American Mathematical Monthly Problem 11392 by Omran Kouba, Damascus, Syria.

Let P be a regular n-gon. We label the consecutive vertices of this n-gon P by A_0 , $A_1, ..., A_{n-1}$, and we let $A_n = A_0$.

Let M be a point in the plane, and let B_k be the orthogonal projection of this point M on the line A_kA_{k+1} for each $k \in \{0, 1, ..., n-1\}$. Assume that this projection B_k lies inside the segment A_kA_{k+1} for each $k \in \{0, 1, ..., n-1\}$. Prove that

$$\sum_{k=0}^{n-1} \operatorname{Area}\left(\Delta\left(MA_k B_k\right)\right) = \frac{1}{2} \operatorname{Area}\left(P\right).$$

Solution by Darij Grinberg.

We denote the area of any triangle XYZ by |XYZ| (instead of the lengthy notation Area $(\Delta(XYZ))$).

We set $A_{n+1} = A_1$ just as the problem author set $A_n = A_0$.

We WLOG assume that the n-gon P is directed counter-clockwise.

For every $k \in \{0, 1, ..., n-1\}$, let C_k denote the midpoint of the side $A_k A_{k+1}$ of P. Also, let O be the center of P. Due to the symmetry of P, we have $OC_k \perp A_k A_{k+1}$ for every $k \in \{0, 1, ..., n-1\}$. Let 2a be the sidelength of P, and let d be the distance from O to every side of P.

Let D_k be the foot of the perpendicular from M to OC_k for every $k \in \{0, 1, ..., n-1\}$. Then, $MB_kC_kD_k$ is a rectangle for every $k \in \{0, 1, ..., n-1\}$ (due to right angles at B_k , C_k and D_k).

We will use directed segments, denoting the directed length of any segment XY by \overline{XY} . Of course, this directed length is well-defined only if the points X and Y lie on some directed line. For every $k \in \{0,1,...,n-1\}$,

- we direct the line $A_k A_{k+1}$ in such a way that $\overline{A_k A_{k+1}} > 0$ (so that $\overline{A_k A_{k+1}} = 2a$),
- we direct the line MB_k in such a way that $\overline{MB_k} > 0$,
- we direct the line OC_k in such a way that $\overline{OC_k} > 0$ (so that $\overline{OC_k} = d$),
- we direct the line MD_k in the same way as the line A_kA_{k+1} (to which it is parallel, because $MB_kC_kD_k$ is a rectangle)¹,
- we direct the line OM in such a way that $\overline{OM} > 0$.

For any two directed lines g and h, we can not only endow segments along these lines with signs (what leads to directed segments), but also define a directed angle $\angle(g, h)$ between the directed lines g and h; this is the angle about which g must be rotated in order to end up parallel and equidirected to h. This angle $\angle(g, h)$ is an element of the group $\mathbb{R}/(2\pi\mathbb{Z})$ (in other words, it is an angle defined up to integral multiples of 2π).

¹If M coincides with D_k , the line MD_k has to be understood as the perpendicular from M to OC_k (remember the definition of D_k).

Define an angle $\rho \in \mathbb{R} \diagup (2\pi\mathbb{Z})$ by $\rho = \measuredangle (A_k A_{k+1}, A_{k+1} A_{k+2})$ for every $k \in \{0, 1, ..., n-1\}$ (this is possible since all angles $\measuredangle (A_k A_{k+1}, A_{k+1} A_{k+2})$ are equal, because P is a regular n-gon). Then, $n\rho = 0$ (since $n\rho = \sum_{k=0}^{n-1} \rho = \sum_{k=0}^{n-1} \measuredangle (A_k A_{k+1}, A_{k+1} A_{k+2}) = \measuredangle (A_0 A_1, A_n A_{n+1}) = \measuredangle (A_0 A_1, A_0 A_1) = 0$) and thus $n \cdot 2\rho = 0$, but $\rho \neq 0$ and $2\rho \neq 0$ (since the lines $A_k A_{k+1}$ and $A_{k+1} A_{k+2}$ are not parallel). Let $\phi = \measuredangle (OM, A_0 A_1)$. Then,

