From Baltic Way to Feuerbach - a geometrical excursion
Dariy Grinberg

1. Introduction

Though mathematical competitions highly contribute to the popularization of el-
ementary geometry among the mathematicians of tomorrow, the geometry one gets
confronted with in olympiads is rather a geometry of problems and tricks than a co-
herent theory. One solves proposed problems, using a number of more or less known
techniques, sometimes generalizing, but generally one is seldomly interested in system-
atics. Yet, Euclidean geometry is one of the most interconnected fields in olympiad
mathematics. An example of such interconnections will be shown in this note. Starting
at a relatively easy competition problem, we set out for a trip through the world of
elementary geometry. Through a deeper exploration of the configuration, we obtain
some additional remarkable results, which lead us to a milestone of triangle geometry
- the Feuerbach theorem about the tangency of the nine-point circle of a triangle with
its incircle. Finally, we will establish two rather elaborate properties of the point of
tangency using the results we obtained during our journey.

Readers wishing to improve their problem-solving skills are invited to consider some
of the theorems we will meet below as exercises to prove. Most of them, in fact, allow
for various different approaches, and the proofs presented in this note are by far not
the only possible ones.

Prerequisites of the journey are some interest in geometry and knowledge not far
above the high school level - besides the standard properties of cyclic quadrilaterals, the
four basic triangle centers and fundamental properties of similitude transformations,
the Euler line and the nine-point circle (also called Euler circle or Feuerbach circle)
of a triangle will be used (see [7], §1.7-§1.8, or [§8], or lots of other sources the reader
could easily find). Furthermore, directed angles modulo 180° will be used throughout
the article - this kind of angles is introduced in [4], §1.7 (as directed angles), [5] and
[6].

Finally, a terminological convention: In the following, when a line g;, a circle ky
and a point P; will be given, and both the line ¢g; and the circle k; pass through the
point P;, we will often speak of the "point of intersection of the line ¢g; with the circle
k1 different from the point P;". What this means is clear if the line g; and the circle
k1 indeed have two different points of intersection. However, if the line ¢g; touches the
circle k1, then this formulation will simply mean the point P;.

2. A problem from the Baltic Way 1995

We start our journey with a property of triangles which was given as problem 18
at the Baltic Way team contest 1995 ([1], [2], [3] 1)):



Fig. 1

Theorem 1. Let ABC be a triangle, and B’ the midpoint of its side C'A. Denote
by H, the foot of the B-altitude of triangle ABC, and by P and () the orthogonal
projections of the points A and C' on the bisector of angle ABC'. Then, the points Hy,
B’, P, @ lie on one circle. (See Fig. 1.)
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Fig. 2
This is not a tough problem, and different proofs are possible. One of them starts
off with a simple, but not uninteresting lemma:
Theorem 2. We have B'P | BC and B'Q || AB. (See Fig. 2.)



Fig. 3

Proof of Theorem 2. (See Fig. 3.) Let the line AP meet the line BC' at a point
R. Since the point P lies on the bisector of angle ABC, we have L ABP = —{RBP.
Furthermore, L APB = —{RPB, since {APB = 90° and £LRPB = 90°, and as we
are operating with directed angles modulo 180°, we have 90° = —90°. From L ABP =
—4ARBP, {APB = —£RPB and BP = BP, it follows that triangles ABP and RBP
are inversely congruent, and thus AP = PR. In other words, the point P is the midpoint
of the segment AR. On the other hand, the point B’ is the midpoint of the segment
C A. Thus, the line B’ P passes through the midpoints of two sides of triangle C AR, so
that B'P || CR; equivalently, B'P || BC. Similarly, B'Q || AB. Theorem 2 is proven.



Fig. 4

Now, the proof of Theorem 1 becomes really easy: (See Fig. 4.)

Since £ BH,C' = 90° and £ BQC = 90°, the points H, and @ lie on the circle with
diameter BC. Thus, £ BQH, = {BCH,, what becomes { PQH, = £BCA. But as
Theorem 2 yields B'P || BC, we have £ (BC; CA) = £(B'P; CA), hence { BCA =
£ PB'H,. Therefore, £ PQH, = { BCA = £ PB'H,,, and this shows that the points Hj,
B’, P, ) are concyclic. This completes the proof of Theorem 1.

