
Notes on linear algebra

Darij Grinberg

Wednesday 4th December, 2019 at 15:09
These notes are frozen in a (very) unfinished state.

Currently, only the basics of matrix algebra have been
completed (products, triangularity, row operations etc.).
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1. Preface

These notes are accompanying a class on applied linear algebra (Math 4242) I am
giving at the University of Minneapolis in Fall 2016 (the website of the class is
http://www.cip.ifi.lmu.de/~grinberg/t/16f/ ). They contain both the material
of the class (although with no promise of timeliness!) and the homework exercises
(and possibly some additional exercises).

There will (probably) be no actual applications in these notes, but only the math-
ematical material used in these applications. If time allows, the notes will contain
tutorials on the use of SageMath (a computer algebra system suited both for nu-
merical and for algebraic computations).

Sections marked with an asterisk (*) are not a required part of the Math 4242
course.

Several good books have been written on linear algebra; these notes are not sup-
posed to replace any of them. Let me just mention four sources I can recommend1:

• Olver’s and Shakiban’s [OlvSha06] is the traditional text for Math 4242 at
UMN. It might be the best place to learn about the applications of linear
algebra.

• Hefferon’s [Heffer16] is a free text that does things slowly but rigorously (at
least for the standards of an introductory linear-algebra text). It has plenty of
examples (and exercises with solutions), fairly detailed proofs, and occasional
applications. (Which is why it is over 500 pages long; I hope you can easily
decide what to skip based on your preferences.) Altogether, I think it does a
lot very well. The main drawback is its lack of the theory of bilinear forms
(but I don’t know if we will even have time for that).

• Lankham’s, Nachtergaele’s and Schilling’s [LaNaSc16] is a set of notes for in-
troductory linear algebra, doing the abstract side (vector spaces, linear maps)
early on and in some detail.

• Treil’s [Treil15] is another free text; this is written for a more mathematically
mature reader, and has a slight bias towards the linear algebra useful for
functional analysis.2

[Please let the authors know if you find any errors or unclarities. Feel free to ask me if
you want your doubts resolved beforehand.]

Also, some previous iterations of Math 4242 have left behind interesting notes:

1I have not read any of the books myself (apart from fragments). My recommendations are based
on cursory skimming and random appraisal of specific points; I therefore cannot guarantee
anything.

2The title of the book is a play on Axler’s “Linear Algebra Done Right”, which is biased towards
analysis (or, rather, against algebra) to a ridiculous extent. Axler seems to write really well, but
the usefulness of this book is severely limited by its obstinate avoidance of anything that looks
too explicit and algebraic.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/
http://www.cip.ifi.lmu.de/~grinberg/t/16f/
http://www.cip.ifi.lmu.de/~grinberg/t/16f/
http://www.sagemath.org/
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• Stephen Lewis, Fall 2014, http://www.stephen-lewis.net/4242/ (enable javascript!).

• Natalie Sheils, Fall 2015, http://math.umn.edu/~nesheils/F15_M4242/LectureNotes.
html (yes, those are on dropbox).

There are countless other sets of lecture notes on the internet3, books in the
library, and even books on the internet if you know where to look. You can find an
overview of (published, paper) books in [Drucker12] (but usually without assessing
their quality), and another (with reviews) on the MAA website http://www.maa.
org/tags/linear-algebra . (Reviews on Amazon and goodreads are usually just
good for a laugh.)

The notes you are reading are under construction, and will remain so for at least
the whole Fall term 2016. Please let me know of any errors and unclarities you
encounter (my email address is darijgrinberg@gmail.com)4. Thank you!

1.1. Acknowledgments

I would like to thank Mark Richard for correcting a typo in the notes.

2. Introduction to matrices

In this chapter, we shall introduce matrices, define the basic operations with ma-
trices (addition, scaling, multiplication and powers) and two fundamental families
of matrices (zero matrices and identity matrices), and state the most fundamental
of their properties (and even prove some of them). We shall not go very deep here
(most of this chapter corresponds to a part of [LaNaSc16, §A.2]), but we will give
plenty of examples and some detailed proofs that will (hopefully) help you get
some experience with the material.

2.1. Matrices and entries

In the following, we shall study matrices filled with numbers. This is not the
most general thing to study (we could also fill matrices with other things, such
as polynomials – and in fact, such matrices are highly useful); nor will we be
very precise about it. In fact, for most of this chapter, we shall not even specify
what we mean by “numbers”, even though the word “number” is far from being
a well-defined notion. However, as soon as we start caring about (say) computer

3Let me mention some: Two good-looking advanced texts for a mathematically prepared reader
are Cameron’s [Camero08] and Kowalski’s [Kowals16]; a reader bored with the present notes
might want to take a look at them. On the other side, Wildon’s notes [Wildon16] include a lot of
examples and geometric illustrations (but are probably too brief to peruse as a standalone text),
whereas Chen’s notes [Chen08] boast numerous applications (and seem quite readable, though
I have not looked at them in depth).

4The sourcecode of the notes is also publicly available at https://github.com/darijgr/lina .

http://www.stephen-lewis.net/4242/
http://math.umn.edu/~nesheils/F15_M4242/LectureNotes.html
http://math.umn.edu/~nesheils/F15_M4242/LectureNotes.html
http://www.maa.org/tags/linear-algebra
http://www.maa.org/tags/linear-algebra
https://github.com/darijgr/lina
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calculations, we will have to spend some words specifying our “numbers” more
precisely. See Section 2.16 for what the word “number” means.

We shall use the symbol N for the set {0, 1, 2, . . .}. This is the set of all nonnega-
tive integers.5

Definition 2.1. If n ∈ N and m ∈ N, then an n × m-matrix simply means a
rectangular table with n rows and m columns, such that each cell is filled with a
number.

For example,
(

1 7 2
−
√

2 6 1/3

)
is a 2× 3-matrix, whereas

 1
−2
0

 is a 3× 1-

matrix.6

The word “n×m-matrix” is pronounced “n-by-m-matrix” (and sometimes even
written in this way). Notice that the sign “×” in “n×m-matrix” is a symbol whose
purpose is to separate n from m; it does not mean multiplication (although, of
course, an n× m-matrix does have nm entries). Do not rewrite “2× 3-matrix” as
“6-matrix” (after all, a 2 × 3-matrix is not the same as a 6 × 1-matrix, although
2 · 3 = 6 · 1).

Definition 2.2. The word “matrix” will encompass all n×m-matrices for all pos-
sible values of n and m.

Definition 2.3. The dimensions of an n×m-matrix A are the two integers n and
m. When they are equal (that is, n = m), we say that A is a square matrix, and call
n its size.

For a rectangular matrix A, we also will sometimes say that “A has size n×m”
when we mean that “A is an n×m-matrix”.

Definition 2.4. If A is an n × m-matrix, and if i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , m}, then Ai,j will denote the entry of A in row i and column j. This
entry is also called the (i, j)-th entry of A (or simply the (i, j)-entry of A).

For example,
(

1 7 2
−
√

2 6 1/3

)
1,3

= 2. Note that this notation Ai,j (for the

(i, j)-th entry of a matrix A) is not standard in literature! Some authors instead

5Some authors use the symbol N for the set {1, 2, 3, . . .} (the set of all positive integers) instead.
Unfortunately, there is no consensus here. If you want to avoid notational conflicts, use the nota-
tion Z≥0 for {0, 1, 2, . . .} and the notation Z>0 for {1, 2, 3, . . .}. These notations, at least, are self-
explanatory (once you know that Z denotes the set of all integers, i.e., {. . . ,−2,−1, 0, 1, 2, . . .}).

6For the friends of stupid examples (me?), here are two more:

 is a 3× 0-matrix (it contains no

cells, and thus no numbers), and
( )

is a 0× 3-matrix (again, with no numbers because
it has no cells). For various technical reasons ([deBoor]), it is helpful to regard such empty
matrices as different.
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use Ai
j (the i on top is not an exponent, but just a superscript) or ai,j (where a is

the lowercase letter corresponding to the uppercase letter A denoting the matrix7).
Many authors often drop the comma between i and j (so they call it Aij or aij); this
notation is slightly ambiguous (does A132 mean A13,2 or A1,32 ?). Unfortunately,
some authors use the notation Ai,j for something else called a cofactor of A (which
is, in a sense, quite the opposite of the (i, j)-th entry of A); but we will never do
this here (and probably we will not really get into cofactors anyway).

2.2. The matrix builder notation

I would like to do something interesting, but I am forced to introduce more nota-
tions. Please have patience with me. Let me introduce a notation for building a
matrix out of a bunch of entries:

Definition 2.5. Let n ∈ N and m ∈ N. Assume that you are given a number
ai,j for each pair (i, j) of an integer i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Then,(
ai,j
)

1≤i≤n, 1≤j≤m shall denote the n×m-matrix whose (i, j)-th entry is ai,j for all

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. (To say it differently:
(
ai,j
)

1≤i≤n, 1≤j≤m
shall denote the n×m-matrix A such that Ai,j = ai,j for all i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}. In other words,

(
ai,j
)

1≤i≤n, 1≤j≤m =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
... . . . ...

an,1 an,2 · · · an,m

 .

)

Some examples:

• What is the matrix (i− j)1≤i≤2, 1≤j≤3 ? By definition, it is the 2× 3-matrix
whose (i, j)-th entry is i− j for all i ∈ {1, 2} and j ∈ {1, 2, 3}. Thus, (i− j)1≤i≤2, 1≤j≤3 =(

1− 1 1− 2 1− 3
2− 1 2− 2 2− 3

)
=

(
0 −1 −2
1 0 −1

)
.

• We have (j− i)1≤i≤2, 1≤j≤3 =

(
1− 1 2− 1 3− 1
1− 2 2− 2 3− 2

)
=

(
0 1 2
−1 0 1

)
.

• We have (i + j)1≤i≤3, 1≤j≤2 =

 1 + 1 1 + 2
2 + 1 2 + 2
3 + 1 3 + 2

 =

 2 3
3 4
4 5

.

7This notation is bad for two reasons: First, it forces you to always denote matrices by uppercase

letters; second, it doesn’t let you write things like

(
1 7 2
−
√

2 6 1/3

)
1,3

.
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• We have
(

i + 1
j

)
1≤i≤3, 1≤j≤3

=


1 + 1

1
1 + 1

2
1 + 1

3
2 + 1

1
2 + 1

2
2 + 1

3
3 + 1

1
3 + 1

2
3 + 1

3

 =


2 1

2
3

3
3
2

1

4 2
4
3

.

• We have
(

i− j
i + j

)
1≤i≤3, 1≤j≤2

=


1− 1
1 + 1

1− 2
1 + 2

2− 1
2 + 1

2− 2
2 + 2

3− 1
3 + 1

3− 2
3 + 2

 =


0 −1

3
1
3

0

1
2

1
5

.

The notation
(
ai,j
)

1≤i≤n, 1≤j≤m is fairly standard (you will be understood if you
use it), though again there are variations in the literature.

We used the two letters i and j in the notation
(
ai,j
)

1≤i≤n, 1≤j≤m, but we could just
as well have picked any other two letters (as long as they aren’t already taken for

something else). For example, (xy)1≤x≤2, 1≤y≤2 =

(
1 · 1 1 · 2
2 · 1 2 · 2

)
=

(
1 2
2 4

)
. For

a more confusing example, (i− j)1≤i≤2, 1≤j≤1 =

(
1− 1
2− 1

)
=

(
0
1

)
can be rewrit-

ten as (j− i)1≤j≤2, 1≤i≤1 (we just renamed the letters i and j as j and i here). Do not
confuse this with the 1× 2-matrix (j− i)1≤i≤1, 1≤j≤2 =

(
1− 1 2− 1

)
=
(

0 1
)
.

The difference between the two matrices (j− i)1≤j≤2, 1≤i≤1 and (j− i)1≤i≤1, 1≤j≤2 is
the order in which j and i appear in the subscript (“1 ≤ j ≤ 2, 1 ≤ i ≤ 1” versus
“1 ≤ i ≤ 1, 1 ≤ j ≤ 2”). If j comes first, then j is the number of the row and i the
number of the column; but if i comes first, then it’s the other way round!

Of course, if you decompose an n×m-matrix A into its entries, and then assem-
ble these entries back into an n × m-matrix (arranged in the same way as in A),
then you get back A. In other words: For every n×m-matrix A, we have(

Ai,j
)

1≤i≤n, 1≤j≤m = A. (1)

2.3. Row and column vectors

Here is some more terminology:

Definition 2.6. Let n ∈ N. A row vector of size n means a 1× n-matrix. A column
vector of size n means an n× 1-matrix.

For example,
(

a b
)

is a row vector of size 2, while
(

a
b

)
is a column vector

of size 2.
The following definition is common-sense:
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Definition 2.7. Let n ∈ N. If v is a row vector of size n, then the (1, j)-th entry
of v (for j ∈ {1, 2, . . . , n}) will also be called the j-th entry of v (because v has
only one row, so that we don’t have to say which row an entry lies in). If v is
a column vector of size n, then the (i, 1)-th entry of v (for i ∈ {1, 2, . . . , n}) will
also be called the i-th entry of v.

2.4. Transposes

Definition 2.8. The transpose of an n × m-matrix A is defined to be the m × n-
matrix

(
Aj,i
)

1≤i≤m, 1≤j≤n. It is denoted by AT.

Let us unravel this confusing-looking definition! It says that the transpose of an
n×m-matrix A is the m× n-matrix whose (i, j)-th entry (for i ∈ {1, 2, . . . , m} and
j ∈ {1, 2, . . . , n}) is the (j, i)-th entry of A. So the transpose of A has the very same
entries as A, but in different position: namely, the entry in position (i, j) gets moved
into position (j, i). In other words, the entry that was in row i and column j gets
moved into column i and row j. So, visually speaking, the transpose of the matrix
A is obtained by “reflecting A around the diagonal”. Some examples should help
clarify this:

(
a b c
a′ b′ c′

)T

=

 a a′

b b′

c c′

 ;

(
a b
a′ b′

)T

=

(
a a′

b b′

)
; a

b
c

T

=
(

a b c
)

.

Transposes have many uses, but for now we stress one particular use: as a space-
saving device. Namely, if you work with column vectors, you quickly notice that
they take up a lot of vertical space in writing: just see by how much the column

vector


4
−1
2
0

 has stretched the spacing between its line and the lines above and

below8! It is much more economical to rewrite it as the transpose of a row vector:

8Additionally, column vectors of size 2 have the annoying property that they can get confused for

binomial coefficients. To wit,
(

4
2

)
denotes a column vector, whereas

(
4
2

)
denotes a binomial

coefficient (which equals the number 6). The only way to tell them apart is by the amount of
empty space between the parentheses and the entries; this is not a very reliable way to keep
different notations apart.
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(
4 −1 2 0

)T. It is furthermore common to write row vectors as tuples (i.e.,
put commas between their entries instead of leaving empty space); thus, the row
vector

(
4 −1 2 0

)
becomes (4,−1, 2, 0) (which takes up less space), and our

column vector above becomes (4,−1, 2, 0)T.
The transpose of a matrix A is also denoted by At or T A or t A by various authors

(not me).
Here is a very simple fact about transposes: The transpose of the transpose of a

matrix A is the matrix A itself. In other words:

Proposition 2.9. Let n ∈ N and m ∈ N. Let A be an n × m-matrix. Then,(
AT)T

= A.

Proof of Proposition 2.9. This is fairly clear, but let me give a formal proof just to get
you used to the notations.

We have AT =
(

Aj,i
)

1≤i≤m, 1≤j≤n (by the definition of AT). Thus, AT is an m× n-
matrix and satisfies(

AT
)

i,j
= Aj,i for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n} . (2)

Hence, (
AT
)

j,i
= Ai,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m} . (3)

(Indeed, this follows by applying (2) to j and i instead of i and j.)
Now, the definition of

(
AT)T yields

(
AT
)T

=


(

AT
)

j,i︸ ︷︷ ︸
=Ai,j

(by (3))


1≤i≤n, 1≤j≤m

=
(

Ai,j
)

1≤i≤n, 1≤j≤m = A

(by (1)). This proves Proposition 2.9.

2.5. Addition, scaling and multiplication

Matrices can (sometimes) be added, (always) be scaled and (sometimes) be multi-
plied. Let me explain:

Definition 2.10. Let A and B be two matrices of the same dimensions (that is,
they have the same number of rows, and the same number of columns). Then,
A + B denotes the matrix obtained by adding each entry of A to the correspond-
ing entry of B. Or, to write it more formally: If A and B are two n×m-matrices,
then

A + B =
(

Ai,j + Bi,j
)

1≤i≤n, 1≤j≤m .
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For example,
(

a b c
d e f

)
+

(
a′ b′ c′

d′ e′ f ′

)
=

(
a + a′ b + b′ c + c′

d + d′ e + e′ f + f ′

)
. (I am

increasingly using variables instead of actual numbers in my examples, because
they make it easier to see what entry is going where.) On the other hand, the two

matrices
(

a
b

)
and

(
c d

)
cannot be added (since they have different dimen-

sions9).
Definition 2.10 is often laconically summarized as follows: “Matrices are added

entry by entry” (or “entrywise”). This simply means that each entry of the sum
A + B is the sum of the corresponding entries of A and B; nothing fancy is going
on.

So we now know how to add two matrices.

Definition 2.11. Let A be a matrix, and λ be a number. Then, λA (or λ · A)
denotes the matrix obtained by multiplying each entry of A by λ. In other
words: If A is an n×m-matrix, then

λA =
(
λAi,j

)
1≤i≤n, 1≤j≤m .

The matrix λA is often called “λ times A”. The procedure of transforming A into
λA is called scaling the matrix A by λ. (Sometimes we say “multiplying” instead
of “scaling”, but “scaling” is more precise.)

We write −A for (−1) A.

For example, λ

(
a b c
d e f

)
=

(
λa λb λc
λd λe λ f

)
.

So now we know how to scale a matrix. (“To scale” means to multiply by a
number.) Definition 2.11 is summarized as follows: “Matrices are scaled entry by
entry”.

“Scaling” is often called “scalar multiplication” (but this is confusing terminol-
ogy, since “scalar product” means something completely different). If A is a matrix,
then a scalar multiple of A is defined as a matrix of the form λA for some number
λ.

With scaling and addition defined, we obtain subtraction for free:

Definition 2.12. Let A and B be two matrices of the same dimensions. Then,
A− B denotes the matrix A + (−B) = A + (−1) B.

For example,
(

a b c
d e f

)
−
(

a′ b′ c′

d′ e′ f ′

)
=

(
a− a′ b− b′ c− c′

d− d′ e− e′ f − f ′

)
.

Now, to the more interesting part: multiplying matrices. This is not done by mul-
tiplying corresponding entries! (Why not? Well, it wouldn’t make for a particularly
useful notion.) Instead, the definition goes as follows:

9The dimensions of the former matrix are 2 and 1, whereas the dimensions of the latter matrix are
1 and 2. Even though they are equal up to order, they do not count as equal.
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Definition 2.13. Let n ∈ N, m ∈ N and m ∈ N. Let A be an n×m-matrix. Let
B be an m× p-matrix. (Thus, A has to have m columns, while B has to have m
rows; other than this, the two matrices do not need to have any relation to each
other.) The product AB of these two matrices is defined as follows:

AB =

Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j︸ ︷︷ ︸
This is the sum of the m terms of the form

Ai,kBk,j, for k ranging over {1,2,...,m}


1≤i≤n, 1≤j≤p

.

This is an n× p-matrix.

This definition is somewhat overwhelming, so let me rewrite it in words and give
some examples:

It says that the product AB is well-defined whenever A has as many columns as
B has rows. In this case, AB is the n× p-matrix whose (i, j)-th entry is obtained by
adding together:

• the product Ai,1B1,j of the (i, 1)-th entry of A with the (1, j)-th entry of B;

• the product Ai,2B2,j of the (i, 2)-th entry of A with the (2, j)-th entry of B;

• and so on;

• the product Ai,mBm,j of the (i, m)-th entry of A with the (m, j)-th entry of B.

In other words, AB is the matrix whose (i, j)-th entry is obtained by multiplying
each entry of the i-th row of A with the corresponding entry of the j-th column of
B, and then adding together all these products. The word “corresponding” means
that the 1-st entry of the i-th row of A gets multiplied with the 1-st entry of the j-th
column of B, the 2-nd entry with the 2-nd entry, etc.. In particular, for this to make
sense, the i-th row of A and the j-th column of B have to have the same number of
entries. This is why we required that A has as many columns as B has rows!

I promised examples. Here are four:(
a b
a′ b′

)(
x x′

y y′

)
=

(
ax + by ax′ + by′

a′x + b′y a′x′ + b′y′

)
;

(
a b c
a′ b′ c′

) x
y
z

 =

(
ax + by + cz

a′x + b′y + c′z

)
;

(
a b

) ( x
y

)
=
(

ax + by
)

;(
a
b

) (
x y

)
=

(
ax ay
bx by

)
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(note how in the fourth example, we don’t see any plus signs, because each of the
sums has only one addend).

We can also denote the product AB by A · B (though few people ever do this10).
We have thus learnt how to multiply matrices. Notice that the (i, j)-th entry of

the product AB depends only on the i-th row of A and the j-th column of B. Why
did we pick this strange definition, rather than something simpler, like multiplying
entry by entry, or at least row by row? Well, “entry by entry” is too simple (you
will see later what matrix multiplication is good for; “entry by entry” is useless in
comparison), whereas “row by row” would be lacking many of the nice properties
that we will see later (e.g., our matrix multiplication satisfies the associativity law
(AB)C = A (BC), while “row by row” does not).

Exercise 2.14. Let A =

 1 −1
2 0
3 5

 and B =

(
1 2
1 6

)
.

(a) The matrix A is of size 3× 2. What is the size of B ?
(b) Is AB defined? If it is, compute it.
(c) Is BA defined? If it is, compute it.

Exercise 2.15. (a) Compute 1 1 1
0 1 1
0 0 1

 1 1 1
0 1 1
0 0 1


and 

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

(b) Compute

 a b c
a′ b′ c′

a′′ b′′ c′′

 1 1 1
1 1 1
1 1 1

 for an arbitrary 3 × 3-matrix a b c
a′ b′ c′

a′′ b′′ c′′

.

10Warning: The notation A · B is somewhat nonstandard. Many authors (for example, Olver
and Shakiban in [OlvSha06, §3.1]) define the “dot product” of two column vectors v =

(v1, v2, . . . , vn)
T and w = (w1, w2, . . . , wn)

T (of the same size) to be the number v1w1 + v2w2 +
· · ·+ vnwn; they furthermore denote this dot product by v · w. This notation is in conflict with
our notation A · B, because the dot product of v and w is not what we call v ·w (it is, in fact, what
we call vT · w). The reason why I have picked the somewhat nonstandard convention to regard
A · B as a synonym for AB is my belief that a dot should always denote the same multiplication
as juxtaposition (i.e., that A · B should always mean the same as AB).
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(c) Compute


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




a
b
c
d

 for an arbitrary 4× 1-matrix


a
b
c
d

.

Exercise 2.16. (a) Let A3 =

 0 1 0
1 0 1
0 1 0

 and B3 =

 1 0 1
0 1 0
1 0 1

. Compute A2
3,

B2
3, A3B3 and B3A3.

(b) Let A4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and B4 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. Compute A2
4, B2

4,

A4B4 and B4A4.
(c) For any n ∈ N, define two “checkerboard-pattern” n× n-matrices An and

Bn by

An = ((i + j)%2)1≤i≤n, 1≤j≤n , Bn = ((i + j− 1)%2)1≤i≤n, 1≤j≤n ,

where k%2 denotes the remainder left when k is divided by 2 (so k%2 ={
1, if k is odd;
0, if k is even

). (The matrices A3 and B3 in part (a) of this problem, as well as

the matrices A4 and B4 in its part (b), are particular cases of this construction.)
Prove that each even n ∈ N satisfies A2

n = B2
n and AnBn = Bn An. Prove that

each odd n ≥ 3 satisfies AnBn 6= Bn An.

2.6. The matrix product rewritten

Let me show another way to restate our above definition of a product of two ma-
trices. First, one more notation:

Definition 2.17. Let A be an n×m-matrix.
(a) If i ∈ {1, 2, . . . , n}, then rowi A will denote the i-th row of A. This is a row

vector of size m (that is, a 1×m-matrix), and is formally defined as(
Ai,y

)
1≤x≤1, 1≤y≤m =

(
Ai,1 Ai,2 · · · Ai,m

)
(notice how i is kept fixed but y is ranging from 1 to m here).

(b) If j ∈ {1, 2, . . . , m}, then colj A will denote the j-th column of A. This is a
column vector of size n (that is, an n× 1-matrix), and is formally defined as

(
Ax,j

)
1≤x≤n, 1≤y≤1 =


A1,j

A2,j
...

An,j

 .
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Example 2.18. If A =

(
a b c
d e f

)
, then row2 A =

(
d e f

)
and col2 A =(

b
e

)
.

Now, we observe that if R is a row vector of some size m, and if C is a column
vector of size m, then RC is a 1× 1-matrix. More precisely: The product of a row

vector
(

r1 r2 · · · rm
)

and a column vector


c1
c2
...

cm

 is given by

(
r1 r2 · · · rm

)


c1
c2
...

cm

 =
(

r1c1 + r2c2 + · · ·+ rmcm
)

. (4)

We shall often equate a 1 × 1-matrix with its (unique) entry; so the equality (4)
rewrites as

(
r1 r2 · · · rm

)


c1
c2
...

cm

 = r1c1 + r2c2 + · · ·+ rmcm. (5)

Now I will show a little collection of formulas for the product of two matrices.
They are all pretty straightforward to obtain (essentially, they are the definition of
the product viewed from different angles), but they are helpful when it comes to
manipulating products:

Proposition 2.19. Let n ∈ N, m ∈ N and p ∈ N. Let A be an n×m-matrix. Let
B be an m× p-matrix.

(a) For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, we have

(AB)i,j = Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j.

(b) For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, the (i, j)-th entry of AB
equals the product of the i-th row of A and the j-th column of B. In formulas:

(AB)i,j = rowi A · colj B (6)
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for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p} (where the expression rowi A ·
colj B should be read as (rowi A) ·

(
colj B

)
). Thus,

AB =
(
rowi A · colj B

)
1≤i≤n, 1≤j≤p

=


row1 A · col1 B row1 A · col2 B · · · row1 A · colp B
row2 A · col1 B row2 A · col2 B · · · row2 A · colp B

...
... . . . ...

rown A · col1 B rown A · col2 B · · · rown A · colp B

 .

(c) For every i ∈ {1, 2, . . . , n}, we have

rowi (AB) = (rowi A) · B.

(d) For every j ∈ {1, 2, . . . , p}, we have

colj (AB) = A · colj B.

Proposition 2.19 (c) says that if A and B are two matrices (for which AB makes
sense), then each row of AB equals the corresponding row of A multiplied by B.
Similarly, Proposition 2.19 (d) says that each column of AB equals A multiplied by
the corresponding column of B. These are fairly simple observations, but they are
surprisingly useful.

Proof of Proposition 2.19. (a) By the definition of AB, we have

AB =
(

Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j
)

1≤i≤n, 1≤j≤p .

In other words,

(AB)i,j = Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j (7)

for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. This proves Proposition 2.19 (a).
(b) Now, let us prove Proposition 2.19 (b). It is clearly enough to prove (6)

(because all the other statements of Proposition 2.19 (b) are just restatements of
(6)). So let’s do this. Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. Then,

rowi A =
(

Ai,1 Ai,2 · · · Ai,m
)

and (8)

colj B =


B1,j

B2,j
...

Bm,j

 . (9)
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Hence,

rowi A · colj B =
(

Ai,1 Ai,2 · · · Ai,m
)


B1,j

B2,j
...

Bm,j


= Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j.

Comparing this with (7), we obtain (AB)i,j = rowi A · colj B. Thus, we have proven
(6). Hence, Proposition 2.19 (b) is proven.

(c) Let i ∈ {1, 2, . . . , n}. Set C = rowi A. Notice that C is a row vector of size m,
thus a 1×m-matrix. We can refer to any given entry of C either as “the j-th entry”
or as “the (1, j)-th entry” (where j is the number of the column the entry is located
in).

We have
C = rowi A =

(
Ai,1 Ai,2 · · · Ai,m

)
.

Thus,
C1,k = Ai,k for every k ∈ {1, 2, . . . , m} . (10)

Let j ∈ {1, 2, . . . , p}. Then,

(the j-th entry of rowi (AB))
= (the (i, j) -th entry of AB) = (AB)i,j

= Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j (by (7)) .

Comparing this with

(the j-th entry of CB)
= (the (1, j) -th entry of CB) (since CB is a row vector)
= C1,1︸︷︷︸

=Ai,1
(by (10))

B1,j + C1,2︸︷︷︸
=Ai,2

(by (10))

B2,j + · · ·+ C1,m︸︷︷︸
=Ai,m

(by (10))

Bm,j

(
by Proposition 2.19 (a), applied to 1, C and 1

instead of n, A and i

)
= Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j,

we obtain

(the j-th entry of rowi (AB)) = (the j-th entry of CB) . (11)

Now, forget that we fixed j. We thus have shown that (11) holds for each j ∈
{1, 2, . . . , p}. In other words, each entry of the row vector rowi (AB) equals the
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corresponding entry of the row vector CB. Hence, rowi (AB) equals CB. Thus,
rowi (AB) = C︸︷︷︸

=rowi A

B = (rowi A) · B. This proves Proposition 2.19 (c).

(d) The proof of Proposition 2.19 (d) is similar to that of Proposition 2.19 (c).
Let me nevertheless show it, for the sake of completeness. (The proof below is
essentially a copy-pasted version of the above proof of Proposition 2.19 (c), with
only the necessary changes made. This is both practical for me, as it saves me some
work, and hopefully helpful for you, as it highlights the similarities.)

Let j ∈ {1, 2, . . . , p}. Set D = colj B. Notice that D is a column vector of size m,
thus an m× 1-matrix. We can refer to any given entry of D either as “the i-th entry”
or as “the (i, 1)-th entry” (where i is the number of the row the entry is located in).

We have

D = colj B =


B1,j

B2,j
...

Bm,j

 .

Thus,
Dk,1 = Bk,j for every k ∈ {1, 2, . . . , m} . (12)

Let i ∈ {1, 2, . . . , n}. Then,(
the i-th entry of colj (AB)

)
= (the (i, j) -th entry of AB) = (AB)i,j

= Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j (by (7)) .

Comparing this with

(the i-th entry of AD)

= (the (i, 1) -th entry of AD) (since AD is a column vector)
= Ai,1 D1,1︸︷︷︸

=B1,j
(by (12))

+Ai,2 D2,1︸︷︷︸
=B2,j

(by (12))

+ · · ·+ Ai,m Dm,1︸︷︷︸
=Bm,j

(by (12))(
by Proposition 2.19 (a), applied to 1, D and 1

instead of p, B and j

)
= Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j,

we obtain (
the i-th entry of colj (AB)

)
= (the i-th entry of AD) . (13)

Now, forget that we fixed i. We thus have shown that (13) holds for each i ∈
{1, 2, . . . , n}. In other words, each entry of the column vector colj (AB) equals the
corresponding entry of the column vector AD. Hence, colj (AB) equals AD. Thus,
colj (AB) = A D︸︷︷︸

=colj B

= A · colj B. This proves Proposition 2.19 (d).
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2.7. Properties of matrix operations

The operations of adding, scaling and multiplying matrices, in many aspects, “be-
have almost as nicely as numbers”. Specifically, I mean that they satisfy a bunch of
laws that numbers satisfy:

Proposition 2.20. Let n ∈N and m ∈N. Then:
(a) We have A+ B = B+ A for any two n×m-matrices A and B. (This is called

“commutativity of addition”.)
(b) We have A+ (B + C) = (A + B) +C for any three n×m-matrices A, B and

C. (This is called “associativity of addition”.)
(c1) We have λ (A + B) = λA + λB for any number λ and any two n × m-

matrices A and B.
(c2) We have λ (µA) = (λµ) A and (λ + µ) A = λA + µA for any numbers λ

and µ and any n×m-matrix A.
(c3) We have 1A = A for any n×m-matrix A.
Let furthermore p ∈N. Then:
(d) We have A (B + C) = AB+ AC for any n×m-matrix A and any two m× p-

matrices B and C. (This is called “left distributivity”.)
(e) We have (A + B)C = AC + BC for any two n× m-matrices A and B and

any m× p-matrix C. (This is called “right distributivity”.)
(f) We have λ (AB) = (λA) B = A (λB) for any number λ, any n×m-matrix

A and any m× p-matrix B.
Finally, let q ∈N. Then:
(g) We have A (BC) = (AB)C for any n × m-matrix A, any m × p-matrix B

and any p× q-matrix C. (This is called “associativity of multiplication”.)

Example 2.21. Most parts of Proposition 2.20 are fairly easy to visualize and to
prove. Let me give an example for the least obvious one: part (g).

Part (g) essentially says that A (BC) = (AB)C holds for any three matrices
A, B and C for which the products AB and BC are well-defined (i.e., A has as
many columns as B has rows, and B has as many columns as C has rows). For
example, take n = 1, m = 3, p = 2 and q = 3. Set

A =
(

a b c
)

, B =

 d d′

e e′

f f ′

 , C =

(
x y z
x′ y′ z′

)
.

Then,
AB =

(
ad + be + c f ad′ + be′ + c f ′

)
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and thus

(AB)C =
(

ad + be + c f ad′ + be′ + c f ′
) ( x y z

x′ y′ z′

)

=

 ad′x′ + be′x′ + c f ′x′ + bex + adx + c f x
ad′y′ + be′y′ + c f ′y′ + bey + ady + c f y
ad′z′ + be′z′ + c f ′z′ + bez + adz + c f z

T

after some computation. (Here, we have written the result as a transpose of a
column vector, because if we had written it as a row vector, it would not fit on
this page.) But

BC =

 d d′

e e′

f f ′

( x y z
x′ y′ z′

)
=

 d′x′ + dx d′y′ + dy d′z′ + dz
e′x′ + ex e′y′ + ey e′z′ + ez
f ′x′ + f x f ′y′ + f y f ′z′ + f z


and as before

A (BC) =

 ad′x′ + be′x′ + c f ′x′ + bex + adx + c f x
ad′y′ + be′y′ + c f ′y′ + bey + ady + c f y
ad′z′ + be′z′ + c f ′z′ + bez + adz + c f z

T

.

Hence, (AB)C = A (BC). Thus, our example confirms Proposition 2.20 (g).

The laws of Proposition 2.20 allow you to do many formal manipulations with
matrices similarly to how you are used to work with numbers. For example, if you
have n matrices A1, A2, . . . , An such that successive matrices can be multiplied (i.e.,
for each i ∈ {1, 2, . . . , n− 1}, the matrix Ai has as many columns as Ai+1 has rows),
then the product A1A2 · · · An is well-defined: you can parenthesize it in any order,
and the result will always be the same. For example, the product ABCD of four
matrices A, B, C, D can be computed in any of the five ways

((AB)C) D, (AB) (CD) , (A (BC)) D, A ((BC) D) , A (B (CD)) ,

and all of them lead to the same result. This is called general associativity and is
not obvious (even if you know that Proposition 2.20 (g) holds)11. Let me state this
result again as a proposition, just to stress its importance:

Proposition 2.22. Let A1, A2, . . . , An be n matrices. Assume that, for each i ∈
{1, 2, . . . , n− 1}, the number of columns of Ai equals the number of rows of Ai+1

11If you are curious about the proofs:
We shall prove Proposition 2.20 (g) further below (in Section 2.9). General associativity can be

derived from Proposition 2.20 (g) in the general context of “binary operations”; see (for example)
[Zuker14] for this argument.
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(so that the product Ai Ai+1 makes sense). Then, the product A1A2 · · · An is well-
defined: Any way to compute this product (by parenthesizing it) yields the same
result. In particular, it can be computed both as A1 (A2 (A3 (· · · (An−1An)))) and
as ((((A1A2) A3) · · · ) An−1) An.

Please take a moment to appreciate general associativity! Without it, we could
not make sense of products like ABC and ABCDE, because their values could de-
pend on how we choose to compute them. This is one reason why, in the definition
of AB, we multiply entries of the i-th row of A with entries of the j-th column of
B. Using rows both times would break associativity!12

There is also a general associativity law for addition:

Proposition 2.23. Let A1, A2, . . . , An be n matrices of the same size. Then, the
sum A1 + A2 + · · ·+ An is well-defined: Any way to compute this sum (by paren-
thesizing it) yields the same result. In particular, it can be computed both as A1 +
(A2 + (A3 + (· · ·+ (An−1 + An)))) and as ((((A1 + A2) + A3) + · · · ) + An−1) +
An.

There is also another variant of general associativity that concerns the interplay
of matrix multiplication and scaling. It claims that products of matrices and num-
bers can be parenthesized in any order. For example, the product λµAB of two
numbers λ and µ and two matrices A and B can be computed in any of the five
ways

((λµ) A) B, (λµ) (AB) , (λ (µA)) B, λ ((µA) B) , λ (µ (AB)) ,

and all of them lead to the same result. This can be deduced from parts (c2), (f)
and (g) of Proposition 2.20.

We shall give proofs of parts (d) and (g) of Proposition 2.20 in Section 2.9 below.
Various other identities follow from Proposition 2.20. For example, if A, B and

C are three matrices of the same size, then A− (B + C) = A− B− C. For another
example, if A and B are two n×m-matrices (for some n ∈N and m ∈N) and if C
is an m× p-matrix (for some p ∈ N), then (A− B)C = AC− BC. These identities
are proven similarly as the analogous properties of numbers are proven; we shall
not linger on them.

12Of course, our formulation of general associativity was far from rigorous. After all, we have not
defined what a “way to compute a product” means, or what “parenthesizing a product” means.
There are several ways to make Proposition 2.22 rigorous. See [m.se709196] for a discussion of
such ways. (Note that the simplest way actually avoids defining “parenthesizing”. Instead, it
defines the product A1 A2 · · · An by recursion on n, namely defining it to be A1 when n = 1,
and defining it to be (A1 A2 · · · An−1) An otherwise (where we are using the already-defined
product A1 A2 · · · An−1). Informally speaking, this means that the product A1 A2 · · · An is defined
as ((((A1 A2) A3) · · · ) An−1) An. Now, general associativity says that this product A1 A2 · · · An
equals (A1 A2 · · · Ak) (Ak+1 Ak+2 · · · An) for each k ∈ {1, 2, . . . , n− 1}. (This is not too hard to
prove by induction over n.) Informally speaking, this shows that our product A1 A2 · · · An also
equals the result of any way of computing it (not only the ((((A1 A2) A3) · · · ) An−1) An way).)
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2.8. Non-properties of matrix operations

Conspicuously absent from Proposition 2.20 is one important law that is well-
known to hold for numbers: commutativity of multiplication (that is, ab = ba).
This has a reason: it is false for matrices. There are at least three reasons why it is
false:

1. If A and B are matrices, then it can happen that AB is well-defined (i.e., A has
as many columns as B has rows) but BA is not (i.e., B does not have as many

columns as A has rows). For example, if A =

 a
b
c

 and B =
(

x y
)
, then

AB is well-defined but BA is not.

2. If A and B are matrices such that both AB and BA well-defined, then AB and
BA might still have different dimensions. Namely, if A is an n×m-matrix and
B is an m× n-matrix, then AB is an n× n-matrix, but BA is an m×m-matrix.
So comparing AB and BA makes no sense unless n = m.