$$\angle (OM, A_k A_{k+1}) = \angle (OM, A_0 A_1) + \sum_{i=0}^{k-1} \angle (A_i A_{i+1}, A_{i+1} A_{i+2}) = \phi + \sum_{i=0}^{k-1} \rho = \phi + k\rho$$

for every $k \in \{0, 1, ..., n-1\}$. Besides, $\angle (A_k A_{k+1}, OC_k) = \frac{\pi}{2}$ (in fact, $OC_k \perp A_k A_{k+1}$ yields $\angle (A_k A_{k+1}, OC_k) = \pm \frac{\pi}{2}$, and the \pm becomes a + since the *n*-gon *P* is directed counter-clockwise), so that

$$\angle (OM, OC_k) = \underbrace{\angle (OM, A_k A_{k+1})}_{=\phi + k\rho} + \underbrace{\angle (A_k A_{k+1}, OC_k)}_{=\frac{\pi}{2}} = \phi + k\rho + \frac{\pi}{2}$$

for every $k \in \{0, 1, ..., n-1\}$.

Since triangle MA_kB_k is right-angled at B_k , we have $|MA_kB_k| = \frac{1}{2} \cdot \overline{MB_k} \cdot \overline{A_kB_k}$. Since triangle OA_kC_k is right-angled at C_k , we have $|OA_kC_k| = \frac{1}{2} \cdot \overline{OC_k} \cdot \overline{A_kC_k}$. Notice that $\overline{A_kC_k} = a$ (since C_k is the midpoint of A_kA_{k+1} , and $\overline{A_kA_{k+1}} = 2a$) and $\overline{OC_k} = d$, so this becomes $|OA_kC_k| = \frac{1}{2} \cdot d \cdot a$.

The rectangle $MB_kC_kD_k^-$ yields $\overline{D_kC_k} = \overline{MB_k}$. On the other hand, C_kB_k is the orthogonal projection of the segment OM onto the line A_kA_{k+1} , so that $\overline{C_kB_k} = \overline{OM} \cdot \cos \angle (OM, A_kA_{k+1})$. Besides, OD_k is the orthogonal projection of the segment

OM onto the line OC_k , so that $\overline{OD_k} = \overline{OM} \cdot \cos \angle (OM, OC_k)$. Thus,

$$\begin{split} &\sum_{k=0}^{n-1} |MA_k B_k| = \sum_{k=0}^{n-1} \frac{1}{2} \cdot \overline{MB_k} \cdot \overline{A_k B_k} = \frac{1}{2} \cdot \sum_{k=0}^{n-1} \underbrace{\frac{\overline{MB_k}}{\overline{D_k C_k}}}_{=\overline{D_k C_k}} \cdot \underbrace{\frac{\overline{A_k B_k}}{\overline{A_k C_k + C_k B_k}}}_{=\overline{A_k C_k + C_k B_k}} = \frac{1}{2} \cdot \sum_{k=0}^{n-1} \left(d - \overline{OD_k} \right) \cdot \left(a + \overline{C_k B_k} \right) \\ &= \frac{1}{2} \cdot \sum_{k=0}^{n-1} \left(d - \overline{OM} \cdot \cos \angle \left(OM, OC_k \right) \right) \cdot \left(a + \overline{OM} \cdot \cos \angle \left(OM, A_k A_{k+1} \right) \right) \\ &= \frac{1}{2} \cdot \sum_{k=0}^{n-1} \left(d - \overline{OM} \cdot \cos \left(\phi + k\rho + \frac{\pi}{2} \right) \right) \cdot \left(a + \overline{OM} \cdot \cos \left(\phi + k\rho \right) \right) \\ &= \frac{1}{2} \cdot \sum_{k=0}^{n-1} \left(d - \overline{OM} \cdot \cos \left(\phi + k\rho + \frac{\pi}{2} \right) \right) \cdot \left(a + \overline{OM} \cdot \cos \left(\phi + k\rho \right) \right) \\ &= \frac{1}{2} \cdot \sum_{k=0}^{n-1} \left(d - \overline{OM} \cdot \cos \left(\phi + k\rho \right) + a \cdot \overline{OM} \cdot \sin \left(\phi + k\rho \right) + \overline{OM}^2 \cdot \underbrace{\sin \left(\phi + k\rho \right) \cos \left(\phi + k\rho \right)}_{=\frac{1}{2} \sin \left(2\phi + k\rho \right)} \right) \\ &= \frac{1}{2} \cdot \sum_{k=0}^{n-1} da + \frac{1}{2} d \cdot \overline{OM} \cdot \sum_{k=0}^{n-1} \cos \left(\phi + k\rho \right) + \frac{1}{2} a \cdot \overline{OM} \cdot \sum_{k=0}^{n-1} \sin \left(\phi + k\rho \right) + \frac{1}{4} \overline{OM}^2 \cdot \sum_{k=0}^{n-1} \sin \left(2\phi + k \cdot 2\rho \right) . \\ & (11392.1) \end{split}$$

