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Incomplete solution by Darij Grinberg.
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sider only those functions x which never vanish. This renders the word
"nonzero” in problem (c) useless.

Remark: Since is undefined for x (t) = 0, we are going to con-

We recall a fact from first-course differential equations:

Theorem 1. Let V' C R xR™ be an open and connected subset of R x R™.
We denote points in V' by (¢,y), where ¢ is the R-coordinate and y is the
R™-coordinate. Let f : V — R™ be a continuous map which is locally
Lipschitz with respect to y.

(a) For every (to,y0) € V, the initial value problem

y/:f(t,}’), Y(tO) =Yo (2)

has one and only one maximal solution, which is a function A : |a,b[ — R™
defined on some open interval |a, b (where a and b may be reals but may
also be values such as +0o and —oo) such that every solution of (2) on an
interval is a restriction of A and its domain is a subset of ]a, b|.

(b) If b < oo, then the set {\(t) | t € [to, b[} is unbounded, or

oV # o and %1}1% dist [(¢, A (¢)),0V] = 0.

(c) If @ > —oo, then the set {A(t) | t € Ja,to]} is unbounded, or

oV #o and %1\m dist [(t, A (¢)),0V] = 0.

[The word ”or” means a logical "or” here (not an ”or, equivalently”).]

We are going to apply this theorem to our problem, but first let us prepare.
Let m = 6. Define a subset V C R x (R? x R?) by

V=Rx ((R°\0) xR®) = {(t, (y1,y2)) € Rx (R* xR?) | y; #0}.

Obviously, V' is an open and connected subset of R x (R? x R?).

For every vector function x € C? (I,R®) (where I C R is some interval), we can
define a vector function y € C' (I,R® x R?) by y (¢) = (x(¢),x(t)) for every ¢t € I.
Our vector differential equation (1) is equivalent to the vector differential equation

y =f(ty)
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for this function y, where the map f : V — R3 x R? is defined by

v(t, (y1,y2)) = (YQ,P(t7Y1;Y2) Y2 X ||§1||> for all (¢, (y1,y2)) € V.

This map f : V — R3xR3 is continuous and locally Lipschitz with respect to y (in fact,

Y1
[Iyl|
Lipschitz with respect to y, where the local Lipschitz property for the map p (¢,y1,y2)

follows from the continuity of its partial derivatives).

We can now apply Theorem 1 (a) to our situation (identifying the space R? x R3
with R® = R™). We conclude that for every (ty,yo) € V, the initial value problem
(2) has one and only one maximal solution X : |a,b[ — R? x R? defined on some open
interval |a, b[. So let us fix some (ty,yo) € V and consider the maximal solution \ for
this (to,y0) € V. The function X has the form A (t) = (A1 (¢), A2 (t)) for every ¢ € |a, b],
where A; : Ja,b[ — R?® and )\ : ]a,b[ — R? are two vector functions. Since \ satisfies
(2), we must have Ay = X}, so that A (t) = (A (t), ] (¢)) for every ¢ € ]a, b[. Besides,
the equation (2) yields

the local Lipschitz property is clear because , yo and p(t,y1,y2) are all locally

/ o >‘1 <t>
)\Q(t)_p<t>/\1<t)7)\2(t))>\2(t)X H>\1(t>H’
which (in view of Ay = \|) becomes
" o / / )‘1 (t)
)‘1 (t) —p(t,)\l (t>7/\1 (t)) >‘1 (t> X ||)\1 (t)H (3)

In other words, A; is a solution of the equation (1) for every (ty,yo) € V. Conversely,
every solution x : I — R3 (where I is some interval) of the equation (1) is the function
A1 (restricted to I) for a suitable choice of the initial value (t9,yo) € V' !. Hence,
in order to solve the problem, it is enough to prove the following three assertions for
every (to,yo) € V:

Assertion «. The solution A is defined on all of R; in other words, a = —oc and
b = oo (since ]a, b[ is the domain of \).

Assertion 3. We have tlgélo A1 (t) = oo, unless A; is a constant function.

Assertion «. The limit lim M (1)
t=oo [[ Ay (1)]]

Before we start proving these assertions, let us study .

The equation (3) yields (A} (£), A1 (t)) = 0 and (X] (¢),\] (¢)) = 0 for every t €
Ja,b[ (where (-,-) denotes the standard scalar product of vectors in R3, defined by
((a1,as2,a3), (b1, b2, b3)) = a1by+asbe+asbs). In other words, (A{, A1) = 0and (\], \]) =
0 (where (-, -) means the pointwise scalar product of functions).