Playing around with the configuration, one can come up with two more simple, but
notable properties:



Fig. 5
Theorem 3. The triangles PH,Q and ABC' are inversely similar. (See Fig. 5.)
Proof. As shown in the proof of Theorem 1, we have { PQH, = £BCA, thus

APQH, = —{ACB. Similarly, {QPH, = —4{CAB. Thus, the triangles PH,() and

ABC' are inversely similar, what proves Theorem 3.

Theorem 4. We have B'P = B'Q). (See Fig. 2.)

Proof. According to Theorem 2, we have B'P || BC, so that £ (B'P; PQ) =
£ (BC; PQ), and B'Q || AB, so that £ (PQ; B'Q) = £(PQ; AB). But since the
line PQ is the bisector of angle ABC, we have £ (BC; PQ) = £ (PQ; AB). Thus,
£ (B'P; PQ) = £ (PQ; B'Q). Equivalently, £ B'PQ = £ PQB’. This shows that the
triangle PB’Q is isosceles with B'’P = B'(Q), and Theorem 4 is proven.

Now, we broaden our configuration by adding a new point - the center of the circle
through the points H,, B’, P, Q. The following theorem (partly contained in [3], ii))
identifies this center:
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Theorem 5. The center B; of the circle through the points Hy, B’, P, ( lies on the
nine-point circle of triangle ABC|, and the line B’ B; is perpendicular to the bisector of
angle ABC.

In other words, the point Bj is the point of intersection of the nine-point circle of
triangle ABC' with the perpendicular to the bisector of angle ABC' through the point
B’ different from B’. (See Fig. 6.)

Proof. The point Bj is the center of the circle through the points H,, B, P, Q,
hence the circumcenter of triangle PB’Q); consequently, it lies on the perpendicular
bisector of the side PQ of this triangle. On the other hand, the point B’ lies on the
perpendicular bisector of this segment P(Q), since B'P = B'() by Theorem 4. Thus, the
line B’ By is the perpendicular bisector of the segment P(Q); thus, it is perpendicular to
the line PQ), i. e. to the bisector of angle ABC.
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It remains to prove that the point B; lies on the nine-point circle of triangle ABC.
This can, e. g., be shown by chasing angles (Fig. 7): In addition to the midpoint B’
of the side C'A of triangle ABC, we introduce the midpoint A’ of the side BC. The
nine-point circle of triangle ABC' is known to pass through the midpoints A’ and B’
of the sides BC' and C'A and through the foot H, of the B-altitude of triangle ABC.

Since £ BH,C' = 90°, the point H, lies on the circle with diameter BC. The center
of this circle is the midpoint A’ of the segment BC'. Thus, A’H, = A'C. Consequently,
triangle H,A'C is isosceles, so that £ A'H,C' = £ H,C A’. On the other hand, the point
B is the center of the circle through the points Hy,, B’, P, @; this yields BiH, = B B’,
so that the triangle H,BB’ is isosceles, and £ B'H,B, = £B,B'H,. Finally, from
B'B; L PQ we conclude that £ (B'B;; PQ) = 90° = —90°. Thus,

LA'HyB, = LA'H,C' + {B'H,B; = {H,CA' + {BiB'H, = £ (CA; BC)+ £ (B'By; CA)
= £ (B'By; BC) =4 (B'B;; PQ)+ £(PQ; BC)=90°+ £ (PQ; BC).

Since the line P(Q is the bisector of angle ABC|, we have £ (PQ; BC) = 4 (AB; PQ),
and this becomes L A'H,B; = 90° + £ (AB; PQ).

Since the points A" and B’ are the midpoints of the sides BC' and C'A of trian-
gle ABC), the line A’B’ is parallel to the line AB. Consequently, £ (A'B’; B'B;) =
£ (AB; B'B;), and

KAB'B, = £ (AB'; B'B)) = 4(AB; B'B,) = £ (AB; PQ)— £(B'By; PQ)

=4 (AB; PQ)— (—90°) =90° + £ (AB; PQ) = £A'"H,B;.



