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Remark: Since
x (t)

||x (t)||
is undefined for x (t) = 0, we are going to con-

sider only those functions x which never vanish. This renders the word
”nonzero” in problem (c) useless.

We recall a fact from first-course differential equations:

Theorem 1. Let V ⊆ R×Rm be an open and connected subset of R×Rm.
We denote points in V by (t,y), where t is the R-coordinate and y is the
Rm-coordinate. Let f : V → Rm be a continuous map which is locally
Lipschitz with respect to y.

(a) For every (t0,y0) ∈ V , the initial value problem

y′ = f (t,y) , y (t0) = y0 (2)

has one and only one maximal solution, which is a function λ : ]a, b[ → Rm

defined on some open interval ]a, b[ (where a and b may be reals but may
also be values such as +∞ and −∞) such that every solution of (2) on an
interval is a restriction of λ and its domain is a subset of ]a, b[.

(b) If b < ∞, then the set {λ (t) | t ∈ [t0, b[} is unbounded, or

∂V 6= ∅ and lim
t↗b

dist [(t, λ (t)) , ∂V ] = 0.

(c) If a > −∞, then the set {λ (t) | t ∈ ]a, t0]} is unbounded, or

∂V 6= ∅ and lim
t↘a

dist [(t, λ (t)) , ∂V ] = 0.

[The word ”or” means a logical ”or” here (not an ”or, equivalently”).]

We are going to apply this theorem to our problem, but first let us prepare.
Let m = 6. Define a subset V ⊆ R× (R3 × R3) by

V = R×
((

R3 \ 0
)
× R3

)
=

{
(t, (y1,y2)) ∈ R×

(
R3 × R3

)
| y1 6= 0

}
.

Obviously, V is an open and connected subset of R× (R3 × R3).
For every vector function x ∈ C2 (I, R3) (where I ⊆ R is some interval), we can

define a vector function y ∈ C1 (I, R3 × R3) by y (t) = (x (t) ,x′ (t)) for every t ∈ I.
Our vector differential equation (1) is equivalent to the vector differential equation

y′ = f (t,y)
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for this function y, where the map f : V → R3 × R3 is defined by

v (t, (y1,y2)) =

(
y2, p (t,y1,y2)y2 ×

y1

||y1||

)
for all (t, (y1,y2)) ∈ V.

This map f : V → R3×R3 is continuous and locally Lipschitz with respect to y (in fact,

the local Lipschitz property is clear because
y1

||y1||
, y2 and p (t,y1,y2) are all locally

Lipschitz with respect to y, where the local Lipschitz property for the map p (t,y1,y2)
follows from the continuity of its partial derivatives).

We can now apply Theorem 1 (a) to our situation (identifying the space R3 × R3

with R6 = Rm). We conclude that for every (t0,y0) ∈ V , the initial value problem
(2) has one and only one maximal solution λ : ]a, b[ → R3 × R3 defined on some open
interval ]a, b[. So let us fix some (t0,y0) ∈ V and consider the maximal solution λ for
this (t0,y0) ∈ V . The function λ has the form λ (t) = (λ1 (t) , λ2 (t)) for every t ∈ ]a, b[,
where λ1 : ]a, b[ → R3 and λ2 : ]a, b[ → R3 are two vector functions. Since λ satisfies
(2), we must have λ2 = λ′1, so that λ (t) = (λ1 (t) , λ′1 (t)) for every t ∈ ]a, b[. Besides,
the equation (2) yields

λ′2 (t) = p (t, λ1 (t) , λ2 (t)) λ2 (t)× λ1 (t)

||λ1 (t)||
,

which (in view of λ2 = λ′1) becomes

λ′′1 (t) = p (t, λ1 (t) , λ′1 (t)) λ′1 (t)× λ1 (t)

||λ1 (t)||
. (3)

In other words, λ1 is a solution of the equation (1) for every (t0,y0) ∈ V . Conversely,
every solution x : I → R3 (where I is some interval) of the equation (1) is the function
λ1 (restricted to I) for a suitable choice of the initial value (t0,y0) ∈ V 1. Hence,
in order to solve the problem, it is enough to prove the following three assertions for
every (t0,y0) ∈ V :

Assertion α. The solution λ is defined on all of R; in other words, a = −∞ and
b = ∞ (since ]a, b[ is the domain of λ).