3. Even if AB and BA are of the same dimensions, they can still be distinct. For

example, if A =

(
1 1
0 1

)
and B = AT =

(
1 0
1 1

)
, then AB =

(
2 1
1 1

)
whereas BA =

(
1 1
1 2

)
.

Two matrices A and B are said to commute if AB = BA (which, in particular,
means that both AB and BA are well-defined). You will encounter many cases
when matrices A and B happen to commute (for example, every n× n-matrix com-
mutes with the n× n identity matrix; see below for what this means); but in general
there is no reason to expect two randomly chosen matrices to commute.

As a consequence of matrices refusing to commute (in general), we cannot rea-
sonably define division of matrices. Actually, there are two reasons why we cannot
reasonably define division of matrices: First, if A and B are two matrices, then it is

not clear whether
A
B

should mean a matrix C satisfying BC = A, or a matrix C sat-
isfying CB = A. (The failure of commutativity implies that these are two different
things.) Second, in general, neither of these matrices C is necessarily unique; nor
is it guaranteed to exist. This is similar to the fact that we cannot divide by 0 (in

fact,
0
0

would not be unique, while
1
0

would not exist); but with matrices, 0 is not
the only forbidden denominator. Here is an example:

Example 2.24. (a) Let A =

(
1 0
0 0

)
and B = A. Then, BC = A holds for C = A,

but also for C =

(
1 0
0 1

)
(and also for many other matrices C). So the matrix

C satisfying BC = A is not unique.
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(b) Let A =

(
1 0
0 1

)
and B =

(
1 0
0 0

)
. Then, there exists no matrix C

satisfying BC = A. Indeed, if C =

(
x y
z w

)
is any matrix, then BC =

(
x y
0 0

)
has its second row filled with zeroes, but A does not; so BC cannot equal A.

Exercise 2.25. (a) Let A =

(
1 0
0 2

)
. Show that the 2× 2-matrices B satisfying

AB = BA are precisely the matrices of the form
(

a 0
0 d

)
(where a and d are

any numbers). [Hint: Set B =

(
x y
z w

)
, and rewrite AB = BA as a system of

linear equations in x, y, z, w. Solve this system.]

(b) Let A =

(
1 1
0 1

)
. Characterize the 2× 2-matrices B satisfying AB = BA.

2.9. (*) The summation sign, and a proof of (AB)C = A (BC)

We now take a break from studying matrices to introduce an important symbol:
the summation sign (∑). This sign is one of the hallmarks of abstract mathematics
(and also computer science), and helps manipulate matrices comfortably. Here is a
quick (but informal) definition of the summation sign ∑:

Definition 2.26. Let p and q be two integers such that p ≤ q + 1. Let

ap, ap+1, . . . , aq be some numbers. Then,
q
∑

k=p
ak means the sum ap + ap+1 + · · ·+

aq. The symbol ∑ is called the summation sign; we pronounce the expression
q
∑

k=p
ak as “sum of ak for all k ranging from p to q”.

This definition needs some clarifications; but before I give them, let me show
some examples:

• We have
q
∑

k=p
k = p + (p + 1) + · · ·+ q. For example,

n
∑

k=1
k = 1 + 2 + · · ·+ n.

(A well-known formula says that this sum
n
∑

k=1
k = 1 + 2 + · · · + n equals

n (n + 1)
2

. For a concrete example,
3
∑

k=1
k = 1 + 2 + 3 =

3 (3 + 1)
2

= 6.) For

another example,
n
∑

k=−n
k = (−n) + (−n + 1) + · · ·+ n. (This latter sum equals

0, because it contains, for each its addend, also its negative13.)
13except for the addend 0, but this 0 doesn’t change the sum anyway
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• We have
q
∑

k=p
k2 = p2 + (p + 1)2 + · · · + q2. For example,

n
∑

k=1
k2 = 12 + 22 +

· · ·+ n2. (A well-known formula says that this sum
n
∑

k=1
k2 = 12 + 22 + · · ·+ n2

equals
n (n + 1) (2n + 1)

6
.)

• We have
q
∑

k=p
1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

q−p+1 times

= q− p + 1. This illustrates the fact that the

ak in a sum
q
∑

k=p
ak needs not depend on k (although the cases where it does

not depend on k are fairly trivial).

• If p = q, then
q
∑

k=p
ak = ap. (A sum of only one number is simply this number.)

As I have said, a few remarks and clarifications on the summation sign are in
order:

Definition 2.27. (a) In the expression
q
∑

k=p
ak (as defined in Definition 2.26), the

letter k is called the summation index. It stands for the “moving part” in the sum

(e.g., the part in which the addends differ). For example,
q
∑

k=p

1
k + 3

is the sum of

the fractions
1

k + 3
for k ranging from p to q; its addends all have the form

1
k + 3

,

but for different values of k.
The summation index doesn’t have to be called k; any letter is legitimate (as

long as it is not already used otherwise). For example,
q
∑

i=p
ai and

q
∑

x=p
ax are two

synonymous ways to write
q
∑

k=p
ak. Just make sure that you are using the same

letter under the ∑ sign and to its right (so you should not write
q
∑

i=p
ak, unless

you mean the sum ak + ak + · · ·+ ak︸ ︷︷ ︸
q−p+1 times

).

(b) You might be wondering what Definition 2.26 means in the case when
p = q+ 1; after all, in this case, there are no numbers ap, ap+1, . . . , aq, and the sum

ap + ap+1 + · · ·+ aq has no addends. (For example, how should
1
∑

k=2
k = 2 + 3 +

· · ·+ 1 be understood?) However, there is a general convention in mathematics
that a sum with no addends is always defined to be 0, and is called an empty sum.
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Thus,
q
∑

k=p
ak = 0 whenever p = q + 1. For example,

1
∑

k=2
k = 0 and

1
∑

k=0

1
k
= 0 (even

though
1
k

makes no sense for k = 0). (This convention might sound arbitrary, but
is logically adequate: In fact, it ensures that the equality ap + ap+1 + · · ·+ aq =(

ap + ap+1 + · · ·+ aq−1
)
+ aq holds not only for q > p, but also for q = p.)

Many authors define the sum
q
∑

k=p
ak to be 0 in the case when p > q + 1 as

well; thus, the sum
q
∑

k=p
ak is defined for any two integers p and q (without the

requirement that p ≤ q + 1). However, this convention is somewhat slippery:

for instance, it entails
n
∑

k=1
k = 0 for all negative k, and thus the equality

n
∑

k=1
k =

n (n + 1)
2

does not hold for negative n.

(c) From a fully rigorous point of view, Definition 2.26 did not define
q
∑

k=p
ak at

all. Indeed, it defined
q
∑

k=p
ak to be ap + ap+1 + · · ·+ aq, but what does ap + ap+1 +

· · ·+ aq mean? The rigorous way to define
q
∑

k=p
ak is as follows (by recursion):

• If q = p− 1, then
q
∑

k=p
ak is defined to be 0.

• If q > p− 1, then
q
∑

k=p
ak is defined to be

(
q−1
∑

k=p
ak

)
+ aq.

This is a recursive definition (since it defines
q
∑

k=p
ak in terms of

q−1
∑

k=p
ak), and

provides an algorithm to compute
q
∑

k=p
ak. From a formal point of view, “ap +

ap+1 + · · ·+ aq” is just a colloquial way to say “
q
∑

k=p
ak”.

Notice that the expression “
q
∑

k=p
ak” is both a more compact and a more rigorous

way to say “ap + ap+1 + · · ·+ aq”. A computer would not understand the expression
“ap + ap+1 + · · ·+ aq” (it could only guess what the “· · · ” means, and computers

are bad at guessing); but the expression “
q
∑

k=p
ak” has a well-defined meaning that
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can be rigorously defined and can be explained to a computer14. Thus, if you want
to tell a computer to compute a sum, the command you have to use will be closer

to “
q
∑

k=p
ak” than to “ap + ap+1 + · · · + aq”. For example, in Python, you would

have to write “sum(a[k] for k in range(p, q+1))” (where “a[k]” is understood
to return ak) 15.

Using the summation sign, we can rewrite the product AB of two matrices A
and B (see Definition 2.13) more nicely:

Proposition 2.28. Let n ∈ N, m ∈ N and p ∈ N. Let A be an n×m-matrix. Let
B be an m× p-matrix. Then,

(AB)i,j =
m

∑
k=1

Ai,kBk,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p} .

Proof of Proposition 2.28. For all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, we have

(AB)i,j = Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j (by Proposition 2.19 (a))

=
m

∑
k=1

Ai,kBk,j

(because
m
∑

k=1
Ai,kBk,j is exactly Ai,1B1,j + Ai,2B2,j + · · ·+ Ai,mBm,j, by its definition).

Proposition 2.28 is proven.

Here are two properties of sums that are fairly clear if you understand how sums
are defined:

Proposition 2.29. Let p and q be two integers such that p ≤ q + 1. Let
ap, ap+1, . . . , aq be some numbers. Let b be a number. Then,

q

∑
k=p

bak = b
q

∑
k=p

ak.

(The expression
q
∑

k=p
bak has to be read as

q
∑

k=p
(bak).)

14See Definition 2.27 (c) for the rigorous definition of
q
∑

k=p
ak.

15Why “q+1” and not “q”? Because Python defines range(u, v) as the list (u, u + 1, . . . , v− 1) (that
is, the list that starts at u and ends just before v). So range(p, q) would be (p, p + 1, . . . , q− 1),
but we want (p, p + 1, . . . , q).
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Proof of Proposition 2.29. By the definition of ∑, we have

q

∑
k=p

bak = bap + bap+1 + · · ·+ baq = b
(
ap + ap+1 + · · ·+ aq

)︸ ︷︷ ︸
=

q
∑

k=p
ak

(by the definition of
q
∑

k=p
ak)

= b
q

∑
k=p

ak.

Proposition 2.30. Let p and q be two integers such that p ≤ q + 1. Let
ap, ap+1, . . . , aq be some numbers. Let bp, bp+1, . . . , bq be some numbers. Then,

q

∑
k=p

(ak + bk) =
q

∑
k=p

ak +
q

∑
k=p

bk.

(The expression
q
∑

k=p
ak +

q
∑

k=p
bk has to be read as

(
q
∑

k=p
ak

)
+

(
q
∑

k=p
bk

)
.)

Proof of Proposition 2.30. By the definition of ∑, we have

q

∑
k=p

(ak + bk) =
(
ap + bp

)
+
(
ap+1 + bp+1

)
+ · · ·+

(
aq + bq

)
=
(
ap + ap+1 + · · ·+ aq

)︸ ︷︷ ︸
=

q
∑

k=p
ak

(by the definition of
q
∑

k=p
ak)

+
(
bp + bp+1 + · · ·+ bq

)︸ ︷︷ ︸
=

q
∑

k=p
bk

(by the definition of
q
∑

k=p
bk)

=
q

∑
k=p

ak +
q

∑
k=p

bk.

Our goal in this section is to prove Proposition 2.20 (g), illustrating the use and
manipulation of the ∑ sign. However, as a warmup, let us first prove Proposition
2.20 (d) (which is simple enough that you can easily check it without ∑ signs, but
is nevertheless worth proving using the ∑ sign just to demonstrate how to work
with the ∑ sign):

Proof of Proposition 2.20 (d). Let A be an n×m-matrix. Let B and C be two m× p-
matrices.

We shall show that (A (B + C))i,j = (AB + AC)i,j for all i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , p}. Once this is proven, this will entail that corresponding entries
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of the two n× p-matrices A (B + C) and AB + AC are equal; and thus, these two
matrices have to be equal.

Proposition 2.28 yields

(AB)i,j =
m

∑
k=1

Ai,kBk,j (14)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}.
Proposition 2.28 (applied to C instead of B) yields

(AC)i,j =
m

∑
k=1

Ai,kCk,j (15)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}.
Finally, Proposition 2.28 (applied to B + C instead of B) yields

(A (B + C))i,j =
m

∑
k=1

Ai,k (B + C)k,j︸ ︷︷ ︸
=Bk,j+Ck,j

(since matrices are
added entry by entry)

=
m

∑
k=1

Ai,k
(

Bk,j + Ck,j
)︸ ︷︷ ︸

=Ai,kBk,j+Ai,kCk,j

=
m

∑
k=1

(
Ai,kBk,j + Ai,kCk,j

)
=

m

∑
k=1

Ai,kBk,j︸ ︷︷ ︸
=(AB)i,j
(by (14))

+
m

∑
k=1

Ai,kCk,j︸ ︷︷ ︸
=(AC)i,j
(by (15))(

by Proposition 2.30, applied to 1, m,
Ai,kBk,j and Ai,kCk,j instead of p, q, ak and bk

)
= (AB)i,j + (AC)i,j

= (AB + AC)i,j

(
again because matrices

are added entry by entry

)
for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. In other words, each entry of the n× p-
matrix A (B + C) equals the corresponding entry of AB + AC. Thus, the matrix
A (B + C) equals AB + AC. This proves Proposition 2.20 (d).

Before we can prove Proposition 2.20 (g), we need another fact about sums:

Proposition 2.31. Let m ∈N and p ∈N. Assume that a number ak,` is given for
every k ∈ {1, 2, . . . , m} and ` ∈ {1, 2, . . . , p}. Then,

m

∑
k=1

p

∑
`=1

ak,` =
p

∑
`=1

m

∑
k=1

ak,`.

(Note that an expression like
m
∑

k=1

p
∑
`=1

ak,` has to be understood as
m
∑

k=1

( p
∑
`=1

ak,`

)
.
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It is a “nested sum”, i.e., a sum of sums. For example,

3

∑
k=1

4

∑
`=1

k · `︸ ︷︷ ︸
=k·1+k·2+k·3+k·4

=
3

∑
k=1

(k · 1 + k · 2 + k · 3 + k · 4)

= (1 · 1 + 1 · 2 + 1 · 3 + 1 · 4) + (2 · 1 + 2 · 2 + 2 · 3 + 2 · 4)
+ (3 · 1 + 3 · 2 + 3 · 3 + 3 · 4) .

)

Example 2.32. For m = 2 and p = 3, Proposition 2.31 says that

2

∑
k=1

3

∑
`=1

ak,` =
3

∑
`=1

2

∑
k=1

ak,`.

In other words,

(a1,1 + a1,2 + a1,3)+ (a2,1 + a2,2 + a2,3) = (a1,1 + a2,1)+ (a1,2 + a2,2)+ (a1,3 + a2,3) .

Proof of Proposition 2.31. Comparing

m

∑
k=1

p

∑
`=1

ak,`︸ ︷︷ ︸
=ak,1+ak,2+···+ak,p

(by the definition of the ∑ sign)

=
m

∑
k=1

(
ak,1 + ak,2 + · · ·+ ak,p

)
=
(
a1,1 + a1,2 + · · ·+ a1,p

)
+
(
a2,1 + a2,2 + · · ·+ a2,p

)
+ · · ·+

(
am,1 + am,2 + · · ·+ am,p

)(
by the definition of the ∑ sign

)
= (the sum of all possible numbers ak,`)
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with

p

∑
`=1

m

∑
k=1

ak,`︸ ︷︷ ︸
=a1,`+a2,`+···+am,`

(by the definition of the ∑ sign)

=
p

∑
`=1

(a1,` + a2,` + · · ·+ am,`)

= (a1,1 + a2,1 + · · ·+ am,1) + (a1,2 + a2,2 + · · ·+ am,2) + · · ·+
(
a1,p + a2,p + · · ·+ am,p

)(
by the definition of the ∑ sign

)
= (the sum of all possible numbers ak,`) ,

we obtain
m
∑

k=1

( p
∑
`=1

ak,`

)
=

p
∑
`=1

(
m
∑

k=1
ak,`

)
.

(A more rigorous proof could be given using induction; but I don’t want to move
to that level of formalism in these notes. Notice the visual meaning of the above
proof: If we place the mp numbers ak,` into a matrix (ak,`)1≤k≤m, 1≤`≤p, then

• the number
m
∑

k=1

p
∑
`=1

ak,` is obtained by summing the entries in each row of the

matrix, and then summing the resulting sums;

• the number
p
∑
`=1

m
∑

k=1
ak,` is obtained by summing the entries in each column of

the matrix, and then summing the resulting sums.

Thus, clearly, both numbers are equal (namely, equal to the sum of all entries of
the matrix).)

Now, we can prove Proposition 2.20 (g):

Proof of Proposition 2.20 (g). Let A be an n × m-matrix. Let B be an m × p-matrix.
Let C be a p× q-matrix.

We must show that A (BC) = (AB)C. In order to do so, it suffices to show that
(A (BC))i,j = ((AB)C)i,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , q} (because this
will show that respective entries of the two n× q-matrices A (BC) and (AB)C are
equal, and thus the two matrices are equal).

We know that A is an n×m-matrix, and that BC is an m× q-matrix. Hence, we
can apply Proposition 2.28 to n, m, q, A and BC instead of n, m, p, A and B. We
thus obtain

(A (BC))i,j =
m

∑
k=1

Ai,k (BC)k,j (16)
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for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , q}. Also, we can apply Proposition 2.28 to
m, p, q, B and C instead of n, m, p, A and B. We thus obtain

(BC)i,j =
p

∑
k=1

Bi,kCk,j =
p

∑
`=1

Bi,`C`,j (17)

(here, we renamed the summation index k as `)

for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , p}. Furthermore, we can apply Proposition
2.28 to n, p, q, AB and C instead of n, m, p, A and B. We thus find

((AB)C)i,j =
p

∑
k=1

(AB)i,k Ck,j =
p

∑
`=1

(AB)i,` C`,j (18)

(here, we renamed the summation index k as `)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , q}. Finally, Proposition 2.28 (applied
verbatim) yields

(AB)i,j =
m

∑
k=1

Ai,kBk,j (19)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}.
Now that we have found formulas for the entries of all matrices involved, we can

perform our computation: For all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , q}, we have

(A (BC))i,j =
m

∑
k=1

Ai,k (BC)k,j︸ ︷︷ ︸
=

p
∑
`=1

Bk,`C`,j

(by (17), applied to k instead of i)

(by (18))

=
m

∑
k=1

Ai,k

(
p

∑
`=1

Bk,`C`,j

)
︸ ︷︷ ︸

=
p
∑
`=1

Ai,kBk,`C`,j

(by an application of
Proposition 2.29)

=
m

∑
k=1

p

∑
`=1

Ai,kBk,`C`,j

=
p

∑
`=1

m

∑
k=1

Ai,kBk,`C`,j
(
by Proposition 2.31, applied to ak,` = Ai,kBk,`C`,j

)
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and

((AB)C)i,j =
p

∑
`=1

(AB)i,`︸ ︷︷ ︸
=

m
∑

k=1
Ai,kBk,`

(by (19), applied to `
instead of j)

C`,j (by (16))

=
p

∑
`=1

(
m

∑
k=1

Ai,kBk,`

)
C`,j︸ ︷︷ ︸

=C`,j
m
∑

k=1
Ai,kBk,`=

m
∑

k=1
C`,j Ai,kBk,`

(by an application of
Proposition 2.29)

=
p

∑
`=1

m

∑
k=1

C`,j Ai,kBk,`︸ ︷︷ ︸
=Ai,kBk,`C`,j

=
p

∑
`=1

m

∑
k=1

Ai,kBk,`C`,j.

Comparing these two equalities, we obtain

(A (BC))i,j = ((AB)C)i,j

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , q}. In other words, each entry of the matrix
A (BC) equals the corresponding entry of the matrix (AB)C. Thus, the matrices
A (BC) and (AB)C are equal. This proves Proposition 2.20 (g).

We have just proven the hardest part of Proposition 2.20. The rest is fairly
straightforward.

2.10. The zero matrix

Definition 2.33. Let n ∈ N and m ∈ N. Then, the n×m zero matrix means the
matrix (0)1≤i≤n, 1≤j≤m. This is the n × m-matrix filled with zeroes. It is called
0n×m. (When no confusion with the number 0 can arise, we will just call it 0.)

For example, the 2× 3 zero matrix is
(

0 0 0
0 0 0

)
.

Some authors (for example, Olver and Shakiban in [OlvSha06]) denote the zero
matrix 0n×m by On×m or On×m (thus using the letter O instead of the number 0), or
simply by O.

The zero matrix behaves very much like the number 0:

Proposition 2.34. Let n ∈N and m ∈N. Then:
(a) We have 0n×m + A = A + 0n×m = A for each n×m-matrix A.
(b) We have 0n×m A = 0n×p for each p ∈N and each m× p-matrix A.
(c) We have A0n×m = 0p×m for each p ∈N and each p× n-matrix A.
(d) We have 0A = 0n×m for each n×m-matrix A.
(e) We have λ0n×m = 0n×m for each number λ.
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Remark 2.35. Numbers are known to be zero-divisor-free: If a product ab of two
numbers a and b is 0, then one of a and b must be 0. This fails for matrices: If

A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
, then AB = 02×2 is the zero matrix, although

neither A nor B is the zero matrix.

2.11. The identity matrix

Definition 2.36. Let n ∈ N. The diagonal entries of an n × n-matrix A are its
entries A1,1, A2,2, . . . , An,n. In other words, they are the entries Ai,j for i = j.

For example, the diagonal entries of
(

a b
c d

)
are a and d. The name “diagonal

entries” comes from the visualization of an n× n-matrix as a square table: When
we say “diagonal”, we always mean the diagonal of the square that connects the
upper-left corner with the lower-right corner16; the diagonal entries are simply the
entries along this diagonal. (The other diagonal is called the “antidiagonal” in
linear algebra.)

Definition 2.37. If i and j are two objects (for example, numbers or sets or func-
tions), then we set

δi,j =

{
1, if i = j;
0, if i 6= j

. (20)

For example, δ3,3 = 1 (since 3 = 3) but δ1,2 = 0 (since 1 6= 2). For another
example, δ(1,2),(1,3) = 0 (because (1, 2) 6= (1, 3)); here we are using the notation δi,j
in a situation where i and j are pairs of numbers.

The notation δi,j defined in (20) is called the Kronecker delta; it is extremely simple
and yet highly useful. It has the property that δi,j = δj,i for any i and j (because
i = j holds if and only if j = i).

Definition 2.38. Let n ∈ N. Then, the n × n identity matrix means the matrix(
δi,j
)

1≤i≤n, 1≤j≤n. This is the n × n-matrix whose diagonal entries all equal 1,
and whose all other entries equal 0. It is denoted by In. (Other people call it I or
E or En.)

The n× n identity matrix In looks as follows:

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


16Often, this diagonal is also called the “main diagonal”.
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(with n rows and n columns). For example, the 3 × 3 identity matrix is I3 = 1 0 0
0 1 0
0 0 1

.

The identity matrix behaves very much like the number 1:

Proposition 2.39. Let n ∈N and m ∈N.
(a) We have In A = A for each n×m-matrix A.
(b) We have AIm = A for each n×m-matrix A.

Proposition 2.39 says that multiplying a matrix A by an identity matrix (from
either side) does not change A. Thus, identity matrices have no effect inside a
product, and so can be “cancelled” (or, more precisely, dropped). For example, if
A, B, C and D are four n× n-matrices, then In ABIn InCInD = ABCD. (Of course,
this is similar to dropping 1’s from products of numbers: 1ab · 1 · 1c · 1d = abcd.)

2.12. (*) Proof of AIn = A

Let me give a proof of Proposition 2.39 (b), to illustrate the following simple, yet
important point about summations and the Kronecker delta17:

Proposition 2.40. Let p and q be two integers such that p ≤ q. Let r ∈
{p, p + 1, . . . , q}. Let ap, ap+1, . . . , aq be some numbers. Then,

q

∑
k=p

akδk,r = ar.

Example 2.41. For p = 1, q = 5 and r = 4, Proposition 2.40 says that
5
∑

k=1
akδk,4 =

a4. This is easy to check:

5

∑
k=1

akδk,4 = a1 δ1,4︸︷︷︸
=0

(since 1 6=4)

+a2 δ2,4︸︷︷︸
=0

(since 2 6=4)

+a3 δ3,4︸︷︷︸
=0

(since 3 6=4)

+a4 δ4,4︸︷︷︸
=1

(since 4=4)

+a5 δ5,4︸︷︷︸
=0

(since 5 6=4)

= a10 + a20 + a30 + a41 + a50 = a41 = a4.

What you should see on this example is that all but one addends of the sum
q
∑

k=p
akδk,r are zero, and the remaining one addend is ar δr,r︸︷︷︸

=1

= ar1 = ar. The

proof below is just writing this down in the general situation.

17This is something that often comes up in computations (particularly in physics and computer
science, where the use of the Kronecker delta is widespread).
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Proof of Proposition 2.40. Let us first notice something simple: For any k ∈ {p, p + 1, . . . , q}
such that k 6= r, we have

ak δk,r︸︷︷︸
=0

(since k 6=r)

= ak0 = 0.

In other words, all terms of the form akδk,r with k 6= r are 0. Hence, the sum of all
these terms is 0 as well. In other words,

(the sum of all terms of the form akδk,r with k 6= r) = 0. (21)

By the definition of the ∑ sign, we have

q

∑
k=p

akδk,r = apδp,r + ap+1δp+1,r + · · ·+ aqδq,r

= (the sum of all terms of the form akδk,r)

= ar δr,r︸︷︷︸
=1

(since r=r)

+ (the sum of all terms of the form akδk,r with k 6= r)︸ ︷︷ ︸
=0

(by (21))

(here, we have pulled out the addend arδr,r out of the sum)

= ar1 + 0 = ar.

Proof of Proposition 2.39 (b). We have Im =
(
δi,j
)

1≤i≤m, 1≤j≤m (this is how we defined
Im), and thus

(Im)u,v = δu,v for all u ∈ {1, 2, . . . , m} and v ∈ {1, 2, . . . , m} . (22)

Let A be an n× m-matrix. For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we
have

(AIm)i,j =
m

∑
k=1

Ai,k (Im)k,j︸ ︷︷ ︸
=δk,j

(by (22))

(by Proposition 2.28, applied to p = m and B = Im)

=
m

∑
k=1

Ai,kδk,j = Ai,j

(by Proposition 2.40, applied to p = 1, q = m, r = j and ak = Ai,k). In other words,
each entry of the n× m-matrix AIm equals the corresponding entry of the n× m-
matrix A. In other words, AIm equals A. This proves Proposition 2.39 (b).

Proposition 2.39 (a) can be proven similarly (but this time, instead of the sum
m
∑

k=1
Ai,kδk,j, we must consider the sum

n
∑

k=1
δi,k Ak,j =

n
∑

k=1
Ak,jδi,k = Ai,j).
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2.13. Powers of a matrix

The k-th power of a number a (where k ∈N) is defined by repeated multiplication:
We start with a0 = 1 18, and we define each next power of a by multiplying the
previous one by a. In formulas: ak+1 = a · ak for each k ∈N. Thus,

a1 = a · a0︸︷︷︸
=1

= a · 1 = a;

a2 = a · a1︸︷︷︸
=a

= a · a;

a3 = a · a2︸︷︷︸
=a·a

= a · a · a,

etc.. We can explicitly write

ak = a · a · · · · · a︸ ︷︷ ︸
k times a

for each k ∈N,

where we understand a · a · · · · · a︸ ︷︷ ︸
0 times a

to mean 1 19.

We can play the same game with square matrices, but instead of the number 1
we now take the n× n identity matrix In:

Definition 2.42. Let n ∈ N. Let A be an n× n-matrix. Then, the k-th power of
the matrix A (where k ∈N) is defined by repeated multiplication: We start with
A0 = In, and we define each next power of A by multiplying the previous one
by A. In formulas: Ak+1 = A · Ak for each k ∈ N. Explicitly, Ak = A · A · · · · · A︸ ︷︷ ︸

k times A
for each k ∈ N, where the empty product of n× n-matrices is defined to be In.
(An “empty product” is a product with no factors. Thus, A0 = A · A · · · · · A︸ ︷︷ ︸

0 times A

is

an empty product.)

Notice that we have been a bit sloppy when we said “multiplying the previous
one by A”: When we multiply a matrix B by A, we might mean either AB or
BA, and as we know, these two products can be different (matrices don’t always
commute!). However, in the above definition, this makes no matter, because both
definitions lead to the same explicit formula Ak = A · A · · · · · A︸ ︷︷ ︸

k times A

(which is well-

defined because of general associativity).
We now have a first moderately interesting example of commuting matrices: Any

two powers of a square matrix commute. (In other words: For any n× n-matrix A,
and any u ∈ N and v ∈ N, the two matrices Au and Av commute. This follows by
observing that Au Av = Au+v = Av Au.)

18Yes, this is how a0 is defined, for all a. Anyone who tells you that the number 00 is undefined is
merely spreading their confusion.

19This is a standard convention: An empty product of numbers always means 1.
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2.14. (*) The summation sign for matrices

In Definition 2.26, we have introduced a notation for sums of arbitrary (finite) lists
of numbers. The same notation can be used for sums of arbitrary (finite) lists of
matrices:

Definition 2.43. Let n ∈ N and m ∈ N. Let p and q be two integers such that

p ≤ q + 1. Let Ap, Ap+1, . . . , Aq be some n × m-matrices. Then,
q
∑

k=p
Ak means

the sum Ap + Ap+1 + · · · + Aq. (This sum is well-defined due to Proposition
2.23. Moreover, the order of its addends does not matter, as can be proven using
Proposition 2.20 (a).)

The notation
q
∑

k=p
Ak is analogous to the notation

q
∑

k=p
ak introduced in Defini-

tion 2.26. The same remarks and clarifications done for the latter notation in
Definition 2.27 apply to the former notation. There is only one difference: When

the sum
q
∑

k=p
Ak has no addends (i.e., when p ≥ q + 1), its value is defined to be

the zero matrix 0n×m rather than the number 0. (This is not much of a difference,
seeing that the zero matrix 0n×m and the number 0 behave similarly; see, e.g.,
Proposition 2.34.)

Recall that addition of matrices was defined entry by entry. Let me restate this
in terms of a single entry of a sum:

Proposition 2.44. Let n ∈ N and m ∈ N. Let A and B be two n× m-matrices.
For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have

(A + B)i,j = Ai,j + Bi,j.

Proof of Proposition 2.44. We have A + B =
(

Ai,j + Bi,j
)

1≤i≤n, 1≤j≤m (by the defi-
nition of A + B). Thus, (A + B)i,j = Ai,j + Bi,j for each i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}. This proves Proposition 2.44.

Proposition 2.44 concerns the sum of two matrices. Using the summation sign,
we can state an analogue of Proposition 2.44 for the sum of several matrices:

Proposition 2.45. Let n ∈ N and m ∈ N. Let h ∈ N. Let A1, A2, . . . , Ah be some
n×m-matrices. For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have(

h

∑
k=1

Ak

)
i,j

=
h

∑
k=1

(Ak)i,j . (23)
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Notice that the ∑ sign on the left hand side of (23) stands for a sum of several
matrices, while the ∑ sign on the right hand side stands for a sum of several
numbers.

Proof of Proposition 2.45. We could say that proving Proposition 2.45 is just a matter
of applying Proposition 2.44 several times (since a sum of finitely many matrices
can be obtained by repeatedly adding one matrix to another). This single sen-
tence might not be a rigorous proof in itself, but it would pass for a proof in any
mathematical paper or textbook, because any mathematician can easily make it as
rigorous as she wants to have it by filling in the missing (straightforward) details.20

However, these notes are supposed to double as an introduction to proofs, so let
me actually show how a rigorous proof of Proposition 2.45 looks like (even though
it is exactly as straightforward and dull as you would expect it to be).

Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. We claim that(
`

∑
k=1

Ak

)
i,j

=
`

∑
k=1

(Ak)i,j (24)

for every ` ∈ {0, 1, . . . , h}. (Once this is proven, then we will be able to obtain (23)
simply by applying (24) to ` = h.)

We will prove (24) by induction over `. (If you have never seen a proof by induc-
tion: this here is an example.) This means that we shall prove the following two
claims:

Claim 1: (24) holds for ` = 0.

Claim 2: If L ∈ {0, 1, . . . , h− 1} is such that (24) holds for ` = L, then
(24) also holds for ` = L + 1.

Once these two claims are proven, the principle of mathematical induction will yield
that (24) holds for all ` ∈ {0, 1, . . . , h}. In fact:

• Claim 1 shows that (24) holds for ` = 0;

• thus, Claim 2 (applied to L = 0) shows that (24) holds for ` = 1;

• thus, Claim 2 (applied to L = 1) shows that (24) holds for ` = 2;

• thus, Claim 2 (applied to L = 2) shows that (24) holds for ` = 3;

• and so on, applying Claim 2 for higher and higher L, until we arrive at ` = h.

20Actually, there is one more subtlety involved: Namely, if h = 0, then the sums appearing in (23)
are not obtained by addition (in fact, they are empty), and therefore we cannot use Proposition
2.44 to prove (23) in this case. However, (23) is completely obvious in this case anyway (since it
just says that (0n×m)i,j = 0).
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(See [LeLeMe16, Chapter 5] for an introduction to proofs by induction.)
Of course, we still have to prove the two claims.

1. Proof of Claim 1: For L = 0, the statement (24) claims that
(

0
∑

k=1
Ak

)
i,j

=

0
∑

k=1
(Ak)i,j. But

0

∑
k=1

Ak = (an empty sum of n×m-matrices) = 0n×m

(since an empty sum of n×m-matrices was defined to be 0n×m). Hence,(
0

∑
k=1

Ak

)
i,j

= (0n×m)i,j = 0

(since every entry of the zero matrix 0n×m is 0). Compared with

0

∑
k=1

(Ak)i,j = (an empty sum of numbers) = 0,

this yields
(

0
∑

k=1
Ak

)
i,j
=

0
∑

k=1
(Ak)i,j. In other words, (24) holds for ` = 0. This

proves Claim 1.

2. Proof of Claim 2: Let L ∈ {0, 1, . . . , h− 1} be such that (24) holds for ` = L. We
must show that (24) holds for ` = L + 1.

Since (24) holds for ` = L, we have(
L

∑
k=1

Ak

)
i,j

=
L

∑
k=1

(Ak)i,j . (25)

Now,
L+1

∑
k=1

Ak =
L

∑
k=1

Ak + AL+1.
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Thus,(
L+1

∑
k=1

Ak

)
i,j

=

(
L

∑
k=1

Ak + AL+1

)
i,j

=

(
L

∑
k=1

Ak

)
i,j︸ ︷︷ ︸

=
L
∑

k=1
(Ak)i,j

(by (25))

+ (AL+1)i,j

(
by Proposition 2.44, applied to A =

L

∑
k=1

Ak and B = AL+1

)

=
L

∑
k=1

(Ak)i,j + (AL+1)i,j =
L+1

∑
k=1

(Ak)i,j .

In other words, (24) holds for ` = L + 1. This proves Claim 2.

Now, both Claims 1 and 2 are proven, and thus (as we have explained above) the
proof of (24) is complete.

(The way we organized our proof of (24) is typical for a proof by mathematical
induction. Usually, the proof of Claim 1 is called the “induction base”, and the
proof of Claim 2 is called the “induction step”. In the induction step, we have made
the assumption that (24) holds for ` = L; this assumption is called the “induction
hypothesis”.)

Now that (24) is proven, we can simply apply (24) to ` = h, and conclude that(
h
∑

k=1
Ak

)
i,j
=

h
∑

k=1
(Ak)i,j. This proves Proposition 2.45.

The sums in Proposition 2.45 range from k = 1 to h; but the same statement
holds for arbitrary sums:

Proposition 2.46. Let n ∈ N and m ∈ N. Let p and q be two integers such
that p ≤ q + 1. Let Ap, Ap+1, . . . , Aq be some n × m-matrices. For every i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have(

q

∑
k=p

Ak

)
i,j

=
q

∑
k=p

(Ak)i,j . (26)

As a further illustration of manipulating sums, let me derive this proposition
from Proposition 2.45:

Proof of Proposition 2.46. Let h = q + 1− p. Then, h = q + 1− p ≥ 0 (since p ≤
q + 1), so that h ∈N. Also,

p− 1 + h︸︷︷︸
=q+1−p

= p− 1 + q + 1− p = q.
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Notice that Ap, Ap+1, . . . , Aq are q+ 1− p matrices. In other words, Ap, Ap+1, . . . , Aq
are h matrices (since h = q+ 1− p). Denote these h matrices by B1, B2, . . . , Bh. Thus,

Bk = Ap−1+k for every k ∈ {1, 2, . . . , h} . (27)

Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. We have

h

∑
k=1

Bk︸︷︷︸
=Ap−1+k
(by (27))

=
h

∑
k=1

Ap−1+k = Ap + Ap+1 + · · ·+ Ap−1+h

= Ap + Ap+1 + · · ·+ Aq (since p− 1 + h = q)

=
q

∑
k=p

Ak (28)

and

h

∑
k=1

 Bk︸︷︷︸
=Ap−1+k
(by (27))


i,j

=
h

∑
k=1

(
Ap−1+k

)
i,j =

(
Ap
)

i,j +
(

Ap+1
)

i,j + · · ·+
(

Ap−1+h
)

i,j

=
(

Ap
)

i,j +
(

Ap+1
)

i,j + · · ·+
(

Aq
)

i,j (since p− 1 + h = q)

=
q

∑
k=p

(Ak)i,j . (29)

But Proposition 2.45 (applied to B1, B2, . . . , Bh instead of A1, A2, . . . , Ah) shows that(
h

∑
k=1

Bk

)
i,j

=
h

∑
k=1

(Bk)i,j .

In view of (28) and (29), this rewrites as(
q

∑
k=p

Ak

)
i,j

=
q

∑
k=p

(Ak)i,j .

Thus, Proposition 2.46 is proven.

2.15. (*) Application: Fibonacci numbers

Here is a simple application of matrix multiplication to elementary mathematics.
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Definition 2.47. The Fibonacci sequence is the sequence
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .) that is defined as follows: Its first two en-
tries are 0 and 1, and each further entry is the sum of the previous two entries.
In more formal terms, it is the sequence ( f0, f1, f2, f3, . . .) (we start the labelling
at 0) defined recursively by

f0 = 0, f1 = 1, and
fn = fn−1 + fn−2 for every n ≥ 2.

The elements of this sequence are called the Fibonacci numbers.

Definition 2.47 gives a straightforward way to compute each particular Fibonacci
number fn, by computing the first n + 1 Fibonacci numbers f0, f1, . . . , fn one after
the others. For example, it gives

f0 = 0; f1 = 1; f2 = 1 + 0 = 1; f3 = 1 + 1 = 2; f4 = 2 + 1 = 3;
f5 = 3 + 2 = 5; f6 = 5 + 3 = 8; f7 = 8 + 5 = 13; f8 = 13 + 8 = 21,

and so on. However, when n is large, computing fn by this method is time-
consuming (each of the n + 1 first Fibonacci numbers has to be computed!). Is
there a faster way to compute Fibonacci numbers?

It turns out that there is. It is based on the following fact:

Proposition 2.48. Let B be the 2× 2-matrix
(

1 1
1 0

)
. Then, for every positive

integer n, we have

Bn =

(
fn+1 fn

fn fn−1

)
. (30)

Proof of Proposition 2.48. We shall prove Proposition 2.48 by induction over n:

Induction base: We have B1 = B =

(
1 1
1 0

)
. Comparing this with

(
f1+1 f1

f1 f1−1

)
=

(
1 1
1 0

)
(since f1+1 = f2 = 1, f1 = 1 and f1−1 = f0 = 0) ,

we obtain B1 =

(
f1+1 f1

f1 f1−1

)
. In other words, Proposition 2.48 holds for n =

1. This completes the induction base. (This was a completely straightforward
computation. In the future, we will often leave such computations to the reader.)