Thus, the points A’, B’, H, and B; are concyclic. In other words, the point B; lies on
the circle through the points A’, B’, Hy, i. e. on the nine-point circle of triangle ABC.
This completes our proof of Theorem 5.

3. The incenter

Now we move to deeper waters and enhance the configuration by a new point; we
start with a fact first noted by Grobber in [2]:

Fig. 8
Theorem 6. Let the incircle of triangle ABC' touch its side C'A at a point Y.
Then, this point Y is the incenter of triangle PH,Q. (See Fig. 8.)



Fig. 9

Proof. Let I' be the incenter of triangle PH,(). Theorem 6 asserts that Y = I’.

(See Fig. 9.) Let I be the incenter of triangle ABC. This incenter I must obviously
lie on the bisector of angle ABC, this means, on the line through the points B, P, Q.

Since the incircle of triangle ABC has the center I and touches the side C'A at the
point Y, we have IY 1 CA, so that LAY T = 90°. Together with L API = 90°, this
shows that the points Y and P lie on the circle with diameter Al. Hence, LY PI =
ALY AI. In other words, LY PQ) = —4LTAC.

Now, according to Theorem 3, the triangles P H,() and ABC' are inversely similar; i.
e., there exists an indirect similitude which maps triangle ABC' to triangle P H,(). This
similitude, of course, must also map the incenter I of triangle ABC to the incenter I’ of
triangle P H,(@), and since directed angles change their sign under an indirect similitude,
this point I satisfies £I'PQ) = —£IAC. Comparison with LY PQ) = —LTAC yields
LI'PQ = LY PQ); thus, the point Y lies on the line I’ P. Similarly, the point Y lies on
the line I'Q). But the lines I’P and I'(Q have only one point in common, namely I’;
thus, Y = I’, what proves Theorem 6.
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Fig. 10

(See Fig. 10.) Now, we denote by O the circumcenter of triangle ABC'. Furthermore,
we note that the point B is the circumcenter of triangle PH,() (being the center of the
circle through the points Hy,, B’, P, }). The indirect similitude which maps triangle
ABC to triangle PH,() must map the incenter I of triangle ABC' to the incenter Y
of triangle PH,() and the circumcenter O of triangle ABC to the circumcenter B
of triangle PH,(Q. Since directed angles change their sign under indirect similitudes,
we thus have £ (Y By; QP) = —£(10; CA). As the line QP coincides with the line
BI, this becomes £ (Y By; BI) = —£(I0; CA), or, equivalently, £ (Y By; BI) =
£L(CA; 10).

Using the alternative description of the point B; which was given in Theorem 5,
the result just obtained can be stated as follows:

Theorem 7. Let ABC be a triangle, [ its incenter, O its circumcenter, and B’
the midpoint of its side C'A. Further, let Y be the point of tangency of the incircle of
triangle ABC with its side C'A, and let B; be the point of intersection of the nine-point
circle of triangle ABC with the perpendicular to the bisector of angle ABC' through
the point B’ different from B’. Then, £ (Y By; BI) = £ (CA; I10).
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4. Nine-point circle and incircle

B

A

Fig. 11

Theorem 7 differs in some respect from the results before: The points H,, P and @)
don’t occur anymore; it’s mainly a property of the incircle and the nine-point circle of
the triangle ABC. This suggests a connection to a famous theorem of triangle geometry,
the Feuerbach theorem (see, e. g., [7], §5.6, theorem 5.61):

Theorem 8. The nine-point circle of any triangle ABC' touches the incircle of
triangle ABC. (See Fig. 11.)

In its more general form, the Feuerbach theorem states that the nine-point circle of
triangle ABC' touches its incircle and its three excircles; however, we will only prove
the tangency with the incircle (i. e. the assertion of Theorem 8) below, as the proof
of the tangency with the excircles can be done in a completely analogous way - our
observations are, thanks to the use of directed angles modulo 180°, independent of the
arrangement, and transferring them from the incircle to an excircle comes down to just
replacing some internal angle bisectors by external angle bisectors.

Now, we are going to prove Theorem 8 with the help of our Theorem 7.

12



Fig. 12

(See Fig. 12.) First, we extend our configuration to a symmetric one:

Let A’, B, C’" be the midpoints of the sides BC, C A, AB of triangle ABC. Then,
the lines B'C’, C'A’, A’B’ are parallel to the sidelines BC, C' A, AB, respectively.
Furthermore, the points A’, B’, C' lie on the nine-point circle of triangle ABC.

