic triangles A1B1C1 and XY Z:
(See Fig. 16.)
This point of tangency F is usually referred to as the Feuerbach point of triangle

ABC: 1

5. The Feuerbach point as an Anti-Steiner point

The main theorem is proven, but geometry doesn�t stop here. In fact, the Feuerbach
point F is one of the richest in properties geometrical objects and was subject to
numerous publications. Here, we are going to show two characteristics of F which are,
in my opinion, much less popular than they deserve.
We will formulate these characteristics using the notion of Anti-Steiner points. This

notion is based on the following fact:

1A little bit of care is necessary when consulting literature, as some authors use the term "Feuerbach
point" for the center of the nine-point circle; this is, however, pretty seldom.
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Theorem 11. LetABC be a triangle andH its orthocenter. Let g be a line through

the point H: Then, the re�ections of the line g in the lines BC; CA; AB concur at
a point S; and this point S lies on the circumcircle of triangle ABC: Furthermore,
]BCS = ]BAS = 90� � ] (CA; g) :
We will call the point S the Anti-Steiner point of the line g with respect to

triangle ABC: 2 (See Fig. 17.)

2The denotation "Anti-Steiner point" was choosen by me for the following reason:
If a point lies on the circumcircle of triangle ABC; then the re�ections of this point in the sidelines

BC; CA; AB lie on one line, the so-called Steiner line of this point with respect to triangle ABC:
Now, the point S is called the Anti-Steiner point of the line g since the Steiner line of the point S is the
line g (as one can easily see). The name "Steiner point" may be more appropriate, but unfortunately,
it is already used for at least three di¤erent triangle centers!
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The proof of Theorem 11 relies on a very well-known fact:
Theorem 12. Let ABC be an arbitrary triangle and H its orthocenter. Then, the

re�ections Ra; Rb; Rc of the point H in the lines BC; CA; AB lie on the circumcircle
of triangle ABC: (See Fig. 18.)
Proof of Theorem 12. Since H is the orthocenter of triangle ABC; we have BH ?

CA and CH ? AB; thus ] (BH; CA) = 90� und ] (CH; AB) = 90�: Consequently,

]BHC = ] (BH; CH) = ] (BH; CA) + ] (CA; AB)� ] (CH; AB)
= 90� + ] (CA; AB)� 90� = ] (CA; AB) = ]CAB:

Since Ra is the re�ection of the point H in the line BC; we have ]BRaC = �]BHC;
thus ]BRaC = �]CAB = ]BAC: Hence, the point Ra lies on the circumcircle of
triangle ABC: Similarly, we can show that the points Rb and Rc lie on this circumcircle,
and Theorem 12 is proven.
Now, we come to the actual proof of Theorem 11:
Let ga; gb; gc be the re�ections of the line g in the lines BC; CA; AB: We have to

show that these re�ections ga; gb; gc concur at one point S; and that this point S lies
on the circumcircle of triangle ABC and satis�es ]BCS = ]BAS = 90��] (CA; g) :
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(See Fig. 19.) We have BH ? CA (since H is the orthocenter of triangle ABC)

and HRb ? CA (since Rb is the re�ection of the point H in the line CA). Thus, the
points B; H; Rb lie on one line perpendicular to the line CA:
Since the line g passes through the point H; the re�ection gb of the line g in the line

CA passes through the re�ection Rb of the point H in the line CA: Since, according to
Theorem 12, the point Rb lies on the circumcircle of triangle ABC; it is therefore a point
of intersection of the line gb and the circumcircle of triangle ABC: Let S1 be the point
of intersection of the line gb and the circumcircle of triangle ABC di¤erent from Rb:
Then, ]BAS1 = ]BRbS1: On the other hand, BH ? CA yields ] (BH; CA) = 90�:
Finally, ] (CA; gb) = �] (CA; g) because the line gb is the re�ection of the line g in
the line CA: Hence,

]BAS1 = ]BRbS1 = ] (BH; gb) = ] (BH; CA) + ] (CA; gb)
= 90� + (�] (CA; g)) = 90� � ] (CA; g) :

Similarly, ]BCS1 = 90� � ] (CA; g) : Thus, we get ]BCS1 = ]BAS1 = 90� �
] (CA; g) :
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Consequently,

]CAS1 = ]CAB + ]BAS1 = ] (CA; AB) + (90� � ] (CA; g))
= 90� � (] (CA; g)� ] (CA; AB)) = 90� � ] (AB; g) :