Induction step: Let N be a positive integer. Assume that Proposition 2.48 holds
for n = N. We must show that Proposition 2.48 also holds for n = N + 1.

The definition of the Fibonacci sequence shows that fN+2 = fN+1 + fN and
fN+1 = fN + fN−1.
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We have assumed that Proposition 2.48 holds for n = N. In other words,

BN =

(
fN+1 fN

fN fN−1

)
.

Now,

BN+1 = BN︸︷︷︸
=

 fN+1 fN
fN fN−1


B︸︷︷︸

=

(
1 1
1 0

) =

(
fN+1 fN

fN fN−1

)(
1 1
1 0

)

=

(
fN+1 · 1 + fN · 1 fN+1 · 1 + fN · 0
fN · 1 + fN−1 · 1 fN · 1 + fN−1 · 0

)
(by the definition of a product of two matrices)

=

(
fN+1 + fN fN+1
fN + fN−1 fN

)
=

(
fN+2 fN+1
fN+1 fN

)
(since fN+1 + fN = fN+2 and fN + fN−1 = fN+1). In other words, Proposition 2.48
holds for n = N + 1. This completes the induction step; hence, Proposition 2.48 is
proven.

How does Proposition 2.48 help us compute fn quickly? Naively computing Bn

by multiplying B with itself n times is not any faster than computing fn directly
using Definition 2.47 (in fact, it is slower, since multiplying matrices takes longer
than adding numbers). However, there is a trick for computing powers quickly,
called binary exponentiation; this trick works just as well for matrices as it does for
numbers. The trick uses the following observations:

• For every m ∈N, we have B2m = (Bm)2.

• For every m ∈N, we have B2m+1 = B (Bm)2.

These observations allow us to quickly compute B2m and B2m+1 using only Bm;
thus, we can “jump up” from Bm directly to B2m and to B2m+1 without the inter-
mediate steps Bm+1, Bm+2, . . . , B2m−1. Let us use this to compute B90 (and thus f90)
quickly (without computing 91 Fibonacci numbers):

• We want to find B90. Since 90 = 2 · 45, we have B90 =
(

B45)2 (by the formula
B2m = (Bm)2).

• We thus want to find B45. Since 45 = 2 · 22 + 1, we have B45 = B
(

B22)2 (by
the formula B2m+1 = B (Bm)2).

• We thus want to find B22. Since 22 = 2 · 11, we have B22 =
(

B11)2 (by the
formula B2m = (Bm)2).
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• We thus want to find B11. Since 11 = 2 · 5 + 1, we have B11 = B
(

B5)2 (by the
formula B2m+1 = B (Bm)2).

• We thus want to find B5. Since 5 = 2 · 2 + 1, we have B5 = B
(

B2)2 (by the
formula B2m+1 = B (Bm)2).

• We thus want to find B2. Since 2 = 2 · 1, we have B2 =
(

B1)2 (by the formula
B2m = (Bm)2, but this was obvious anyway).

We know what B1 is: B1 = B =

(
1 1
1 0

)
. Hence, B2 =

(
B1)2 becomes B2 =(

1 1
1 0

)2

=

(
2 1
1 1

)
. Hence, B5 = B

(
B2)2 becomes B5 =

(
1 1
1 0

)(
2 1
1 1

)2

=(
8 5
5 3

)
. Hence, B11 = B

(
B5)2 becomes B11 =

(
1 1
1 0

)(
8 5
5 3

)2

=

(
144 89
89 55

)
.

Hence, B22 =
(

B11)2 becomes B22 =

(
144 89
89 55

)2

=

(
28657 17711
17711 10946

)
. Hence,

B45 = B
(

B22)2 becomes

B45 =

(
1 1
1 0

)(
28657 17711
17711 10946

)2

=

(
1836311903 1134903170
1134903170 701408733

)
. Hence, B90 =(

B45)2 becomes

B90 =

(
1836311903 1134903170
1134903170 701408733

)2

=

(
4660046610375530309 2880067194370816120
2880067194370816120 1779979416004714189

)
.

Since f90 is the (2, 1)-th entry of B90 (indeed, (30) shows that fn is the (2, 1)-th entry
of Bn for all positive integers n), we thus obtain

f90 = 2880067194370816120.

Exercise 2.49. Show that, for any two positive integers n and m, we have

fn+m = fn fm+1 + fn−1 fm.

[Hint: Begin with the equality BnBm = Bn+m. Rewrite it using Proposition
2.48, and compare entries.]

2.16. (*) What is a number?

So far, our notion of a matrix relies on a (somewhat vague) notion of a “number”.
What does the word “number” mean? There are several possible candidates for
a meaning of this word: for example, “number” might mean “rational number”,
but might also mean “real number” or “complex number”. For what we have been
doing so far, the precise choice of meaning does not matter. However, it eventually
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will matter, so let me discuss it briefly. (See any book on abstract algebra for a
more detailed and systematic discussion.)

First, let me introduce some well-known sets:

• As explained above, N means the set of all nonnegative integers: N =
{0, 1, 2, . . .}.

• Furthermore, Z means the set of all integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

• Moreover, Q means the set of all rational numbers: Q =
{ a

b
| a ∈ Z, b ∈ Z \ {0}

}
.

• Furthermore, R means the set of all real numbers. This contains rational

numbers such as −2 and
5
3

, but also irrational numbers such as
√

2 and
√

3
1 + 3
√

5
and π (and various others, many of which cannot even be described

in words21).

• Finally, C means the set of all complex numbers. They will be rarely used
in these notes (indeed, most of linear algebra can be done without them, ex-
cept for eigenvalue/eigenvector theory), so you do not actually have to know
them in order to read these notes. However, let me give a quick briefing on
complex numbers (probably more of a reminder for those who have already
seen them):

Complex numbers can be formally defined as pairs of real numbers (a, b)
with an entrywise addition (that is, (a, b) + (a′, b′) = (a + a′, b + b′), exactly
like 1× 2-matrices) and a somewhat strange-looking multiplication (namely,
(a, b) (a′, b′) = (aa′ − bb′, ab′ + ba′)). 22 But the way everyone thinks about
complex numbers (informally) is that they are an extension of real numbers
(so R is a subset of C) by adding a new “imaginary number” i which satisfies
i2 = −1. They are supposed to behave like real numbers as far as laws of
addition and multiplication are concerned (thus, for instance, a (b + c) = ab+
ac and a (bc) = (ab) c); using these laws and the requirement that i2 = −1, one
can easily see how to multiply and add arbitrary complex numbers. These
two definitions (the formal one as pairs of real numbers, and the informal one
as “extended real numbers”) are equivalent, and the complex number (a, b)

21This is not a poetic metaphor. What I am saying is that there are real numbers which cannot
be described by any finite formula or computed (to arbitrary precision) by any finite algorithm.
The reason is simply that there are uncountably many real numbers, but only countably many
formulas and algorithms. If you find this unintuitive, imagine an immortal monkey typing an
infinite decimal number on an infinite-memory computer: 9.461328724290054... If the monkey
is typing truly at random, then no finite rule or formula will suffice to predict every single digit
he types; thus, the real number he defines is undescribable. (This, of course, is not a proof.)

22This sort of definition is not unlike our definition of matrices: they are also tables with entrywise
addition and a less simple multiplication.
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(according to the first definition) corresponds to the complex number a + bi
(according to the second definition).

For a detailed introduction to complex numbers, see [LaNaSc16, §2].

• We shall occasionally use another set: the set Q of all algebraic numbers. These
are complex numbers that are roots of nonzero polynomials with rational co-
efficients. For instance,

√
2 is an algebraic number23, and i is an algebraic

number24, and
5
2

is an algebraic number25, and
√

2+
√

3 is an algebraic num-

ber26; but π (for example) is not an algebraic number27.

Again, you can read these notes without understanding algebraic numbers,
but let me explain why they are useful.

First, let me explain why real numbers are “bad”. Computations with ratio-
nal numbers can be done exactly on a computer: for example, a computer

algebra system (such as SageMath) can evaluate to

12
13
− 1

15
2
3
+ 3

to
167
715

with a

100% accuracy and a 100% guarantee of correctness28. Similarly, it can do all
kinds of computations with rational numbers with 100% accuracy (as long as
it doesn’t run out of memory). However, computations with real numbers are
doomed to be inexact29. A real number can encode “an infinite amount of in-
formation”30; no computer can even store such a thing31. The consequence is
that computers will work with approximations when you give them real num-
bers. Even real numbers like π that can be defined in finite time still cannot
be computed with automatically without approximation. Typically, comput-
ers approximate real numbers by floating-point numbers, which store only a
fixed number of significant digits.32 When you use approximations, you need
to be prepared to get wrong results; sometimes the error in the result will be

23because it is a root of the polynomial X2 − 2
24since it is a root of X2 + 1
25since it is a root of X− 5

2
(this sounds stupid, but it is perfectly valid, since −5

2
is rational)

26since it is a root of X4 − 10X2 + 1 (check this!)
27... which is the reason why the circle cannot be squared. The actual proof is rather difficult;

see http://mathoverflow.net/questions/34055/transcendence-of-pi and http://math.
stackexchange.com/questions/31798/prove-that-pi-is-a-transcendental-number for
some references.

28barring bugs in the software
29Complex numbers suffer from the same problem.
30Think of a real number as an infinite decimal fraction, encoded by an infinite sequence of digits.
31This is precisely the above-mentioned problem of the ineffable real numbers.
32How many depends on the system and the application. For example, the Python 2.7.10 on

my computer seems to treat 1.0000000000000000000001 and 1 as identical, but it can tell
1.00000000000001 apart from 1. See https://docs.python.org/2/tutorial/floatingpoint.
html for a more thorough explanation of how Python approximates real numbers.

http://www.sagemath.org/
http://mathoverflow.net/questions/34055/transcendence-of-pi
http://math.stackexchange.com/questions/31798/prove-that-pi-is-a-transcendental-number
http://math.stackexchange.com/questions/31798/prove-that-pi-is-a-transcendental-number
https://docs.python.org/2/tutorial/floatingpoint.html
https://docs.python.org/2/tutorial/floatingpoint.html
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completely out of proportion to the little inaccuracies in the approximation!
Here is an example: The system of linear equations{

x + 2y = 2;
3x + 6y = 6 (31)

in two variables x and y has infinitely many solutions (namely, (x, y) =
(2t, 1− t) is a solution for each number t). But if we allow ourself one lit-
tle inaccuracy (the kind that computers necessarily do when they work with
real numbers) and replace the 3 by 3.000000000001, then we obtain the system{

x + 2y = 2;
3.000000000001x + 6y = 6 , (32)

which has only one solution (namely, (x, y) = (0, 1)). On the other hand, if we
instead change the second 6 in the second equation of (31) to a 6.00000000001
(again, a typical little imprecision), then the resulting system{

x + 2y = 2;
3x + 6y = 6.00000000001 (33)

will have no solutions at all. Thus, the minuscule differences between the
three systems (31), (32) and (33) have led to three wildly different results
(infinitely many, one or no solutions). The consequence is that if you want a
computer to reliably solve the system (31), you must make sure that it treats
the coefficients (1, 2, 2, 3, 6, 6) as rational numbers (not as real numbers) and
avoids any approximations.

This, of course, only works well if the coefficients are rational numbers. You
cannot solve a system like

√
3x +

√
2y = π;(

1−
√

3
)

x + πy = 0
(34)

this way. More annoyingly, you cannot solve a system like
√

3x +
√

2y = 1;(
1−
√

3
)

x + 2y = 0
(35)

this way, although you probably could solve it by hand! Systems like (34)
are (in a sense) hopeless: Computers cannot reliably work with real numbers
without approximating them at some point. But (35) can be salvaged: All
the coefficients in (35) are algebraic numbers, and modern computer algebra
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systems (e.g., SageMath) can work with algebraic numbers with 100% preci-
sion.33 Thus, even if you don’t care much about algebraic numbers, you will
need to tell your computer that your numbers are algebraic in order to have
it solve systems like (35).

Of course, this all doesn’t mean that linear algebra with real numbers is use-
less in practice. The system (31) is a rather ill-behaved system; many systems
allow for a pretty good approximation of their solutions even in spite of im-
precisions, and even when a system is ill-behaved like (31), there are methods
that compute the “likeliest solution” (such as the least-squares method). We
shall (hopefully) see some of these methods in these notes. A less alarmist
slogan would thus be: You can do linear algebra with real numbers, but you
should be aware of its limitations and keep track of the errors (“numerical
stability”).

Note that N ⊆ Z ⊆ Q ⊆ R ⊆ C (at least if you identify a real number a with the
complex number (a, 0) = a + 0i) and Q ⊆ Q ⊆ C.

So what is a number? Integers, rational numbers, real numbers, complex num-
bers and algebraic numbers all have good claims to the name “number”. And even
though all of these numbers can be viewed as complex numbers, it can be useful
to not treat them as complex numbers by default, for example when you are using
a computer and want 100% precision.

Here is a better question: What are the things we can fill a matrix with? We have
so far used numbers, but we don’t have to; we could also (for example) use poly-

nomials. The matrix
(

2X2 + 1 −1
X X + 7

)
is a 2× 2-matrix whose entries are not

numbers, but polynomials in the variable X (with rational coefficients). Such matri-
ces can be highly useful (and, in fact, will be used when we come to eigenvalues).
Such matrices can be added and multiplied (since polynomials can be added and
multiplied). Of course, we could also fill a matrix with all kinds of things (words,
names, smilies, scribbles) that cannot be added or multiplied (after all, matrices are
just tables); but then we won’t be able to add and multiply the resulting matrices,
so we don’t gain anything by calling them “matrices” (we don’t want just a fancy
synonym for “tables”). So it sounds most reasonable to expect that a matrix should
be filled with things that can be added and multiplied. Moreover, addition and
multiplication of these things should obey certain laws (such as (a + b) c = ac + bc
and ab = ba) in order to ensure that addition, scaling and multiplication of matri-
ces will obey the usual laws (e.g., Proposition 2.20) as well. Formalizing this idea,
we arrive at the notion of a commutative ring:

33This is not easy! For example, a classical puzzle asks you to prove that 3
√

2 +
√

5+ 3
√

2−
√

5 = 1.
This is not obvious; there are no straightforward “simplifications” that take you from 3

√
2 +
√

5+
3
√

2−
√

5 to 1. Yet, this is one of the things that the computer must be taught to do, since

otherwise it could not decide whether the linear equation
(

3
√

2 +
√

5 + 3
√

2−
√

5− 1
)

x = 0 has
one or infinitely many solutions.
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Definition 2.50. A commutative ring means a set K equipped with the following
additional data:

• a binary operation called “+” (that is, a function that takes two elements
a ∈ K and b ∈ K as inputs, and outputs a new element of K which is
denoted by a + b);

• a binary operation called “·” (that is, a function that takes two elements
a ∈ K and b ∈ K as inputs, and outputs a new element of K which is
denoted by a · b);

• an element of K called “0”;

• an element of K called “1”

satisfying the following conditions (“axioms”):

• Commutativity of addition: We have a + b = b + a for all a ∈ K and b ∈ K.

• Commutativity of multiplication: We have ab = ba for all a ∈ K and b ∈ K.
Here and in the following, ab is shorthand for a · b (as is usual for products
of numbers).

• Associativity of addition: We have a + (b + c) = (a + b) + c for all a ∈ K,
b ∈ K and c ∈ K.

• Associativity of multiplication: We have a (bc) = (ab) c for all a ∈ K, b ∈ K

and c ∈ K.

• Neutrality of 0: We have a + 0 = 0 + a = a for all a ∈ K.

• Existence of additive inverses: For every a ∈ K, there exists an element a′ ∈ K

such that a+ a′ = a′+ a = 0. This a′ is commonly denoted by −a and called
the additive inverse of a. (It is easy to check that it is unique.)

• Unitality (a.k.a. neutrality of 1): We have 1a = a1 = a for all a ∈ K.

• Annihilation: We have 0a = a0 = 0 for all a ∈ K.

• Distributivity: We have a (b + c) = ab + ac and (a + b) c = ac + bc for all
a ∈ K, b ∈ K and c ∈ K.

This definition was a mouthful, but its intention is rather simple: It defines a
commutative ring as a set equipped with two operations which behave like addition
and multiplication of numbers, and two elements which behave like the number
0 and the number 1. As a consequence, if we have a commutative ring K, then
matrices filled with elements of K will behave (at least with regard to their basic
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properties, such as Proposition 2.20) like matrices filled with numbers.
Here are some examples of commutative rings:

• Each of the sets Z, Q, R, C and Q (endowed with the usual addition, the
usual multiplication, the usual 0 and the usual 1) is a commutative ring.

• The set Q [x] of all polynomials (in the variable x) with rational coefficients
(equipped with addition of polynomials, multiplication of polynomials, the
polynomial 0 and the polynomial 1) is a ring.

• The set of all functions R→ R (equipped with pointwise addition, pointwise
multiplication, the constant-0 function and the constant-1 function) is a ring.

• If you know what “integers modulo n” are (for a given positive integer n):
The integers modulo n (for a given n) also form a commutative ring.

• Here is a weirder example:

For any two sets A and B, we let A4 B denote the symmetric difference of A
and B. This is the set of all elements which lie in exactly one of the two sets
A and B. Thus, A4 B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Fix some set S, and let P (S) denote the set of all subsets of S. The set P (S)
equipped with the operation 4 (playing the role of “+”), the operation ∩
(playing the role of “·”), the element34 ∅ (playing the role of “0”) and the
element S (playing the role of “1”) is a commutative ring. This is an example
of a Boolean ring (and also an example of the fact that the operations “+”
and “·” don’t always have anything to do with addition and multiplication of
numbers!).

Many more examples of commutative rings can be found in textbooks on abstract
algebra (e.g., [Artin10, Chapter 11]).

Matrices filled with elements of a commutative ring K are called matrices over K.
More precisely:

Definition 2.51. Let K be a commutative ring. If n ∈ N and m ∈ N, then
an n × m-matrix over K simply means a rectangular table with n rows and m
columns, such that each cell is filled with an element of K.

Thus, matrices over Q are matrices with rational entries; matrices over R are
matrices with real entries; matrices over Z are matrices with integer entries.

As we have already explained, matrices over commutative rings behave like ma-
trices filled with numbers, at least as far as simple laws of computation are con-
cerned. To wit, Proposition 2.20, Proposition 2.34 and Proposition 2.39 (as well as
some other results that will be proven later) still hold if the matrices are filled with
elements of a commutative ring K instead of numbers. Some other (deeper) results

34The notation ∅ stands for the empty set, i.e., the set {}.
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might not hold for every commutative ring K: For example, Gaussian elimination,
which we will meet in the next chapter, requires that we can divide by nonzero el-
ements of K, but this is not always possible when K is a commutative ring. There
is a word for that, too:

Definition 2.52. A commutative ring K is called a field if it satisfies the following
two axioms:

• Nontriviality: We have 0 6= 1. (The “0” and “1” here, of course, are the two
specific elements of K that we have chosen to call “0” and “1”. They aren’t
always the same as the numbers 0 and 1. In particular, in a commutative
ring K they can be equal; but for a field we want to disallow this.)

• Existence of multiplicative inverses: For every a ∈ K, we have either a = 0, or
there is an element b ∈ K satisfying ab = ba = 1.

The element b in the “existence of multiplicative inverses” axiom is called the
inverse of a and is denoted by a−1; it can be proven that this element is unique. If
u and v are two elements of a field K such that v 6= 0, then the product uv−1 is
denoted by

u
v

. Thus, any two elements of a field K can be divided by each other
as long as the denominator is 6= 0.

For example, Q, R, C and Q are fields, but Z is not a field (because the integer 2
is nonzero, yet does not have an integer inverse). Some results about matrices are
based on the possibility of dividing by nonzero numbers; these results cannot be
directly generalized to matrices over a commutative ring K. But most of them can
be generalized to matrices over a field K.

Remark 2.53. (a) The notion of a “commutative ring” is not standard, unfortu-
nately. Some authors (e.g., Dummit and Foote in [DumFoo04, Part II], or Good-
man in [Goodma15, Chapters 1 and 6]) omit the element “1” (and the unitality
axiom), while some (older) authors even omit the associativity of multiplication.
If you read any text on abstract algebra, it is prudent to check whether the au-
thor’s concept of a commutative ring agrees with yours.

(b) As you might have guessed, there is also a notion of a “noncommutative
ring”. It is defined precisely as a “commutative ring”, except that we omit the
“commutativity of multiplication” axiom. (“Commutativity of addition” is left
in!) It turns out that we already know a neat example of a noncommutative ring:
For any commutative ring K and any n ∈N, the set of all n× n-matrices over K

is a noncommutative ring!
(c) The word “ring” (without the adjectives “commutative” and “noncommu-

tative”) usually means either “commutative ring” or “noncommutative ring”,
depending on the author’s preferences.
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3. Gaussian elimination

In this chapter, we shall take aim at understanding Gaussian elimination in terms
of matrices. However, we will not head straight to this aim; instead, we will first
introduce various classes of matrices (triangular matrices, matrix units, elementary
matrices, permutation matrices), which will allow us to view certain pieces of the
Gaussian elimination algorithm in isolation. Once we are done with that, we will
finally explain Gaussian elimination in the general setting.

3.1. Linear equations and matrices

First of all, let us see what solving linear equations has to do with matrices.

Example 3.1. Consider the following system of equations in three unknowns
x, y, z: 

3x + 6y− z = 2;
7x + 4y− 3z = 3;
−y + 8z = 1

. (36)

I claim that this system of equations is equivalent to the single equation 3 6 −1
7 4 −3
0 −1 8

 x
y
z

 =

 2
3
1

 (37)

(this is an equation between two column vectors of size 3, so no wonder that it
encodes a whole system of linear equations).

Why are (36) and (37) equivalent? Well, the left hand side of (37) is 3 6 −1
7 4 −3
0 −1 8

 x
y
z

 =

 3x + 6y + (−1) z
7x + 4y + (−3) z
0x + (−1) y + 8z

 =

 3x + 6y− z
7x + 4y− 3z
−y + 8z

 .

Thus, (37) is equivalent to 3x + 6y− z
7x + 4y− 3z
−y + 8z

 =

 2
3
1

 .

But this is clearly equivalent to (36).

More generally:
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Proposition 3.2. The system of m linear equations
a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1;
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2;

...
am,1x1 + am,2x2 + · · ·+ am,nxn = bm

in n unknowns x1, x2, . . . , xn is equivalent to the vector equation
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n




x1
x2
...

xn

 =


b1
b2
...

bm

 . (38)

In other words, it is equivalent to the vector equation

Ax = b, (39)

where

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n

 ,

x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 .

(Some authors write the A, the x and the b in (39) in boldface in order to stress
that these are matrices, not numbers. We shall not.) The matrix A and the vector
b are known; the vector x is what we want to find.

Thus, matrices give us a way to rewrite systems of linear equations as single
equations between vectors. Moreover, as we will see, they give us a way to manip-
ulate these equations easily.

To solve a vector equation like (39) means (in some sense) to “undo” a matrix
multiplication. In fact, if we could divide by a matrix, then we could immediately
solve Ax = b by “dividing by A”. Unfortunately, we cannot divide by a matrix in
general. But the idea is fruitful: In fact, some matrices A are invertible (i.e., have
an inverse A−1), and for those matrices, we can transform Ax = b into x = A−1b,
which gives us an explicit and unique solution for the system (38). This doesn’t
work for all A (since not all A are invertible), and is not a very practical way of
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solving systems of linear equations; but the notion of invertible matrices is rather
important, so we begin by studying them.

3.2. Inverse matrices

Definition 3.3. Let n ∈ N and m ∈ N. Let A be an n× m-matrix, and B be an
m× n-matrix.

(a) We say that B is a right inverse of A if AB = In.
(b) We say that B is a left inverse of A if BA = Im.
(c) We say that B is an inverse of A if both AB = In and BA = Im.

Notice that we are saying “a right inverse” (not “the right inverse”) in Definition
3.3, because a given matrix A can have several right inverses (but it can also have
no right inverses at all). For the same reason, we are saying “a left inverse” (not
“the left inverse”). However, when we are saying “an inverse” (not “the inverse”),
we are just being cautious: We will later (in Corollary 3.7) see that A can never
have several different inverses; thus, it would be legitimate to say “the inverse” as
well. But as long as we have not proven this, we shall speak of “an inverse”.

Example 3.4. (a) Let A = (1, 4). (Recall that this means the 1× 2-matrix
(

1 4
)
.)

When is a matrix B a right inverse of A ?
First, if B is a right inverse of A, then B must be a 2× 1-matrix (since any right

inverse of an n×m-matrix has to be an m× n-matrix). So let us assume that B is

a 2× 1-matrix. Thus, B must have the form B =

(
u
v

)
for some numbers u and

v. Then, AB =
(

1 4
) ( u

v

)
=
(

1u + 4v
)
. In order for B to be a right inverse

of A, it is necessary and sufficient that AB = I1 (because this is how we defined
“right inverse”). In other words, we must have

(
1u + 4v

)
=
(

1
)

(since AB =(
1u + 4v

)
and I1 =

(
1
)
). In other words, we must have 1u + 4v = 1.

Hence, a matrix B is a right inverse of A if and only if it has the form B =(
u
v

)
for some numbers u and v satisfying 1u + 4v = 1. How do we find two

such numbers u and v ? Well, we can view 1u + 4v = 1 as a system of 1 linear
equation in 2 variables, but actually we can just read off the solution: v can be
chosen arbitrarily, and u then has to be 1 − 4v. Hence, a matrix B is a right

inverse of A if and only if it has the form B =

(
1− 4v

v

)
for some number v.

In particular, there are infinitely many matrices B that are right inverses of A
(because we have full freedom in choosing v).

(b) Let A = (1, 4) again. When is a matrix B a left inverse of A ?
Again, B must be a 2× 1-matrix in order for this to have any chance of being

true. So let us assume that B is a 2× 1-matrix, and write B in the form B =

(
u
v

)
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for some numbers u and v. Then, BA =

(
u
v

)
(1, 4) =

(
u · 1 u · 4
v · 1 v · 4

)
. In

order for B to be a left inverse of A, it is necessary and sufficient that BA = I2
(because this is how we defined “left inverse”). In other words, we must have(

u · 1 u · 4
v · 1 v · 4

)
=

(
1 0
0 1

)
(since BA =

(
u · 1 u · 4
v · 1 v · 4

)
and I2 =

(
1 0
0 1

)
). In

other words, we must have 
u · 1 = 1;
u · 4 = 0;
v · 1 = 0;
v · 4 = 1

.

But this cannot happen! Indeed, the equations u · 1 = 1 and u · 4 = 0 contradict
each other (because if u · 1 = 1, then u · 4 must be 4). Hence, B can never be a
left inverse of A. In other words, the matrix A has no left inverse.

(c) Let A =

(
1
4

)
. When is a matrix B a left inverse of A ? When is a matrix

B a right inverse of A ? I will let you figure this out (see Exercise 3.5 below).

(d) Let A =

(
1 −1
1 1

)
. When is a matrix B a left inverse of A ? When is a

matrix B a right inverse of A ?
A left inverse of A would have to be a 2 × 2-matrix. A 2 × 2-matrix

B =

(
x y
z w

)
is a left inverse of A if and only if it satisfies BA = I2, that

is,
(

x y
z w

)(
1 −1
1 1

)
=

(
1 0
0 1

)
, or, equivalently,

(
x + y −x + y
w + z w− z

)
=(

1 0
0 1

)
, or, equivalently, 

x + y = 1;
−x + y = 0;
w + z = 0;
w− z = 1

.

This is a system of four linear equations in the four unknowns x, y, z, w; it has
the unique solution

(x, y, z, w) =

(
1
2

,
1
2

,−1
2

,
1
2

)
.

Thus, a 2 × 2-matrix B =

(
x y
z w

)
is a left inverse of A if and only if

(x, y, z, w) =

(
1
2

,
1
2

,−1
2

,
1
2

)
. Hence, there exists exactly one left inverse of A,

and this left inverse is


1
2

1
2

−1
2

1
2

.
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A similar computation reveals that there exists exactly one right inverse of A,

and this right inverse is


1
2

1
2

−1
2

1
2

. So the unique left inverse of A and the

unique right inverse of A are actually equal (and thus are an inverse of A). This
might not be clear from the definitions, but as we shall soon see, this is not a
coincidence.

(e) Generalizing Example 3.4 (d), we might wonder when a 2× 2-matrix A =(
a b
c d

)
has a left inverse, a right inverse or an inverse. For any given four

values of a, b, c, d, we can answer this question similarly to how we answered it

for the matrix A =

(
1 −1
1 1

)
in Example 3.4 (d) (by solving a system of linear

equations). The procedure will depend on whether some numbers are zero or
not. (For example, we might want to divide the equation bx + dy = 0 by b, which
requires b 6= 0; the case b = 0 will then have to be treated separately.) But the
final result will be the following:

• If ad− bc = 0, then the matrix A has no left inverses and no right inverses.

• If ad − bc 6= 0, then the matrix A has a unique inverse, which is also
the unique left inverse and the unique right inverse. This inverse is d

ad− bc
− b

ad− bc
− c

ad− bc
a

ad− bc

.

Again, this phenomenon of the left inverse equalling the right inverse appears.
Notably, the number ad− bc plays an important role here; we will later see more
of it (it is an example of a determinant).

Exercise 3.5. Let A =

(
1
4

)
. When is a matrix B a left inverse of A ? When is a

matrix B a right inverse of A ?

As we know from Example 3.4 (a), a matrix may have infinitely many right
inverses. Similarly, a matrix may have infinitely many left inverses. But can a
matrix have both infinitely many right inverses and infinitely many left inverses at
the same time? The answer is “no”, and in fact, something stronger is true:

Proposition 3.6. Let n ∈ N and m ∈ N. Let A be an n× m-matrix. Let L be a
left inverse of A. Let R be a right inverse of A. Then:

(a) We have L = R.
(b) The matrix L is the only left inverse of A.
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(c) The matrix R is the only right inverse of A.
(d) The matrix L = R is the only inverse of A.

Proof of Proposition 3.6. We know that LA = Im (since L is a left inverse of A) and
that AR = In (since R is a right inverse of A).

(a) Consider the product LAR. (Recall that this product is well-defined, because
Proposition 2.20 (g) yields L (AR) = (LA) R.)

One way to rewrite LAR is as follows:

L AR︸︷︷︸
=In

= LIn = L (by Proposition 2.39 (b)) . (40)

Another way is

LA︸︷︷︸
=Im

R = ImR = R (by Proposition 2.39 (a)) . (41)

Comparing (40) with (41), we obtain L = R. This proves Proposition 3.6 (a).
(b) Let L′ be any left inverse of A. Then, we can apply Proposition 3.6 (a) to L′

instead of L (because all that was needed from L in Proposition 3.6 (a) was that it
be a left inverse of A). As a result, we obtain L′ = R.

Now, forget that we fixed L′. We thus have shown that if L′ is any left inverse of
A, then L′ = R. In other words, any left inverse of A equals R. Thus, there exists
at most one left inverse of A. Therefore, the matrix L is the only left inverse of A
(since we already know that L is a left inverse of A). This proves Proposition 3.6
(b).

(c) The proof of Proposition 3.6 (c) is analogous to the proof of Proposition 3.6 (b).
(We again need to apply Proposition 3.6 (a), but this time, instead of a left inverse
L′, we have to introduce a right inverse R′. The details are left to the reader.)

(d) Proposition 3.6 (a) yields L = R. Hence, A L︸︷︷︸
=R

= AR = In.

Now, the matrix L is an inverse of A (since LA = Im and AL = In). In other
words, the matrix L = R is an inverse of A (since L = R). It remains to show
that it is the only inverse of A. But this is easy: Let L′ be any inverse of A. Then,
L′A = Im, so that L′ is a left inverse of A. Proposition 3.6 (a) (applied to L′ instead
of L) therefore yields L′ = R.

Now, forget that we fixed L′. We thus have shown that if L′ is any inverse of A,
then L′ = R. In other words, any inverse of A equals R. Thus, there exists at most
one inverse of A. Therefore, the matrix L is the only inverse of A (since we already
know that L is an inverse of A). This proves Proposition 3.6 (d).

Corollary 3.7. Let A be a matrix. Then, A has at most one inverse.

Proof of Corollary 3.7. We need to show that any two inverses of A are equal. So let
L and R be two inverses of A. We must show that L = R.
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Let n ∈ N and m ∈ N be such that A is an n × m-matrix. The matrix L is an
inverse of A, thus satisfies LA = Im. Hence, L is a left inverse of A. Also, the
matrix R is an inverse of A, thus satisfies AR = In. Hence, R is a right inverse of
A. Thus, Proposition 3.6 (a) shows that L = R. This proves Corollary 3.7.

Definition 3.8. (a) A matrix A is said to be invertible if it has an inverse. (Simi-
larly, we can define the words “left-invertible” and “right-invertible”.)

(b) Let A be an invertible matrix. Then, A has an inverse. Due to Corollary
3.7, we furthermore know that A has at most one inverse. Thus, A has exactly
one inverse. We can thus refer to this inverse as “the inverse of A” (not just “an
inverse of A”), and denote it by A−1. If A is an n×m-matrix, then this inverse
satisfies A−1A = Im and AA−1 = In (by its definition).

Notice that the equalities A−1A = Im and AA−1 = In show that a matrix A
and its inverse A−1 cancel each other when they stand adjacent in a product: for
example, BA−1AC simplifies to BC. However, they do not (generally) cancel each
other when they appear apart from one another: for example, BA−1CA does not
simplify to BC.

So what matrices are invertible? The following theorem significantly narrows the
search down; we shall not prove it until later:

Theorem 3.9. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) If A has a right inverse, then n ≤ m (that is, the matrix A has at least as

many columns as it has rows).
(b) If A has a left inverse, then n ≥ m (that is, the matrix A has at most as

many columns as it has rows).
(c) If A is invertible (i.e., has an inverse), then n = m (that is, the matrix A is

square).
(d) If A is square (that is, n = m) and has a left inverse or a right inverse,

then A is actually invertible (and so this left or right inverse is the inverse of A).
Notice that this is false for rectangular matrices!

Let us now check some simpler facts about inverses:

Proposition 3.10. Let n ∈ N. Then, the matrix In is invertible, and its inverse is
(In)

−1 = In.

Proof of Proposition 3.10. We have In In = In and In In = In. Hence, the matrix In is
an inverse of In (by the definition of “inverse”). This proves Proposition 3.10.

Proposition 3.11. Let A and B be two invertible matrices such that the product
AB is well-defined (i.e., such that A has as many columns as B has rows). Then,
the matrix AB is also invertible, and its inverse is

(AB)−1 = B−1A−1. (42)
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Proof of Proposition 3.11. Let n, m and p be nonnegative integers such that A is an
n × m-matrix and B is an m × p-matrix35. (Actually, Theorem 3.9 (c) reveals that
the matrices A and B are square and therefore n = m = p; but I do not want to use
Theorem 3.9 (c) here, since I have not yet proven it.)

Recall once again that (by general associativity) products of matrices can be
written without parentheses. Thus, for example, the products B−1A−1AB and
ABB−1A−1 make sense. Let us simplify these products:

B−1 A−1A︸ ︷︷ ︸
=Im

B = B−1 ImB = B−1B = Ip

and
A BB−1︸ ︷︷ ︸

=Im

A−1 = AIm A−1 = AA−1 = In.

But these two equalities say precisely that B−1A−1 is an inverse of AB. (If you don’t
believe me, rewrite them with parentheses:

(
B−1A−1) (AB) = Ip and (AB)

(
B−1A−1) =

In.) In particular, this shows that AB is invertible. This proves Proposition 3.11.

In words, (42) says that the inverse of a product of two matrices is the product of
their inverses, but in opposite order. This takes some getting used to, but is really
a natural thing; the same rule holds for inverting the composition of functions36.

Proposition 3.12. Let A1, A2, . . . , Ak be k invertible matrices (where k is a positive
integer) such that the product A1A2 · · · Ak is well-defined (i.e., such that Ai has
as many columns as Ai+1 has rows, for each i < k). Then, the matrix A1A2 · · · Ak
is invertible, and its inverse is

(A1A2 · · · Ak)
−1 = A−1

k A−1
k−1 · · · A

−1
1 .

Proposition 3.12 is a natural extension of Proposition 3.11 to products of more
than 2 matrices. The proof of Proposition 3.12 is straightforward, and I am only
showing it as an example of proof by induction:

Proof of Proposition 3.12. We prove Proposition 3.12 by induction on k:
Induction base: If k = 1, then Proposition 3.12 says that A−1

1 = A−1
1 ; this is obvi-

ously true. Hence, Proposition 3.12 holds for k = 1. This completes the induction
base.

35We can indeed find such n, m and p because A has as many columns as B has rows.
36Namely: If X, Y and Z are three sets, and if b : X → Y and a : Y → Z are two invertible

functions (i.e., bijections), then a ◦ b : X → Z is an invertible function as well, and its inverse is
(a ◦ b)−1 = b−1 ◦ a−1. (Some authors liken this to the fact that if you want to undo the process of
putting on socks and then putting on shoes, you have to first take off your shoes and then take
off your socks. See https://proofwiki.org/wiki/Inverse_of_Product .)

https://proofwiki.org/wiki/Inverse_of_Product
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Induction step: Let ` be a positive integer. Assume (as our induction hypothesis)
that Proposition 3.12 holds for k = `. In other words, for any ` invertible ma-
trices A1, A2, . . . , A` for which the product A1A2 · · · A` is well-defined, the matrix
A1A2 · · · A` is invertible, and its inverse is

(A1A2 · · · A`)
−1 = A−1

` A−1
`−1 · · · A

−1
1 .

We must now show that Proposition 3.12 also holds for k = `+ 1. So let us fix
` + 1 invertible matrices A1, A2, . . . , A`+1 for which the product A1A2 · · · A`+1 is
well-defined. We must then show that the matrix A1A2 · · · A`+1 is invertible, and
that its inverse is

(A1A2 · · · A`+1)
−1 = A−1

`+1A−1
` · · · A

−1
1 .

The product A1A2 · · · A` is well-defined (since the product A1A2 · · · A`+1 is well-
defined). Hence, we can apply our induction hypothesis, and conclude that the
matrix A1A2 · · · A` is invertible, and its inverse is

(A1A2 · · · A`)
−1 = A−1

` A−1
`−1 · · · A

−1
1 .

Now, the matrices A1A2 · · · A` and A`+1 are invertible, and their product
(A1A2 · · · A`) A`+1 = A1A2 · · · A`+1 is well-defined (by assumption). Hence, Propo-
sition 3.11 (applied to A = A1A2 · · · A` and B = A`+1) shows that the matrix
(A1A2 · · · A`) A`+1 is also invertible, and its inverse is

((A1A2 · · · A`) A`+1)
−1 = A−1

`+1 (A1A2 · · · A`)
−1 .

Since (A1A2 · · · A`) A`+1 = A1A2 · · · A`+1 and
A−1
`+1 (A1A2 · · · A`)

−1︸ ︷︷ ︸
=A−1

` A−1
`−1···A

−1
1

= A−1
`+1

(
A−1
` A−1

`−1 · · · A
−1
1

)
= A−1

`+1A−1
` · · · A

−1
1 , this rewrites

as follows: The matrix A1A2 · · · A`+1 is invertible, and its inverse is

(A1A2 · · · A`+1)
−1 = A−1

`+1A−1
` · · · A

−1
1 .