(See Fig. 13.) Let X, Y, Z be the points of tangency of the incircle of triangle
ABC with its sides BC, C'A, AB. Then, the points Y and Z are symmetric to each
other with respect to the bisector of angle C AB; thus, the line Y Z is perpendicular to
the bisector of the angle CAB, i. e. to the line Al (since the point [ is the incenter of
triangle ABC'). Similarly, the lines ZX and XY are perpendicular to the bisectors of
the angles ABC and BCA, i. e. to the lines BI and C1I, respectively.

(See Fig. 12 again.) Let Ay, By, C; be the points of intersection of the nine-point
circle of triangle ABC' with the perpendiculars to the bisectors of angles CAB, ABC,
BCA through the points A’, B’, C' different from A’, B’, ", respectively.

13



Fig. 13
Theorem 7 yields £ (Y By; BI) = £ (C'A; 10) . Similarly, we can get £ (ZCy; CI) =
£ (AB; 10) and £ (X Ay; AI) = £ (BC; 10). This entails

£(YBy; ZC)) = £(YBy; BI)+ 4 (BI; CI) — £ (ZCy; CI)
= A (CA; 10)+ £ (BI; CI)— £ (AB; 10)
= (L (CA; 10)— £ (AB; 10))+ £ (BI; CI)=£(CA; AB)+ £ (BI; CI)
= (£ (CA; BI)+ £ (BI; AB))+ £(BI; CI)
= (L (CA; BI)+ £ (BI; CI))+ £(BI; AB) =£(CA; CI)+ £(BI; AB).

Now, as the lines C'I and BI are the bisectors of angles BC'A and ABC, we have
£L(CA; CI)=4£(CI; BC)and £(BI; AB) = £(BC; BI), so that

L(YBy; ZCy) = 4£(CA; CI)+£(BI; AB) = £ (CI; BC)+4£(BC; BI)= £ (CI; BI).

(See Fig. 13.) From ZX 1 BI, we conclude that £ (BI; ZX) = 90°, and from
XY L CI, we get £(CI; XY)=90°. Hence,

£L(YBy; ZCy) =4 (CI; BI)=4£(CI; XY)+ £(XY; ZX)— £(BI; ZX)
=90° + £ (XY; ZX)—90° = L (XY; ZX) =LY XZ.

14



Fig. 14

(See Fig. 14.) Now, let F' be the point of intersection of the line B;Y with the
incircle of triangle ABC different from Y. Then, LY FZ = LY X Z. But, as we showed
above, £ (YBy; ZC1) = LY XZ. Thus, KYFZ = £ (Y B;; ZC}), or, equivalently,
£ (YBy; FZ) = £(YBy; ZCy). This yields that the lines FZ and ZC; are parallel.
Since they have a common point (the point Z), they must therefore coincide; i. e., the
point F' lies on the line CZ. Similarly, we show that the point F' lies on the line A; X.

We note for our further reasoning that the point F' lies on the incircle of triangle
ABC and is the point of intersection of the three lines A; X, B,Y, C1 Z.

Now, we are going to show a simple lemma:

Theorem 9. The triangles A;B;C, and XY Z are homothetic.

15



Fig. 15

Proof of Theorem 9. (See Fig. 15.) Since the points B’, C’, By, C} all lie on the nine-
point circle of triangle ABC, we have £ B1C1C" = AB1B'C’, thus £ (B,Cy; C'Cy) =
£ (B'By; B'C"). Now, the lines B'B; and ZX are both perpendicular to the bisector
of angle ABC'; thus, B'B; || ZX. Similarly, C'C} || XY.