We will often use the (obvious) fact that

(f,9) =(f9)+(f.d) (4)

n fact, take some to € I and set yo = (x(to),x (t9)), and define a function y : I — R3 x R3
by y (t) = (x(t),x' (t)) for every t € I. Then, y solves the initial value problem (2), and thus is the
restriction of its maximal solution A to I, so that x is the restriction of A\; to I.

exists.




for any two vector functions f € C* (Ja,b[ — R?) and g € C! (Ja, b — R3). We have
VLAY = (0, + (L) (by (4))

=(\\)
=2 (M, N)=2-0=0,

so that (A}, \]) is a constant function. Also,

(AL A = (A1, M) + (A, X)) (by (4))
=0
= </\,17 >‘,1> )
and
(A, A1) = (A A + (A, AD) (by (4))
(i)
=2 <)‘/17 )‘1> s
so that )
AuA)" = [ QoA | =200, ) =2 (AL
——— ——— ——
:2<>\/1’)\1> :<>\/17)\/1> a constant function

is a constant function. This means that (A, \;) is a quadratic polynomial in ¢. In
other words, there exist reals u, v, w such that

(A1, M) () = ut® + ot +w for every t € |a, b|.
Then, (A1, A1) = 2 (X, \;) yields that

(A, A1) (8) = ut + g for every t € |a, b].

Using (X, A1) = (X, \}), this leads to
ML) (H) =u for every t € Ja, b][.
For every t € Ja, b[, we have

(uf +otbw) - u = (A (). A () - (N (5).X ()

— () () =(\A1) ()
=M@OM ) =(N )N @)

2
> (A1(t), A (1) (by the Cauchy-Schwarz inequality)
~——— —

=(NA1) (B)=ut+v/2

= (ut + 2)2 (5)



what rewrites as 4uw > v2.
We now distinguish between two cases:
Case 1. We have duw > v2.
Case 2. We have duw = v2.

2
In Case 2, we must have (ut? + vt + w) - u = <ut + g) for every t € |a, b[, so that

the chain of inequalities (5) is an equality, and therefore equality must hold in the
Cauchy-Schwarz inequality (Ay (£), Ay (£)) - (N (8) N (8)) > (N (£), M (1))* for every
t € Ja,b[, so that the vectors A; (t) and X| (¢) are collinear for every t € |a,b|, so
that A} (t) = 0 for every t € ]a,b[ (by (3), since the cross product of two collinear
vectors is always 0), so that A; is a linear function and thus defined on the whole
R, and consequently A2 = A is a constant function defined on the whole R, so that
A = (A, A2) is defined on the whole R. Thus, all three Assertions a, § and ~ are
obvious in this case (actually, Assertion ( simply says nothing in this case).

So it remains to consider Case 1. In order to prove Assertion «, we have to verify
a = —oo and b = 0o. Let us only show that b = co (the proof of a = —o0 is analogous).

In fact, assume (for the sake of contradiction) that b = oo is not the case. Then,
b < 00, so that Theorem 1 (a) yields that the set {\(¢) | t € [to, [} is unbounded, or

oV # @ and %/1}% dist [(¢, A (t)),0V] = 0.

However, the set {\(t) | t € [to, b} cannot be unbounded (since

2
NI = [T O+ ]| X @] = VI @I+ 11X 01
~~
=\,
= [ @), M (@) + N (), (1) = Vut? + vt +w +u
\ =) (1) (M)
=ut?fvt+w =u

is a bounded function on any bounded interval). Hence, we must have

oV +£ o and lim dist (1, A (1)) . O] = 0.

But actually, 9V =R x (0 x R?) (since V =R x ((R*\ 0) x R?)) and thus

dist [(£, A (£)),0V] = [\ (D] = VO (), M () = /O, M) (£) = Vat® + of + w.

Thus, lim dist [(¢, A (¢)) , V] = 0 becomes lim vut? + vt + w = 0. Thus, lim (ut* + vt + w) =
t,/b t,/b t/b

0. But this is impossible, since the quadratic function ut? + vt + w is bounded away
from 0 (because its discriminant 4uw — v? is positive, since we are in Case 1). Thus, we
get our contradiction, and it is proved that b = oo. Similarly, we can see that a = —oo.
This proves Assertion a.

In order to verify Assertion (3, we notice that

tlim A ()| = tlim (A (1), A1 (1) = tlim Vut? + vt + w = oo,
—00 —00 N/ — 00

=(A1,A1)(?)
=ut?+ut+w
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unless uw = 0 which can only hold if the function A; is a constant function (because
u =0 yields (A (¢), A () = (A, \}) (t) = u = 0 for every t € R, thus X (t) = 0 for
every t € R, and thus A; = const). This proves Assertion .

[ am yet unable to prove Assertion ~.