This is precisely what we wanted to show! Thus, Proposition 3.12 holds for k =
` + 1. This completes the induction step. Thus, Proposition 3.12 is proven by
induction.

(I have written up this proof with a lot of detail. You do not have to! If you
are used to mathematical induction, then you can easily afford omitting many of
the incantations I made above, and taking certain shortcuts – for example, instead
of introducing a new variable ` in the induction step, you could reuse k, thus
stepping “from k to k + 1” instead of “from k = ` to k = ` + 1”. You also don’t
need to formally state the induction hypothesis, because it is just a copy of the claim
(with k replaced by ` in our case). Finally, what we did in our proof was obvious
enough that you could just say that “Proposition 3.12 follows by a straightforward
induction on k, where Proposition 3.11 is being applied in the induction step”, and
declare the proof finished.)
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Remark 3.13. It is common to define the product of 0 square matrices of size n×
n (an “empty product of n× n-matrices”) as the identity matrix In (similarly to
how a product of 0 numbers is defined to be 1). With this convention, Proposition
3.12 holds for k = 0 too (it then states that (In)

−1 = In), as long as we agree what
size our non-existing matrices are considered to have (it has to be n× n for some
n ∈N). With this convention, we could have started our induction (in the above
proof of Proposition 3.12) at k = 0 instead of k = 1.

Corollary 3.14. Let n ∈N. Let k ∈N. Let A be an invertible n× n-matrix. Then,
Ak is also invertible, and its inverse is

(
Ak)−1

=
(

A−1)k.

Note that Corollary 3.14 is not obvious! You cannot argue that
(

Ak)−1
=
(

A−1)k

because both sides simplify to A−k; this argument makes no sense unless you have
defined A−k (and we have not defined A−k) and proved that standard rules of
exponentiation (such as (Au)v = Auv) apply to matrices.

Proof of Corollary 3.14. Recall that A0 = In (by the definition of A0). Hence, in
the case when k = 0, Corollary 3.14 says that In is invertible, and its inverse is
(In)

−1 = In. This follows from Proposition 3.10. Thus, Corollary 3.14 is proven in
the case when k = 0. Therefore, we can WLOG37 assume that k 6= 0. Assume this.
Thus, k is a positive integer. Hence, Ak = AA · · · A︸ ︷︷ ︸

k times

and
(

A−1)k
= A−1A−1 · · · A−1︸ ︷︷ ︸

k times

.

Proposition 3.12 (applied to A, A, . . . , A instead of A1, A2, . . . , Ak) shows that the
matrix AA · · · A︸ ︷︷ ︸

k times

is invertible, and its inverse is

AA · · · A︸ ︷︷ ︸
k times

−1

= A−1A−1 · · · A−1︸ ︷︷ ︸
k times

.

In other words, the matrix Ak is invertible, and its inverse is
(

Ak)−1
=
(

A−1)k.
This proves Corollary 3.14.

Proposition 3.15. Let n ∈ N. Let A be an invertible n × n-matrix. Then, its
inverse A−1 is also invertible, and has the inverse

(
A−1)−1

= A.

37“WLOG” is shorthand for “without loss of generality”. See, for example, the Wikipedia article
for “WLOG” (or any book on mathematical proofs) for the meaning of this phrase.

(As far as the proof of Corollary 3.14 is concerned, the meaning of “we can WLOG assume
that k 6= 0” is the following: “If we can prove Corollary 3.14 for k 6= 0, then we know how to
obtain a proof of Corollary 3.14 for all k (because Corollary 3.14 is already proven in the case
when k = 0). Thus, it will suffice to prove Corollary 3.14 for k 6= 0; hence, let us assume that
k 6= 0.”)

https://en.wikipedia.org/wiki/Without_loss_of_generality
https://en.wikipedia.org/wiki/Without_loss_of_generality
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Proof of Proposition 3.15. Since A−1 is an inverse of A, we have the two equalities
A−1A = In and AA−1 = In. But these very same equalities show that A is an
inverse of A−1 (if you do not trust me, just check with the definition of “inverse”).
Thus, the matrix A−1 is invertible, and its inverse is

(
A−1)−1

= A. Proposition 3.15
is proven.

Proposition 3.16. Let n ∈ N. Let λ be a nonzero number. Let A be an invertible
n× n-matrix. Then, the matrix λA is also invertible, and its inverse is (λA)−1 =

λ−1A−1 =
1
λ

A−1.

Exercise 3.17. Prove Proposition 3.16.

3.3. More on transposes

How do the matrix operations we have seen above (addition, multiplication, inver-
sion, etc.) behave with respect to transposes? The answer is “fairly nicely”:

Proposition 3.18. (a) Let n ∈N. Then, (In)
T = In.

(b) Let n ∈N and m ∈N. Then, (0n×m)
T = 0m×n.

(c) Let n ∈N and m ∈N. Let A be an n×m-matrix. Let λ be a number. Then,
(λA)T = λAT.

(d) Let n ∈ N and m ∈ N. Let A and B be two n × m-matrices. Then,
(A + B)T = AT + BT.

(e) Let n ∈ N, m ∈ N and p ∈ N. Let A be an n × m-matrix. Let B be an
m× p-matrix. Then, (AB)T = BT AT.

(f) Let n ∈ N. Let A be an invertible n× n-matrix. Then, AT is invertible, and
its inverse is

(
AT)−1

=
(

A−1)T.

Notice that the right hand side in Proposition 3.18 (e) is BT AT, not ATBT (in
fact, ATBT does not always make sense, since the number of columns of AT is not
necessarily the number of rows of BT). This is similar to the B−1A−1 in Proposition
3.11.

Proposition 3.18 is fairly easy to show; let us only give a proof of part (e):

Proof of Proposition 3.18 (e). The definition of AT shows that AT =
(

Aj,i
)

1≤i≤m, 1≤j≤n.
Thus, (

AT
)

i,j
= Aj,i for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n} . (43)

Similarly, the definition of BT shows that BT =
(

Bj,i
)

1≤i≤p, 1≤j≤m. Hence,(
BT
)

i,j
= Bj,i for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , m} . (44)
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Now, BT is a p×m-matrix, while AT is an m× n-matrix. Hence, BT AT is a p× n-
matrix. Also, (AB)T is a p× n-matrix (since AB is an n× p-matrix). The definition
of (AB)T shows that (AB)T =

(
(AB)j,i

)
1≤i≤p, 1≤j≤n

. Hence,(
(AB)T

)
i,j
= (AB)j,i

= Aj,1B1,i + Aj,2B2,i + · · ·+ Aj,mBm,i (45)

(by Proposition 2.19 (a), applied to j and i instead of i and j)

for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , n}.
On the other hand, we can apply Proposition 2.19 (a) to p, m, n, BT and AT

instead of n, m, p, A and B. We thus conclude that(
BT AT

)
i,j
=
(

BT
)

i,1

(
AT
)

1,j
+
(

BT
)

i,2

(
AT
)

2,j
+ · · ·+

(
BT
)

i,m

(
AT
)

m,j
(46)

for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , n}.
But for every k ∈ {1, 2, . . . , m}, we have(

BT
)

i,k︸ ︷︷ ︸
=Bk,i

(by (44), applied
to k instead of j)

(
AT
)

k,j︸ ︷︷ ︸
=Aj,k

(by (43), applied
to k instead of i)

= Bk,i Aj,k = Aj,kBk,i. (47)

Hence, for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , n}, we have(
BT AT

)
i,j
=
(

BT
)

i,1

(
AT
)

1,j︸ ︷︷ ︸
=Aj,1B1,i

(by (47), applied
to k=1)

+
(

BT
)

i,2

(
AT
)

2,j︸ ︷︷ ︸
=Aj,2B2,i

(by (47), applied
to k=2)

+ · · ·+
(

BT
)

i,m

(
AT
)

m,j︸ ︷︷ ︸
=Aj,mBm,i

(by (47), applied
to k=m)

(by (46))

= Aj,1B1,i + Aj,2B2,i + · · ·+ Aj,mBm,i.

Comparing this with (45), we conclude that
(
(AB)T

)
i,j

=
(

BT AT)
i,j for all i ∈

{1, 2, . . . , p} and j ∈ {1, 2, . . . , n}. In other words, each entry of the matrix (AB)T

equals the corresponding entry of the matrix BT AT. Thus, (AB)T = BT AT. This
proves Proposition 3.18 (e).

Exercise 3.19. Prove Proposition 3.18 (f).

3.4. Triangular matrices

We next discuss some particular classes of matrices: the so-called triangular matrices
and some of their variations.
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Definition 3.20. Let n ∈N. Let A be an n× n-matrix.
(a) We say that the matrix A is upper-triangular if and only if we have

Ai,j = 0 whenever i > j.

(Of course, “whenever i > j” is shorthand for “for all i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , n} satisfying i > j”.)

(b) We say that the matrix A is lower-triangular if and only if we have

Ai,j = 0 whenever i < j.

(c) We say that the matrix A is diagonal if and only if we have

Ai,j = 0 whenever i 6= j.

Notice that only square matrices can be upper-triangular or lower-triangular or
diagonal (by definition). Why the name “triangular”? Because visually speaking, a
matrix is upper-triangular if and only if all its entries (strictly) below the diagonal
are 0 (which means that its nonzero entries are concentrated in the triangle bor-
dered by the diagonal, the upper rim and the right rim). I hope Example 3.21 will
clarify this if it is unclear. Similarly, a matrix is lower-triangular if and only if all
its entries (strictly) above the diagonal are 0 (which again means that its nonzero
entries are concentrated in a triangle, this time to the southwest of the diagonal).
Finally, a matrix is diagonal if and only if all its entries except for the diagonal
entries are 0.

I think the following example should explain this:

Example 3.21. (a) A 4 × 4-matrix is upper-triangular if and only if it has the

form


a b c d
0 b′ c′ d′

0 0 c′′ d′′

0 0 0 d′′′

 for some numbers a, b, c, d, b′, c′, d′, c′′, d′′, d′′′. Notice

that we are making no requirements on these numbers; in particular, they can
be 0. Upper-triangularity means that Ai,j = 0 whenever i > j; it does not require
that Ai,j 6= 0 in all other cases.

(b) A 4 × 4-matrix is lower-triangular if and only if it has the form
a 0 0 0
a′ b′ 0 0
a′′ b′′ c′′ 0
a′′′ b′′′ c′′′ d′′′

 for some numbers a, a′, b′, a′′, b′′, c′′, a′′′, b′′′, c′′′, d′′′.

(c) A 4× 4-matrix is diagonal if and only if it has the form


a 0 0 0
0 b′ 0 0
0 0 c′′ 0
0 0 0 d′′′


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for some numbers a, b′, c′′, d′′′.

Here is something obvious:

Proposition 3.22. Let n ∈N.
(a) An n× n-matrix A is diagonal if and only if A is both upper-triangular and

lower-triangular.
(b) The zero matrix 0n×n and the identity matrix In are upper-triangular, lower-

triangular and diagonal.

A less trivial fact is that the product of two upper-triangular matrices is upper-
triangular again. We shall show this, and a little bit more, in the following theorem:

Theorem 3.23. Let n ∈N. Let A and B be two upper-triangular n× n-matrices.
(a) Then, AB is an upper-triangular n× n-matrix.
(b) The diagonal entries of AB are

(AB)i,i = Ai,iBi,i for all i ∈ {1, 2, . . . , n} .

(c) Also, A + B is an upper-triangular n × n-matrix. Furthermore, λA is an
upper-triangular matrix whenever λ is a number.

Note that Theorem 3.23 (b) says that each diagonal entry of AB is the product of
the corresponding diagonal entries of A and of B. Thus, in this specific case, the
product AB does behave as if matrices were multiplied entry by entry (but only for
its diagonal entries). Before I prove Theorem 3.23, let me give an example:

Example 3.24. Let A =

 a b c
0 b′ c′

0 0 c′′

 and B =

 x y z
0 y′ z′

0 0 z′′

 be two upper-

triangular 3× 3-matrices. Then,

AB =

 a b c
0 b′ c′

0 0 c′′

 x y z
0 y′ z′

0 0 z′′

 =

 ax ay + by′ az + bz′ + cz′′

0 b′y′ b′z′ + c′z′′

0 0 c′′z′′

 .

Thus, AB is again upper-triangular (as Theorem 3.23 (a) predicts), and the di-
agonal entries ax, b′y′, c′′z′′ of AB are the products of the respective entries of A
and of B (as Theorem 3.23 (b) predicts).

Proof of Theorem 3.23. The matrix A is upper-triangular. In other words,

Ai,j = 0 whenever i > j (48)

(because this is what it means for A to be upper-triangular). Similarly,

Bi,j = 0 whenever i > j (49)
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(because B, too, is upper-triangular).
Now, fix two elements i and j of {1, 2, . . . , n} satisfying i > j. We shall prove that

for every k ∈ {1, 2, . . . , n}, we have

Ai,kBk,j = 0. (50)

[Proof of (50): Let k ∈ {1, 2, . . . , n}. Then, we are in one of the following two cases:

Case 1: We have i ≤ k.

Case 2: We have i > k.

We shall prove (50) in each of these two cases separately:

1. Let us first consider Case 1. In this case, we have i ≤ k. Thus, k ≥ i, so that
k ≥ i > j. Hence, we can apply (49) to k instead of i. As a result, we obtain
Bk,j = 0. Hence, Ai,k Bk,j︸︷︷︸

=0

= Ai,k0 = 0. Thus, (50) is proven in Case 1.

2. Let us now consider Case 2. In this case, we have i > k. Hence, we can apply
(48) to k instead of j. As a result, we obtain Ai,k = 0. Hence, Ai,k︸︷︷︸

=0

Bk,j =

0Bk,j = 0. Thus, (50) is proven in Case 2.

We have now proven (50) in both Cases 1 and 2. Thus, (50) is proven.]
Now, Proposition 2.19 (a) shows that

(AB)i,j = Ai,1B1,j︸ ︷︷ ︸
=0

(by (50),
applied to k=1)

+ Ai,2B2,j︸ ︷︷ ︸
=0

(by (50),
applied to k=2)

+ · · ·+ Ai,mBm,j︸ ︷︷ ︸
=0

(by (50),
applied to k=m)

= 0 + 0 + · · ·+ 0 = 0.

Now, forget that we fixed i and j. We thus have shown that

(AB)i,j = 0 whenever i > j. (51)

But this says precisely that AB is upper-triangular. Thus, Theorem 3.23 (a) is
proven.

(b) Let i ∈ {1, 2, . . . , n}. We must prove that (AB)i,i = Ai,iBi,i.
In a sense, this is similar to how we proved (51), but a little bit more complicated.
We first observe that, for every k ∈ {1, 2, . . . , n} satisfying k 6= i, we have

Ai,kBk,i = 0. (52)

The proof of this will be very similar to the proof of (50), with j replaced by i:
[Proof of (52): Let k ∈ {1, 2, . . . , n} be such that k 6= i. Then, we are in one of the

following two cases:
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Case 1: We have i ≤ k.

Case 2: We have i > k.

We shall prove (52) in each of these two cases separately:

1. Let us first consider Case 1. In this case, we have i ≤ k. Thus, k ≥ i, so that
k > i (because k 6= i). Hence, we can apply (49) to k and i instead of i and
j. As a result, we obtain Bk,i = 0. Hence, Ai,k Bk,i︸︷︷︸

=0

= Ai,k0 = 0. Thus, (52) is

proven in Case 1.

2. Let us now consider Case 2. In this case, we have i > k. Hence, we can apply
(48) to k instead of j. As a result, we obtain Ai,k = 0. Hence, Ai,k︸︷︷︸

=0

Bk,i =

0Bk,i = 0. Thus, (52) is proven in Case 2.

We have now proven (52) in both Cases 1 and 2. Thus, (52) is proven.]
Now, Proposition 2.19 (a) (applied to j = i) shows that

(AB)i,i

= Ai,1B1,i + Ai,2B2,i + · · ·+ Ai,mBm,i

= (the sum of the terms Ai,kBk,i for all k ∈ {1, 2, . . . , n})
= Ai,iBi,i + (the sum of the terms Ai,kBk,i for all k ∈ {1, 2, . . . , n} satisfying k 6= i)︸ ︷︷ ︸

=0
(because (52) shows that all of these terms are 0)

(here, we have taken the term Ai,iBi,i out of the sum)

= Ai,iBi,i + 0 = Ai,iBi,i.

This proves Theorem 3.23 (b).
(c) Theorem 3.23 (c) is straightforward to check (due to the simple definitions of

A + B and λA); the details are left to the reader.

The natural analogue of Theorem 3.23 for lower-triangular matrices also holds:

Theorem 3.25. Let n ∈N. Let A and B be two lower-triangular n× n-matrices.
(a) Then, AB is a lower-triangular n× n-matrix.
(b) The diagonal entries of AB are

(AB)i,i = Ai,iBi,i for all i ∈ {1, 2, . . . , n} .

(c) Also, A + B is a lower-triangular n× n-matrix. Furthermore, λA is a lower-
triangular matrix whenever λ is a number.

The proof of Theorem 3.25 is analogous to that of Theorem 3.23, and the changes
required are fairly straightforward (change some inequality signs). Let me pose
this as an exercise:
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Exercise 3.26. Prove Theorem 3.25 (a). (Feel free to repeat my proof of Theorem
3.23 (a), changing only what little needs to be changed. This is not plagiarism
for the purpose of this exercise!)

(Similarly, you can prove Theorem 3.25 (b) and (c), but you don’t need to write
it up.)

The following result is an analogue of Theorem 3.23 and Theorem 3.25 for diag-
onal matrices:

Theorem 3.27. Let n ∈N. Let A and B be two diagonal n× n-matrices.
(a) Then, AB is a diagonal n× n-matrix.
(b) The diagonal entries of AB are

(AB)i,i = Ai,iBi,i for all i ∈ {1, 2, . . . , n} .

Thus, diagonal matrices actually are multiplied entry by entry!
(c) Also, A + B is a diagonal n × n-matrix. Furthermore, λA is a diagonal

matrix whenever λ is a number.

Exercise 3.28. Prove Theorem 3.27.

Lower-triangular and upper-triangular matrices are not only analogues of each
other; they are also closely related:

Proposition 3.29. Let n ∈ N. Let A be an n × n-matrix. Then, A is upper-
triangular if and only if AT is lower-triangular.

Proof of Proposition 3.29. The definition of AT shows that AT =
(

Aj,i
)

1≤i≤n, 1≤j≤n.
Thus, (

AT
)

i,j
= Aj,i for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} . (53)
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Now, consider the following chain of equivalent statements38:

(A is upper-triangular)

⇐⇒
(

Ai,j = 0 whenever i > j
)

(because this is how “upper-triangular” is defined)

⇐⇒
(

Aj,i = 0 whenever j > i
)

(here, we have just renamed i and j as j and i)
⇐⇒

(
Aj,i = 0 whenever i < j

)
(because j > i is equivalent to i < j)

⇐⇒
((

AT
)

i,j
= 0 whenever i < j

)
(

here, we have replaced Aj,i by
(

AT
)

i,j
, because of (53)

)
⇐⇒

(
AT is lower-triangular

)
(because this is how “lower-triangular” is defined) .

Thus, Proposition 3.29 holds.

There are a few special classes of triangular matrices worth giving names:

Definition 3.30. Let n ∈N. Let A be an n× n-matrix.
(a) The matrix A is said to be upper-unitriangular if and only if it is upper-

triangular and all its diagonal entries are 1 (that is, Ai,i = 1 for all i).
(b) The matrix A is said to be invertibly upper-triangular if and only if it is

upper-triangular and all its diagonal entries are nonzero (that is, Ai,i 6= 0 for all
i).

(c) The matrix A is said to be strictly upper-triangular if and only if it is upper-
triangular and all its diagonal entries are 0 (that is, Ai,i = 0 for all i).

Similar notions can be defined with the word “lower” instead of “upper”:
(d) The matrix A is said to be lower-unitriangular if and only if it is lower-

triangular and all its diagonal entries are 1 (that is, Ai,i = 1 for all i).
(e) The matrix A is said to be invertibly lower-triangular if and only if it is

lower-triangular and all its diagonal entries are nonzero (that is, Ai,i 6= 0 for all
i).

(f) The matrix A is said to be strictly lower-triangular if and only if it is lower-
triangular and all its diagonal entries are 0 (that is, Ai,i = 0 for all i).

The words we have just defined are not as important as the word “upper-triangular”
(you certainly don’t need to learn them by heart); but these notions appear from
time to time in mathematics, and it helps if you know how to recognize them.

38After each equivalence, we give a justification for why it is an equivalence.
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Example 3.31. (a) A 3× 3-matrix is upper-unitriangular if and only if it has the

form

 1 b c
0 1 c′

0 0 1

 for some b, c, c′.

(b) A 3× 3-matrix is invertibly upper-triangular if and only if it has the form a b c
0 b′ c′

0 0 c′′

 for some a, b, c, b′, c′, c′′ with a 6= 0, b′ 6= 0 and c′′ 6= 0.

(c) A 3 × 3-matrix is strictly upper-triangular if and only if it has the form 0 b c
0 0 c′

0 0 0

 for some b, c, c′.

Olver and Shakiban (in [OlvSha06]) use the word “special upper triangular” in-
stead of “upper-unitriangular”. But I prefer “upper-unitriangular”, since the word
“uni” hints directly to the definition (namely, the 1’s on the diagonal), whereas the
word “special” can mean pretty much anything.

The word “invertibly upper-triangular” is my invention. I have chosen it be-
cause an upper-triangular matrix is invertible if and only if it is invertibly upper-
triangular. (This is not obvious. In Theorem 3.99, we will prove the “if” direction.
The “only if” direction is also true.)

Here is a simple fact to connect the above definitions:

Proposition 3.32. (a) Each upper-unitriangular matrix is invertibly upper-
triangular.

(b) Let n ∈ N. Let A be an n × n-matrix. Then, A is upper-unitriangular if
and only if In − A is strictly upper-triangular.

We shall give a proof of this proposition in Section 3.5 (but mainly as an example
of how to write a proof; the mathematics itself is trivial).

Strictly upper-triangular n × n-matrices can also be characterized as the n × n-
matrices A which satisfy

Ai,j = 0 whenever i ≥ j.

Notice the weak inequality “i ≥ j” (as opposed to the strict inequality “i > j” in
the definition of upper-triangular matrices).

Exercise 3.33. Let A =

 a b c
0 b′ c′

0 0 c′′

 be an invertibly upper-triangular 3× 3-

matrix. Show that A is invertible by explicitly computing the inverse of A (in
terms of a, b, c, b′, c′, c′′).
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[Hint: In order to find a right inverse of A, it is enough to find three column
vectors u, v, w (each of size 3) satisfying the equations

Au =

 1
0
0

 , Av =

 0
1
0

 , Aw =

 0
0
1

 .

In fact, once these vectors are found, assembling them into a matrix yields a
right inverse of A (why?). Find these u, v, w. Then, check that the resulting right
inverse of A is also a left inverse.]

Corollary 3.34. Let n ∈ N. Let A and B be two upper-unitriangular n × n-
matrices. Then, AB is also an upper-unitriangular n× n-matrix.

Proof of Corollary 3.34. The matrices A and B are upper-triangular (since they are
upper-unitriangular). Hence, Theorem 3.23 (a) shows that AB is an upper-triangular
n× n-matrix. Moreover, Theorem 3.23 (b) shows that

(AB)i,i = Ai,i︸︷︷︸
=1

(since A is
unitriangular)

Bi,i︸︷︷︸
=1

(since B is
unitriangular)

= 1 · 1 = 1

for all i ∈ {1, 2, . . . , n}. Thus, the matrix AB is upper-unitriangular (since we
already know that AB is upper-triangular). Corollary 3.34 is thus proven.

Corollary 3.35. Let n ∈ N. If A1, A2, . . . , Ak (for some k ∈ N) are upper-
unitriangular n × n-matrices, then A1A2 · · · Ak is also an upper-unitriangular
n× n-matrix.

Proof of Corollary 3.35. This can be proven in a straightforward way by induction
over k, similarly to how we proved Proposition 3.12. The important differences are:

• We should now use k = 0 as an induction base (because we have not required
k to be positive). For k = 0, the product A1A2 · · · Ak is an empty product (i.e.,
a product with no factors), and thus equals In (because we have defined an
empty product of n× n-matrices to equal In). We thus need to prove that In
is an upper-unitriangular matrix. But this is clear by inspection.

• In the induction step, instead of using Proposition 3.11, we need to use Corol-
lary 3.34.

Analogues of Corollary 3.34 and Corollary 3.35 hold for invertibly upper-triangular
matrices:
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Corollary 3.36. Let n ∈ N. Let A and B be two invertibly upper-triangular
n× n-matrices. Then, AB is also an invertibly upper-triangular n× n-matrix.

Corollary 3.37. Let n ∈ N. If A1, A2, . . . , Ak (for some k ∈ N) are invertibly
upper-triangular n × n-matrices, then A1A2 · · · Ak is also an invertibly upper-
triangular n× n-matrix.

Exercise 3.38. Prove Corollary 3.36 and Corollary 3.37.

Similarly, analogues of the above-mentioned results hold for lower-triangular
matrices. For example, the following analogues of Corollary 3.35 and of Corollary
3.37 hold:

Corollary 3.39. Let n ∈ N. If A1, A2, . . . , Ak (for some k ∈ N) are lower-
unitriangular n × n-matrices, then A1A2 · · · Ak is also a lower-unitriangular
n× n-matrix.

Corollary 3.40. Let n ∈ N. If A1, A2, . . . , Ak (for some k ∈ N) are invertibly
lower-triangular n × n-matrices, then A1A2 · · · Ak is also an invertibly lower-
triangular n× n-matrix.

As usual, the proofs of these analogues can be obtained from the proofs of the
original versions through minor (and straightforward) modifications.

The reader can easily check that the following analogue of Proposition 3.29 holds:

Proposition 3.41. Let n ∈N. Let A be an n× n-matrix. Then:
(a) The matrix A is upper-unitriangular if and only if AT is lower-

unitriangular.
(b) The matrix A is invertibly upper-triangular if and only if AT is invertibly

lower-triangular.
(c) The matrix A is strictly upper-triangular if and only if AT is strictly lower-

triangular.

3.5. (*) Proof of Proposition 3.32

Here is a detailed proof of Proposition 3.32:

Proof of Proposition 3.32. (a) Let A be an upper-unitriangular n× n-matrix. We must
then prove that A is invertibly upper-triangular.

We have assumed that A is upper-unitriangular. In other words, A is upper-
triangular and all its diagonal entries are 1 (because this is what “upper-unitriangular”
means). Now, all diagonal entries of A are 1, and thus are nonzero (since 1 is
nonzero). So we know that A is upper-triangular and all its diagonal entries are
nonzero. In other words, A is invertibly upper-triangular (by the definition of “in-
vertibly upper-triangular”). This proves Proposition 3.32 (a).
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(b) The statement of Proposition 3.32 (b) is an “if and only if” statement. Thus,
it splits into the following two claims:

Claim 1: If A is upper-unitriangular, then In−A is strictly upper-triangular.

Claim 2: If In−A is strictly upper-triangular, then A is upper-unitriangular.

We are going to prove both of these claims. But first, let us make a simple
observation: Recall that In =

(
δi,j
)

1≤i≤n, 1≤j≤n. Hence, (In)i,j = δi,j for all i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , n}. In particular, for all i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , n} satisfying i > j, we have

(In)i,j = δi,j = 0 (54)

(since i 6= j (because i > j)). Also, the diagonal entries of the matrix In are 1; in
other words, every i ∈ {1, 2, . . . , n} satisfies

(In)i,i = 1. (55)

Proof of Claim 1: Assume that A is upper-unitriangular. We must show that In− A
is strictly upper-triangular.

We have assumed that A is upper-unitriangular. In other words, A is upper-
triangular and all its diagonal entries are 1 (because this is what “upper-unitriangular”
means). Since A is upper-triangular, we have

Ai,j = 0 whenever i > j (56)

(by the definition of “upper-triangular”). Since all diagonal entries of A are 1, we
have

Ai,i = 1 for each i ∈ {1, 2, . . . , n} . (57)

Now, recall that matrices are subtracted entry by entry. Hence, for all i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfying i > j, we have

(In − A)i,j = (In)i,j︸ ︷︷ ︸
=0

(by (54))

− Ai,j︸︷︷︸
=0

(by (56))

= 0− 0 = 0.

In other words, (In − A)i,j = 0 whenever i > j. This means that In − A is upper-
triangular (by the definition of “upper-triangular”).

Recall again that matrices are subtracted entry by entry. Hence, every i ∈
{1, 2, . . . , n} satisfies

(In − A)i,i = (In)i,i︸ ︷︷ ︸
=1

(by (55))

− Ai,i︸︷︷︸
=1

(by (57))

= 1− 1 = 0.
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In other words, all diagonal entries of the matrix In − A are 0.
So we have shown that the matrix In − A is upper-triangular, and that all its

diagonal entries are 0. In other words, the matrix In− A is strictly upper-triangular
(by the definition of “strictly upper-triangular”). This proves Claim 1.

Proof of Claim 2: Assume that In − A is strictly upper-triangular. We must show
that A is upper-unitriangular.

We have assumed that In − A is strictly upper-triangular. In other words, In − A
is upper-triangular and all its diagonal entries are 0 (because this is what “strictly
upper-triangular” means). Since In − A is upper-triangular, we have

(In − A)i,j = 0 whenever i > j (58)

(by the definition of “upper-triangular”). Since all diagonal entries of In − A are 0,
we have

(In − A)i,i = 0 for each i ∈ {1, 2, . . . , n} . (59)

Now, recall that matrices are subtracted entry by entry. Hence, for all i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfying i > j, we have

(In − A)i,j = (In)i,j︸ ︷︷ ︸
=0

(by (54))

−Ai,j = 0− Ai,j = −Ai,j

and therefore
Ai,j = − (In − A)i,j︸ ︷︷ ︸

=0
(by (58))

= −0 = 0.

In other words, Ai,j = 0 whenever i > j. This means that A is upper-triangular (by
the definition of “upper-triangular”).

Recall again that matrices are subtracted entry by entry. Hence, every i ∈
{1, 2, . . . , n} satisfies

(In − A)i,i = (In)i,i︸ ︷︷ ︸
=1

(by (55))

−Ai,i = 1− Ai,i

and therefore
Ai,i = 1− (In − A)i,i︸ ︷︷ ︸

=0
(by (59))

= 1− 0 = 1.

In other words, all diagonal entries of the matrix A are 1.
So we have shown that the matrix A is upper-triangular, and that all its diagonal

entries are 1. In other words, the matrix A is upper-unitriangular. This proves
Claim 2.

Now, both Claim 1 and Claim 2 are proven, so the proof of Proposition 3.32 (b)
is complete.
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As you might have noticed, I have written down the above proof at an unusually
high level of detail (whereas most textbooks would have only sketched it, or even
left it to the reader to fill in). The reason for that is that I wanted to demonstrate the
structure of such proofs. An experienced writer (writing for experienced readers)
would have been able to shorten the above proof considerably in the following way:

• Our proof of Proposition 3.32 (a) was really obvious; most of it was boilerplate
(writing down the assumptions, writing down the claims, etc.).

• The way we proved Proposition 3.32 (b) is a typical way how “if and only
if” statements are proven.39 What we called Claim 1 in this proof would
normally be called the “=⇒ direction”40 of Proposition 3.32 (b) (because,
rewritten in logical symbols, it says that “(A is upper-unitriangular) =⇒
(In − A is strictly upper-triangular)”), while our Claim 2 would be called the
“⇐= direction”41 of Proposition 3.32 (b) (for similar reasons). In general, if
you have an assertion of the form “X holds if and only if Y holds”, then the
“=⇒ direction” of this assertion says “if X holds, then Y holds”, whereas the
“⇐= direction” of this assertion says “if Y holds, then X holds”. In order
to prove the assertion, it suffices to prove both its =⇒ direction and its ⇐=
direction; these two directions can often be proven separately. It is customary
to mark the proof of the =⇒ direction by a single “=⇒:” at the beginning of
this proof (instead of writing “Proof of Claim 1:” as we did), and to mark the
proof of the ⇐= direction by a single “⇐=:” at the beginning of this proof
(instead of writing “Proof of Claim 2:” as we did). Furthermore, explicitly
stating Claim 1 and Claim 2 (like I did above) is not necessary: They are just
the =⇒ direction and the ⇐= direction of Proposition 3.32 (b), respectively;
this is enough to fully characterize them.

• Our proof of the =⇒ direction (i.e., of Claim 1) was straightforward: it was
following the most obvious route from the givens (i.e., from the assumption
that A is upper-unitriangular) to the goal (i.e., to the claim that In − A is
strictly upper-triangular). In fact, once you have unraveled the definitions
of “upper-unitriangular” and of “triangular”, the assumption translates into
“Ai,j = 0 whenever i > j, and Ai,i = 1 for all i”. Similarly, once you have
unraveled the definitions of “strictly upper-triangular” and “triangular”, the
claim translates into “(In − A)i,j = 0 whenever i > j, and (In − A)i,i = 0 for
all i”. Thus, in order to get from the assumption to the goal, you need to
find a way to process knowledge about entries of A into knowledge about
entries of In − A. But there is one obvious way to do that: Observe that
(In − A)i,j = (In)i,j − Ai,j, and recall the formula for (In)i,j (which is clear
from the definition of In). The rest is simple arithmetic.

39But not the only way: our proof of Proposition 3.29 was organized differently.
40also known as the “only if direction” or the “=⇒ part”
41also known as the “if direction” or the “⇐= part”
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• Our proof of the ⇐= direction (i.e., of Claim 2) was essentially the proof of
the =⇒ direction (i.e., of Claim 1) “read backwards” (the assumption and the
claim have switched places, so we are taking the same argument but in re-
verse). To read an argument backwards means, whenever necessary, to switch
reasons with consequences (for example, instead of deriving (In − A)i,j = 0
from Ai,j = 0, we now derive Ai,j = 0 from (In − A)i,j = 0). This is not
possible (after all, not every valid statement remains valid if we switch the
assumption and the claim!), but when it is, it is not a difficult task, so it can
safely be left to the reader. (And it does work in our case.)

Altogether, we can thus shrink down our above proof of Proposition 3.32 to the
following short form:

Proof of Proposition 3.32 (sketched). (a) This follows from the definitions, since 1 is
nonzero.

(b) =⇒: Each entry of the matrix In − A equals the corresponding entry of In
minus the corresponding entry of A. Thus, any statement about entries of In −
A can be reduced to a statement about corresponding entries of A. Using this
observation, the =⇒ direction of Proposition 3.32 (b) becomes straightforward.
⇐=: To obtain a proof of the ⇐= direction, read the proof of the =⇒ direction

backwards.

(Or we could have left the whole proof to the reader, seeing that pretty much all
of it was straightforward walking from the assumptions to the goals.)

3.6. The standard matrix units Eu,v

We shall now define a certain family of matrices which are (in a sense) the building
blocks of all matrices:

Definition 3.42. Let n ∈ N and m ∈ N. Let u ∈ {1, 2, . . . , n} and v ∈
{1, 2, . . . , m}. Then, Eu,v,n,m shall denote the n × m-matrix whose (u, v)-th en-
try is 1 and whose all other entries are 0. We shall abbreviate Eu,v,n,m as Eu,v
when the values of n and m are clear from the context (for example, when we
say “the 2× 5-matrix E1,4”, it is clear that n = 2 and m = 5).

The matrices Eu,v (for varying u and v) are called the standard matrix units.

Example 3.43. The 2× 3-matrix E1,3 (also known as E1,3,2,3) is
(

0 0 1
0 0 0

)
. As

per its definition, its (1, 3)-th entry is 1 and its all other entries are 0.

The 3× 2-matrix E2,2 (also known as E2,2,3,2) is

 0 0
0 1
0 0

.
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What happens when a matrix is multiplied by Eu,v ? There are two cases: either
the Eu,v is on the left (so we are talking of a product Eu,vC) or the Eu,v is on the
right (so we are talking of a product CEu,v). Let us see what each of these looks
like:

Proposition 3.44. Let n ∈ N, m ∈ N and p ∈ N. Let u ∈ {1, 2, . . . , n} and
v ∈ {1, 2, . . . , m}. Let C be an m × p-matrix. Then, Eu,vC is the n × p-matrix
whose u-th row is the v-th row of C, and whose all other rows are filled with
zeroes. (Here, again, Eu,v means Eu,v,n,m.)

Example 3.45. Let n = 2, m = 3 and p = 3. Let C =

 a b c
a′ b′ c′

a′′ b′′ c′′

 be a

3× 3-matrix. Proposition 3.44 (applied to u = 1 and v = 2) claims that E1,2C is
the 2× 3-matrix whose 1-st row is the 2-nd row of C, and whose all other rows
are filled with zeroes. In other words, it claims that

E1,2C =

(
a′ b′ c′

0 0 0

)
.

We can verify this by actually doing the multiplication:

E1,2C =

(
0 1 0
0 0 0

) a b c
a′ b′ c′

a′′ b′′ c′′


=

(
0a + 1a′ + 0a′′ 0b + 1b′ + 0b′′ 0c + 1c′ + 0c′′

0a + 0a′ + 0a′′ 0b + 0b′ + 0b′′ 0c + 0c′ + 0c′′

)
=

(
a′ b′ c′

0 0 0

)
.

The matrix unit E1,2 =

(
0 1 0
0 0 0

)
acts as a sort of mask which, when multi-

plied by C, moves the v-th row into the u-th row of the product, while destroying
all other rows.

We shall give a formal proof of Proposition 3.44 in Section 3.7; but the example
above should have given you a good intuition for it.

So much for products of the form Eu,vC. What about CEu,v ?

Proposition 3.46. Let n ∈ N, m ∈ N and p ∈ N. Let u ∈ {1, 2, . . . , n} and
v ∈ {1, 2, . . . , m}. Let C be an p × n-matrix. Then, CEu,v is the p × m-matrix
whose v-th column is the u-th column of C, and whose all other columns are
filled with zeroes. (Here, again, Eu,v means Eu,v,n,m.)

Notice that the numbers u and v play different parts in Proposition 3.46 as in
Proposition 3.44.
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Example 3.47. Let us demonstrate Proposition 3.46 on a more spartanic example:
Let n = 2, m = 2 and p = 1. Let C =

(
a b

)
be a 1× 2-matrix. Proposition

3.46 (applied to u = 1 and v = 2) claims that CE1,2 is the 1× 2-matrix whose
2-nd column is the 1-st column of C, and whose all other columns are filled with
zeroes. In other words, it claims that

CE1,2 =
(

0 a
)

.

Again, we can verify this by actually doing the multiplication:

CE1,2 =
(

a b
) ( 0 1

0 0

)
=
(

a · 0 + b · 0 a · 1 + b · 0
)
=
(

0 a
)

.

3.7. (*) A bit more on the standard matrix units

Let us get some practice by rewriting the definition of the matrices Eu,v:

Proposition 3.48. Let n ∈ N and m ∈ N. Let u ∈ {1, 2, . . . , n} and v ∈
{1, 2, . . . , m}. Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Then,

(Eu,v)i,j = δ(i,j),(u,v) = δi,uδj,v (60)

(where Eu,v is short for Eu,v,n,m). (Recall that the meaning of the symbols δ(i,j),(u,v),
δi,u and δj,v is defined as in (20).)