Assertion β. We have lim
t→∞

λ1 (t) = ∞, unless λ1 is a constant function.

Assertion γ. The limit lim
t→∞

λ1 (t)

||λ1 (t)||
exists.

Before we start proving these assertions, let us study λ.
The equation (3) yields 〈λ′′1 (t) , λ1 (t)〉 = 0 and 〈λ′′1 (t) , λ′1 (t)〉 = 0 for every t ∈

]a, b[ (where 〈·, ·〉 denotes the standard scalar product of vectors in R3, defined by
〈(a1, a2, a3) , (b1, b2, b3)〉 = a1b1+a2b2+a3b3). In other words, 〈λ′′1, λ1〉 = 0 and 〈λ′′1, λ′1〉 =
0 (where 〈·, ·〉 means the pointwise scalar product of functions).

We will often use the (obvious) fact that

〈f, g〉′ = 〈f ′, g〉+ 〈f, g′〉 (4)

1In fact, take some t0 ∈ I and set y0 = (x (t0) ,x′ (t0)), and define a function y : I → R3 × R3

by y (t) = (x (t) ,x′ (t)) for every t ∈ I. Then, y solves the initial value problem (2), and thus is the
restriction of its maximal solution λ to I, so that x is the restriction of λ1 to I.
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for any two vector functions f ∈ C1 (]a, b[ → R3) and g ∈ C1 (]a, b[ → R3). We have

〈λ′1, λ′1〉
′
= 〈λ′′1, λ′1〉+ 〈λ′1, λ′′1〉︸ ︷︷ ︸

=〈λ′′
1 ,λ′

1〉

(by (4))

= 2 · 〈λ′′1, λ′1〉 = 2 · 0 = 0,

so that 〈λ′1, λ′1〉 is a constant function. Also,

〈λ′1, λ1〉′ = 〈λ′′1, λ1〉︸ ︷︷ ︸
=0

+ 〈λ′1, λ′1〉 (by (4))

= 〈λ′1, λ′1〉 ,

and

〈λ1, λ1〉′ = 〈λ′1, λ1〉+ 〈λ1, λ
′
1〉︸ ︷︷ ︸

=〈λ′
1,λ1〉

(by (4))

= 2 〈λ′1, λ1〉 ,

so that

〈λ1, λ1〉′′ =

〈λ1, λ1〉′︸ ︷︷ ︸
=2〈λ′

1,λ1〉


′

= 2 〈λ′1, λ1〉′︸ ︷︷ ︸
=〈λ′

1,λ′
1〉

= 2 〈λ′1, λ′1〉︸ ︷︷ ︸
a constant function

is a constant function. This means that 〈λ1, λ1〉 is a quadratic polynomial in t. In
other words, there exist reals u, v, w such that

〈λ1, λ1〉 (t) = ut2 + vt + w for every t ∈ ]a, b[ .

Then, 〈λ1, λ1〉′ = 2 〈λ′1, λ1〉 yields that

〈λ′1, λ1〉 (t) = ut +
v

2
for every t ∈ ]a, b[ .

Using 〈λ′1, λ1〉′ = 〈λ′1, λ′1〉, this leads to

〈λ′1, λ′1〉 (t) = u for every t ∈ ]a, b[ .

For every t ∈ ]a, b[ , we have(
ut2 + vt + w

)︸ ︷︷ ︸
=〈λ1,λ1〉(t)

=〈λ1(t),λ1(t)〉

· u︸︷︷︸
=〈λ′

1,λ′
1〉(t)

=〈λ′
1(t),λ′

1(t)〉

= 〈λ1 (t) , λ1 (t)〉 · 〈λ′1 (t) , λ′1 (t)〉

≥
2

〈λ′1 (t) , λ1 (t)〉︸ ︷︷ ︸
=〈λ′

1,λ1〉(t)=ut+v/2

(by the Cauchy-Schwarz inequality)

=
(
ut +

v

2

)2

, (5)
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what rewrites as 4uw ≥ v2.
We now distinguish between two cases:
Case 1. We have 4uw > v2.
Case 2. We have 4uw = v2.