Now, we will show that any two angles ϕ and ρ such that $n\rho = 0$ and $\rho \neq 0$ satisfy

$$\sum_{k=0}^{n-1} \cos(\phi + k\rho) = 0; \tag{11392.2}$$

$$\sum_{k=0}^{n-1} \sin(\phi + k\rho) = 0, \tag{11392.3}$$

and that any two angles ϕ and ρ such that $n \cdot 2\rho = 0$ and $2\rho \neq 0$ satisfy

$$\sum_{k=0}^{n-1} \sin(2\phi + k \cdot 2\rho) = 0. \tag{11392.4}$$

In fact, $n\rho = 0$ yields $e^{i \cdot n\rho} = 1$, but $\rho \neq 0$ yields $e^{i\rho} \neq 1$. Thus,

$$0 = e^{i\phi} \frac{1-1}{e^{i\rho}-1} = e^{i\phi} \frac{e^{i\cdot n\rho}-1}{e^{i\rho}-1} = e^{i\phi} \sum_{k=0}^{n-1} e^{i\cdot k\rho} = \sum_{k=0}^{n-1} e^{i\cdot (\phi+k\rho)} = \sum_{k=0}^{n-1} (\cos(\phi+k\rho) + i\sin(\phi+k\rho)).$$

Taking the real part of this equation, we obtain (11392.2); the imaginary part yields (11392.3). The identity (11392.4) is nothing but (11392.3) applied to the angles 2ϕ and 2ρ instead of ϕ and ρ .

Using (11392.2)-(11392.4), our equation (11392.1) simplifies to

$$\sum_{k=0}^{n-1} |MA_k B_k| = \frac{1}{2} \cdot \sum_{k=0}^{n-1} da = \sum_{k=0}^{n-1} \frac{1}{2} \cdot d \cdot a = \sum_{k=0}^{n-1} |OA_k C_k|.$$
 (11392.5)

By the symmetry of the regular *n*-gon *P*, we have $\sum_{k=0}^{n-1} |OA_k C_k| = \sum_{k=0}^{n-1} |OC_k B_k|$, while obviously $\sum_{k=0}^{n-1} |OA_k C_k| + \sum_{k=0}^{n-1} |OC_k B_k| = \text{Area } P$. Thus, $\sum_{k=0}^{n-1} |OA_k C_k| = \frac{1}{2} \text{Area } P$, so that (11392.5) becomes $\sum_{k=0}^{n-1} |MA_k B_k| = \frac{1}{2} \text{Area } P$, qed.

Remark. A user of the MathLinks webforum called Myth (Mikhail Leptchinski in real life) found this problem in 2005:

http://www.mathlinks.ro/viewtopic.php?p=207173#207173