From C'Cy || XY, it follows that £ (B,Cy; C'Cy) = £ (B1Cy; XY), while B'B; ||

ZX and B'C" || BC'yield £ (B'By; B'C') = £(ZX; BC). Thus, the equation £ (B,Cy; C'Cy) =

&£ (B'By; B'C") becomes £ (B1Cy; XY) =4 (ZX; BC). Now, the angle £ (ZX; BC)
is the angle between the chord ZX of the incircle of triangle ABC and the tangent
BC to this incircle at the point X, and thus, according to the tangent-chordal angle
theorem, equals to the angle £ZY X subtended by the chord ZX. Hence, we have
£ (B1Cy; XY) = LZY X, or, equivalently, £ (B1Cy; XY) = £(YZ; XY). Thus,
B,Cy || YZ. Similarly, C1A; || ZX and A;B; || XY. Hence, the triangles A; B;C}
and XY Z are homothetic, and Theorem 9 is proven.

16



Fig. 16

(See Fig. 16.) Consider the two homothetic triangles A; B;C; and XY Z. Their ho-
mothetic center must be the point of intersection of the three lines A1 X, B,Y, C1Z, so
it is the point F. Thus, there exists a homothety with center ' which maps the triangle
XY Z to the triangle A, B;C,. Of course, this homothety must then map the circum-
circle of triangle XY Z to the circumcircle of triangle A; B;C}. Since the circumcircle of
triangle XY Z is the incircle of triangle ABC, and the circumcircle of triangle A; B;C}
is the nine-point circle of triangle ABC, we thus conclude that our homothety with
center F' transforms the incircle of triangle ABC' into the nine-point circle of triangle
ABC. On the other hand, the homothety fixes the point F' (since it is the center of the
homothety). Thus, as the point F' lies on the incircle of triangle ABC, its image under
the homothety - i. e. the point F' again - must lie on the image of the incircle - i. e.
on the nine-point circle of triangle ABC. Therefore, the point F' is a common point of
the incircle and the nine-point circle of triangle ABC'. Moreover, since our homothety
with center F' maps the incircle to the nine-point circle and leaves the point F' fixed, it
must map the tangent to the incircle at the point F' to the tangent to the nine-point
circle at the point F'; on the other hand, the tangent to the incircle at the point F
is a line through the center F' of our homothety and thus must remain fixed under
the homothety. Hence, the tangent to the incircle at the point /' must coincide with
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the tangent to the nine-point circle at the point F. In other words, the incircle and
the nine-point circle of triangle ABC' have a common tangent at their common point
F. Therefore, they must touch each other at the point F. This not only establishes
Theorem 8, but also yields a characterization of the point of tangency F':

Theorem 10. The point of tangency F' of the incircle and the nine-point circle of
triangle ABC' is the homothetic center of the homothetic triangles A, B;Cy and XY Z.
(See Fig. 16.)

This point of tangency F' is usually referred to as the Feuerbach point of triangle
ABC. !

5. The Feuerbach point as an Anti-Steiner point

The main theorem is proven, but geometry doesn’t stop here. In fact, the Feuerbach
point F' is one of the richest in properties geometrical objects and was subject to
numerous publications. Here, we are going to show two characteristics of I’ which are,
in my opinion, much less popular than they deserve.

We will formulate these characteristics using the notion of Anti-Steiner points. This
notion is based on the following fact:

L A little bit of care is necessary when consulting literature, as some authors use the term "Feuerbach
point" for the center of the nine-point circle; this is, however, pretty seldom.
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Theorem 11. Let ABC be a triangle and H its orthocenter. Let g be a line through
the point H. Then, the reflections of the line g in the lines BC, C'A, AB concur at
a point S, and this point S lies on the circumcircle of triangle ABC. Furthermore,
ABCS = £BAS =90° — L (CA; g).

We will call the point S the Anti-Steiner point of the line g with respect to
triangle ABC. 2 (See Fig. 17.)

2The denotation "Anti-Steiner point" was choosen by me for the following reason:

If a point lies on the circumcircle of triangle ABC, then the reflections of this point in the sidelines
BC, CA, AB lie on one line, the so-called Steiner line of this point with respect to triangle ABC.
Now, the point S is called the Anti-Steiner point of the line g since the Steiner line of the point S is the
line g (as one can easily see). The name "Steiner point" may be more appropriate, but unfortunately,
it is already used for at least three different triangle centers!
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The proof of Theorem 11 relies on a very well-known fact:

Theorem 12. Let ABC be an arbitrary triangle and H its orthocenter. Then, the
reflections R,, Ry, R. of the point H in the lines BC, C A, AB lie on the circumcircle
of triangle ABC'. (See Fig. 18.)