Proof of Proposition 3.48. We have defined Eu,v as the n× m-matrix whose (u, v)-th
entry is 1 and whose all other entries are 0. Hence, the (i, j)-th entry of the matrix
Eu,v is 1 if (i, j) = (u, v) and 0 otherwise. In formulas, this says that

(Eu,v)i,j =

{
1, if (i, j) = (u, v) ;
0, if (i, j) 6= (u, v)

. (61)

On the other hand, the definition of δ(i,j),(u,v) yields

δ(i,j),(u,v) =

{
1, if (i, j) = (u, v) ;
0, if (i, j) 6= (u, v)

. (62)

Comparing this with (61), we immediately obtain (Eu,v)i,j = δ(i,j),(u,v).
Let us now show that

δ(i,j),(u,v) = δi,uδj,v. (63)

[Proof of (63): We are in one of the following three cases:

Case 1: We have i 6= u.
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Case 2: We have j 6= v.

Case 3: We have neither i 6= u nor j 6= v.

(In fact, it is possible that we are in Case 1 and Case 2 simultaneously. But this
does not invalidate our proof; it is perfectly fine if the cases “overlap”, as long as
every possible situation is covered by at least one case.)

We shall prove (63) in each of the three cases:

1. Let us first consider Case 1. In this case, we have i 6= u. Hence, (i, j) 6= (u, v).
Thus, δ(i,j),(u,v) = 0. Comparing this with δi,u︸︷︷︸

=0
(since i 6=u)

δj,v = 0δj,v = 0, we find

δ(i,j),(u,v) = δi,uδj,v. Hence, (63) is proven in Case 1.

2. Let us next consider Case 2. In this case, we have j 6= v. Hence, (i, j) 6= (u, v).
Thus, δ(i,j),(u,v) = 0. Comparing this with δi,u δj,v︸︷︷︸

=0
(since j 6=v)

= δi,u0 = 0, we find

δ(i,j),(u,v) = δi,uδj,v. Hence, (63) is proven in Case 2.

3. Let us finally consider Case 3. In this case, we have neither i 6= u and j 6= v.
Hence, i = u (since not i 6= u) and j = v (since not j 6= v). As a consequence,
(i, j) = (u, v), so that δ(i,j),(u,v) = 1. Comparing this with δi,u︸︷︷︸

=1
(since i=u)

δj,v︸︷︷︸
=1

(since j=v)

=

1 · 1 = 1, we find δ(i,j),(u,v) = δi,uδj,v. Hence, (63) is proven in Case 3.

We have now proven (63) in all three Cases; this finishes our proof of (63).]
Now, we have shown both (Eu,v)i,j = δ(i,j),(u,v) and δ(i,j),(u,v) = δi,uδj,v. Combining

these two equalities gives us (60), and so Proposition 3.48 is proven.

We can now easily prove Proposition 3.44:

Proof of Proposition 3.44. We need to prove the following two claims:

Claim 1: The u-th row of the n× p-matrix Eu,vC is the v-th row of C.

Claim 2: For each i ∈ {1, 2, . . . , n} satisfying i 6= u, the i-th row of the
n× p-matrix Eu,vC is filled with zeroes.

Before we do so, let us derive a few formulas. First of all, we have

(Eu,v)i,j = δi,uδj,v (64)
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for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m} (according to Proposition 3.48). Fur-
thermore, for any i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, we have

(Eu,vC)i,j =
m

∑
k=1

(Eu,v)i,k︸ ︷︷ ︸
=δi,uδk,v

(by (64), applied to
k instead of j)

Ck,j

(
by Proposition 2.28,

applied to A = Eu,v and B = C

)

=
m

∑
k=1

δi,uδk,vCk,j =
m

∑
k=1

δi,uCk,jδk,v = δi,uCv,j (65)

(by Proposition 2.40, applied to 1, m, v and δi,uCk,j instead of p, q, r and ak). Now,
we can prove both claims easily:

Proof of Claim 1: For every j ∈ {1, 2, . . . , p}, we have

(Eu,vC)u,j = δu,u︸︷︷︸
=1

(since u=u)

Cv,j (by (65), applied to i = u)

= Cv,j.

In other words, for every j ∈ {1, 2, . . . , p}, the (u, j)-th entry of the matrix Eu,vC
equals the (v, j)-th entry of the matrix C. In other words, each entry of the u-th row
of Eu,vC equals the corresponding entry of the v-th row of C. In other words, the
u-th row of the n× p-matrix Eu,vC is the v-th row of C. This proves Claim 1.

Proof of Claim 2: Let i ∈ {1, 2, . . . , n} be such that i 6= u. We must prove that the
i-th row of the n× p-matrix Eu,vC is filled with zeroes.

For every j ∈ {1, 2, . . . , p}, we have

(Eu,vC)i,j = δi,u︸︷︷︸
=0

(since i 6=u)

Cv,j (by (65))

= 0Cv,j = 0.

In other words, for every j ∈ {1, 2, . . . , p}, the (i, j)-th entry of the matrix Eu,vC is
0. In other words, each entry of the i-th row of Eu,vC is 0. In other words, the i-th
row of the n× p-matrix Eu,vC is filled with zeroes. This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven, and so we are finished proving
Proposition 3.44.

The proof of Proposition 3.46 is similar, and is left to the reader.
Here is another simple property of matrix units:

Proposition 3.49. Let n ∈ N and m ∈ N. Let u ∈ {1, 2, . . . , n} and v ∈
{1, 2, . . . , m}. Then, (Eu,v)

T = Ev,u. (More precisely: (Eu,v,n,m)
T = Ev,u,m,n.)

The proof of Proposition 3.49 is easy enough that it could be left as an exercise
at this point, but let me nevertheless give it for the sake of completeness:
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Proof of Proposition 3.49. We first notice that both (Eu,v,n,m)
T and Ev,u,m,n are m× n-

matrices.
For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have

(Eu,v,n,m)i,j = δ(i,j),(u,v) = δi,uδj,v. (66)

(Indeed, this is just a more precise way to state (60), because the “Eu,v” in (60)
is a shorthand for “Eu,v,n,m”.) Thus, in particular, every i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , m} satisfy

(Eu,v,n,m)i,j = δi,uδj,v. (67)

(This is an immediate consequence of (66).)
The definition of the transpose (Eu,v,n,m)

T now yields (Eu,v,n,m)
T =

(
(Eu,v,n,m)j,i

)
1≤i≤m, 1≤j≤n

.

Hence, for every i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, we have(
(Eu,v,n,m)

T
)

i,j
= (Eu,v,n,m)j,i = δj,uδi,v (68)

(by (67), applied to j and i instead of i and j).
On the other hand, the same reasoning that we used to obtain (67) can be applied

to m, n, v and u instead of n, m, u and v. As a result of this reasoning, we then find
that every i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n} satisfy

(Ev,u,m,n)i,j = δi,vδj,u. (69)

Hence, for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have(
(Eu,v,n,m)

T
)

i,j
= δj,uδi,v (by (68))

= δi,vδj,u = (Ev,u,m,n)i,j (by (69)) .

In other words, for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, the (i, j)-th entry of
the matrix (Eu,v,n,m)

T equals the (i, j)-th entry of the matrix Ev,u,m,n. In other words,
each entry of the matrix (Eu,v,n,m)

T equals the corresponding entry of the matrix
Ev,u,m,n. Hence, (Eu,v,n,m)

T = Ev,u,m,n. Using our shorthand notations, this rewrites
as (Eu,v)

T = Ev,u. Thus, Proposition 3.49 is proven.

As I have said, the standard matrix units are building blocks for matrices: every
matrix can be obtained from them by scaling and adding. More precisely:

Proposition 3.50. Let n ∈N and m ∈N. Let A be an n×m-matrix. Then,

A =
n

∑
u=1

m

∑
v=1

Au,vEu,v.

Here, we are using the ∑ symbol introduced in Section 2.14. (Of course, Eu,v
means Eu,v,n,m here.)
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Example 3.51. In the case when n = 2 and m = 2, Proposition 3.50 says that

A = A1,1E1,1 + A1,2E1,2 + A2,1E2,1 + A2,2E2,2.

It is easy to check this directly:

A1,1E1,1 + A1,2E1,2 + A2,1E2,1 + A2,2E2,2

= A1,1

(
1 0
0 0

)
+ A1,2

(
0 1
0 0

)
+ A2,1

(
0 0
1 0

)
+ A2,2

(
0 0
0 1

)
=

(
A1,1 0

0 0

)
+

(
0 A1,2
0 0

)
+

(
0 0

A2,1 0

)
+

(
0 0
0 A2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)
= A.

This should make the truth of Proposition 3.50 obvious (even in the general case).
The proof below is just for the fans of formal reasoning.
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Proof of Proposition 3.50. For every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have(
n

∑
u=1

m

∑
v=1

Au,vEu,v

)
i,j

=
n

∑
u=1

(
m

∑
v=1

Au,vEu,v

)
i,j︸ ︷︷ ︸

=
m
∑

v=1
(Au,vEu,v)i,j

(by an application of
Proposition 2.45)

(by an application of Proposition 2.45)

=
n

∑
u=1

m

∑
v=1

(Au,vEu,v)i,j︸ ︷︷ ︸
=Au,v(Eu,v)i,j

(since matrices are scaled entry by entry)

=
n

∑
u=1

m

∑
v=1

Au,v (Eu,v)i,j︸ ︷︷ ︸
=δi,uδj,v
(by (60))

=
n

∑
u=1

m

∑
v=1

Au,v δi,u︸︷︷︸
=δu,i

δj,v︸︷︷︸
=δv,j

=
n

∑
u=1

m

∑
v=1

Au,vδu,iδv,j︸ ︷︷ ︸
=

m
∑

k=1
Au,kδu,iδk,j

=Au,jδu,i
(by Proposition 2.40, applied to
p=1, q=m, r=j and ak=Au,kδu,i)

=
n

∑
u=1

Au,jδu,i =
n

∑
k=1

Ak,jδk,i

= Ai,j
(
by Proposition 2.40, applied to p = 1, q = n, r = i and ak = Ak,j

)
.

In other words, each entry of the matrix
n
∑

u=1

m
∑

v=1
Au,vEu,v equals the corresponding

entry of the matrix A. Thus,
n
∑

u=1

m
∑

v=1
Au,vEu,v = A. This proves Proposition 3.50.

Continuing the flow of boring and straightforward little propositions, let us see
how standard matrix units multiply:

Proposition 3.52. Let n ∈ N, m ∈ N and p ∈ N. Let u ∈ {1, 2, . . . , n}, v ∈
{1, 2, . . . , m}, x ∈ {1, 2, . . . , m} and y ∈ {1, 2, . . . , p}. Then,

Eu,v,n,mEx,y,m,p = δv,xEu,y,n,p.

(We shall write this equality as Eu,vEx,y = δv,xEu,y, since we hope that the sizes
of the matrices will be clear from the context.)
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It might be a good exercise to devise at least two examples for this proposition
(one with v = x and one with v 6= x), and to prove it. Nevertheless, let me give a
proof, because noone ever seems to do so in writing:

Proof of Proposition 3.52. There are two ways to prove Proposition 3.52: One is to ap-
ply Proposition 3.44 to C = Ex,y. Another is to obstinately applying the definitions.
We opt for the second way, because the first is too simple.

From (60), we obtain
(Eu,v,n,m)i,j = δi,uδj,v (70)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. (If this doesn’t look like (60) to you,
do remember that Eu,v,n,m was abbreviated as Eu,v in (60).)

The same reasoning (applied to m, p, x and y instead of n, m, u and v) shows
that (

Ex,y,m,p
)

i,j = δi,xδj,y (71)

for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , p}.
The same reasoning that gave us (70) can also be applied to n, p, u and y instead

of n, m, u and v. As a result, we find(
Eu,y,n,p

)
i,j = δi,uδj,y (72)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}.
Now, let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. Then, Proposition 2.28 (applied to

A = Eu,v,n,m and B = Ex,y,m,p) shows that

(
Eu,v,n,mEx,y,m,p

)
i,j =

m

∑
k=1

(Eu,v,n,m)i,k︸ ︷︷ ︸
=δi,uδk,v

(by (70), applied to k
instead of j)

(
Ex,y,m,p

)
k,j︸ ︷︷ ︸

=δk,xδj,y
(by (71), applied to k

instead of i)

=
m

∑
k=1

δi,uδk,vδk,xδj,y =
m

∑
k=1

δi,uδk,xδj,yδk,v

= δi,uδv,xδj,y

(by Proposition 2.40, applied to 1, m, v and δi,uδk,xδj,y instead of p, q, r and ak).
Comparing this with(

δv,xEu,y,n,p
)

i,j = δv,x
(
Eu,y,n,p

)
i,j︸ ︷︷ ︸

=δi,uδj,y
(by (72))

(since matrices are scaled entry by entry)
= δv,xδi,uδj,y = δi,uδv,xδj,y,

we find
(
Eu,v,n,mEx,y,m,p

)
i,j =

(
δv,xEu,y,n,p

)
i,j.
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Now, forget that we fixed i and j. We thus have shown that
(
Eu,v,n,mEx,y,m,p

)
i,j =(

δv,xEu,y,n,p
)

i,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. In other words, each
entry of the matrix Eu,v,n,mEx,y,m,p equals the corresponding entry of the matrix
δv,xEu,y,n,p. Thus, Eu,v,n,mEx,y,m,p = δv,xEu,y,n,p. This proves Proposition 3.52.

3.8. The λ-addition matrices Aλ
u,v

Now, we come to another important class of matrices (that can also be seen as
building blocks of a kind): the λ-addition matrices. Those are square matrices, and
are defined as follows:

Definition 3.53. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Let λ be a number. Then, Aλ

u,v shall denote the n× n-matrix In + λEu,v (where
Eu,v means the n× n-matrix Eu,v, that is, Eu,v,n,n).

A few remarks about the notation:
(a) The superscript λ in the notation “Aλ

u,v” is not an exponent; i.e., the matrix
Aλ

u,v is not the λ-th power of some matrix Au,v. Instead, it is just an argument
that we have chosen to write as a superscript instead of a subscript. So the role
of the λ in “Aλ

u,v” is completely different from the role of the −1 in “A−1
1 ” in

Proposition 3.12.
(b) To be really precise, we ought to denote Aλ

u,v by Aλ
u,v,n, because it depends

on n. (This is similar to how we ought to denote Eu,v by Eu,v,n,n.) But the n will
be really clear from the context almost every time we deal with these matrices,
so we shall keep it out of our notation.

(c) The notation Aλ
u,v is not standard in the literature, but I will use this nota-

tion in the following.

Example 3.54. Let n = 4. Then,

Aλ
1,3 = In + λE1,3 =


1 0 λ 0
0 1 0 0
0 0 1 0
0 0 0 1

 and

Aλ
4,2 = In + λE4,2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 λ 0 1

 .

The pattern that you see on these examples is true in general:

Proposition 3.55. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Let λ be a number. Then, the matrix Aλ

u,v has the following entries:
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• All its diagonal entries are 1.

• Its (u, v)-th entry is λ.

• All its remaining entries are 0.

Proof of Proposition 3.55. Recall that Eu,v is the n× n-matrix whose (u, v)-th entry is
1 and whose all other entries are 0 (indeed, this is how Eu,v was defined). Since
matrices are scaled entry by entry, we can therefore conclude how λEu,v looks like:
Namely, λEu,v is the n× n-matrix whose (u, v)-th entry is λ · 1 = λ and whose all
other entries are λ · 0 = 0. Thus, we know the following:

• The matrix In is the n× n-matrix whose diagonal entries are 1, and whose all
other entries are 0.

• The matrix λEu,v is the n× n-matrix whose (u, v)-th entry is λ, and whose all
other entries are 0.

Since matrices are added entry by entry, we can thus infer how In + λEu,v looks
like: Namely, the matrix In + λEu,v is the n × n-matrix whose diagonal entries42

are 1 + 0 = 1, whose (u, v)-th entry is 0 + λ = λ, and whose all other entries are
0 + 0 = 0. Since In + λEu,v = Aλ

u,v, this rewrites as follows: The matrix Aλ
u,v is the

n× n-matrix whose diagonal entries are 1, whose (u, v)-th entry is λ, and whose
all other entries are 0. This proves Proposition 3.55.

We can next see what happens to a matrix when it is multiplied by Aλ
u,v:

Proposition 3.56. Let n ∈ N and m ∈ N. Let u and v be two distinct elements
of {1, 2, . . . , n}. Let λ be a number. Let C be an n×m-matrix. Then, Aλ

u,vC is the
n×m-matrix obtained from C by adding λ rowv C to the u-th row.

(Recall that rowk C denotes the k-th row of C for each k. Recall also that the
rows of C are row vectors, and thus are added and scaled entry by entry. Hence,
adding λ rowv C to the u-th row means adding λ times each entry of the v-th
row of C to the corresponding entry of the u-th row.)

Example 3.57. Let n = 3 and m = 2. Let C be the 3× 2-matrix

 a b
a′ b′

a′′ b′′

. Let

λ be a number. Then, Proposition 3.56 (applied to u = 2 and v = 1) claims that
Aλ

2,1C is the 3× 2-matrix obtained from C by adding λ row1 C to the 2-nd row. A
computation confirms this claim:

Aλ
2,1C =

 1 0 0
λ 1 0
0 0 1

 a b
a′ b′

a′′ b′′

 =

 a b
a′ + λa b′ + λb

a′′ b′′

 .

42Here, we are using the fact that the (u, v)-th entry is not a diagonal entry; this is because u and v
are distinct! If u and v were equal, then the (u, v)-th entry of In + λEu,v would be 1 + λ instead.
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Proposition 3.58. Let n ∈ N and m ∈ N. Let u and v be two distinct elements
of {1, 2, . . . , n}. Let λ be a number. Let C be an m× n-matrix. Then, CAλ

u,v is the
m× n-matrix obtained from C by adding λ colu C to the v-th column.

Note how Proposition 3.58 differs from Proposition 3.56: not only have rows
been replaced by columns, but also have u and v switched roles.

You might find Example 3.57 sufficient to convince you of the truth of Proposition
3.56. If not, a proof will be given in Section 3.9 below.

We shall refer to the matrix Aλ
u,v defined in Definition 3.53 as a “λ-addition

matrix”; it is one of three kinds of matrices that are called elementary matrices.
We shall learn about the other two kinds below.

Here are a few more properties of λ-addition matrices:

Proposition 3.59. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Let λ be a number. Then,

(
Aλ

u,v
)T

= Aλ
v,u.

Proposition 3.60. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
(a) We have A0

u,v = In.
(b) If λ and µ are two numbers, then Aλ

u,v Aµ
u,v = Aλ+µ

u,v .
(c) Let λ be a number. Then, the matrix Aλ

u,v is invertible, and its inverse is(
Aλ

u,v
)−1

= A−λ
u,v .

A proof of this proposition will also be given in Section 3.9.

3.9. (*) Some proofs about the λ-addition matrices

Proof of Proposition 3.56. Clearly, Aλ
u,vC is an n×m-matrix.

Proposition 3.44 (applied to n and m instead of m and p) shows that Eu,vC is the
n× m-matrix whose u-th row is the v-th row of C, and whose all other rows are
filled with zeroes. Thus,

rowu (Eu,vC) = rowv C (73)

(since the u-the row of Eu,vC is the v-th row of C) and

rowi (Eu,vC) = 01×m for every i ∈ {1, 2, . . . , n} satisfying i 6= u (74)

(since all other rows of Eu,vC are filled with zeroes).
But recall that matrices are added entry by entry. Thus, matrices are also added

by row by row – i.e., if U and V are two n×m-matrices, then any row of U + V is
the sum of the corresponding rows of U and of V. In other words, if U and V are
two n×m-matrices, then

rowi (U + V) = rowi U + rowi V for every i ∈ {1, 2, . . . , n} . (75)
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Also, if U is an n×m-matrix, then

rowi (λU) = λ rowi U for every i ∈ {1, 2, . . . , n} (76)

(since matrices are scaled entry by entry).
We have

Aλ
u,v︸︷︷︸

=In+λEu,v

C = (In + λEu,v)C = InC︸︷︷︸
=C

+λEu,vC = C + λEu,vC.

Hence, for each i ∈ {1, 2, . . . , n}, we have

rowi

 Aλ
u,vC︸ ︷︷ ︸

=C+λEu,vC

 = rowi (C + λEu,vC) = rowi C + rowi (λEu,vC)︸ ︷︷ ︸
=λ rowi(Eu,vC)

(by (76))

(by (75), applied to U = C and V = λEu,vC)
= rowi C + λ rowi (Eu,vC) . (77)

Now, we must prove that Aλ
u,vC is the n×m-matrix obtained from C by adding

λ rowv C to the u-th row. In other words, we must prove the following two claims:

Claim 1: The u-th row of the n×m-matrix Aλ
u,vC is the sum of λ rowv C

with the u-th row of C.

Claim 2: For each i ∈ {1, 2, . . . , n} satisfying i 6= u, the i-th row of the
n×m-matrix Aλ

u,vC equals the i-th row of C.

Proof of Claim 1: The u-th row of the n×m-matrix Aλ
u,vC is

rowu

(
Aλ

u,vC
)
= rowu C + λ rowu (Eu,vC)︸ ︷︷ ︸

=rowv C
(by (73))

(by (77), applied to i = u)

= rowu C + λ rowv C.

In other words, the u-th row of the n×m-matrix Aλ
u,vC is the sum of λ rowv C with

the u-th row of C. This proves Claim 1.
Proof of Claim 2: Let i ∈ {1, 2, . . . , n} be such that i 6= u. Then, the i-th row of the

n×m-matrix Aλ
u,vC is

rowi

(
Aλ

u,vC
)
= rowi C + λ rowi (Eu,vC)︸ ︷︷ ︸

=01×m
(by (74))

(by (77))

= rowi C + λ01×m︸ ︷︷ ︸
=01×m

= rowi C + 01×m = rowi C.
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In other words, the i-th row of the n × m-matrix Aλ
u,vC equals the i-th row of C.

This proves Claim 2.
Now, we have proven both Claim 1 and Claim 2; this completes the proof of

Proposition 3.56.

The proof of Proposition 3.58 is analogous.

Proof of Proposition 3.59. Proposition 3.49 (applied to m = n) yields (Eu,v)
T = Ev,u.

We have Aλ
u,v = In + λEu,v (by the definition of Aλ

u,v) and Aλ
v,u = In + λEv,u (by

the definition of Aλ
v,u). Now, Aλ

u,v︸︷︷︸
=In+λEu,v


T

= (In + λEu,v)
T = (In)

T︸ ︷︷ ︸
=In

(by Proposition 3.18 (a))

+ (λEu,v)
T︸ ︷︷ ︸

=λ(Eu,v)
T

(by Proposition 3.18 (c),
applied to m=n and A=Eu,v)(

by Proposition 3.18 (d),
applied to m = n, A = In and B = λEu,v

)
= In + λ (Eu,v)

T︸ ︷︷ ︸
=Ev,u

= In + λEv,u = Aλ
v,u.

Thus, Proposition 3.59 is proven.

Proof of Proposition 3.60. (a) The definition of A0
u,v yields A0

u,v = In + 0Eu,v︸ ︷︷ ︸
=0n×n

= In +

0n×n = In. This proves Proposition 3.60 (a).
(b) First proof: Let λ and µ be two numbers. Proposition 3.55 (applied to µ instead

of λ) tells us how the matrix Aµ
u,v looks like: Its diagonal entries are 1; its (u, v)-th

entry is µ; all its remaining entries are 0. In particular, its v-th row is

rowv
(

Aµ
u,v
)
= (0, 0, . . . , 0, 1, 0, 0, . . . , 0) (78)

(where the lonely 1 stands in the v-th position).
Proposition 3.56 (applied to m = n and C = Aµ

u,v) shows that Aλ
u,v Aµ

u,v is the
n× n-matrix obtained from Aµ

u,v by adding λ rowv
(

Aµ
u,v
)

to the u-th row. Since

λ rowv
(

Aµ
u,v
)
= λ (0, 0, . . . , 0, 1, 0, 0, . . . , 0) (by (78))
= (0, 0, . . . , 0, λ, 0, 0, . . . , 0)

(where the lonely λ stands in the v-th position), this shows that Aλ
u,v Aµ

u,v is the
n× n-matrix obtained from Aµ

u,v by adding (0, 0, . . . , 0, λ, 0, 0, . . . , 0) to the u-th row.
This addition has the effect that the (u, v)-th entry increases by λ, whereas all the
other entries remain unchanged. The resulting matrix Aλ

u,v Aµ
u,v therefore has its

(u, v)-th entry equal to µ + λ = λ + µ, whereas all its other entries are the same as
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in Aµ
u,v (that is, the diagonal entries are 1 and the remaining entries are 0). But this

is precisely how the matrix Aλ+µ
u,v looks like (because of Proposition 3.55, applied

to λ + µ instead of λ). Hence, Aλ
u,v Aµ

u,v = Aλ+µ
u,v . This proves Proposition 3.60 (b).

Second proof: We can also prove Proposition 3.60 (b) easily using Proposition 3.52:
Indeed, we have v 6= u (since u and v are distinct), so that δv,u = 0. But Proposition
3.52 (applied to m = n, p = n, x = u and y = v) yields Eu,v,n,nEu,v,n,n = δv,uEu,v,n,n.
Since Eu,v,n,n = Eu,v, this rewrites as Eu,vEu,v = δv,u︸︷︷︸

=0

Eu,v = 0Eu,v = 0n×n. Now,

the definitions of Aλ
u,v and Aµ

u,v yield Aλ
u,v = In + λEu,v and Aµ

u,v = In + µEu,v.
Multiplying these two equalities, we find

Aλ
u,v Aµ

u,v = (In + λEu,v) (In + µEu,v)

= In (In + µEu,v)︸ ︷︷ ︸
=In+µEu,v

+ λEu,v (In + µEu,v)︸ ︷︷ ︸
=λEu,v In+λEu,vµEu,v

= In + µEu,v + λ Eu,v In︸ ︷︷ ︸
=Eu,v

+ λEu,vµEu,v︸ ︷︷ ︸
=λµEu,vEu,v

= In + µEu,v + λEu,v︸ ︷︷ ︸
=(µ+λ)Eu,v

+λµ Eu,vEu,v︸ ︷︷ ︸
=0n×n

= In + (µ + λ)︸ ︷︷ ︸
=λ+µ

Eu,v + λµ0n×n︸ ︷︷ ︸
=0n×n

= In + (λ + µ) Eu,v + 0n×n = In + (λ + µ) Eu,v.

Comparing this with

Aλ+µ
u,v = In + (λ + µ) Eu,v

(
by the definition of Aλ+µ

u,v

)
,

we obtain Aλ
u,v Aµ

u,v = Aλ+µ
u,v . This proves Proposition 3.60 (b) again.

(c) Proposition 3.60 (b) (applied to µ = −λ) yields Aλ
u,v A−λ

u,v = Aλ+(−λ)
u,v = A0

u,v =
In (by Proposition 3.60 (a)).

But we can also apply Proposition 3.60 (b) to −λ and λ instead of λ and µ. We
thus obtain A−λ

u,v Aλ
u,v = A(−λ)+λ

u,v = A0
u,v = In (by Proposition 3.60 (a)).

The two equalities Aλ
u,v A−λ

u,v = In and A−λ
u,v Aλ

u,v = In show that A−λ
u,v is an inverse

of Aλ
u,v. This proves Proposition 3.60 (c).

3.10. Unitriangular matrices are products of Aλ
u,v’s

We have already said that the matrices Aλ
u,v are building blocks (of a sort). Before

we explain what this means in detail, let us define a convenient word:

Definition 3.61. Let n ∈ N. A lower addition n × n-matrix means a matrix of
the form Aλ

u,v, where λ is a number, and where u and v are two elements of
{1, 2, . . . , n} satisfying u > v. When n is clear from the context, we shall omit the
“n× n-” and simply say “lower addition matrix”.
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The name “lower addition matrix” is, again, not standard, but it will be useful
for me in this chapter.

Example 3.62. If n = 3, then the lower addition 3× 3-matrices are the matrices
of the form

Aλ
2,1 =

 1 0 0
λ 1 0
0 0 1

 , Aλ
3,1 =

 1 0 0
0 1 0
λ 0 1

 ,

Aλ
3,2 =

 1 0 0
0 1 0
0 λ 1


for all numbers λ. If n = 2, then the lower addition 2 × 2-matrices are the

matrices of the form Aλ
2,1 =

(
1 0
λ 1

)
for all numbers λ. If n = 1 or n = 0, then

there are no lower addition n× n-matrices (because there is nowhere to put the
λ, speaking visually).

It is clear that each lower addition matrix is lower-unitriangular43 (because Propo-
sition 3.55 shows that its entries above the diagonal are 0, and its diagonal entries
are 1). Thus, every product of lower addition matrices is a product of lower-
unitriangular matrices, and thus itself must be lower-unitriangular44. It turns out
that the converse is also true: Every lower-unitriangular matrix is a product of
lower addition matrices! This is a first, simple particular case of Gaussian elimina-
tion; let me state it as a theorem:

Theorem 3.63. Let n ∈ N. An n× n-matrix C is lower-unitriangular if and only
if C is a product of lower addition matrices.

Keep in mind that “a product of lower addition matrices” (and any other prod-
uct, unless declared otherwise) may contain zero factors (in which case it is empty,
and thus equals the identity matrix) or one factor (in which case it equals that
factor). Usually, of course, it will contain more than one factor.

Example 3.64. (a) The lower-unitriangular 2× 2-matrix
(

1 0
5 1

)
is a product of

lower addition matrices: Namely, it equals A5
2,1.

(b) The lower-unitriangular 1× 1-matrix
(

1
)

is a product of lower addition
matrices: Namely, it is the empty product. (Recall that the empty product of
1× 1-matrices is defined to be I1, and this is precisely our matrix

(
1
)
.)

43See Definition 3.30 for the meaning of “lower-unitriangular”.
44because Corollary 3.39 shows that any product of lower-unitriangular matrices is lower-

unitriangular
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(c) Let C be the lower-unitriangular 3× 3-matrix

 1 0 0
a 1 0
b c 1

. Then, C is a

product of lower addition matrices: Namely, it equals Aa
2,1Ab

3,1Ac
3,2.

Let us actually see how this representation of C can be found. We shall proceed
by writing C as a product of one lower addition matrix with a second matrix C′,
which is still lower-triangular but has one less nonzero entry than C. We then
will do the same with C′, obtaining a third matrix C′′; then, do the same with
C′′, and so on. At the end, we will be left with an identity matrix. In more detail:

Step 1: Let us get rid of the (2, 1)-th entry of C (that is, turn this entry into a
0) by subtracting a row1 C from row 2 of C. Denote the resulting matrix

by C′. Thus, C′ =

 1 0 0
0 1 0
b c 1

. (No entries other than the (2, 1)-th one

have been changed, because a row1 C = (a, 0, 0).) Since C′ was obtained
from C by subtracting a row1 C from row 2 of C, we can conversely obtain
C from C′ by adding a row1 (C′) to row 2 of C′. According to Proposition
3.56 (applied to n, 2, 1, a and C′ instead of m, u, v, λ and C), this means
that C = Aa

2,1C′.

Step 2: Let us get rid of the (3, 1)-th entry of C′ by subtracting b row1 (C′) from

row 3 of C′. Denote the resulting matrix by C′′. Thus, C′′ =

 1 0 0
0 1 0
0 c 1

.

(Again, no entries other than the (3, 1)-th one have been changed.) Sim-
ilarly to how we found that C = Aa

2,1C′ in Step 1, we now obtain
C′ = Ab

3,1C′′.

Step 3: Let us get rid of the (3, 2)-th entry of C′′ by subtracting c row2 (C′) from

row 3 of C′′. Denote the resulting matrix by C′′′. Thus, C′′′ =

 1 0 0
0 1 0
0 0 1

.

(Again, no entries other than the (3, 2)-th one have been changed.) Sim-
ilarly to how we found that C = Aa

2,1C′ in Step 1, we now obtain
C′′ = Ac

3,2C′′′.

We have now removed all nonzero entries below the diagonal. Our final matrix
C′′′ is simply the identity matrix: C′′′ = I3. Combining the three equalities we
have found, we obtain

C = Aa
2,1 C′︸︷︷︸

=Ab
3,1C′′

= Aa
2,1Ab

3,1 C′′︸︷︷︸
=Ac

3,2C′′′
= Aa

2,1Ab
3,1Ac

3,2 C′′′︸︷︷︸
=I3

= Aa
2,1Ab

3,1Ac
3,2 I3

= Aa
2,1Ab

3,1Ac
3,2. (79)
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Thus we have represented C as a product of lower addition matrices.
Notice that we need to be careful about the order in which we perform the

above steps. We have first gotten rid of the (2, 1)-st entry, then gotten rid of the
(3, 1)-th entry, and then gotten rid of the (3, 2)-th entry. If we had tried to clean
out the entries in a different order, we might have run into trouble. Namely, if
we first get rid of the (3, 1)-st entry, and then get rid of the (3, 2)-th entry, then
the (3, 1)-th entry can become “polluted” again (i.e., the resulting matrix might
again have a nonzero (3, 1)-th entry). One way to avoid this kind of trouble is to
clear out entries column by column: first clear out all entries in the 1-st column
(except for the 1 on the diagonal); then clear out all entries in the 2-nd column
(except for the 1 on the diagonal); and so on, moving left to right. (This is what
we have done in our three steps above.)

The general proof of Theorem 3.63 follows the idea outlined in Example 3.64 (c):

Proof of Theorem 3.63. ⇐=:45 We have already proven that every product of lower
addition matrices is lower-unitriangular. Hence, if C is a product of lower addition
matrices, then C is lower-unitriangular. This proves the ⇐= direction of Theorem
3.63.
=⇒:46 We need to prove that if C is lower-unitriangular, then C is a product of

lower addition matrices.
So let us assume that C is lower-unitriangular. Our goal is to prove that C is a

product of lower addition matrices.
Let me introduce a notation first: A downward row addition shall mean a trans-

formation that changes an n × m-matrix (for some m ∈ N) by adding a scalar
multiple47 of one of its rows to another row further down. In more formal terms:
A downward row addition means a transformation of the form “add λ times the v-th
row to the u-th row”, for some fixed number λ and some fixed integers u and v
satisfying 1 ≤ v < u ≤ n. As we know from Proposition 3.56, this transforma-
tion amounts to multiplying a matrix by Aλ

u,v from the left (i.e., this transformation
sends any n×m-matrix B to Aλ

u,vB); we shall therefore denote this transformation
itself by Aλ

u,v as well (hoping that the reader will not confuse the transformation
with the matrix).

Here is an example (for n = 4): The downward row addition Aλ
3,1 is the transfor-

mation that changes a 4×m-matrix by adding λ times the 1-st row to the 3-rd row.

45The symbol “⇐=” means that we are now going to prove the “⇐= direction” of Theorem 3.63
(that is, we are going to prove that if C is a product of lower addition matrices, then C is lower-
triangular). See Section 3.5 for more about this notation.

46The symbol “=⇒” means that we are now going to prove the “=⇒ direction” of Theorem 3.63
(that is, we are going to prove that if C is lower-triangular, then C is a product of lower addition
matrices). See Section 3.5 for more about this notation.

47Recall that a scalar multiple of a matrix A means a matrix of the form λA with λ being a number.
Row vectors are matrices (by definition), so we can talk about a scalar multiple of a row.
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For example, it transforms the 4× 2-matrix


a b
a′ b′

a′′ b′′

a′′′ b′′′

 into


a b
a′ b′

a′′ + λa b′′ + λb
a′′′ b′′′

.

Notice that any downward row addition Aλ
u,v is invertible: Namely, it can be

undone by the downward row addition A−λ
u,v . 48

Notice that, for any downward row addition Aλ
u,v, the matrix Aλ

u,v is a lower
addition matrix. This is because u > v (by the definition of a downward row
addition).

I claim that we can transform the lower-triangular n× n-matrix C into the iden-
tity matrix In by performing a sequence of downward row additions. Namely, we
should proceed by the following method:49

• At first, our matrix is

C =


1 0 0 · · · 0

C2,1 1 0 · · · 0
C3,1 C3,2 1 · · · 0

...
...

... . . . ...
Cn,1 Cn,2 Cn,3 · · · 1

 .

In particular, its 1-st row is (1, 0, 0, . . . , 0) (same as the 1-st row of In).

• Now, we perform the downward row addition Aλ
2,1 (for an appropriate choice

of λ, namely for λ = −C2,1) to clear out the (2, 1)-th entry of the matrix (i.e., to
put a 0 where this entry stood). This does not affect any of the other entries,
because the 1-st row of the matrix is (1, 0, 0, . . . , 0) (thus has only one nonzero
entry). Similarly, we then perform the downward row addition Aλ

3,1 (with
λ = −C3,1) to clear out the (3, 1)-th entry; then, we perform the downward
row addition Aλ

4,1 (with λ = −C4,1) to clear out the (4, 1)-th entry; and so on,

48Here are two ways to prove this:
First proof: The downward row addition Aλ

u,v transforms a matrix by adding λ times the v-th
row to the u-th row. The downward row addition A−λ

u,v transforms a matrix by adding −λ times
the v-th row to the u-th row, i.e., by subtracting λ times the v-th row from the u-th row. Hence,
these two row additions undo each other (i.e., if we perform one and then the other, then we
arrive back at the matrix we have started with), because (for example) adding λ times the v-th
row to the u-th row and then subtracting it back recovers the original u-th row. (Here, we have
tacitly used the fact that u 6= v. If we had u = v, then adding λ times the v-th row to the u-th row
would have changed the v-th row, and then subtracting it back would mean subtracting λ times
a changed v-th row from the u-th row.) So we have shown that the downward row addition Aλ

u,v
can be undone by the downward row addition A−λ

u,v . Qed.
Second proof: Proposition 3.60 (c) shows that the matrix A−λ

u,v is the inverse of the matrix Aλ
u,v.

Hence, multiplying a matrix by A−λ
u,v undoes multiplying a matrix by Aλ

u,v. In other words, the
downward row addition A−λ

u,v undoes the downward row addition Aλ
u,v. Qed.

49See the three-step procedure in Example 3.64 (c) for an illustration of this method.
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ending with the downward row addition Aλ
n,1 (with λ = −Cn,1) to clear out

the (n, 1)-th entry. As the result, we have cleared out all entries in the 1-st
column of our matrix, except for the 1 on the diagonal. In other words, our
matrix now looks as follows:

1 0 0 · · · 0
0 1 0 · · · 0
0 C3,2 1 · · · 0
...

...
... . . . ...

0 Cn,2 Cn,3 · · · 1

 .

In particular, its 2-nd row is (0, 1, 0, 0, . . . , 0) (same as the 2-nd row of In).

• Next, we similarly clear out all entries in the 2-nd column of the matrix,
by performing the downward row additions Aλ

3,2, Aλ
4,2, . . . , Aλ

n,2 (each time
picking an appropriate value of λ). Again, this does not affect any of the
other entries, because the 2-nd row of the matrix is (0, 1, 0, 0, . . . , 0). As the
result, we have cleared out all entries in the 2-nd column of our matrix, except
for the 1 on the diagonal. In other words, our matrix now looks as follows:

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 Cn,3 · · · 1

 .

In particular, its 3-rd row is (0, 0, 1, 0, 0, . . . , 0) (same as the 3-rd row of In).