In Case 2, we must have (ut2 + vt + w) · u =
(
ut +

v

2

)2

for every t ∈ ]a, b[, so that

the chain of inequalities (5) is an equality, and therefore equality must hold in the
Cauchy-Schwarz inequality 〈λ1 (t) , λ1 (t)〉 · 〈λ′1 (t) , λ′1 (t)〉 ≥ 〈λ′1 (t) , λ1 (t)〉2 for every
t ∈ ]a, b[, so that the vectors λ1 (t) and λ′1 (t) are collinear for every t ∈ ]a, b[, so
that λ′′1 (t) = 0 for every t ∈ ]a, b[ (by (3), since the cross product of two collinear
vectors is always 0), so that λ1 is a linear function and thus defined on the whole
R, and consequently λ2 = λ′1 is a constant function defined on the whole R, so that
λ = (λ1, λ2) is defined on the whole R. Thus, all three Assertions α, β and γ are
obvious in this case (actually, Assertion β simply says nothing in this case).

So it remains to consider Case 1. In order to prove Assertion α, we have to verify
a = −∞ and b = ∞. Let us only show that b = ∞ (the proof of a = −∞ is analogous).

In fact, assume (for the sake of contradiction) that b = ∞ is not the case. Then,
b < ∞, so that Theorem 1 (a) yields that the set {λ (t) | t ∈ [t0, b[} is unbounded, or

∂V 6= ∅ and lim
t↗b

dist [(t, λ (t)) , ∂V ] = 0.

However, the set {λ (t) | t ∈ [t0, b[} cannot be unbounded (since

||λ (t)|| =

√√√√√√||λ1 (t)||2 +

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ λ2︸︷︷︸

=λ′
1

(t)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

√
||λ1 (t)||2 + ||λ′1 (t)||2

=
√√√√〈λ1 (t) , λ1 (t)〉︸ ︷︷ ︸

=〈λ1,λ1〉(t)
=ut2+vt+w

+ 〈λ′1 (t) , λ′1 (t)〉︸ ︷︷ ︸
=〈λ′

1,λ′
1〉(t)

=u

=
√

ut2 + vt + w + u

is a bounded function on any bounded interval). Hence, we must have

∂V 6= ∅ and lim
t↗b

dist [(t, λ (t)) , ∂V ] = 0.

But actually, ∂V = R× (0× R3) (since V = R× ((R3 \ 0)× R3)) and thus

dist [(t, λ (t)) , ∂V ] = ||λ1 (t)|| =
√
〈λ1 (t) , λ1 (t)〉 =

√
〈λ1, λ1〉 (t) =

√
ut2 + vt + w.

Thus, lim
t↗b

dist [(t, λ (t)) , ∂V ] = 0 becomes lim
t↗b

√
ut2 + vt + w = 0. Thus, lim

t↗b
(ut2 + vt + w) =

0. But this is impossible, since the quadratic function ut2 + vt + w is bounded away
from 0 (because its discriminant 4uw−v2 is positive, since we are in Case 1). Thus, we
get our contradiction, and it is proved that b = ∞. Similarly, we can see that a = −∞.
This proves Assertion α.

In order to verify Assertion β, we notice that

lim
t→∞

||λ1 (t)|| = lim
t→∞

√√√√〈λ1 (t) , λ1 (t)〉︸ ︷︷ ︸
=〈λ1,λ1〉(t)
=ut2+vt+w

= lim
t→∞

√
ut2 + vt + w = ∞,
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unless u = 0 which can only hold if the function λ1 is a constant function (because
u = 0 yields 〈λ′1 (t) , λ′1 (t)〉 = 〈λ′1, λ′1〉 (t) = u = 0 for every t ∈ R, thus λ′1 (t) = 0 for
every t ∈ R, and thus λ1 = const). This proves Assertion β.

I am yet unable to prove Assertion γ.
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