Proof of Theorem 12. Since H is the orthocenter of triangle ABC, we have BH L
CAand CH 1 AB, thus £ (BH; CA) =90° und £ (CH; AB) = 90°. Consequently,

KBHC = £ (BH; CH) = £ (BH; CA)+ £ (CA; AB) — £ (CH; AB)
= 90° + £ (CA; AB) —90° = £ (CA; AB) = £CAB.

Since R, is the reflection of the point H in the line BC, we have L BR,C = —{BHC,
thus £ BR,C' = —4{CAB = £BAC. Hence, the point R, lies on the circumcircle of
triangle ABC. Similarly, we can show that the points R;, and R, lie on this circumcircle,
and Theorem 12 is proven.

Now, we come to the actual proof of Theorem 11:

Let g4, g», g be the reflections of the line g in the lines BC, CA, AB. We have to
show that these reflections g,, g, g. concur at one point S, and that this point S lies
on the circumcircle of triangle ABC and satisfies { BC'S = {BAS = 90° — £ (CA4; g).

20



Fig. 19

(See Fig. 19.) We have BH 1 CA (since H is the orthocenter of triangle ABC)
and HR, L C'A (since R, is the reflection of the point H in the line C'A). Thus, the
points B, H, R, lie on one line perpendicular to the line C'A.

Since the line g passes through the point H, the reflection g, of the line g in the line
C A passes through the reflection R, of the point H in the line C'A. Since, according to
Theorem 12, the point R, lies on the circumcircle of triangle ABC, it is therefore a point
of intersection of the line g, and the circumcircle of triangle ABC. Let S; be the point
of intersection of the line g, and the circumcircle of triangle ABC' different from R,.
Then, L BAS; = £BR,S;. On the other hand, BH L CA yields £ (BH; C'A) = 90°.
Finally, £ (CA; g,) = —4 (CA; g) because the line g, is the reflection of the line g in
the line C'A. Hence,

KBAS, = {BR,S; = £ (BH; ¢,) = £ (BH; CA)+ £ (CA; )
= 90° + (=4 (CA; g)) = 90° — £ (C4; g).

Similarly, £ BCS; = 90° — £ (CA; g). Thus, we get LBCS; = £BAS; = 90° —
£(C4; g).
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Consequently,

LCAS, = LCAB + £{BAS, = £ (CA; AB)+ (90° — £ (C4; g))
= 90° — (L (C4; g) — £ (CA; AB)) =90° — £ (AB; g).

Now, we have defined the point S; as the point of intersection of the line g, with
the circumcircle of triangle ABC' different from R,. Similarly, we can denote by S
the point of intersection of the line g. with the circumcircle of triangle ABC' different
from R,, and in the same way as we showed £ BC'S; = 90° — £ (C'A; g) we can then
show LCASy; = 90° — L (AB; g) for our point Ss. Comparing this with LCAS; =
90° — £ (AB; g), we see that LCASy = LCAS;. Hence, the point Sy lies on the line
AS]. Since the point Sy also lies on the circumcircle of triangle ABC' this point S
must therefore be the point of intersection of the line AS; with the circumcircle of
triangle ABC different from A. Thus, the point S, coincides with the point Si; since
the point Sy lies on the line g., we have herewith shown that the point S; lies on the
line g.. Similarly, we can see that the point S; lies on the line g,.

Altogether, we now know that the point S lies on the lines g,, g5, g.; in other words,
the lines g,, g9», g. concur at the point Si; also, we know that this point 57 lies on the
circumcircle of triangle ABC' and satisfies { BC'S; = £ BAS; = 90°— 4 (CA; g). Thus,
Theorem 11 is proven, and it is clear that our point S; coincides with the point S from
Theorem 11.