• Next, we similarly clear out all entries in the 3-rd column of the matrix, by
performing the downward row additions Aλ

4,3, Aλ
5,3, . . . , Aλ

n,3. As the result,
we have cleared out all entries in the 3-rd column of our matrix, except for
the 1 on the diagonal. In other words, our matrix now looks as follows:

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .

Don’t mistake this for the identity matrix In: There might still be nonzero
entries outside of the diagonal. They are just hidden by the · · · notation.

• We continue this process, clearing out column after column, until the n-th
column is cleared out. By then, our matrix has become the identity matrix In.
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Thus, we have found an algorithm to transform our matrix C into the identity
matrix In by a sequence of downward row additions. Therefore, we can conversely
transform the identity matrix In into C by a sequence of downward row addi-
tions50. Let us denote these downward row additions (used to transform In into C)
by Aλ1

u1,v1 , Aλ2
u2,v2 , · · · , Aλk

uk,vk , numbered backwards (i.e., starting from the one used
last). Since each downward row addition Aλ

u,v amounts to multiplying a matrix by
the matrix Aλ

u,v (that is, it sends any n× m-matrix B to Aλ
u,vB), we thus conclude

that
C = Aλ1

u1,v1 Aλ2
u2,v2 · · · A

λk
uk,vk In = Aλ1

u1,v1 Aλ2
u2,v2 · · · A

λk
uk,vk .

Thus, C is a product of lower addition matrices (because each of the matrices
Aλ1

u1,v1 , Aλ2
u2,v2 , · · · , Aλk

uk,vk is a lower addition matrix51). This is precisely what we
had to prove. This proves the =⇒ direction of Theorem 3.63. Hence, the proof of
Theorem 3.63 is complete.

Remark 3.65. Our proof of Theorem 3.63 (specifically, of its =⇒ direction) actu-
ally gives an explicit representation of a lower-unitriangular n× n-matrix C as a
product of lower addition matrices:

C =
(

AC2,1
2,1 AC3,1

3,1 · · · A
Cn,1
n,1

) (
AC3,2

3,2 AC4,2
4,2 · · · A

Cn,2
n,2

) (
AC4,3

4,3 AC5,3
5,3 · · · A

Cn,3
n,3

)
· · ·
(

ACn−2,n−3
n−2,n−3ACn−1,n−3

n−1,n−3ACn,n−3
n,n−3

) (
ACn−1,n−2

n−1,n−2ACn,n−2
n,n−2

) (
ACn,n−1

n,n−1

)
(In) .

This complicated product consists of n factors, each of which is itself a product.
More precisely, the k-th factor is the product ACk+1,k

k+1,k ACk+2,k
k+2,k · · · A

Cn,k
n,k of all matrices

ACi,k
i,k with i > k; this corresponds to the n− k downward row additions that clear

out the non-diagonal entries in the k-th column of the matrix. In particular, the
n-th factor is thus an empty product, hence equals In; we could thus leave it out
(but we prefer to keep it in, for reasons of clarity).

The reason why the above explicit representation works is that in our process
of clearing out zero entries, we have never modified any entry other than the
one we were clearing out. Thus, for each (i, j), the (i, j)-th entry of our matrix
remained equal to its original value Ci,j up until the moment when we cleared it
out.

Exercise 3.66. In Example 3.64 (c), we have cleared out the three sub-diagonal
(= below the diagonal) entries of C in a specific order: first the (2, 1)-th entry,
then the (3, 1)-th entry, then the (3, 2)-th entry. We thus obtained the formula
C = Aa

2,1Ab
3,1Ac

3,2.

50because (as we have shown) any downward row addition Aλ
u,v is invertible, and can be undone

by another downward row addition
51Here we are using the fact that, for any downward row addition Aλ

u,v, the matrix Aλ
u,v is a lower

addition matrix.
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We could also have proceeded differently: for instance, we could have cleared
out the (3, 2)-th entry first, then the (3, 1)-th entry, then the (2, 1)-th entry. This
would have resulted in the formula C = Ac

3,2Ab−ac
3,1 Aa

2,1. (Be aware of the b− ac
in the Ab−ac

3,1 ; this is because our first clearing operation has changed the (3, 1)-th
entry to b− ac.)

There is a total of 6 different orders in which we can try clearing out the three
sub-diagonal entries of our 3× 3-matrix C. The two of them just shown work;
on the other hand, in Example 3.64 (c), we have seen one order which does not
(namely, starting with the (3, 1)-th entry, then doing the (3, 2)-th and then the
(2, 1)-th one). Of the remaining three, which ones work? And what formulas do
they result in?

(By “work”, I mean “work for every lower-unitriangular matrix C”.)

3.11. The inverse of a lower-unitriangular matrix

Theorem 3.63 has the following neat consequence:

Theorem 3.67. Let n ∈N. Let A be a lower-unitriangular n× n-matrix. Then, A
is invertible, and its inverse A−1 is again lower-unitriangular.

Example 3.68. Let A be the lower-unitriangular 3 × 3-matrix

 1 0 0
−2 1 0
1 6 1

.

Theorem 3.67 (applied to n = 3) then claims that A is invertible, and that its
inverse A−1 is again lower-unitriangular. This can easily be checked: We have

A−1 =

 1 0 0
2 1 0
−13 −6 1

.

Proof of Theorem 3.67. Theorem 3.63 (applied to C = A) shows that A is lower-
unitriangular if and only if A is a product of lower addition matrices. Hence, A
is a product of lower addition matrices (since A is lower-unitriangular). In other
words, A has the form A = A1A2 · · · Ak for some k ∈N and some k lower addition
matrices A1, A2, . . . , Ak. Consider these k and A1, A2, . . . , Ak.

We are in one of the following two cases:

Case 1: We have k 6= 0.

Case 2: We have k = 0.

Let us deal with Case 1. In this case, we have k 6= 0; thus, k is a positive integer.
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For each i ∈ {1, 2, . . . , k}, the matrix Ai is invertible52, and its inverse A−1
i is

again a lower addition matrix53. In other words, the matrices A1, A2, . . . , Ak are
invertible, and their inverses A−1

1 , A−1
2 , . . . , A−1

k are again lower addition matrices.
In other words, A−1

k , A−1
k−1, . . . , A−1

1 are lower addition matrices.
Now, Proposition 3.12 shows that the matrix A1A2 · · · Ak is invertible, and its in-

verse is (A1A2 · · · Ak)
−1 = A−1

k A−1
k−1 · · · A

−1
1 . Since A = A1A2 · · · Ak, this rewrites

as follows: The matrix A is invertible, and its inverse is A−1 = A−1
k A−1

k−1 · · · A
−1
1 .

The equality A−1 = A−1
k A−1

k−1 · · · A
−1
1 shows that A−1 is a product of lower addi-

tion matrices (since A−1
k , A−1

k−1, . . . , A−1
1 are lower addition matrices). But Theorem

3.63 (applied to C = A−1) shows that A−1 is lower-unitriangular if and only if A−1

is a product of lower addition matrices. Hence, A−1 is lower-unitriangular (since
A−1 is a product of lower addition matrices). This completes the proof of Theorem
3.67 in Case 1.

Case 2 is trivial (indeed, A = In in this case) and is left to the reader.54 Thus,
Theorem 3.67 is proven in both Cases 1 and 2; this shows that Theorem 3.67 is
always valid.

A similar result holds for upper-triangular matrices:

Theorem 3.69. Let n ∈ N. Let A be an upper-unitriangular n× n-matrix. Then,
A is invertible, and its inverse A−1 is again upper-unitriangular.

We could prove Theorem 3.69 by modifying our above proof of Theorem 3.67 (re-
placing “lower” by “upper” everywhere); of course, this would necessitate an ana-
logue for Theorem 3.63 concerning upper-unitriangular instead of lower-unitriangular

52Proof. Let i ∈ {1, 2, . . . , k}. We must show that the matrix Ai is invertible.
We know that Ai is a lower addition matrix (since A1, A2, . . . , Ak are lower addition matrices).

In other words, Ai has the form Ai = Aλ
u,v, where λ is a number, and where u and v are

two elements of {1, 2, . . . , n} satisfying u > v (by the definition of a “lower addition matrix”).
Consider these λ, u and v. Proposition 3.60 (c) shows that the matrix Aλ

u,v is invertible. In other
words, the matrix Ai is invertible (since Ai = Aλ

u,v). This completes our proof.
53Proof. Let i ∈ {1, 2, . . . , k}. We must show that A−1

i is a lower addition matrix.
We know that Ai is a lower addition matrix (since A1, A2, . . . , Ak are lower addition matrices).

In other words, Ai has the form Ai = Aλ
u,v, where λ is a number, and where u and v are

two elements of {1, 2, . . . , n} satisfying u > v (by the definition of a “lower addition matrix”).
Consider these λ, u and v. Proposition 3.60 (c) shows that the matrix Aλ

u,v is invertible, and that

its inverse is
(

Aλ
u,v
)−1

= A−λ
u,v .

But A−λ
u,v is a lower addition matrix (since −λ is a number, and since u > v). In other words,

A−1
i is a lower addition matrix (since

 Ai︸︷︷︸
=Aλ

u,v


−1

=
(

Aλ
u,v
)−1

= A−λ
u,v ). This completes our proof.

54Alternatively, our proof for Case 1 can be made to work in Case 2 as well, because Proposition
3.12 holds for k = 0 (as long as we define the empty product to be In). See Remark 3.13 for the
details.
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matrices (and upper addition matrices instead of lower addition matrices55). The
proof of this analogue would then proceed similarly to our proof of Theorem 3.63,
but again with some changes (e.g., instead of clearing out the columns from the
first to the last, we would have to clear out the columns from the last to the first,
and we would achieve this using “upward row additions”).

However, we can also quickly derive Theorem 3.69 from Theorem 3.67 using
transposes:

Proof of Theorem 3.69. We know that A is upper-unitriangular. Hence, by Proposi-
tion 3.41 (a), we can conclude that AT is lower-unitriangular. Therefore, we can
apply Theorem 3.67 to AT instead of A. As a result, we see that AT is invertible,
and its inverse

(
AT)−1 is again lower-unitriangular.

Hence, we can apply Proposition 3.18 (f) to AT instead of A. Thus, we conclude

that the matrix
(

AT)T is invertible, and its inverse is
((

AT)T
)−1

=
((

AT)−1
)T

.

Since
(

AT)T
= A (by Proposition 2.9, applied to m = n), this rewrites as follows:

The matrix A is invertible, and its inverse is A−1 =
((

AT)−1
)T

.

It remains to prove that A−1 is upper-unitriangular. This is again quite easy: We
have  A−1︸︷︷︸

=
(
(AT)

−1
)T


T

=

(((
AT
)−1

)T
)T

=
(

AT
)−1

(by Proposition 2.9, applied to n and
(

AT)−1 instead of m and A). Hence,
(

A−1)T is

lower-unitriangular (because we already know that
(

AT)−1 is lower-unitriangular).
But Proposition 3.41 (a) (applied to A−1 instead of A) shows that A−1 is upper-
unitriangular if and only if

(
A−1)T is lower-unitriangular. Since

(
A−1)T is lower-

unitriangular, we thus conclude that A−1 is upper-unitriangular. This completes
our proof of Theorem 3.69.

3.12. (*) Products of strictly upper-triangular matrices

In this section, I shall give a different proof of Theorem 3.67, which is somewhat of
a digression from our road towards Gaussian elimination, but has the advantage
of showing off some other ideas. The proof is motivated by the following example:

55Of course, these upper addition matrices are defined exactly as you would expect: They are
the matrices of the form Aλ

u,v, where λ is a number, and where u and v are two elements of
{1, 2, . . . , n} satisfying u < v.
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Example 3.70. Let A be a strictly lower-triangular 4× 4-matrix. Thus, A has the

form


0 0 0 0
a 0 0 0
b c 0 0
d e f 0

 for some numbers a, b, c, d, e, f . How do the powers of A

look like?
Well, we can just compute the first few of them and see what happens:

A1 =


0 0 0 0
a 0 0 0
b c 0 0
d e f 0

 , A2 =


0 0 0 0
0 0 0 0
ac 0 0 0

ae + b f c f 0 0

 ,

A3 =


0 0 0 0
0 0 0 0
0 0 0 0

ac f 0 0 0

 , A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Two things strike the eye:

• We have A4 = 04×4. As a consequence, every n ≥ 4 satisfies An =

A4︸︷︷︸
=04×4

An−4 = 04×4An−4 = 04×4. So we actually know all the powers of

A.

• Every time we pass from one power of A to the next (for example, from A2

to A3), the nonzero entries recede one level further towards the bottom-left
corner. At the step from A3 to A4, they finally recede beyond that corner,
so that only zeroes are left in the matrix.

The pattern seen in Example 3.70 actually generalizes: The powers of a strictly
lower-triangular n× n-matrix behave similarly, except that this time we have An =
0n×n instead of A4 = 04×4. Moreover, the same rule holds more generally if we
multiply several strictly lower-triangular n× n-matrices (instead of taking powers
of one such matrix). In order to explore this more rigorously, I shall introduce a
(nonstandard) notion:

Definition 3.71. Let n ∈ N. Let A be an n× n-matrix. Let k ∈ Z. We say that
the matrix A is k-lower-triangular if and only if we have

Ai,j = 0 whenever i < j + k.
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Example 3.72. Visually speaking, a square matrix A is k-lower-triangular if and
only if its nonzero entries begin no earlier than k levels below the main diagonal.
For example:

• Any 4× 4-matrix is k-lower-triangular for k ≤ −3.

• A 4 × 4-matrix is (−1)-lower-triangular if and only if it has the form
a b 0 0
c d e 0
f g h i
j k l m

 for some numbers a, b, c, d, e, f , g, h, i, j, k, l, m.

• A 4 × 4-matrix is 0-lower-triangular if and only if it has the form
a 0 0 0
b c 0 0
d e f 0
g h i j

 for some numbers a, b, c, d, e, f , g, h, i, j. This is, of course,

the same as being lower-triangular.

• A 4 × 4-matrix is 1-lower-triangular if and only if it has the form
0 0 0 0
a 0 0 0
b c 0 0
d e f 0

 for some numbers a, b, c, d, e, f . This is the same as being

strictly lower-triangular.

• A 4 × 4-matrix is 2-lower-triangular if and only if it has the form
0 0 0 0
0 0 0 0
a 0 0 0
b c 0 0

 for some numbers a, b, c.

• A 4 × 4-matrix is 3-lower-triangular if and only if it has the form
0 0 0 0
0 0 0 0
0 0 0 0
a 0 0 0

 for some number a.

• A 4 × 4-matrix is 4-lower-triangular if and only if it has the form
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (i.e., if and only if it is the zero matrix 04×4). The same

holds for 5-lower-triangular matrices and higher on.
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We state some simple facts (which should have been clear from the example
already):

Proposition 3.73. Let n ∈N. Let A be an n× n-matrix.
(a) The matrix A is k-lower-triangular for every integer k satisfying k ≤ −n+ 1.
(b) The matrix A is 0-lower-triangular if and only if A is lower-triangular.
(c) The matrix A is 1-lower-triangular if and only if A is strictly lower-

triangular.
(d) Let k be an integer such that k ≥ n. The matrix A is k-lower-triangular if

and only if A = 0n×n.

Proof of Proposition 3.73. (a) Let k be an integer satisfying k ≤ −n + 1. We shall
show that the matrix A is k-lower-triangular. In order to do so, we must prove that

Ai,j = 0 whenever i < j + k (80)

(because this is how “k-lower-triangular” was defined).
This is an example of a “vacuously true” statement. Let me explain the concept:

A logical statement of the form “if A, then B” is said to be vacuously true if A never
holds. For example, the statement “if a positive integer n is negative, then n = 15”
is vacuously true, since a positive integer n will never be negative in the first place.
Similarly, the statement “we have n = m for any two integers n and m satisfying

n = m +
1
2

” is also vacuously true, since two integers n and m will never satisfy

n = m +
1
2

. (I have not worded this statement as an “if A, then B” statement,
but I could easily have done so, by rewriting it as “if two integers n and m satisfy

n = m+
1
2

, then n = m”. The wording doesn’t matter much.) Finally, the statement
“every element of the empty set is a prime number” is also vacuously true, since
there is no element of the empty set. (Again, you can rewrite this statement as “if a
is an element of the empty set, then a is a prime number” in order to bring it into
the “if A, then B” form.)

As the name suggests, mathematicians consider vacuously true statements to be
true. The reasoning here is that, as long as you say nothing (and vacuously true
statements say nothing, in a sense), you remain truthful.

We are now going to prove that the statement (80) is vacuously true. In other
words, we are going to prove that two elements i and j of {1, 2, . . . , n} never satisfy
i < j + k in the first place.

In fact, let i and j be two elements of {1, 2, . . . , n} that satisfy i < j+ k. Then, i ≥ 1
(since i ∈ {1, 2, . . . , n}) and j ≤ n (since j ∈ {1, 2, . . . , n}), so that j︸︷︷︸

≤n

+ k︸︷︷︸
≤−n+1

≤

n + (−n + 1) = 1 ≤ i (since i ≥ 1). This contradicts i < j + k.
Now, forget that we fixed i and j. We thus have found a contradiction for any

two elements i and j of {1, 2, . . . , n} that satisfy i < j + k. This shows that there
exist no two elements i and j of {1, 2, . . . , n} that satisfy i < j + k. In other words,
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two elements i and j of {1, 2, . . . , n} never satisfy i < j + k. Thus, the statement
(80) is vacuously true, and therefore true. In other words, the matrix A is k-lower-
triangular (by the definition of “k-lower-triangular”). This proves Proposition 3.73
(a).

(Again, we shall be a lot briefer in proofs like this in the future.)
(b) Behold the following chain of equivalent statements56:

(A is 0-lower-triangular)

⇐⇒
(

Ai,j = 0 whenever i < j + 0
)

(because this is how “0-lower-triangular” is defined)

⇐⇒
(

Ai,j = 0 whenever i < j
)

(here, we have replaced j + 0 by j, since every j satisfies j + 0 = j)
⇐⇒ (A is lower-triangular)

(because this is how “lower-triangular” is defined) .

This proves Proposition 3.73 (b).
(c) =⇒: We must prove that if A is 1-lower-triangular, then A is strictly lower-

triangular.
Indeed, assume that A is 1-lower-triangular. In other words,

Ai,j = 0 whenever i < j + 1 (81)

(because this is how “1-lower-triangular” is defined).
Now, we have Ai,j = 0 whenever i < j 57. In other words, A is lower-triangular

(by the definition of “lower-triangular”). Moreover, every i ∈ {1, 2, . . . , n} satisfies
i < i + 1 and thus Ai,i = 0 (by (81), applied to j = i). In other words, all diagonal
entries of A are 0.

So we have shown that the matrix A is lower-triangular, and that all its diagonal
entries are 0. In other words, A is strictly lower-triangular (by the definition of
“strictly lower-triangular”). This proves the =⇒ direction of Proposition 3.73 (c).
⇐=: We must prove that if A is strictly lower-triangular, then A is 1-lower-

triangular.
Indeed, assume that A is strictly lower-triangular. According to the definition

of “strictly lower-triangular”, this means that the matrix A is lower-triangular, and
that all its diagonal entries are 0.

The matrix A is lower-triangular; in other words,

Ai,j = 0 whenever i < j (82)

(according to the definition of “lower-triangular”). Also, all diagonal entries of A
are 0; in other words,

Ai,i = 0 for each i ∈ {1, 2, . . . , n} . (83)

56After each equivalence, we give a justification for why it is an equivalence.
57Proof. Let i and j be two elements of {1, 2, . . . , n} such that i < j. Then, i < j < j + 1. Hence, (81)

shows that Ai,j = 0. Qed.
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Now, we can easily see that

Ai,j = 0 whenever i < j + 1

58. But this means precisely that A is 1-lower-triangular (because this is how “1-
lower-triangular” is defined). Thus, we have shown that A is 1-lower-triangular.
This proves the⇐= direction of Proposition 3.73 (c).

Now, the proof of Proposition 3.73 (c) is complete (since both its =⇒ and its⇐=
directions are proven).

(d) =⇒: We must prove that if A is k-lower-triangular, then A = 0n×n.
Indeed, assume that the matrix A is k-lower-triangular. In other words,

Ai,j = 0 whenever i < j + k (84)

(by the definition of “k-lower-triangular”).
Now, let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} be arbitrary. Then, j ≥ 1 (since

j ∈ {1, 2, . . . , n}) and i ≤ n (since i ∈ {1, 2, . . . , n}). Now, j︸︷︷︸
≥1

+ k︸︷︷︸
≥n

≥ 1 + n > n,

so that n < j + k and thus i ≤ n < j + k. Hence, Ai,j = 0 (by (84)). Comparing
this with (0n×n)i,j = 0 (since each entry of the matrix 0n×n is 0), we obtain Ai,j =

(0n×n)i,j.
Now, let us forget that we fixed i and j. We thus have shown that Ai,j = (0n×n)i,j

for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}. In other words, each entry of the
matrix A equals the corresponding entry of the matrix 0n×n. In other words, A =
0n×n. This proves the =⇒ direction of Proposition 3.73 (d).
⇐=: We must prove that if A = 0n×n, then A is k-lower-triangular.
If i and j are two elements of {1, 2, . . . , n} satisfying i < j + k, then

Ai,j = (0n×n)i,j (since A = 0n×n)

= 0 (since each entry of the matrix 0n×n is 0) .

In other words, Ai,j = 0 whenever i < j+ k. But this means precisely that the matrix
A is k-lower-triangular (by the definition of “k-lower-triangular”). Hence, we have
shown that A is k-lower-triangular. This proves the ⇐= direction of Proposition
3.73 (d).
58Proof. Let i and j be two elements of {1, 2, . . . , n} such that i < j + 1. We must prove that Ai,j = 0.

We are in one of the following two cases:
Case 1: We have i = j.
Case 2: We have i 6= j.
Let us first consider Case 1. In this case, we have i = j. Hence, j = i, so that Ai,j = Ai,i = 0

(by (83)). Hence, Ai,j = 0 is proven in Case 1.
Let us now consider Case 2. In this case, we have i 6= j. On the other hand, i < j + 1, so that

i ≤ (j + 1)− 1 (since i and j + 1 are integers). Thus, i ≤ (j + 1)− 1 = j. Combining this with
i 6= j, we obtain i < j. Hence, (82) shows that Ai,j = 0. Thus, Ai,j = 0 is proven in Case 2.

We now have proven Ai,j = 0 in each of the two Cases 1 and 2. Thus, Ai,j = 0 always holds,
qed.
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Now, Proposition 3.73 (d) is proven (since both its =⇒ and its⇐= directions are
proven).

Next, we state a fact which is crucial for our argument:

Proposition 3.74. Let n ∈ N. Let p and q be two integers. Let A be a p-lower-
triangular n× n-matrix. Let B be a q-lower-triangular n× n-matrix. Then, AB is
a (p + q)-lower-triangular n× n-matrix.

Remark 3.75. Proposition 3.74 generalizes Theorem 3.25 (a). In fact, recall that an
n× n-matrix is 0-lower-triangular if and only if it is lower-triangular (by Propo-
sition 3.73 (b)). Hence, applying Proposition 3.74 to p = 0 and q = 0, we obtain
precisely Theorem 3.25 (a).

Proof of Proposition 3.74. We shall imitate our above proof of Theorem 3.25 (a) as
well as we can.

The matrix A is p-lower-triangular. In other words,

Ai,j = 0 whenever i < j + p (85)

(because this is what it means for A to be p-lower-triangular).
The matrix B is q-lower-triangular. In other words,

Bi,j = 0 whenever i < j + q (86)

(because this is what it means for B to be q-lower-triangular).
Now, fix two elements i and j of {1, 2, . . . , n} satisfying i < j + (p + q). We shall

prove that for every k ∈ {1, 2, . . . , n}, we have

Ai,kBk,j = 0. (87)

[Proof of (87): Let k ∈ {1, 2, . . . , n}. Then, we are in one of the following two cases:

Case 1: We have i ≥ k + p.

Case 2: We have i < k + p.

We shall prove (87) in each of these two cases separately:

1. Let us first consider Case 1. In this case, we have i ≥ k + p. Thus, k + p ≤ i <
j + (p + q) = (j + q) + p. Subtracting p from both sides of this inequality, we
obtain k < j + q. Hence, we can apply (86) to k instead of i. As a result, we
obtain Bk,j = 0. Hence, Ai,k Bk,j︸︷︷︸

=0

= Ai,k0 = 0. Thus, (87) is proven in Case 1.

2. Let us now consider Case 2. In this case, we have i < k + p. Hence, we
can apply (85) to k instead of j. As a result, we obtain Ai,k = 0. Hence,
Ai,k︸︷︷︸
=0

Bk,j = 0Bk,j = 0. Thus, (87) is proven in Case 2.
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We have now proven (87) in both Cases 1 and 2. Thus, (87) is proven.]
Now, Proposition 2.19 (a) shows that

(AB)i,j = Ai,1B1,j︸ ︷︷ ︸
=0

(by (87),
applied to k=1)

+ Ai,2B2,j︸ ︷︷ ︸
=0

(by (87),
applied to k=2)

+ · · ·+ Ai,mBm,j︸ ︷︷ ︸
=0

(by (87),
applied to k=m)

= 0 + 0 + · · ·+ 0 = 0.

Now, forget that we fixed i and j. We thus have shown that

(AB)i,j = 0 whenever i < j + (p + q) .

But this says precisely that the matrix AB is (p + q)-lower-triangular (by the defi-
nition of “(p + q)-lower-triangular”). Thus, Proposition 3.74 is proven.

Using Proposition 3.74, we can show the following fact:

Corollary 3.76. Let n ∈N. Let A1, A2, . . . , Ak be k strictly lower-triangular n× n-
matrices (where k ∈N). Then, the n× n-matrix A1A2 · · · Ak is k-lower-triangular.

This is proven by induction similarly to how we proved Proposition 3.12 (we are
actually copying the structure of that proof):

Proof of Corollary 3.76. We prove Corollary 3.76 by induction on k:
Induction base: If k = 0, then Corollary 3.76 says that the n× n-matrix A1A2 · · · A0

is 0-lower-triangular. But this is indeed true59. Hence, Corollary 3.76 holds for
k = 0. This completes the induction base.

Induction step: Let ` be a positive integer. Assume (as our induction hypothesis) that
Corollary 3.76 holds for k = `. In other words, for any ` strictly lower-triangular
n× n-matrices A1, A2, . . . , A`, the n× n-matrix A1A2 · · · A` is `-lower-triangular.

We must now show that Corollary 3.76 also holds for k = `+ 1. So let us fix `+ 1
strictly lower-triangular n× n-matrices A1, A2, . . . , A`+1. We must then show that
the n× n-matrix A1A2 · · · A`+1 is (`+ 1)-lower-triangular.

Clearly, A1, A2, . . . , A` are ` strictly lower-triangular n×n-matrices (since A1, A2, . . . , A`+1
are `+ 1 strictly lower-triangular n× n-matrices). Thus, we can apply our induction
hypothesis, and conclude that the n× n-matrix A1A2 · · · A` is `-lower-triangular.

But the n × n-matrix A`+1 is 1-lower-triangular60. Thus, we can apply Propo-
sition 3.74 to p = `, q = 1, A = A1A2 · · · A` and B = A`+1. As a result, we
59Proof. The product A1 A2 · · · A0 is an empty product of n × n-matrices, and thus equals In (by

definition).
But Proposition 3.73 (b) (applied to A = In) shows that the matrix In is 0-lower-triangular

if and only if In is lower-triangular. Hence, the matrix In is 0-lower-triangular (since In is
lower-triangular). In other words, the n × n-matrix A1 A2 · · · A0 is 0-lower-triangular (since
A1 A2 · · · A0 = In). Qed.

60Proof. We know that A1, A2, . . . , A`+1 are `+ 1 strictly lower-triangular n× n-matrices. In partic-
ular, A`+1 is a strictly lower-triangular n× n-matrix.

But Proposition 3.73 (c) (applied to A = A`+1) shows that the matrix A`+1 is 1-lower-triangular
if and only if A`+1 is strictly lower-triangular. Hence, the matrix A`+1 is 1-lower-triangular (since
A`+1 is strictly lower-triangular). Qed.
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conclude that (A1A2 · · · A`) A`+1 is an (`+ 1)-lower-triangular n× n-matrix. Since
(A1A2 · · · A`) A`+1 = A1A2 · · · A`+1, this rewrites as follows: A1A2 · · · A`+1 is an
(`+ 1)-lower-triangular n×n-matrix. In other words, the n×n-matrix A1A2 · · · A`+1
is (`+ 1)-lower-triangular. This is precisely what we wanted to show! Thus, Corol-
lary 3.76 holds for k = `+ 1. This completes the induction step. Thus, Corollary
3.76 is proven by induction.

As a consequence of Corollary 3.76, we obtain the following fact, which we ex-
perimentally observed right after Example 3.70:

Corollary 3.77. Let n ∈N. Let A1, A2, . . . , An be n strictly lower-triangular n× n-
matrices. Then, A1A2 · · · An = 0n×n.

Proof of Corollary 3.77. Corollary 3.76 (applied to k = n) shows that the n× n-matrix
A1A2 · · · An is n-lower-triangular. But we have n ≥ n. Hence, Proposition 3.73 (d)
(applied to k = n and A = A1A2 · · · An) shows that the matrix A1A2 · · · An is n-
lower-triangular if and only if A1A2 · · · An = 0n×n. Hence, A1A2 · · · An = 0n×n
(since we know that the matrix A1A2 · · · An is n-lower-triangular). Corollary 3.77
is thus proven.

The following corollary is obtained as a particular case of Corollary 3.77 when
we set all the n matrices A1, A2, . . . , An equal to one and the same matrix A:

Corollary 3.78. Let n ∈ N. Let A be a strictly lower-triangular n × n-matrix.
Then, An = 0n×n.

Proof of Corollary 3.78. Clearly, A, A, . . . , A︸ ︷︷ ︸
n times

are n strictly lower-triangular n×n-matrices.

Thus, Corollary 3.77 (applied to Ai = A) shows that AA · · · A︸ ︷︷ ︸
n times

= 0n×n. Now,

An = AA · · · A︸ ︷︷ ︸
n times

= 0n×n. Corollary 3.78 is proven.

Another corollary of the preceding results is the following:

Corollary 3.79. Let n ∈ N. Let k be a positive integer. Let A be a strictly lower-
triangular n× n-matrix. Then, the n× n-matrix Ak is strictly lower-triangular.

Proof of Corollary 3.79. Clearly, A, A, . . . , A︸ ︷︷ ︸
k times

are k strictly lower-triangular n×n-matrices.

Thus, Corollary 3.76 (applied to Ai = A) shows that the n× n-matrix AA · · · A︸ ︷︷ ︸
k times

is

k-lower-triangular. Since AA · · · A︸ ︷︷ ︸
k times

= Ak, this rewrites as follows: The n× n-matrix

Ak is k-lower-triangular. In other words,(
Ak
)

i,j
= 0 whenever i < j + k (88)
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(according to the definition of “k-lower-triangular”).
But k is a positive integer. Thus, 1 ≤ k, so that j + 1︸︷︷︸

≤k

≤ j + k for every

j ∈ {1, 2, . . . , n}. Hence, every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfying
i < j + 1 must also satisfy i < j + k (since i < j + 1 ≤ j + k) and consequently(

Ak)
i,j = 0 (by (88)). In other words,(

Ak
)

i,j
= 0 whenever i < j + 1.

In other words, the matrix Ak is 1-lower-triangular (by the definition of “1-lower-
triangular”).

But Proposition 3.73 (c) (applied to Ak instead of A) shows that the matrix Ak is
1-lower-triangular if and only if Ak is strictly lower-triangular. Hence, Ak is strictly
lower-triangular (since Ak is 1-lower-triangular). This proves Corollary 3.79.

So much for products of strictly lower-triangular matrices. What about their
sums?

Proposition 3.80. Let n ∈ N. Let A1, A2, . . . , Ak be k strictly lower-triangular
n × n-matrices (where k ∈ N). Then, A1 + A2 + · · · + Ak is a strictly lower-
triangular n× n-matrix.

Proof of Proposition 3.80. This is left to the reader. (What makes this proof easy is
that matrices are added entry by entry.)

Just as trivial is the following fact:

Proposition 3.81. Let n ∈ N. Let A be a strictly lower-triangular n× n-matrix.
Then, −A is a strictly lower-triangular n× n-matrix.

Proof of Proposition 3.81. Left to the reader.

Let us also state an analogue of Proposition 3.32 for lower-triangular matrices:

Proposition 3.82. (a) Each lower-unitriangular matrix is invertibly lower-
triangular.

(b) Let n ∈N. Let A be an n× n-matrix. Then, A is lower-unitriangular if and
only if In − A is strictly lower-triangular.

Proof of Proposition 3.82. This is proven in the same way as we proved Proposition
3.32 (once the obvious modifications are made).

Next, we show another simple fact:
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Proposition 3.83. Let n ∈ N. Let A be an n × n-matrix such that An = 0n×n.
Then, the matrix In − A is invertible, and its inverse is (In − A)−1 = A0 + A1 +
· · ·+ An−1.

Proof of Proposition 3.83. Let B be the n× n-matrix A0 + A1 + · · ·+ An−1.
Multiplying the equalities A = A and B = A0 + A1 + · · ·+ An−1, we obtain

AB = A
(

A0 + A1 + · · ·+ An−1
)
= AA0︸︷︷︸

=A1

+ AA1︸︷︷︸
=A2

+ · · ·+ AAn−1︸ ︷︷ ︸
=An

= A1 + A2 + · · ·+ An =
(

A1 + A2 + · · ·+ An−1
)
+ An︸︷︷︸

=0n×n

= A1 + A2 + · · ·+ An−1.

Now,

(In − A) B = InB︸︷︷︸
=B=A0+A1+···+An−1

− AB︸︷︷︸
=A1+A2+···+An−1

=
(

A0 + A1 + · · ·+ An−1
)
−
(

A1 + A2 + · · ·+ An−1
)
= A0 = In.

A similar argument shows that B (In − A) = In. (To be more precise: This is proven
by multiplying the equalities B = A0 + A1 + · · ·+ An−1 and A = A, as opposed to
A = A and B = A0 + A1 + · · ·+ An−1.)

The two equalities (In − A) B = In and B (In − A) = In show that the matrix
B is an inverse of In − A. Thus, the matrix In − A is invertible, and its inverse is
(In − A)−1 = B. Hence, (In − A)−1 = B = A0 + A1 + · · · + An−1. The proof of
Proposition 3.83 is thus complete.

Remark 3.84. (a) The above proof of Proposition 3.83 might look like a slick and
artful trick. However, it is actually an incarnation of a well-known idea: the same
idea that enters in the proof of the infinite-sum formula

1
1− a

= a0 + a1 + a2 + · · · for any real number a with − 1 < a < 1.

The main difference here is that we are working with a matrix A instead of a real
number a, and that the infinite sum a0 + a1 + a2 + · · · is replaced by a finite sum
A0 + A1 + · · ·+ An−1 (because all the powers An, An+1, An+2, . . . equal the zero
matrix).

(b) Proposition 3.83 requires an n× n matrix A satisfying An = 0n×n. How do
we find such matrices?

Corollary 3.78 shows that every strictly lower-triangular n × n-matrix A has
this property; this gives us an infinite supply of such matrices (at least for n ≥ 2).
Similarly, every strictly upper-triangular n× n-matrix A has this property. But

there are also others: For example, if A is the 2× 2-matrix
(

1 1
−1 −1

)
, then A

also satisfies A2 = 02×2, despite not being triangular.
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We can now prove Theorem 3.67 again:

Second proof of Theorem 3.67. Proposition 3.82 (b) shows that A is lower-unitriangular
if and only if In − A is strictly lower-triangular. Hence, In − A is strictly lower-
triangular (because A is lower-unitriangular).

Let C = In − A. Thus, C is strictly lower-triangular (since In − A is strictly
lower-triangular). Hence, Corollary 3.78 (applied to C instead of A) shows that
Cn = 0n×n. Proposition 3.83 (applied to C instead of A) thus shows that the matrix
In − C is invertible, and that its inverse is (In − C)−1 = C0 + C1 + · · ·+ Cn−1.

We have In− C︸︷︷︸
=In−A

= In− (In − A) = A. Now, we know that the matrix In−C is

invertible. In other words, the matrix A is invertible (since In − C = A). It remains
to check that its inverse A−1 is again lower-unitriangular.

We assume WLOG that n is positive (since otherwise, there is nothing to check).
We have

(In − C)−1 = C0 + C1 + · · ·+ Cn−1 = C0︸︷︷︸
=In

+
(

C1 + C2 + · · ·+ Cn−1
)

= In +
(

C1 + C2 + · · ·+ Cn−1
)

.

Since In − C = A, this rewrites as

A−1 = In +
(

C1 + C2 + · · ·+ Cn−1
)

.

Subtracting this equality from In = In, we obtain

In − A−1 = In −
(

In +
(

C1 + C2 + · · ·+ Cn−1
))

= −
(

C1 + C2 + · · ·+ Cn−1
)

. (89)

But recall that the matrix C is strictly lower-triangular. Hence, for every positive
integer k, the n× n-matrix Ck is strictly lower-triangular (by Corollary 3.79, applied
to C instead of A). Thus, the matrices C1, C2, . . . , Cn−1 are n − 1 strictly lower-
triangular n × n-matrices. Proposition 3.80 (applied to k = n − 1 and Ak = Ck)
thus shows that C1 + C2 + · · · + Cn−1 is a strictly lower-triangular n × n-matrix.
Hence, Proposition 3.81 (applied to C1 + C2 + · · ·+ Cn−1 instead of A) yields that
−
(
C1 + C2 + · · ·+ Cn−1) is a strictly lower-triangular n× n-matrix. In light of (89),

this rewrites as follows: In − A−1 is a strictly lower-triangular n× n-matrix.
But Proposition 3.82 (b) (applied to A−1 instead of A) shows that A−1 is lower-

unitriangular if and only if In − A−1 is strictly lower-triangular. Since we have just
seen that In − A−1 is strictly lower-triangular, we can therefore conclude that A−1

is lower-unitriangular. Thus, the second proof of Theorem 3.67 is complete.

Of course, an analogous argument (with some inequality signs turned around,
and some “lower”s replaced by “upper”s) can be used to prove Theorem 3.69.
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3.13. The λ-scaling matrices Sλ
u

Now we shall explore another kind of square matrices not unlike the matrices Aλ
u,v

from Definition 3.5361:

Definition 3.85. Let n ∈ N. Let u ∈ {1, 2, . . . , n}. Let λ be a number. Then,
Sλ

u shall denote the n× n-matrix In + (λ− 1) Eu,u (where Eu,u means the n× n-
matrix Eu,u, that is, Eu,u,n,n).

A few remarks about the notation:
(a) The superscript λ in the notation “Sλ

u” is not an exponent; i.e., the matrix
Sλ

u is not the λ-th power of some matrix Su. Instead, it is just an argument that
we have chosen to write as a superscript instead of a subscript. So the role of the
λ in “Sλ

u” is completely different from the role of the −1 in “A−1
1 ” in Proposition

3.12.
(b) To be really precise, we ought to denote Sλ

u by Sλ
u,n, because it depends on

n. (This is similar to how we ought to denote Eu,v by Eu,v,n,n.) But the n will be
really clear from the context almost every time we deal with these matrices, so
we shall keep it out of our notation.

(c) The notation Sλ
u is not standard in the literature, but I will use this notation

in the following.