Now, we have de�ned the point S1 as the point of intersection of the line gb with
the circumcircle of triangle ABC di¤erent from Rb: Similarly, we can denote by S2
the point of intersection of the line gc with the circumcircle of triangle ABC di¤erent
from Rc; and in the same way as we showed ]BCS1 = 90� � ] (CA; g) we can then
show ]CAS2 = 90� � ] (AB; g) for our point S2: Comparing this with ]CAS1 =
90� � ] (AB; g) ; we see that ]CAS2 = ]CAS1: Hence, the point S2 lies on the line
AS1: Since the point S2 also lies on the circumcircle of triangle ABC; this point S2
must therefore be the point of intersection of the line AS1 with the circumcircle of
triangle ABC di¤erent from A: Thus, the point S2 coincides with the point S1; since
the point S2 lies on the line gc; we have herewith shown that the point S1 lies on the
line gc: Similarly, we can see that the point S1 lies on the line ga:
Altogether, we now know that the point S1 lies on the lines ga; gb; gc; in other words,

the lines ga; gb; gc concur at the point S1; also, we know that this point S1 lies on the
circumcircle of triangle ABC and satis�es ]BCS1 = ]BAS1 = 90��] (CA; g) : Thus,
Theorem 11 is proven, and it is clear that our point S1 coincides with the point S from
Theorem 11.
Now, we can easily show the �rst characteristic of F :
Theorem 13. The Feuerbach point F of triangle ABC is the Anti-Steiner point

of the line IO with respect to triangle A0B0C 0: (See Fig. 20.)
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Proof of Theorem 13. (See Fig. 21.) First, we have to show that the Anti-Steiner

point of the line IO with respect to triangle A0B0C 0 is de�ned at all; this requires
showing that the line IO passes through the orthocenter of triangle A0B0C 0: This,
however, is clear because the point O is the orthocenter of triangle A0B0C 0 (in fact,
since the point O is the circumcenter of triangle ABC; it lies on the perpendicular
bisector of its side BC; this yields OA0 ? BC; since A0 is the midpoint of this side BC;
using B0C 0 k BC; this transforms into OA0 ? B0C 0; and similarly we get OB0 ? C 0A0
and OC 0 ? A0B0; what shows that the point O is the orthocenter of triangle A0B0C 0).
Now, as we have shown that the line IO passes through the orthocenter of triangle

A0B0C 0; Theorem 11 yields that there exists an Anti-Steiner point F1 of this line IO
with respect to triangle A0B0C 0; and that this point F1 satis�es the equation ]B0C 0F1 =
90� � ] (C 0A0; IO) :
On the other hand, Theorem 7 yields ] (Y B1; BI) = ] (CA; IO) : Since C 0A0 k

CA; we have] (CA; IO) = ] (C 0A0; IO) ; so this becomes] (Y B1; BI) = ] (C 0A0; IO) :
After Theorem 5, the line B0B1 is perpendicular to the bisector of the angle ABC;

i. e. to the line BI; this entails ] (B0B1; BI) = 90�: Since the points B0; F; C 0; B1 all
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lie on the nine-point circle of triangle ABC; we have

]B0C 0F = ]B0B1F = ] (B0B1; Y B1) = ] (B0B1; BI)�] (Y B1; BI) = 90��] (C 0A0; IO) :

Comparing this with ]B0C 0F1 = 90� � ] (C 0A0; IO) ; we get ]B0C 0F = ]B0C 0F1:
Therefore, the point F lies on the line C 0F1: Similarly, it can be shown that the point
F lies on the lines A0F1 and B0F1: But the lines A0F1; B0F1; C 0F1 have only one point
in common, namely the point F1: Thus, F = F1; in other words, the point F coincides
with the Anti-Steiner point F1 of the line IO with respect to triangle A0B0C 0: This
proves Theorem 13.
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The second characteristic of the Feuerbach point is going to be similar to the �rst

one, though harder to prove:
Theorem 14. The Feuerbach point F of triangle ABC is the Anti-Steiner point

of the line IO with respect to triangle XY Z: (See Fig. 22.)

24



A

B

C

I

Y

Z

X

O

F

Fig. 22
Proof of Theorem 14. Again, we �rst have to show that the line IO passes through

the orthocenter of triangle XY Z: This is an old result, and a number of proofs can be
found at [9]; here, for the sake of completeness, we give a self-contained proof:
Theorem 15. The orthocenter of triangle XY Z lies on the line IO: Equivalently:

The line IO is the Euler line of triangle XY Z:
Proof of Theorem 15. (See Fig. 23.) Let X 0; Y 0; Z 0 be the points of intersection

of the X-altitude, Y -altitude, Z-altitude of triangle XY Z with the incircle of triangle
ABC di¤erent from X; Y; Z; respectively.3

3Theorem 12 would now almost immediately yield that these points X 0; Y 0; Z 0 are the re�ections
of the orthocenter of triangle XY Z in its sides Y Z; ZX; XY; but this won�t be of use in our proof.
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As the pointsX; Y; X 0; Y 0 all lie on the incircle of triangle ABC; we have ]XX 0Y 0 =

]XY Y 0: The line Y Y 0; being an altitude in triangle XY Z; is perpendicular to its side
ZX; thus, ] (ZX; Y Y 0) = 90�: Therefore,

]XX 0Y 0 = ]XY Y 0 = ] (XY ; Y Y 0) = ] (XY ; ZX) + ] (ZX; Y Y 0)
= ] (XY ; ZX) + 90� = ]Y XZ + 90�:

From Y Z ? AI; it follows that ] (AI; Y Z) = 90�: On the other hand, the tangent-
chordal theorem yields ]Y XZ = ] (Y Z; AB) ; since ]Y XZ is the angle subtended
by the chord Y Z in the incircle of triangle ABC and AB is the tangent to this incircle
at the point Z: Thus,

]XX 0Y 0 = ]Y XZ + 90� = ] (Y Z; AB) + ] (AI; Y Z) = ] (AI; AB) = ]IAB:

In other words, ] (XX 0; X 0Y 0) = ] (AI; AB) :
Now, the line XX 0; being an altitude in triangle XY Z; is perpendicular to its

side Y Z; together with Y Z ? AI; this results in XX 0 k AI; thus ] (XX 0; X 0Y 0) =
] (AI; X 0Y 0) : Consequently, the equation ] (XX 0; X 0Y 0) = ] (AI; AB) becomes
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] (AI; X 0Y 0) = ] (AI; AB) ; so that X 0Y 0 k AB: Similarly, Y 0Z 0 k BC and Z 0X 0 k
CA: This shows that triangles X 0Y 0Z 0 and ABC are homothetic; i. e., there exists
a homothety which maps the triangle ABC to the triangle X 0Y 0Z 0: Denote by T the
center of this homothety.
Now, this homothety, as it maps the triangle ABC to the triangleX 0Y 0Z 0;must also

take the circumcenter of triangle ABC to the circumcenter of triangle X 0Y 0Z 0; since
the circumcenter of triangle ABC is the point O; while the circumcenter of triangle
X 0Y 0Z 0 is the point I (in fact, the circumcircle of triangle X 0Y 0Z 0 is the incircle of
triangle ABC and thus centered at I), this means that our homothety maps the point
O to the point I; since the center of the homothety is T; we thus conclude that the
points O; I; T are collinear.
(See Fig. 24.) Now, let H 0 be the image of the point I under our homothety with

center T which maps the triangle ABC to the triangle X 0Y 0Z 0: Then, the points I;
H 0; T are collinear; i. e., the point H 0 lies on the line IT: Since the points O; I; T are
collinear, this line IT coincides with the line IO; thus, we see that the point H 0 lies on
the line IO:
Now, as the point H 0 is the image of the point I under a homothety which maps the

triangle ABC to the triangle X 0Y 0Z 0; we must have ]H 0X 0Y 0 = ]IAB (homotheties
leave directed angles invariant). Comparing this with the equality ]XX 0Y 0 = ]IAB
we got above, we obtain ]H 0X 0Y 0 = ]XX 0Y 0; thus, the point H 0 lies on the line XX 0;
i. e. on the X-altitude of triangle XY Z: Similarly, the point H 0 lies on the other two
altitudes of triangle XY Z; thus, the point H 0 is the orthocenter of triangle XY Z: Since
we already know that the point H 0 lies on the line IO; we have thus proven that the
orthocenter of triangle XY Z lies on the line IO:
On the other hand, the circumcenter of triangle XY Z is the point I (in fact, the

circumcircle of triangle XY Z is the incircle of triangle ABC and has the center I);
this point I; trivially, also lies on the line IO:
Thus, the line IO passes through both the orthocenter and the circumcenter of

triangle XY Z; this means that the line IO is the Euler line of triangle XY Z: This
completes the proof of Theorem 15.
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As we now have shown that the line IO passes through the orthocenter of triangle

XY Z; according to Theorem 11, there exists an Anti-Steiner point F2 of this line IO
with respect to triangle XY Z; and this point F2 satis�es ]Y ZF2 = 90��] (ZX; IO) :
(See Fig. 25.) Now, ]Y ZF = ] (CA; Y F ) by the tangent-chordal angle theorem,

since ]Y ZF is the angle subtended by the chord Y F in the incircle of triangle ABC
and CA is the tangent to this incircle at the point Y: Furthermore, ] (Y B1; BI) =
] (CA; IO) by Theorem 7. Finally, ZX ? BI leads to ] (ZX; BI) = 90�: This all
yields

]Y ZF = ] (CA; Y F ) = ] (CA; Y B1) = ] (CA; BI)� ] (Y B1; BI) = ] (CA; BI)� ] (CA; IO)
= ] (IO; BI) = ] (ZX; BI)� ] (ZX; IO) = 90� � ] (ZX; IO) ;

so that ]Y ZF = ]Y ZF2: Hence, the point F lies on the line ZF2: Similarly, the point
F also lies on the lines XF2 and Y F2: But the lines XF2; Y F2; ZF2 have only one
point in common, namely the point F2; thus, the point F must coincide with the point
F2: In other words, the point F is the Anti-Steiner point F2 of the line IO with respect
to triangle XY Z: This completes the proof of Theorem 14.
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Theorems 14 and 15 allow a simple characterization of the Feuerbach point F of

triangle ABC from the viewpoint of triangle XY Z: The Feuerbach point F of triangle
ABC is the Anti-Steiner point of the Euler line IO of triangle XY Z with respect to
triangle XY Z:
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