Now, we can easily show the first characteristic of F"

Theorem 13. The Feuerbach point F' of triangle ABC' is the Anti-Steiner point
of the line 7O with respect to triangle A'B'C". (See Fig. 20.)
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Fig. 20

Proof of Theorem 13. (See Fig. 21.) First, we have to show that the Anti-Steiner
point of the line IO with respect to triangle A’B'C" is defined at all; this requires
showing that the line /O passes through the orthocenter of triangle A’B’C’. This,
however, is clear because the point O is the orthocenter of triangle A’B’'C”’ (in fact,
since the point O is the circumcenter of triangle ABC, it lies on the perpendicular
bisector of its side BC'; this yields OA’ 1 BC, since A’ is the midpoint of this side BC
using B'C" || BC, this transforms into OA’ L B'C’, and similarly we get OB’ 1. C" A’
and OC" L A'B’, what shows that the point O is the orthocenter of triangle A’B'C").

Now, as we have shown that the line /O passes through the orthocenter of triangle
A'B'C', Theorem 11 yields that there exists an Anti-Steiner point F; of this line 1O
with respect to triangle A’ B’'C’, and that this point F} satisfies the equation £ B'C'F; =
90° — L (C'A’; 10).

On the other hand, Theorem 7 yields £ (Y By; BI) = £(CA; 10). Since C'A’ ||
CA, wehave £ (CA; 10) = £ (C'A’; 10),so this becomes £ (Y By; Bl) = £ (C'A’; 10).

After Theorem 5, the line B’B; is perpendicular to the bisector of the angle ABC,
i. e. to the line BI; this entails £ (B'By; BI) = 90°. Since the points B’, F, C', B; all
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lie on the nine-point circle of triangle ABC', we have
AB'C'F = {B'B1F = £ (B'By; YBy) = £ (B'By; BI)—4(YBy; BI)=90"—«£ (C'A’; 10).

Comparing this with £ B'C'Fy; = 90° — £ (C'A’; 10), we get AB'C'F = £B'C'F.
Therefore, the point F' lies on the line C'F;. Similarly, it can be shown that the point
F lies on the lines A'F} and B’F;. But the lines A'Fy, B'F;, C'F; have only one point
in common, namely the point F;. Thus, F' = F}; in other words, the point F' coincides
with the Anti-Steiner point F; of the line /O with respect to triangle A’B’'C’. This
proves Theorem 13.

B

Fig. 21

The second characteristic of the Feuerbach point is going to be similar to the first
one, though harder to prove:

Theorem 14. The Feuerbach point F of triangle ABC is the Anti-Steiner point
of the line 7O with respect to triangle XY Z. (See Fig. 22.)
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Fig. 22

Proof of Theorem 14. Again, we first have to show that the line /O passes through
the orthocenter of triangle XY Z. This is an old result, and a number of proofs can be
found at [9]; here, for the sake of completeness, we give a self-contained proof:

Theorem 15. The orthocenter of triangle XY Z lies on the line /O. Equivalently:
The line 10O is the Euler line of triangle XY Z.

Proof of Theorem 15. (See Fig. 23.) Let X', Y’, Z' be the points of intersection
of the X-altitude, Y-altitude, Z-altitude of triangle XY Z with the incircle of triangle
ABC different from X, Y, Z, respectively.?

3Theorem 12 would now almost immediately yield that these points X', Y’, Z’ are the reflections
of the orthocenter of triangle XY Z in its sides Y Z, ZX, XY, but this won’t be of use in our proof.
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Fig. 23

As the points X, Y, X', Y’ all lie on the incircle of triangle ABC, we have £ X XY’ =
£XYY'. The line YY’, being an altitude in triangle XY Z, is perpendicular to its side
ZX; thus, £ (ZX; YY') = 90°. Therefore,

AXX'Y = 4XYY' = L(XY; YY) = L(XY; ZX)+ £ (ZX; YY)
— L(XY; ZX)+90° = LY X Z + 90°.

From YZ 1 Al, it follows that £ (Al; YZ) = 90°. On the other hand, the tangent-
chordal theorem yields LY XZ = £(YZ; AB), since LY XZ is the angle subtended
by the chord Y Z in the incircle of triangle ABC and AB is the tangent to this incircle
at the point Z. Thus,

AXX'Y' = LY XZ+90° = £(YZ; AB)+ £ (AI;, YZ) = £ (A, AB) = {IAB.

In other words, £ (XX'; X'Y') = «£(Al;, AB).