Example 3.86. Let n = 4. Then,

Sλ
3 = In + (λ− 1) E3,3 =


1 0 0 0
0 1 0 0
0 0 λ 0
0 0 0 1

 and

Sλ
4 = In + (λ− 1) E4,4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 λ

 .

The pattern that you see on these examples is true in general:

Proposition 3.87. Let n ∈ N. Let u ∈ {1, 2, . . . , n}. Let λ be a number. Then, the
matrix Sλ

u has the following entries:

• Its (u, u)-th entry is λ.

• All its other diagonal entries are 1.

• All its remaining entries are 0.

61The present section imitates the structure of Section 3.8; this is, of course, fully intentional.
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Proposition 3.87 can be rewritten as follows: The matrix Sλ
u (where n ∈N, where

u ∈ {1, 2, . . . , n}, and where λ is a number) is the n× n-identity matrix In with the
(u, u)-th entry replaced by λ.

Proof of Proposition 3.87. Recall that Eu,u is the n× n-matrix whose (u, u)-th entry is
1 and whose all other entries are 0 (indeed, this is how Eu,u was defined). Since
matrices are scaled entry by entry, we can therefore conclude how (λ− 1) Eu,u looks
like: Namely, (λ− 1) Eu,u is the n× n-matrix whose (u, u)-th entry is (λ− 1) · 1 =
λ− 1 and whose all other entries are (λ− 1) · 0 = 0. Thus, we know the following:

• The matrix In is the n× n-matrix whose diagonal entries62 are 1, and whose
all other entries are 0.

• The matrix (λ− 1) Eu,u is the n× n-matrix whose (u, u)-th entry is λ− 1, and
whose all other entries are 0.

Since matrices are added entry by entry, we can thus infer how In + (λ− 1) Eu,u
looks like: Namely, the matrix In + (λ− 1) Eu,u is the n × n-matrix whose (u, u)-
th entry is 1 + (λ− 1) = λ, whose all other diagonal entries are 1 + 0 = 1, and
whose all other entries are 0 + 0 = 0. Since In + (λ− 1) Eu,u = Sλ

u , this rewrites
as follows: The matrix Sλ

u is the n × n-matrix whose (u, u)-th entry is λ, whose
all other diagonal entries are 1, and whose all other entries are 0. This proves
Proposition 3.87.

We can next see what happens to a matrix when it is multiplied by Sλ
u :

Proposition 3.88. Let n ∈ N and m ∈ N. Let u ∈ {1, 2, . . . , n}. Let λ be a
number. Let C be an n×m-matrix. Then, Sλ

uC is the n×m-matrix obtained from
C by scaling the u-th row by λ.

(Recall that the rows of C are row vectors, and thus are scaled entry by entry.
Hence, scaling the u-th row by λ means multiplying each entry of the u-th row
of C by λ.)

Example 3.89. Let n = 3 and m = 2. Let C be the 3× 2-matrix

 a b
a′ b′

a′′ b′′

.

Let λ be a number. Then, Proposition 3.88 (applied to u = 2) claims that Sλ
2 C is

the 3× 2-matrix obtained from C by scaling the 2-nd row by λ. A computation
confirms this claim:

Sλ
2 C =

 1 0 0
0 λ 0
0 0 1

 a b
a′ b′

a′′ b′′

 =

 a b
λa′ λb′

a′′ b′′

 .

62This includes the (u, u)-th entry.
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Proposition 3.90. Let n ∈ N and m ∈ N. Let u ∈ {1, 2, . . . , n}. Let λ be a
number. Let C be an m× n-matrix. Then, CSλ

u is the m× n-matrix obtained from
C by scaling the u-th column by λ.

I will prove Proposition 3.88 in Section 3.14 below (although by now, this proof
could be a simple exercise).

We shall refer to the matrix Sλ
u defined in Definition 3.85 as a “λ-scaling matrix”;

it is the second of the previously announced three kinds of elementary matrices.
Here are a few more properties of λ-scaling matrices:

Proposition 3.91. Let n ∈ N. Let u ∈ {1, 2, . . . , n}. Let λ be a number. Then,(
Sλ

u
)T

= Sλ
u .

Proposition 3.92. Let n ∈N. Let u ∈ {1, 2, . . . , n}.
(a) We have S1

u = In.
(b) If λ and µ are two numbers, then Sλ

u Sµ
u = Sλµ

u .
(c) Let λ be a nonzero number. Then, the matrix Sλ

u is invertible, and its inverse
is
(
Sλ

u
)−1

= S1/λ
u .

A proof of this proposition will also be given in Section 3.14.

3.14. (*) Some proofs about the λ-scaling matrices

Proof of Proposition 3.88. Clearly, Sλ
uC is an n×m-matrix.

Proposition 3.44 (applied to n, m and u instead of m, p and v) shows that Eu,uC
is the n×m-matrix whose u-th row is the u-th row of C, and whose all other rows
are filled with zeroes. Thus,

rowu (Eu,uC) = rowu C (90)

(since the u-the row of Eu,uC is the u-th row of C) and

rowi (Eu,uC) = 01×m for every i ∈ {1, 2, . . . , n} satisfying i 6= u (91)

(since all other rows of Eu,uC are filled with zeroes).
But recall that matrices are added entry by entry. Thus, matrices are also added

by row by row – i.e., if U and V are two n×m-matrices, then any row of U + V is
the sum of the corresponding rows of U and of V. In other words, if U and V are
two n×m-matrices, then

rowi (U + V) = rowi U + rowi V for every i ∈ {1, 2, . . . , n} . (92)

Also, if U is an n×m-matrix, then every number µ satisfies

rowi (µU) = µ rowi U for every i ∈ {1, 2, . . . , n} (93)
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(since matrices are scaled entry by entry).
We have

Sλ
u︸︷︷︸

=In+(λ−1)Eu,u

C = (In + (λ− 1) Eu,u)C = InC︸︷︷︸
=C

+ (λ− 1) Eu,uC

= C + (λ− 1) Eu,uC.

Hence, for each i ∈ {1, 2, . . . , n}, we have

rowi

 Sλ
uC︸︷︷︸

=C+(λ−1)Eu,uC

 = rowi (C + (λ− 1) Eu,uC) = rowi C + rowi ((λ− 1) Eu,uC)︸ ︷︷ ︸
=(λ−1) rowi(Eu,uC)

(by (93), applied
to µ=λ−1)

(by (92), applied to U = C and V = (λ− 1) Eu,uC)
= rowi C + (λ− 1) rowi (Eu,uC) . (94)

Now, we must prove that Sλ
uC is the n×m-matrix obtained from C by scaling the

u-th row by λ. In other words, we must prove the following two claims:

Claim 1: The u-th row of the n×m-matrix Sλ
uC equals λ times the u-th

row of C.

Claim 2: For each i ∈ {1, 2, . . . , n} satisfying i 6= u, the i-th row of the
n×m-matrix Sλ

uC equals the i-th row of C.

Proof of Claim 1: The u-th row of the n×m-matrix Sλ
uC is

rowu

(
Sλ

uC
)
= rowu C + (λ− 1) rowu (Eu,uC)︸ ︷︷ ︸

=rowu C
(by (90))

(by (94), applied to i = u)

= rowu C + (λ− 1) rowu C = (1 + (λ− 1))︸ ︷︷ ︸
=λ

rowu C = λ rowu C.

In other words, the u-th row of the n×m-matrix Sλ
uC equals λ times the u-th row

of C. This proves Claim 1.
Proof of Claim 2: Let i ∈ {1, 2, . . . , n} be such that i 6= u. Then, the i-th row of the

n×m-matrix Sλ
uC is

rowi

(
Sλ

uC
)
= rowi C + (λ− 1) rowi (Eu,uC)︸ ︷︷ ︸

=01×m
(by (91))

(by (94))

= rowi C + (λ− 1) 01×m︸ ︷︷ ︸
=01×m

= rowi C + 01×m = rowi C.
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In other words, the i-th row of the n×m-matrix Sλ
uC equals the i-th row of C. This

proves Claim 2.
Now, we have proven both Claim 1 and Claim 2; this completes the proof of

Proposition 3.88.

The proof of Proposition 3.90 is analogous.

Proof of Proposition 3.91. Very easy and left to the reader. (See the proof of Proposi-
tion 3.59 for inspiration.)

Proof of Proposition 3.92. (a) The definition of S1
u yields S1

u = In + (1− 1) Eu,u︸ ︷︷ ︸
=0Eu,u=0n×n

=

In + 0n×n = In. This proves Proposition 3.92 (a).
(b) First proof: Let λ and µ be two numbers. Proposition 3.87 (applied to µ

instead of λ) tells us how the matrix Sµ
u looks like: Its (u, u)-th entry is µ; all its

other diagonal entries are 1; all its remaining entries are 0. In particular, its u-th
row is

rowu
(
Sµ

u
)
= (0, 0, . . . , 0, µ, 0, 0, . . . , 0) (95)

(where the lonely µ stands in the u-th position).
Proposition 3.88 (applied to m = n and C = Sµ

u) shows that Sλ
u Sµ

u is the n× n-
matrix obtained from Sµ

u by scaling the u-th row by λ. Thus, its u-th row is

rowu

(
Sλ

u Sµ
u

)
= λ rowu

(
Sµ

u
)︸ ︷︷ ︸

=(0,0,...,0,µ,0,0,...,0)
(by (95))

= λ (0, 0, . . . , 0, µ, 0, 0, . . . , 0)

= (λ0, λ0, . . . , λ0, λµ, λ0, λ0, . . . , λ0)
= (0, 0, . . . , 0, λµ, 0, 0, . . . , 0)

(where the lonely µ or λµ stands in the u-th position, as before). This is the same as
the u-th row of Sµ

u , except that the u-th entry has become λµ (whereas in the u-th
row of Sµ

u it used to be µ). All other rows of Sλ
u Sµ

u are equal to the corresponding
rows of Sµ

u (since Sλ
u Sµ

u was obtained from Sµ
u by scaling the u-th row by λ). Sum-

marizing, we thus conclude that the matrix Sλ
u Sµ

u differs from the matrix Sµ
u in only

one entry, namely the (u, u)-th entry63; and this (u, u)-th entry is λµ (for the matrix
Sλ

u Sµ
u). Since we already know how the matrix Sµ

u looks like (namely, its (u, u)-th
entry is µ; all its other diagonal entries are 1; all its remaining entries are 0), we
thus can conclude how the matrix Sλ

u Sµ
u looks like: Its (u, u)-th entry is λµ; all its

other diagonal entries are 1; all its remaining entries are 0. But this is precisely how
the matrix Sλµ

u looks like (because of Proposition 3.87, applied to λµ instead of λ).
Hence, Sλ

u Sµ
u = Sλµ

u . This proves Proposition 3.92 (b).
Second proof: We can also prove Proposition 3.92 (b) easily using Proposition 3.52:

Indeed, we have u = u and thus δu,u = 1. But Proposition 3.52 (applied to m = n,

63If it differs from it at all! If λ = 1 or µ = 0, then the matrices Sλ
u Sµ

u and Sµ
u are completely equal

(including in their (u, u)-th entries).
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p = n, x = u and y = u) yields Eu,u,n,nEu,u,n,n = δu,uEu,u,n,n. Since Eu,u,n,n = Eu,u,
this rewrites as Eu,uEu,u = δu,u︸︷︷︸

=1

Eu,u = 1Eu,u = Eu,u. Now, the definitions of Sλ
u and

Sµ
u yield Sλ

u = In + (λ− 1) Eu,u and Sµ
u = In + (µ− 1) Eu,u. Multiplying these two

equalities, we find

Sλ
u Sµ

u = (In + (λ− 1) Eu,u) (In + (µ− 1) Eu,u)

= In (In + (µ− 1) Eu,u)︸ ︷︷ ︸
=In+(µ−1)Eu,u

+ (λ− 1) Eu,u (In + (µ− 1) Eu,u)︸ ︷︷ ︸
=(λ−1)Eu,u In+(λ−1)Eu,u(µ−1)Eu,u

= In + (µ− 1) Eu,u + (λ− 1) Eu,u In︸ ︷︷ ︸
=Eu,u

+ (λ− 1) Eu,u (µ− 1) Eu,u︸ ︷︷ ︸
=(λ−1)(µ−1)Eu,uEu,u

= In + (µ− 1) Eu,u + (λ− 1) Eu,u︸ ︷︷ ︸
=((µ−1)+(λ−1))Eu,u

+ (λ− 1) (µ− 1) Eu,uEu,u︸ ︷︷ ︸
=Eu,u

= In + ((µ− 1) + (λ− 1)) Eu,u + (λ− 1) (µ− 1) Eu,u︸ ︷︷ ︸
=((µ−1)+(λ−1)+(λ−1)(µ−1))Eu,u

= In + ((µ− 1) + (λ− 1) + (λ− 1) (µ− 1))︸ ︷︷ ︸
=λµ−1

Eu,u = In + (λµ− 1) Eu,u.

Comparing this with

Sλµ
u = In + (λµ− 1) Eu,u

(
by the definition of Sλµ

u

)
,

we obtain Sλ
u Sµ

u = Sλµ
u . This proves Proposition 3.92 (b) again.

(c) Notice that 1/λ is a well-defined number (since λ is nonzero). Proposition
3.92 (b) (applied to µ = 1/λ) yields Sλ

u S1/λ
u = Sλ(1/λ)

u = S1
u = In (by Proposition

3.92 (a)).
But we can also apply Proposition 3.92 (b) to 1/λ and λ instead of λ and µ. We

thus obtain S1/λ
u Sλ

u = S(1/λ)λ
u = S1

u = In (by Proposition 3.92 (a)).
The two equalities Sλ

u S1/λ
u = In and S1/λ

u Sλ
u = In show that S1/λ

u is an inverse of
Sλ

u . This proves Proposition 3.92 (c).

3.15. Invertibly triangular matrices are products of Sλ
u’s and

Aλ
u,v’s

In the same way as the matrices Aλ
u,v served as “building blocks” for unitriangular

matrices (in Theorem 3.63), we can obtain “building blocks” for invertibly triangu-
lar matrices if we accompany these matrices Aλ

u,v by the matrices Sλ
u with nonzero

λ. We shall state this soon in some precision; let us first introduce terminology:



Notes on linear algebra (Wednesday 4th December, 2019, 15:09) page 116

Definition 3.93. Let n ∈N. A scaling n× n-matrix means a matrix of the form Sλ
u ,

where λ is a nonzero number, and where u is an element of {1, 2, . . . , n}. When
n is clear from the context, we shall omit the “n× n-” and simply say “scaling
matrix”.

The name “scaling matrix” is, again, not standard, but it will be useful for me in
this chapter.

Example 3.94. If n = 3, then the scaling 3× 3-matrices are the matrices of the
form

Sλ
1 =

 λ 0 0
0 1 0
0 0 1

 , Sλ
2 =

 1 0 0
0 λ 0
0 0 1

 ,

Sλ
3 =

 1 0 0
0 1 0
0 0 λ


for all numbers λ.

It is clear that each scaling matrix is diagonal (and therefore lower-triangular and
upper-triangular). Thus, every product of scaling matrices is a product of diagonal
matrices, and thus itself must be diagonal64. Moreover, both scaling matrices and
lower addition matrices65 are invertibly lower-triangular66. Hence, every product
of scaling matrices and lower addition matrices is a product of invertibly lower-
triangular matrices, and thus itself must be invertibly lower-triangular67. It turns
out that the converse is also true: Every invertibly lower-triangular matrix is a
product of scaling matrices and lower addition matrices! This is again a simple
particular case of Gaussian elimination, similar to Theorem 3.63; let me state it as
a theorem:

Theorem 3.95. Let n ∈ N. An n × n-matrix C is invertibly lower-triangular if
and only if C is a product of scaling matrices and lower addition matrices.

Example 3.96. (a) The invertibly lower-triangular 2 × 2-matrix
(

2 0
5 3

)
is a

product of scaling matrices and lower addition matrices: Namely, it equals
S2

1S3
2 A5/3

2,1 .

64Here we are using the fact that any product of diagonal matrices is diagonal. This is not hard to
check.

65Those were defined in Definition 3.61.
66Here, we are using the requirement that λ is nonzero in Definition 3.93. Without this requirement,

Sλ
u would not be invertibly lower-triangular!

67because Corollary 3.40 shows that any product of invertibly lower-triangular matrices is invertibly
lower-triangular
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(b) The invertibly lower-triangular 1× 1-matrix
(

5
)

is a product of scaling
matrices and lower addition matrices: Namely, it is S5

1.

(c) Let C be the invertibly lower-triangular 3× 3-matrix

 u 0 0
a v 0
b c w

. Then, C

is a product of lower addition matrices: Namely, it equals Su
1 Sv

2Sw
3 Aa/v

2,1 Ab/w
3,1 Ac/w

3,2 .
Let us actually see how this representation of C can be found. We shall proceed

by writing C as a product of one scaling matrix with a second matrix C′, which
is still invertibly lower-triangular but has one diagonal entry equal to 1. We then
will do the same with C′, obtaining a third matrix C′′; then, do the same with C′′,
and so on. At the end, we will be left with an invertibly lower-triangular matrix
whose all diagonal entries are 1. This means that we will be left with a lower-
unitriangular matrix. But from Theorem 3.63, we already know that this latter
matrix must be a product of lower addition matrices. In more detail: We first
observe that the diagonal entries u, v, w of C are nonzero (since C is invertibly
lower-triangular). Now, we proceed in several steps:

Step 1: Let us turn the (1, 1)-st entry of C into 1 by scaling row 1 by 1/u. Denote

the resulting matrix by C′. Thus, C′ =

 1 0 0
a v 0
b c w

. Notice that the new

matrix C′ is still invertibly lower-triangular (since only row 1 has been
changed, and since the scaling has left all the zero entries in place), but
now has its first diagonal entry equal to 1. Since C′ was obtained from C
by scaling row 1 by 1/u, we can conversely obtain C from C′ by scaling
row 1 by u. According to Proposition 3.88 (applied to n, 1, u and C′ instead
of m, u, λ and C), this means that C = Su

1 C′.

Step 2: Let us turn the (2, 2)-st entry of C′ into 1 by scaling row 2 by 1/v.

Denote the resulting matrix by C′′. Thus, C′′ =

 1 0 0
a/v 1 0

b c w

. Again,

the new matrix C′′ is still invertibly lower-triangular (since only row 2 has
been changed, and all zeroes have survived the scaling), and moreover the
first diagonal entry is still 1 (because only row 2 has been changed); but
now the second diagonal entry is also 1. Similarly to how we found that
C = Su

1 C′ in Step 1, we now obtain C′ = Sv
2C′′.

Step 3: Let us turn the (3, 3)-st entry of C′′ into 1 by scaling row 3 by 1/w.

Denote the resulting matrix by C′′′. Thus, C′′′ =

 1 0 0
a/v 1 0
b/w c/w 1

. Again,

the new matrix C′′′ is still invertibly lower-triangular, and the first two
diagonal entries are still equal to 1; and now the third diagonal entry has
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become 1 as well. Similarly to how we found that C = Su
1 C′ in Step 1, we

now obtain C′′ = Sw
3 C′′′.

We have thus turned all diagonal entries into 1. Our final matrix C′′′ is thus
upper-unitriangular. Thus, Theorem 3.63 shows that C′′′ is a product of lower
addition matrices. Explicitly, it can be written as follows:

C′′′ = Aa/v
2,1 Ab/w

3,1 Ac/w
3,2 .

(Indeed, this follows from (79), applied to a/v, b/w and c/w instead of a, b and
c). Combining the three equalities we have found, we obtain

C = Su
1 C′︸︷︷︸
=Sv

1C′′
= Su

1 Sv
1 C′′︸︷︷︸
=Sw

1 C′′′
= Su

1 Sv
1Sw

1 C′′′︸︷︷︸
=Aa/v

2,1 Ab/w
3,1 Ac/w

3,2

= Su
1 Sv

1Sw
1 Aa/v

2,1 Ab/w
3,1 Ac/w

3,2 .

Thus we have represented C as a product of scaling matrices and lower addition
matrices.

The general proof of Theorem 3.95 follows the idea outlined in Example 3.96 (c).
The proof is so similar to the proof of Theorem 3.63 that I shall be copying the
structure of the latter proof:

Proof of Theorem 3.95. ⇐=: We have already proven that every product of scaling
matrices and lower addition matrices is invertibly lower-triangular. Hence, if C
is a product of scaling matrices and lower addition matrices, then C is invertibly
lower-triangular. This proves the⇐= direction of Theorem 3.95.
=⇒: We need to prove that if C is invertibly lower-triangular, then C is a product

of scaling matrices and lower addition matrices.
So let us assume that C is invertibly lower-triangular. Our goal is to prove that C

is a product of scaling matrices and lower addition matrices.
Let me introduce a notation first: A row scaling shall mean a transformation that

changes an n × m-matrix (for some m ∈ N) by scaling one of its rows by some
nonzero number. In more formal terms: A row scaling means a transformation of
the form “scale the u-th row by λ”, for some fixed nonzero number λ and some
fixed u ∈ {1, 2, . . . , n}. As we know from Proposition 3.88, this transformation
amounts to multiplying a matrix by Sλ

u from the left (i.e., this transformation sends
any n × m-matrix B to Sλ

u B); we shall therefore denote this transformation itself
by Sλ

u as well (hoping that the reader will not confuse the transformation with the
matrix).

Here is an example (for n = 4): The row scaling Sλ
3 is the transformation that

changes a 4× m-matrix by scaling the 3-rd row by λ. For example, it transforms
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the 4× 2-matrix


a b
a′ b′

a′′ b′′

a′′′ b′′′

 into


a b
a′ b′

λa′′ λb′′

a′′′ b′′′

.

Notice that any row scaling Sλ
u is invertible: Namely, it can be undone by the row

scaling S1/λ
u . 68

Notice that, for any row scaling Sλ
u , the matrix Sλ

u is a row scaling matrix.
I claim that we can transform the invertibly lower-triangular n× n-matrix C into

a lower-unitriangular matrix by performing a sequence of row scalings. Namely,
we should proceed by the following method:69

• At first, our matrix is

C =


C1,1 0 0 · · · 0
C2,1 C2,2 0 · · · 0
C3,1 C3,2 C3,3 · · · 0

...
...

... . . . ...
Cn,1 Cn,2 Cn,3 · · · Cn,n

 .

Its diagonal entries C1,1, C2,2, . . . , Cn,n are nonzero (since C is invertibly lower-
triangular).

• Now, we perform the row scaling Sλ
1 (for an appropriate choice of λ, namely

for λ = 1/C1,1) to turn the (1, 1)-th entry of the matrix into 1. This oper-
ation preserves the invertibly lower-triangular nature of the matrix (i.e., the
matrix remains invertibly lower-triangular70). As the result, we have turned
the (1, 1)-th entry of the matrix into 1. In other words, our matrix now looks

68Here are two ways to prove this:
First proof: The row scaling Sλ

u transforms a matrix by scaling the u-th row by λ, i.e., by
multiplying each entry of the u-th row by λ. The row scaling S1/λ

u transforms a matrix by
scaling the u-th row by 1/λ, i.e., by dividing each entry of the u-th row by λ. Hence, these two
row scalings undo each other (i.e., if we perform one and then the other, then we arrive back
at the matrix we have started with), because each entry of the u-th row is multiplied by λ by
the former row scaling and divided by λ by the latter (whereas entries in other rows are left
unchanged by both scalings). So we have shown that the row scaling Sλ

u can be undone by the
row scaling S1/λ

u . Qed.
Second proof: Proposition 3.92 (c) shows that the matrix S1/λ

u is the inverse of the matrix Sλ
u .

Hence, multiplying a matrix by S1/λ
u undoes multiplying a matrix by Sλ

u . In other words, the
row scaling S1/λ

u undoes the row scaling Sλ
u . Qed.

69See the three-step procedure in Example 3.96 (c) for an illustration of this method.
70In fact, this holds for any row scaling: If B is any invertibly lower-triangular matrix and Sµ

u is a
row scaling, then the result of applying Sµ

u to B will still be invertibly lower-triangular. To prove
this, just observe that all zero entries of B remain zero when the row scaling Sµ

u is applied (since
Sµ

u merely scales a row), whereas all nonzero diagonal entries of B remain nonzero (since Sµ
u

scales a row by the nonzero number µ).
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as follows: 
1 0 0 · · · 0

C2,1 C2,2 0 · · · 0
C3,1 C3,2 C3,3 · · · 0

...
...

... . . . ...
Cn,1 Cn,2 Cn,3 · · · Cn,n

 .

• Next, we similarly perform the row scaling Sλ
2 (for an appropriate choice of

λ, namely for λ = 1/C2,2) to turn the (2, 2)-th entry of the matrix into 1.
Again, this operation preserves the invertibly lower-triangular nature of the
matrix (i.e., the matrix remains invertibly lower-triangular)71. Furthermore,
the (1, 1)-th entry of the matrix has not been changed by Sλ

2 (since Sλ
2 only

changes the 2-nd row), and thus is still 1. As the result, we have turned the
(2, 2)-th entry of the matrix into 1. In other words, our matrix now looks as
follows: 

1 0 0 · · · 0
C2,1/C2,2 1 0 · · · 0

C3,1 C3,2 C3,3 · · · 0
...

...
... . . . ...

Cn,1 Cn,2 Cn,3 · · · Cn,n

 .

• Next, we similarly perform the row scaling Sλ
3 (for an appropriate choice of

λ, namely for λ = 1/C3,3) to turn the (3, 3)-th entry of the matrix into 1. As
the result, we have turned the (3, 3)-th entry of the matrix into 1. In other
words, our matrix now looks as follows:

1 0 0 · · · 0
C2,1/C2,2 1 0 · · · 0
C3,1/C3,3 C3,2/C3,3 1 · · · 0

...
...

... . . . ...
Cn,1 Cn,2 Cn,3 · · · Cn,n

 .

• We continue this process, changing each diagonal entry of the matrix into 1
(one at a time). At the end, our matrix looks as follows:

1 0 0 · · · 0
C2,1/C2,2 1 0 · · · 0
C3,1/C3,3 C3,2/C3,3 1 · · · 0

...
...

... . . . ...
Cn,1/Cn,n Cn,2/Cn,n Cn,3/Cn,n · · · 1

 .

71Warning: Unlike in our proof of Theorem 3.63, this operation will (usually) change not only the
(2, 2)-th entry, but also the (2, 1)-nd entry of our matrix. In our proof of Theorem 3.63, each of
the operations that we performed changed only one entry of our matrix; but here in the proof
of Theorem 3.95, this is not the case. Nevertheless, the proof works, because the exact values of
the entries below the diagonal are not important.
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This is a lower-unitriangular matrix. Denote it by D. Theorem 3.63 (applied
to D instead of C) shows that D is lower-unitriangular if and only if D is a
product of lower addition matrices. Hence, D is product of lower addition
matrices (since D is lower-unitriangular).

Thus, we have found an algorithm to transform our matrix C into a lower-
unitriangular matrix D by a sequence of row scalings. Therefore, we can conversely
transform the matrix D into C by a sequence of row scalings72. Let us denote these
row scalings (used to transform D into C) by Sλ1

u1 , Sλ2
u2 , . . . , Sλk

uk , numbered back-
wards (i.e., starting from the one used last). Since each row scaling Sλ

u amounts to
multiplying a matrix by the matrix Sλ

u (that is, it sends any n×m-matrix B to Sλ
u B),

we thus conclude that
C = Sλ1

u1 Sλ2
u2 · · · S

λk
uk D. (96)

But Sλ1
u1 Sλ2

u2 · · · S
λk
uk is a product of scaling matrices (because each of the matrices

Sλ1
u1 , Sλ2

u2 , . . . , Sλk
uk is a scaling matrix73). Hence, (96) rewrites as follows:

C = Sλ1
u1 Sλ2

u2 · · · S
λk
uk︸ ︷︷ ︸

this is a product of
scaling matrices

D︸︷︷︸
this is a product of

lower addition matrices

.

Hence, C is a product of scaling matrices and lower addition matrices. This is
precisely what we had to prove. This proves the =⇒ direction of Theorem 3.95.
Hence, the proof of Theorem 3.95 is complete.

Remark 3.97. Our proof of Theorem 3.95 (specifically, of its =⇒ direction) actu-
ally gives an explicit representation of an invertibly lower-triangular n× n-matrix
C as a product of scaling matrices and lower addition matrices. We leave the de-
tails to the reader.

We can use Theorem 3.95 to prove the following analogue of Theorem 3.67, in
the same way as we used Theorem 3.63 to prove Theorem 3.67 itself:

Theorem 3.98. Let n ∈ N. Let A be an invertibly lower-triangular n× n-matrix.
Then, A is invertible, and its inverse A−1 is again invertibly lower-triangular.

Proof of Theorem 3.98. Theorem 3.95 (applied to C = A) shows that A is invert-
ibly lower-triangular if and only if A is a product of scaling matrices and lower
addition matrices. Hence, A is product of scaling matrices and lower addition
matrices (since A is invertibly lower-triangular). In other words, A has the form
A = A1A2 · · · Ak for some k ∈ N and some k matrices A1, A2, . . . , Ak, where each
of A1, A2, . . . , Ak is either a scaling matrix or a lower addition matrix. Consider
these k and A1, A2, . . . , Ak.

Observe the following fact:
72because (as we have shown) any row scaling Sλ

u is invertible, and can be undone by another row
scaling

73Here we are using the fact that, for any row scaling Sλ
u , the matrix Sλ

u is a scaling matrix.
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Fact 1: Let i ∈ {1, 2, . . . , k}. Then, the matrix Ai is invertible, and its
inverse A−1

i is either a scaling matrix or a lower addition matrix.

[Proof of Fact 1: We know that Ai is either a scaling matrix or a lower addition
matrix (since each of A1, A2, . . . , Ak is either a scaling matrix or a lower addition
matrix). In other words, we are in one of the following two cases:

Case 1: The matrix Ai is a scaling matrix.

Case 2: The matrix Ai is a lower addition matrix.

Let us consider Case 1 first. In this case, Ai is a scaling matrix. In other words,
Ai has the form Ai = Sλ

u for some nonzero number λ and some u ∈ {1, 2, . . . , n}.
Consider these λ and u. Proposition 3.92 (c) shows that the matrix Sλ

u is invertible,
and its inverse is

(
Sλ

u
)−1

= S1/λ
u . Since Sλ

u = Ai, this rewrites as follows: The matrix
Ai is invertible, and its inverse is A−1

i = S1/λ
u . But S1/λ

u is a scaling matrix. In other
words, A−1

i is a scaling matrix (since A−1
i = S1/λ

u ). Hence, A−1
i is either a scaling

matrix or a lower addition matrix. Thus, Fact 1 is proven in Case 1 (since we have
already shown that Ai is invertible).

Let us now consider Case 2. In this case, Ai is a lower addition matrix. In other
words, Ai has the form Ai = Aλ

u,v, where λ is a number, and where u and v are
two elements of {1, 2, . . . , n} satisfying u > v (by the definition of a “lower addition
matrix”). Consider these λ, u and v. Proposition 3.60 (c) shows that the matrix Aλ

u,v

is invertible, and its inverse is
(

Aλ
u,v
)−1

= A−λ
u,v . Since Aλ

u,v = Ai, this rewrites as
follows: The matrix Ai is invertible, and its inverse is A−1

i = A−λ
u,v . But A−λ

u,v is a
lower addition matrix (since u > v). In other words, A−1

i is a lower addition matrix
(since A−1

i = A−λ
u,v ). Hence, A−1

i is either a scaling matrix or a lower addition
matrix. Thus, Fact 1 is proven in Case 2 (since we have already shown that Ai is
invertible).

We have now proven Fact 1 in each of the two Cases 1 and 2. Thus, Fact 1 is
proven.]

We are in one of the following two cases:

Case 1: We have k 6= 0.

Case 2: We have k = 0.

Let us deal with Case 1. In this case, we have k 6= 0; thus, k is a positive integer.
Fact 1 shows that, for each i ∈ {1, 2, . . . , k}, the matrix Ai is invertible, and its in-

verse A−1
i is either a scaling matrix or a lower addition matrix. In other words, the

matrices A1, A2, . . . , Ak are invertible, and each of their inverses A−1
1 , A−1

2 , . . . , A−1
k

is either a scaling matrix or a lower addition matrix. In other words, each of
A−1

k , A−1
k−1, . . . , A−1

1 is either a scaling matrix or a lower addition matrix.
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Now, Proposition 3.12 shows that the matrix A1A2 · · · Ak is invertible, and its in-
verse is (A1A2 · · · Ak)

−1 = A−1
k A−1

k−1 · · · A
−1
1 . Since A = A1A2 · · · Ak, this rewrites

as follows: The matrix A is invertible, and its inverse is A−1 = A−1
k A−1

k−1 · · · A
−1
1 .

The equality A−1 = A−1
k A−1

k−1 · · · A
−1
1 shows that A−1 is a product of scaling

matrices and lower addition matrices (since each of A−1
k , A−1

k−1, . . . , A−1
1 is either

a scaling matrix or a lower addition matrix). But Theorem 3.95 (applied to C =
A−1) shows that A−1 is invertibly lower-triangular if and only if A−1 is a product
of scaling matrices and lower addition matrices. Hence, A−1 is invertibly lower-
triangular (since A−1 is a product of scaling matrices and lower addition matrices).
This completes the proof of Theorem 3.98 in Case 1.

Case 2 is trivial (indeed, A = In in this case) and is left to the reader.74 Thus,
Theorem 3.98 is proven in both Cases 1 and 2; this shows that Theorem 3.98 is
always valid.

Again, a similar result holds for upper-triangular matrices (and, again, has a
similar proof):

Theorem 3.99. Let n ∈N. Let A be an invertibly upper-triangular n× n-matrix.
Then, A is invertible, and its inverse A−1 is again invertibly upper-triangular.

3.16. (*) Yet another proof of triangular invertibility

Let us now give a second proof of Theorem 3.98. We first shall show a lemma:

Lemma 3.100. Let n ∈ N. Let A be an invertibly lower-triangular n× n-matrix.
Let b = (b1, b2, . . . , bn)

T be a column vector of size n (that is, an n× 1-matrix). Let
r ∈ {1, 2, . . . , n} be such that b1 = b2 = · · · = br−1 = 0. (Notice that if r = 1, then
the equality b1 = b2 = · · · = br−1 = 0 claims nothing, and thus is automatically
true – i.e., the numbers b1, b2, . . . , bn can be arbitrary in this case.)

Then, there exists a column vector v = (v1, v2, . . . , vn)
T of size n satisfying

Av = b and v1 = v2 = · · · = vr−1 = 0 and vr =
1

Ar,r
br.

Proof of Lemma 3.100. The matrix A is invertibly lower-triangular. In other words,
A is lower-triangular and all its diagonal entries are nonzero (because this is what
“invertibly lower-triangular” means). Since A is lower-triangular, we have

Ai,j = 0 whenever i < j (97)

(by the definition of “lower-triangular”). Since all diagonal entries of A are nonzero,
we have

Ai,i 6= 0 for each i ∈ {1, 2, . . . , n} . (98)

74Alternatively, our proof for Case 1 can be made to work in Case 2 as well, because Proposition
3.12 holds for k = 0 (as long as we define the empty product to be In). See Remark 3.13 for the
details.
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We shall now define n numbers v1, v2, . . . , vn. Our definition is recursive: For
each i ∈ {1, 2, . . . , n}, we assume that the first i − 1 numbers v1, v2, . . . , vi−1 are
already defined, and we define the next number vi by

vi =
1

Ai,i
(bi − (Ai,1v1 + Ai,2v2 + · · ·+ Ai,i−1vi−1)) (99)

75. This is a valid recursive definition, because it gives us a way to compute the
numbers v1, v2, . . . , vn one by one (beginning with v1, then proceeding to v2, then
to v3, and so on). Here is how this computation will look like:

• The number v1 is defined (and can be computed) by v1 =
1

A1,1
b1. (This is the

particular case of (99) for i = 1. 76)

• The number v2 is defined (and can be computed) by v2 =
1

A2,2
(b2 − A2,1v1).

• The number v3 is defined (and can be computed) by v3 =
1

A3,3
(b3 − (A3,1v1 + A3,2v2)).

• And so on, up to vn.

We furthermore define a column vector v by v = (v1, v2, . . . , vn)
T. Now, we claim

the following:

Claim 1: We have Av = b.

Claim 2: We have v1 = v2 = · · · = vr−1 = 0.

Claim 3: We have vr =
1

Ar,r
br.

[Proof of Claim 1: Multiplying the equalities A =


A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
... . . . ...

An,1 An,2 · · · An,n

 and

75The division by Ai,i is allowed because of (98).
76Note that the sum Ai,1v1 + Ai,2v2 + · · ·+ Ai,i−1vi−1 becomes an empty sum when i = 1, and thus

equals 0; therefore, we have omitted it.
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v = (v1, v2, . . . , vn)
T =


v1
v2
...

vn

, we obtain

Av =


A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
... . . . ...

An,1 An,2 · · · An,n




v1
v2
...

vn



=


A1,1v1 + A1,2v2 + · · ·+ A1,nvn
A2,1v1 + A2,2v2 + · · ·+ A2,nvn

...
An,1v1 + An,2v2 + · · ·+ An,nvn

 . (100)

But for each i ∈ {1, 2, . . . , n}, we have

Ai,1v1 + Ai,2v2 + · · ·+ Ai,nvn

= (Ai,1v1 + Ai,2v2 + · · ·+ Ai,ivi)

+

 Ai,i+1︸ ︷︷ ︸
=0

(by (97),
applied to j=i+1)

vi+1 + Ai,i+2︸ ︷︷ ︸
=0

(by (97),
applied to j=i+2)

vi+2 + · · ·+ Ai,n︸︷︷︸
=0

(by (97),
applied to j=n)

vn


= (Ai,1v1 + Ai,2v2 + · · ·+ Ai,ivi) + (0vi+1 + 0vi+2 + · · ·+ 0vn)︸ ︷︷ ︸

=0

= Ai,1v1 + Ai,2v2 + · · ·+ Ai,ivi

= (Ai,1v1 + Ai,2v2 + · · ·+ Ai,i−1vi−1) + Ai,ivi︸ ︷︷ ︸
=bi−(Ai,1v1+Ai,2v2+···+Ai,i−1vi−1)

(by (99))

= (Ai,1v1 + Ai,2v2 + · · ·+ Ai,i−1vi−1) + bi − (Ai,1v1 + Ai,2v2 + · · ·+ Ai,i−1vi−1)

= bi.

In other words, the n equalities

A1,1v1 + A1,2v2 + · · ·+ A1,nvn = b1;
A2,1v1 + A2,2v2 + · · ·+ A2,nvn = b2;

...
An,1v1 + An,2v2 + · · ·+ An,nvn = bn
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hold. In other words,
A1,1v1 + A1,2v2 + · · ·+ A1,nvn
A2,1v1 + A2,2v2 + · · ·+ A2,nvn

...
An,1v1 + An,2v2 + · · ·+ An,nvn

 =


b1
b2
...

bn

 .

Thus, (100) becomes

Av =


A1,1v1 + A1,2v2 + · · ·+ A1,nvn
A2,1v1 + A2,2v2 + · · ·+ A2,nvn

...
An,1v1 + An,2v2 + · · ·+ An,nvn

 =


b1
b2
...

bn

 = b.