Now, the line X X’  being an altitude in triangle XY 7, is perpendicular to its
side Y Z; together with YZ | AI, this results in XX’ || AI, thus £ (XX'; X'Y’) =
£ (AI; X'Y'). Consequently, the equation £ (XX'; X'Y') = £ (AI; AB) becomes
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L (AL X'Y') = £ (AI; AB), so that X'Y’ || AB. Similarly, Y'Z' || BC and Z'X" ||
C'A. This shows that triangles X'Y'Z" and ABC are homothetic; i. e., there exists
a homothety which maps the triangle ABC' to the triangle X'Y’Z’. Denote by T the
center of this homothety.

Now, this homothety, as it maps the triangle ABC to the triangle X'Y’Z’ must also
take the circumcenter of triangle ABC' to the circumcenter of triangle X'Y’Z’; since
the circumcenter of triangle ABC' is the point O, while the circumcenter of triangle
X'Y'Z" is the point I (in fact, the circumcircle of triangle X'Y’Z’ is the incircle of
triangle ABC' and thus centered at I), this means that our homothety maps the point
O to the point I; since the center of the homothety is 7', we thus conclude that the
points O, I, T" are collinear.

(See Fig. 24.) Now, let H' be the image of the point / under our homothety with
center T" which maps the triangle ABC' to the triangle X'Y’Z’. Then, the points I,
H', T are collinear; i. e., the point H' lies on the line I'T. Since the points O, I, T are
collinear, this line I'T" coincides with the line /0O; thus, we see that the point H' lies on
the line 10.

Now, as the point H’ is the image of the point I under a homothety which maps the
triangle ABC' to the triangle X'Y'Z’" we must have L{H'X'Y’ = LI AB (homotheties
leave directed angles invariant). Comparing this with the equality L X XY’ = LTAB
we got above, we obtain £ H' X'Y" = £ X X"Y”; thus, the point H’ lies on the line X X',
i. e. on the X-altitude of triangle XY Z. Similarly, the point H' lies on the other two
altitudes of triangle XY Z; thus, the point H’ is the orthocenter of triangle XY Z. Since
we already know that the point H’ lies on the line /O, we have thus proven that the
orthocenter of triangle XY Z lies on the line 10.

On the other hand, the circumcenter of triangle XY Z is the point I (in fact, the
circumcircle of triangle XY Z is the incircle of triangle ABC and has the center I);
this point I, trivially, also lies on the line 70.

Thus, the line IO passes through both the orthocenter and the circumcenter of
triangle XY Z; this means that the line /0O is the Euler line of triangle XY Z. This
completes the proof of Theorem 15.
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Fig. 24

As we now have shown that the line /O passes through the orthocenter of triangle
XY Z, according to Theorem 11, there exists an Anti-Steiner point F5 of this line 70
with respect to triangle XY Z, and this point F; satisfies LY ZF, = 90°— £ (ZX; 10).

(See Fig. 25.) Now, LY ZF = £ (CA; YF) by the tangent-chordal angle theorem,
since LY ZF is the angle subtended by the chord Y F' in the incircle of triangle ABC
and C'A is the tangent to this incircle at the point Y. Furthermore, £ (Y By; BI) =
£ (CA; I0) by Theorem 7. Finally, ZX L BI leads to £ (ZX; BI) = 90°. This all
yields

LY ZF = £ (CA; YF) = £(CA; YB)) = £(CA; BI)— £ (YBy; BI)= £ (CA; BI)— £(CA; I0)
= £(I0; BI)=4£(ZX; BI)— £(ZX; 10)=90° — £ (ZX; 10),

so that LY ZF = LY ZF5. Hence, the point F' lies on the line ZF5,. Similarly, the point
F' also lies on the lines X Fy and Y F5. But the lines X Fy, Y F,, ZF; have only one
point in common, namely the point F3; thus, the point /' must coincide with the point
F. In other words, the point F' is the Anti-Steiner point F5 of the line /O with respect
to triangle XY Z. This completes the proof of Theorem 14.
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B,

Fig. 25

Theorems 14 and 15 allow a simple characterization of the Feuerbach point F' of
triangle ABC' from the viewpoint of triangle XY Z: The Feuerbach point F' of triangle
ABC is the Anti-Steiner point of the Euler line 1O of triangle XY Z with respect to
triangle XY Z.
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