This proves Claim 1.]
[Proof of Claim 2: We shall show that

v1 = v2 = · · · = vk−1 = 0 for each k ∈ {1, 2, . . . , r} . (101)

Our proof of (101) will proceed by induction over k:
Induction base: For k = 1, the equality (101) claims nothing (because there are no

numbers v1, v2, . . . , vk−1 when k = 1), and thus is true (for the stupid reason that
an empty claim is always true). This completes the induction base.

Induction step: Let i ∈ {1, 2, . . . , r− 1}. Assume that (101) holds for k = i. We
must now prove that (101) holds for k = i + 1.

We have i ∈ {1, 2, . . . , r− 1} and thus bi = 0 (since b1 = b2 = · · · = br−1 = 0).
We have assumed that (101) holds for k = i. In other words, we have v1 = v2 =
· · · = vi−1 = 0. In other words,

v` = 0 for each ` ∈ {1, 2, . . . , i− 1} . (102)

But now, (99) yields

vi =
1

Ai,i

bi −

Ai,1 v1︸︷︷︸
=0

(by (102), applied
to `=1)

+Ai,2 v2︸︷︷︸
=0

(by (102), applied
to `=2)

+ · · ·+ Ai,i−1 vi−1︸︷︷︸
=0

(by (102), applied
to `=i−1)




=

1
Ai,i

bi − (Ai,10 + Ai,20 + · · ·+ Ai,i−10)︸ ︷︷ ︸
=0

 =
1

Ai,i
bi︸︷︷︸
=0

= 0.

Combining this with v1 = v2 = · · · = vi−1 = 0, we obtain v1 = v2 = · · · = vi = 0.
In other words, (101) holds for k = i + 1. This completes the induction step. Hence,
(101) is proven.
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Now that we have proven (101), we can apply (101) to k = r. We thus obtain
v1 = v2 = · · · = vr−1 = 0. This proves Claim 2.]

[Proof of Claim 3: Claim 2 shows that v1 = v2 = · · · = vr−1 = 0. In other words,

v` = 0 for each ` ∈ {1, 2, . . . , r− 1} . (103)

But (99) (applied to i = r) yields

vr =
1

Ar,r

br −

Ar,1 v1︸︷︷︸
=0

(by (103), applied
to `=1)

+Ar,2 v2︸︷︷︸
=0

(by (103), applied
to `=2)

+ · · ·+ Ar,r−1 vr−1︸︷︷︸
=0

(by (103), applied
to `=r−1)




=

1
Ar,r

br − (Ar,10 + Ar,20 + · · ·+ Ar,r−10)︸ ︷︷ ︸
=0

 =
1

Ar,r
br.

This proves Claim 3.]
We have now proven all three claims. Thus, our column vector v = (v1, v2, . . . , vn)

T

satisfies Av = b and v1 = v2 = · · · = vr−1 = 0 and vr =
1

Ar,r
br. This shows that

such a vector exists; in other words, Lemma 3.100 is proven.

Next, we prove a lemma which is “almost” Theorem 3.98:

Lemma 3.101. Let n ∈ N. Let A be an invertibly lower-triangular n× n-matrix.
Then, there exists an invertibly lower-triangular n× n-matrix B such that AB =
In.

The matrix B in Lemma 3.101 will turn out to be the inverse of A; but Lemma
3.101 does not yet claim this (instead, Lemma 3.101 only guarantees that B is a right
inverse of A).

Proof of Lemma 3.101. For each j ∈ {1, 2, . . . , n}, we construct a column vector v[j] of
size n as follows:

Consider the vector colj (In); this is the j-th column of the identity matrix In.
Since In =

(
δi,j
)

1≤i≤n, 1≤j≤n, we have

colj (In) =


δ1,j

δ2,j
...

δn,j

 =
(
δ1,j, δ2,j, . . . , δn,j

)T .

This vector colj (In) is a column vector of size n, and satisfies δ1,j = δ2,j = · · · =
δj−1,j = 0 (since none of the numbers 1, 2, . . . , j− 1 equals j). Hence, Lemma 3.100
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(applied to b = colj (In) and bi = δi,j and r = j) says that there exists a column
vector v = (v1, v2, . . . , vn)

T of size n satisfying Av = colj (In) and v1 = v2 = · · · =

vj−1 = 0 and vj =
1

Aj,j
δj,j. Denote this vector v by v[j], and denote its entries

v1, v2, . . . , vn by v1,j, v2,j, . . . , vn,j (in order to stress that they depend on j).
Now, forget that we fixed j. Thus, for each j ∈ {1, 2, . . . , n}, we have found a

column vector
v[j] =

(
v1,j, v2,j, . . . , vn,j

)T (104)

of size n satisfying
Av[j] = colj (In) (105)

and
v1,j = v2,j = · · · = vj−1,j = 0 (106)

and
vj,j =

1
Aj,j

δj,j. (107)

Altogether, these are n column vectors v[1], v[2], . . . , v[n] of size n. We can assemble
them into a matrix B: Namely, set

B =
(
vi,j
)

1≤i≤n, 1≤j≤n .

This matrix B therefore satisfies

Bi,j = vi,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} . (108)

Hence, the matrix B is lower-triangular77 and all its diagonal entries are nonzero78.
In other words, the matrix B is invertibly lower-triangular.

Also, recall that B =
(
vi,j
)

1≤i≤n, 1≤j≤n. Hence, every j ∈ {1, 2, . . . , n} satisfies

colj B =


v1,j

v2,j
...

vn,j

 =
(
v1,j, v2,j, . . . , vn,j

)T
= v[j] (by (104)) . (109)

77Proof. Let j ∈ {1, 2, . . . , n}. Then, v1,j = v2,j = · · · = vj−1,j = 0 (by (106)). In other words, vi,j = 0
for every i ∈ {1, 2, . . . , n} satisfying i < j. In light of (108), this rewrites as Bi,j = 0 for every
i ∈ {1, 2, . . . , n} satisfying i < j.

Now, forget that we fixed j. We thus have shown that Bi,j = 0 whenever i < j. In other words,
the matrix B is lower-triangular.

78Proof. Let i ∈ {1, 2, . . . , n}. Applying (107) to j = i, we find vi,i =
1

Ai,i
δi,i︸︷︷︸
=1

(since i=i)

=
1

Ai,i
6= 0. But

(108) (applied to j = i) yields Bi,i = vi,i 6= 0.
Now, forget that we fixed i. We thus have learnt that Bi,i 6= 0 for each i ∈ {1, 2, . . . , n}. In other

words, the diagonal entries of the matrix B are nonzero.



Notes on linear algebra (Wednesday 4th December, 2019, 15:09) page 129

Now, Proposition 2.19 (d) (applied to m = n and p = n) shows that, for each
j ∈ {1, 2, . . . , n}, we have

colj (AB) = A · colj B︸ ︷︷ ︸
=v[j]

(by (109))

= Av[j] = colj (In) (by (105)) .

In other words, each column of the n × n-matrix AB equals the corresponding
column of In. Thus, AB = In.

Hence, we have found an invertibly lower-triangular n × n-matrix B such that
AB = In. This proves Lemma 3.101.

We are now ready to prove Theorem 3.98 by a rather cunning trick:

Proof of Theorem 3.98. Lemma 3.101 shows that there exists an invertibly lower-
triangular n × n-matrix B such that AB = In. Fix such a B, and denote it by C.
Thus, C is an invertibly lower-triangular n× n-matrix such that AC = In.

But we can also apply Lemma 3.101 to C instead of B. As the result, we conclude
that there exists an invertibly lower-triangular n× n-matrix B such that CB = In.
Fix such a B, and denote it by D. Thus, D is an invertibly lower-triangular n× n-
matrix such that CD = In.

Now, the matrix A is a left inverse of C (since AC = In), whereas the matrix D
is a right inverse of C (since CD = In). Hence, Proposition 3.6 (a) (applied to n, C,
A and D instead of m, A, L and R) reveals that A = D. Hence, C A︸︷︷︸

=D

= CD = In.

Combining CA = In with AC = In, we conclude that C is an inverse of A. Thus,
the matrix A is invertible, and its inverse is A−1 = C. Thus, A−1 is invertibly
lower-triangular (since C is invertibly lower-triangular, but A−1 = C). This proves
Theorem 3.98.

We have thus proven Theorem 3.98 again.
We could similarly prove Theorem 3.99, though this would require an analogue

of Lemma 3.100 in which (for example) the condition b1 = b2 = · · · = br−1 = 0
would be replaced by br+1 = br+2 = · · · = bn = 0 (and in the proof, we would
have to define the v1, v2, . . . , vn by “reverse recursion”, beginning with vn and then
proceeding with vn−1 and so on). It is probably quicker to derive Theorem 3.99
from Theorem 3.98 in the same way as we derived Theorem 3.69 from Theorem
3.67. Either way, the proof is straightforward (given what has already been shown),
and is left to the reader.

Theorem 3.67 and Theorem 3.69 can also be proven in the same way; the changes
usually boil down to replacing “ 6= 0” by “= 1”. Again, this proof can safely be left
to the reader (who would thus obtain a third proof of Theorem 3.67!).
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3.17. The swapping matrices Tu,v

The λ-addition matrices Aλ
u,v from Definition 3.53 and the λ-scaling matrices Sλ

u
from Definition 3.85 are two of the three kinds of matrices commonly called “ele-
mentary matrices”. The third kind are the swapping matrices:

Definition 3.102. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Then, Tu,v shall denote the n× n-matrix In − Eu,u − Ev,v + Eu,v + Ev,u. (Here, all
the matrices of the form Ep,q are meant to be n× n-matrices: that is, Ep,q = Ep,q,n,n
for all p ∈ {1, 2, . . . , n} and q ∈ {1, 2, . . . , n}.)

Again, the notation Tu,v is hiding the dependency on n, and we ought to write
Tu,v,n instead; but we will not, because there will not be any real occasion for
confusion.

Example 3.103. Let n = 4. Then,

T1,3 = In − E1,1 − E3,3 + E1,3 + E3,1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 and

T2,3 = In − E2,2 − E3,3 + E2,3 + E3,2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The pattern that you see on these examples is true in general:

Proposition 3.104. Let n ∈ N. Let u and v be two distinct elements of
{1, 2, . . . , n}. Then, the matrix Tu,v has the following entries:

• Its (u, u)-th and (v, v)-th entries are 0.

• All its other diagonal entries are 1.

• Its (u, v)-th and (v, u)-th entries are 1.

• All its remaining entries are 0.

Proof of Proposition 3.104. For each p ∈ {1, 2, . . . , n} and q ∈ {1, 2, . . . , n}, the matrix
Ep,q is the n× n-matrix whose (p, q)-th entry is 1 and whose all other entries are 0
(indeed, this is how Ep,q was defined). Hence, we obtain the following two facts:

Fact 1: Adding Ep,q to an n× n-matrix C has the effect that the (p, q)-th
entry of C is increased by 1 (while all other entries remain unchanged).
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Fact 2: Subtracting Ep,q from an n × n-matrix C has the effect that the
(p, q)-th entry of C is decreased by 1 (while all other entries remain
unchanged).

But recall that Tu,v = In − Eu,u − Ev,v + Eu,v + Ev,u. Thus, the matrix Tu,v is
obtained from the matrix In by first subtracting Eu,u, then subtracting Ev,v, then
adding Eu,v, and then adding Ev,u. Using Fact 1 and Fact 2, we can see how these
subtractions and additions affect the entries of a matrix; thus, we can find all entries
of the matrix Tu,v = In − Eu,u − Ev,v + Eu,v + Ev,u:

• The matrix In is the n× n-matrix whose diagonal entries79 are 1, and whose
all other entries are 0.

• Subtracting Eu,u from In has the effect that the (u, u)-th entry is decreased by
1; thus, it becomes 1− 1 = 0 (because it was 1 in In). Hence, the (u, u)-th
entry of the matrix In− Eu,u is 0, all its other diagonal entries are 1, and all its
remaining entries are 0.

• Subtracting Ev,v from In − Eu,u has the effect that the (v, v)-th entry is de-
creased by 1; thus, it becomes 1− 1 = 0 (because it was 1 in In− Eu,u). Hence,
the (u, u)-th and (v, v)-th entries of the matrix In − Eu,u − Ev,v are 0, all its
other diagonal entries are 1, and all its remaining entries are 0.

• Adding Eu,v to In − Eu,u − Ev,v has the effect that the (u, v)-th entry is in-
creased by 1; thus, it becomes 0 + 1 = 1 (because it was 0 in In − Eu,u − Ev,v).
Hence, the (u, u)-th and (v, v)-th entries of the matrix In − Eu,u − Ev,v + Eu,v
are 0, all its other diagonal entries are 1, its (u, v)-th entry is 1, and all its
remaining entries are 0.

• Adding Ev,u to In − Eu,u − Ev,v + Eu,v has the effect that the (v, u)-th entry is
increased by 1; thus, it becomes 0 + 1 = 1 (because it was 0 in In − Eu,u −
Ev,v + Eu,v). Hence, the (u, u)-th and (v, v)-th entries of the matrix In − Eu,u −
Ev,v + Eu,v + Ev,u are 0, all its other diagonal entries are 1, its (u, v)-th and
(v, u)-th entries are 1, and all its remaining entries are 0. Since In − Eu,u −
Ev,v + Eu,v + Ev,u = Tu,v, this rewrites as follows: The (u, u)-th and (v, v)-th
entries of the matrix Tu,v are 0, all its other diagonal entries are 1, its (u, v)-th
and (v, u)-th entries are 1, and all its remaining entries are 0. This proves
Proposition 3.104.

We can next see what happens to a matrix when it is multiplied by Tu,v:

79This includes the (u, u)-th entry.
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Proposition 3.105. Let n ∈N and m ∈N. Let u and v be two distinct elements of
{1, 2, . . . , n}. Let C be an n×m-matrix. Then, Tu,vC is the n×m-matrix obtained
from C by swapping the u-th row with the v-th row.

Example 3.106. Let n = 3 and m = 2. Let C be the 3× 2-matrix

 a b
a′ b′

a′′ b′′

.

Then, Proposition 3.105 (applied to u = 1 and v = 3) claims that T1,3C is the
3× 2-matrix obtained from C by swapping the 1-st row with the 3-rd row. A
computation confirms this claim:

T1,3C =

 0 0 1
0 1 0
1 0 0

 a b
a′ b′

a′′ b′′

 =

 a′′ b′′

a′ b′

a b

 .

Proposition 3.107. Let n ∈N and m ∈N. Let u and v be two distinct elements of
{1, 2, . . . , n}. Let C be an m× n-matrix. Then, CTu,v is the m× n-matrix obtained
from C by swapping the u-th column with the v-th column.

Corollary 3.108. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Then:

(a) The matrix Tu,v can be obtained from In by swapping the u-th row with the
v-th row.

(b) The matrix Tu,v can be obtained from In by swapping the u-th column with
the v-th column.

I will prove Proposition 3.105 and Corollary 3.108 in Section 3.18 below.
We shall refer to the matrix Tu,v defined in Definition 3.102 as a “swapping ma-

trix”.80 It is the third type of elementary matrices.
Here are a few more properties of swapping matrices:

Proposition 3.109. Let n ∈ N. Let u and v be two distinct elements of
{1, 2, . . . , n}. Then, (Tu,v)

T = Tu,v.

Proposition 3.110. Let n ∈ N. Let u and v be two distinct elements of
{1, 2, . . . , n}.

(a) We have Tu,v = In.
(b) The matrix Tu,v is invertible, and its inverse is (Tu,v)

−1 = Tu,v.
(c) We have Tv,u = Tu,v.

These facts will be proven in Section 3.18.

80The letter T in “Tu,v” stands for “transposition”, but this is not really related to the transpose of a
matrix. It is instead due to the fact that the word “transposition” means “changing the positions
(of something)”, and in mathematics is often used for swapping two things.
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3.18. (*) Some proofs about the swapping matrices

Proof of Proposition 3.105. Clearly, Tu,vC is an n×m-matrix.
Let x and y be two elements of {1, 2, . . . , n}. Proposition 3.44 (applied to n, m,

x and y instead of m, p, u and v) shows that Ex,yC is the n×m-matrix whose x-th
row is the y-th row of C, and whose all other rows are filled with zeroes. Thus,

rowx
(
Ex,yC

)
= rowy C (110)

(since the x-the row of Ex,yC is the y-th row of C) and

rowi
(
Ex,yC

)
= 01×m for every i ∈ {1, 2, . . . , n} satisfying i 6= x (111)

(since all other rows of Ex,yC are filled with zeroes).
Now, forget that we fixed x and y. We thus have proven (110) and (111) for every

two elements x and y of {1, 2, . . . , n}. In particular, every y ∈ {1, 2, . . . , n} satisfies

rowu
(
Ev,yC

)
= 01×m (112)

(by (111), applied to i = u and x = v (since u 6= v)) and

rowv
(
Eu,yC

)
= 01×m (113)

(by (111), applied to i = v and x = u (since v 6= u)).
But recall that matrices are added entry by entry. Thus, matrices are also added

by row by row – i.e., if U and V are two n×m-matrices, then any row of U + V is
the sum of the corresponding rows of U and of V. In other words, if U and V are
two n×m-matrices, then

rowi (U + V) = rowi U + rowi V for every i ∈ {1, 2, . . . , n} . (114)

Similarly,

rowi (U −V) = rowi U − rowi V for every i ∈ {1, 2, . . . , n} . (115)

Using (114) and (115) repeatedly, we can show that

rowi (U −V −W + X + Y) = rowi U − rowi V − rowi W + rowi X + rowi Y (116)

for every i ∈ {1, 2, . . . , n}.
We have

Tu,v︸︷︷︸
=In−Eu,u−Ev,v+Eu,v+Ev,u

C = (In − Eu,u − Ev,v + Eu,v + Ev,u)C

= InC︸︷︷︸
=C

−Eu,uC− Ev,vC + Eu,vC + Ev,uC

= C− Eu,uC− Ev,vC + Eu,vC + Ev,uC.
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Hence, for each i ∈ {1, 2, . . . , n}, we have

rowi

 Tu,vC︸ ︷︷ ︸
=C−Eu,uC−Ev,vC+Eu,vC+Ev,uC


= rowi (C− Eu,uC− Ev,vC + Eu,vC + Ev,uC)
= rowi C− rowi (Eu,uC)− rowi (Ev,vC) + rowi (Eu,vC) + rowi (Ev,uC) (117)

(by (116), applied to U = C, V = Eu,uC, W = Ev,vC, X = Eu,vC and Y = Ev,uC).
Now, we must prove that Tu,vC is the n×m-matrix obtained from C by swapping

the u-th row with the v-th row. In other words, we must prove the following three
claims:

Claim 1: The u-th row of the n×m-matrix Tu,vC equals the v-th row of
C.

Claim 2: The v-th row of the n×m-matrix Tu,vC equals the u-th row of
C.

Claim 3: For each i ∈ {1, 2, . . . , n} satisfying i 6= u and i 6= v, the i-th
row of the n×m-matrix Tu,vC equals the i-th row of C.

Proof of Claim 1: The u-th row of the n×m-matrix Tu,vC is

rowu (Tu,vC)
= rowu C− rowu (Eu,uC)︸ ︷︷ ︸

=rowu C
(by (110), applied to

x=u and y=u)

− rowu (Ev,vC)︸ ︷︷ ︸
=01×m

(by (112),
applied to y=v)

+ rowu (Eu,vC)︸ ︷︷ ︸
=rowv C

(by (110), applied to
x=u and y=v)

+ rowu (Ev,uC)︸ ︷︷ ︸
=01×m

(by (112),
applied to y=u)

(by (117), applied to i = u)
= rowu C− rowu C− 01×m + rowv C + 01×m = rowv C.

In other words, the u-th row of the n× m-matrix Tu,vC equals the v-th row of C.
This proves Claim 1.

Proof of Claim 2: The v-th row of the n×m-matrix Tu,vC is

rowi (Tu,vC)
= rowi C− rowi (Eu,uC)︸ ︷︷ ︸

=01×m
(by (111), applied to

x=u and y=u)

− rowi (Ev,vC)︸ ︷︷ ︸
=01×m

(by (111), applied to
x=v and y=v)

+ rowi (Eu,vC)︸ ︷︷ ︸
=01×m

(by (111), applied to
x=u and y=v)

+ rowv (Ev,uC)︸ ︷︷ ︸
=01×m

(by (111), applied to
x=v and y=u)

(by (117))
= rowi C− 01×m − 01×m + 01×m + 01×m = rowi C.

In other words, the i-th row of the n×m-matrix Tu,vC equals the i-th row of C. This
proves Claim 3.

Now, we have proven Claim 1, Claim 2 and Claim 3; this completes the proof of
Proposition 3.105.
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The proof of Proposition 3.107 is analogous.

Proof of Corollary 3.108. (a) Proposition 3.105 (applied to m = n and C = In) shows
that Tu,v In is the n× n-matrix obtained from In by swapping the u-th row with the
v-th row. In other words, Tu,v is the n× n-matrix obtained from In by swapping the
u-th row with the v-th row (since Tu,v In = Tu,v). This proves Corollary 3.108 (a).

(b) The proof of Corollary 3.108 (b) is similar, except that now we have to use
Proposition 3.107.

Proof of Proposition 3.109. Proposition 3.18 (d) shows that any two n × m-matrices
A and B (where m ∈N) satisfy

(A + B)T = AT + BT. (118)

Similarly, any two n×m-matrices A and B (where m ∈N) satisfy

(A− B)T = AT − BT. (119)

By repeated application of (118) and (119), we can show the following fact: If A, B,
C, D and E are five n×m-matrices (for some m ∈N), then

(A− B− C + D + E)T = AT − BT − CT + DT + ET. (120)

The definition of Tu,v yields Tu,v = In − Eu,u − Ev,v + Eu,v + Ev,u. Hence,

(Tu,v)
T = (In − Eu,u − Ev,v + Eu,v + Ev,u)

T

= (In)
T︸ ︷︷ ︸

=In
(by Proposition 3.18 (a))

− (Eu,u)
T︸ ︷︷ ︸

=Eu,u
(by Proposition 3.49,
applied to n, u and u
instead of m, u and v)

− (Ev,v)
T︸ ︷︷ ︸

=Ev,v
(by Proposition 3.49,
applied to n, v and v
instead of m, u and v)

+ (Eu,v)
T︸ ︷︷ ︸

=Ev,u
(by Proposition 3.49,

applied to m=n)

+ (Ev,u)
T︸ ︷︷ ︸

=Eu,v
(by Proposition 3.49,
applied to n, v and u
instead of m, u and v)(

by (120), applied to m = n, A = In, B = Eu,u,
C = Ev,v, D = Eu,v and E = Ev,u

)
= In − Eu,u − Ev,v + Ev,u + Eu,v

= In − Eu,u − Ev,v + Eu,v + Ev,u = Tu,v.

This proves Proposition 3.109.

Proof of Proposition 3.110. (a) The definition of Tu,u yields Tu,u = In − Eu,u − Eu,u +
Eu,u + Eu,u = In. This proves Proposition 3.110 (a).

(b) First proof: Corollary 3.108 (a) shows that Tu,v is the n × n-matrix obtained
from In by swapping the u-th row with the v-th row. Proposition 3.105 (applied
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to m = n and C = Tu,v) shows that Tu,vTu,v is the n× n-matrix obtained from Tu,v
by swapping the u-th row with the v-th row. Thus, in order to obtain the matrix
Tu,vTu,v from In, we have to do the following procedure:

• swap the u-th row with the v-th row;

• then, again swap the u-th row with the v-th row.

But this procedure clearly returns the matrix In with which we started (since the
second swap undoes the first swap). Thus, Tu,vTu,v = In.

From Tu,vTu,v = In and Tu,vTu,v = In (yes, this is one equality repeated twice), it
follows that the matrix Tu,v is an inverse of Tu,v. Hence, the matrix Tu,v is invertible,
and its inverse is (Tu,v)

−1 = Tu,v. This proves Proposition 3.110 (b).
Second proof: We can also prove Proposition 3.110 (b) using Proposition 3.52,

provided that we can tolerate some rather lengthy computations.
If i, j, x and y are four elements of {1, 2, . . . , n}, then

Ei,jEx,y = δj,xEi,y (121)

(where all three matrices Ei,j, Ex,y and Ei,y have to be understood as n×n-matrices)81.
In particular, every i ∈ {1, 2, . . . , n} and y ∈ {1, 2, . . . , n} satisfy

Ei,uEv,y = 0n×n (122)

82 and
Ei,vEu,y = 0n×n (123)

83. Furthermore, if i, x and y are three elements of {1, 2, . . . , n}, then

Ei,xEx,y = Ei,y (124)

84.

81Proof of (121): Let i, j, x and y be four elements of {1, 2, . . . , n}. Then, Proposition 3.52 (applied to
n, n, i and j instead of m, p, u and v) shows that Ei,j,n,nEx,y,n,n = δj,xEi,y,n,n. Since we abbreviate
the matrices Ei,j,n,n, Ex,y,n,n and Ei,y,n,n as Ei,j, Ex,y and Ei,y (respectively), this can be rewritten as
Ei,jEx,y = δj,xEi,y. Thus, (121) is proven.

82Proof of (122): Let i ∈ {1, 2, . . . , n} and y ∈ {1, 2, . . . , n}. Then, (121) (applied to j = u and x = v)
yields Ei,uEv,y = δu,v︸︷︷︸

=0
(since u 6=v)

Ei,y = 0Ei,y = 0n×n, qed.

83Proof of (123): Let i ∈ {1, 2, . . . , n} and y ∈ {1, 2, . . . , n}. Then, (121) (applied to j = v and x = u)
yields Ei,vEu,y = δv,u︸︷︷︸

=0
(since v 6=u)

Ei,y = 0Ei,y = 0n×n, qed.

84Proof of (124): Let i, j and x be three elements of {1, 2, . . . , n}. Then, (121) (applied to j = x) yields
Ei,xEx,y = δx,x︸︷︷︸

=1
(since x=x)

Ei,y = 1Ei,y = Ei,y, qed.
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Now, the definition of Tu,v yields Tu,v = In − Eu,u − Ev,v + Eu,v + Ev,u. Hence,

Tu,v︸︷︷︸
=In−Eu,u−Ev,v+Eu,v+Ev,u

Tu,v︸︷︷︸
=In−Eu,u−Ev,v+Eu,v+Ev,u

= (In − Eu,u − Ev,v + Eu,v + Ev,u) (In − Eu,u − Ev,v + Eu,v + Ev,u)

= In (In − Eu,u − Ev,v + Eu,v + Ev,u)︸ ︷︷ ︸
=In In−InEu,u−InEv,v+InEu,v+InEv,u

− Eu,u (In − Eu,u − Ev,v + Eu,v + Ev,u)︸ ︷︷ ︸
=Eu,u In−Eu,uEu,u−Eu,uEv,v+Eu,uEu,v+Eu,uEv,u

− Ev,v (In − Eu,u − Ev,v + Eu,v + Ev,u)︸ ︷︷ ︸
=Ev,v In−Ev,vEu,u−Ev,vEv,v+Ev,vEu,v+Ev,vEv,u

+ Eu,v (In − Eu,u − Ev,v + Eu,v + Ev,u)︸ ︷︷ ︸
=Eu,v In−Eu,vEu,u−Eu,vEv,v+Eu,vEu,v+Eu,vEv,u

+ Ev,u (In − Eu,u − Ev,v + Eu,v + Ev,u)︸ ︷︷ ︸
=Ev,u In−Ev,uEu,u−Ev,uEv,v+Ev,uEu,v+Ev,uEv,u
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=

 In In︸︷︷︸
=In

− InEu,u︸ ︷︷ ︸
=Eu,u

− InEv,v︸ ︷︷ ︸
=Ev,v

+ InEu,v︸ ︷︷ ︸
=Eu,v

+ InEv,u︸ ︷︷ ︸
=Ev,u



−

Eu,u In︸ ︷︷ ︸
=Eu,u

− Eu,uEu,u︸ ︷︷ ︸
=Eu,u

(by (124), applied
to i=u, x=u and y=u)

− Eu,uEv,v︸ ︷︷ ︸
=0n×n

(by (122), applied
to i=u and y=v)

+ Eu,uEu,v︸ ︷︷ ︸
=Eu,v

(by (124), applied
to i=u, x=u and y=v)

+ Eu,uEv,u︸ ︷︷ ︸
=0n×n

(by (122), applied
to i=u and y=u)



−

Ev,v In︸ ︷︷ ︸
=Ev,v

− Ev,vEu,u︸ ︷︷ ︸
=0n×n

(by (123), applied
to i=v and y=u)

− Ev,vEv,v︸ ︷︷ ︸
=Ev,v

(by (124), applied
to i=v, x=v and y=v)

+ Ev,vEu,v︸ ︷︷ ︸
=0n×n

(by (123), applied
to i=v and y=v)

+ Ev,vEv,u︸ ︷︷ ︸
=Ev,u

(by (124), applied
to i=v, x=v and y=u)



+

Eu,v In︸ ︷︷ ︸
=Eu,v

− Eu,vEu,u︸ ︷︷ ︸
=0n×n

(by (123), applied
to i=u and y=u)

− Eu,vEv,v︸ ︷︷ ︸
=Eu,v

(by (124), applied
to i=u, x=v and y=v)

+ Eu,vEu,v︸ ︷︷ ︸
=0n×n

(by (123), applied
to i=u and y=v)

+ Eu,vEv,u︸ ︷︷ ︸
=Eu,u

(by (124), applied
to i=u, x=v and y=u)



+

Ev,u In︸ ︷︷ ︸
=Ev,u

− Ev,uEu,u︸ ︷︷ ︸
=Ev,u

(by (124), applied
to i=v, x=u and y=u)

− Ev,uEv,v︸ ︷︷ ︸
=0n×n

(by (122), applied
to i=v and y=v)

+ Ev,uEu,v︸ ︷︷ ︸
=Ev,v

(by (124), applied
to i=v, x=u and y=v)

+ Ev,uEv,u︸ ︷︷ ︸
=0n×n

(by (122), applied
to i=v and y=u)


= (In − Eu,u − Ev,v + Eu,v + Ev,u)− (Eu,u − Eu,u − 0n×n + Eu,v + 0n×n)

− (Ev,v − 0n×n − Ev,v + 0n×n + Ev,u) + (Eu,v − 0n×n − Eu,v + 0n×n + Eu,u)

+ (Ev,u − Ev,u − 0n×n + Ev,v + 0n×n)

= In.

From Tu,vTu,v = In and Tu,vTu,v = In (yes, this is one equality repeated twice), it
follows that the matrix Tu,v is an inverse of Tu,v. Hence, the matrix Tu,v is invertible,
and its inverse is (Tu,v)

−1 = Tu,v. This proves Proposition 3.110 (b) again.
(c) The definition of Tv,u yields Tv,u = In − Ev,v − Eu,u + Ev,u + Eu,v = In − Eu,u −

Ev,v + Eu,v + Ev,u. Comparing this with Tu,v = In − Eu,u − Ev,v + Eu,v + Ev,u, we
obtain Tv,u = Tu,v. This proves Proposition 3.110 (c).
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3.19. Permutation matrices

Definition 3.111. Let n ∈N. A swapping n× n-matrix means a matrix of the form
Tu,v, where u and v are two distinct elements of {1, 2, . . . , n}. When n is clear
from the context, we shall omit the “n× n-” and simply say “swapping matrix”.

In Theorem 3.63, we have characterized lower-unitriangular matrices as products of
lower addition matrices. Similarly, in Theorem 3.95, we have characterized invert-
ibly lower-triangular matrices as products of scaling matrices and lower addition
matrices. What kind of matrices are characterized as products of swapping matri-
ces Tu,v ? We should not expect anything with “triangular” in its name (after all,
the matrices Tu,v themselves are not triangular). Instead, we obtain the so-called
permutation matrices.

Definition 3.112. Let n ∈N. An n× n-matrix A is said to be a permutation matrix
if it satisfies the following conditions:

(a) Each entry of A is either a 0 or a 1.
(b) Each row of A has exactly one entry equal to 1.
(c) Each column of A has exactly one entry equal to 1.

Example 3.113. (a) The 3× 3-matrix

 0 1 0
0 0 1
1 0 0

 is a permutation matrix.

(b) The 3× 3-matrix

 0 1 0
0 0 3
1 0 0

 is not a permutation matrix, since it fails

condition (a) of Definition 3.112.

(c) The 3 × 3-matrix

 0 1 0
0 0 1
0 0 1

 is not a permutation matrix, since it fails

condition (c) of Definition 3.112 (namely, the 3-rd column has two entries equal
to 1, whereas the 1-st column has none).

(d) The 3× 3-matrix

 0 0 0
0 1 1
1 0 0

 is not a permutation matrix, since it fails

condition (b) of Definition 3.112 (namely, the 2-nd row has two entries equal to
1, whereas the 1-st row has none).

(e) For each n ∈N, the n× n identity matrix In is a permutation matrix. (This
is Lemma 3.118 further below.)

(f) Let n ∈ N. Let u and v be two distinct elements of {1, 2, . . . , n}. Then, the
swapping matrix Tu,v (defined in Definition 3.102) is a permutation matrix. (This
is a particular case of Lemma 3.119 below.)

These examples do not exhaust the set of all permutation matrices. However
(unlike, e.g., the lower-triangular matrices), this set is finite for each n ∈ N. More
precisely:
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Proposition 3.114. Let n ∈N. Then, there are precisely n! permutation matrices
of size n× n.

(Recall that n! denotes the number 1 · 2 · 3 · · · · · n; it is called the “factorial of
n”. For instance, 5! = 1 · 2 · 3 · 4 · 5 = 120.)

We will outline a proof of Proposition 3.114 in Section 3.21.

Example 3.115. Proposition 3.114 (applied to n = 3) says that there are precisely
3! = 6 permutation matrices of size 3× 3. Here are they:

I3 =

 1 0 0
0 1 0
0 0 1

 , T1,2 =

 0 1 0
1 0 0
0 0 1

 ,

T1,3 =

 0 0 1
0 1 0
1 0 0

 , T2,3 =

 1 0 0
0 0 1
0 1 0

 ,

A =

 0 0 1
1 0 0
0 1 0

 , B =

 0 1 0
0 0 1
1 0 0

 .

The two last matrices, which I have here denoted by A and B, are neither the
identity matrix I3 nor swapping matrices Tu,v. However, they can be written as
products of swapping matrices:

A = T1,2T2,3, B = T2,3T1,2.

(Of course, they can also be written as products of swapping matrices in many
other ways. For instance, A = T1,3T1,2 = T2,3T2,3T1,2T2,3 = T2,3T1,2T2,3T1,2.) This
is not a coincidence: As we will see shortly (in Theorem 3.116), the permutation
matrices are precisely the products of swapping matrices.

Theorem 3.116. Let n ∈ N. An n× n-matrix C is a permutation matrix if and
only if C is a product of swapping matrices.

Some authors (e.g., Olver and Shakiban in [OlvSha06, Chapter 1, Definition 1.8])
use Theorem 3.116 as a definition of permutation matrices. (I.e., they define per-
mutation matrices as products of swapping matrices, instead of using Definition
3.112.) More precisely, the following equivalent definitions of permutation matri-
ces exist:

• Our Definition 3.112 above.

• An n× n-matrix is called a permutation matrix if it is a product of swapping
matrices. (This is the definition used in [OlvSha06, Chapter 1, Definition 1.8];
and Theorem 3.116 reveals that it is equivalent to our Definition 3.112.)
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• An n× n-matrix is called a permutation matrix if it has the same rows as In but
(possibly) in a different order.

• An n× n-matrix is called a permutation matrix if it has the same columns as In
but (possibly) in a different order.

• An n×n-matrix is called a permutation matrix if it has the form
(

δw(i),j

)
1≤i≤n, 1≤j≤n

for some bijective map w : {1, 2, . . . , n} → {1, 2, . . . , n}. (This is the definition
used in Stanley’s [Stanle12, §1.5]. We will discuss it in some more detail in
Section 3.21.)

The equivalence of all these definitions is easy to see (once Theorem 3.116 is
proven); nevertheless, we shall be using Definition 3.112 only.

We shall give a complete proof of Theorem 3.116 in Section 3.20; but first, let us
state some basic facts on which said proof relies:

Lemma 3.117. Let n ∈ N. Let A be an n× n-matrix. Assume that A is a permu-
tation matrix. Let u and v be two distinct elements of {1, 2, . . . , n}. Let B be the
matrix obtained from A by swapping the u-th row with the v-th row. Then, B is
a permutation matrix.

Proof of Lemma 3.117. We know that A is a permutation matrix. According to the
definition of a “permutation matrix”, this means that A satisfies the following three
statements:

Statement 1: Each entry of A is either a 0 or a 1.

Statement 2: Each row of A has exactly one entry equal to 1.

Statement 3: Each column of A has exactly one entry equal to 1.

Thus, we know that Statements 1, 2 and 3 are satisfied.
On the other hand, we want to prove that B is a permutation matrix. According

to the definition of a “permutation matrix”, this means proving that B satisfies the
following three statements:

Statement 4: Each entry of B is either a 0 or a 1.

Statement 5: Each row of B has exactly one entry equal to 1.

Statement 6: Each column of B has exactly one entry equal to 1.

Hence, it remains to prove that Statements 4, 5 and 6 are satisfied.
Recall that the matrix B is obtained from A by swapping the u-th row with the

v-th row. Hence, each row of B equals some row of A. Thus, Statement 5 follows
from Statement 2. Therefore, Statement 5 is satisfied.
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Also, each entry of B equals some entry of A (since each row of B equals some
row of A). Thus, Statement 4 follows from Statement 1. Hence, Statement 4 is
satisfied.

Recall again that the matrix B is obtained from A by swapping the u-th row with
the v-th row. Hence, each column of B is obtained from the corresponding column
of A by swapping the u-th entry with the v-th entry. Hence, each column of B
has exactly as many entries equal to 1 as the corresponding column of A (because
swapping two entries does not change the number of entries equal to 1). Therefore,
Statement 6 follows from Statement 3. Hence, Statement 6 is satisfied.

We thus have shown that Statements 4, 5 and 6 are satisfied. As we have said,
this completes the proof of Lemma 3.117.

Lemma 3.118. Let n ∈N. Then, the identity matrix In is a permutation matrix.

Lemma 3.118 is very easy to prove (and will be proven in detail in Section 3.20
below).

Lemma 3.119. Let n ∈ N. Then, any product of swapping n × n-matrices is a
permutation matrix.

(Here, we are again using the convention that the empty product of n × n-
matrices is In.)

Lemma 3.119 is, of course, the⇐= direction of Theorem 3.116; it can be proven by
induction using Lemma 3.117 and Proposition 3.105. The (rather straightforward)
proof can be found in Section 3.20 below.

Now, let me give some examples for Theorem 3.116:

Example 3.120. (a) For each n ∈ N, the n× n identity matrix In is a product of
swapping matrices: Namely, it is the empty product (since the empty product of
n× n-matrices is In by definition).

(b) Each swapping matrix Tu,v itself is a product of swapping matrices: namely,
it is a product of itself.

(c) Let C be the permutation matrix


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

. Then, C is a product of

swapping matrices: Namely, it equals T1,2T2,4T3,4.
Let us actually see how this representation of C can be found. We shall proceed

by writing C as a product of one swapping matrix with a second matrix C′, which
is still a permutation matrix but has one diagonal entry equal to 1. We then will
do the same with C′, obtaining a third matrix C′′; then, do the same with C′′, and
so on. At the end, we will be left with a permutation matrix whose all diagonal
entries are 1. This means that we will be left with the identity matrix I4.

In more detail: We proceed in several steps:
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Step 1: Let us turn the (1, 1)-th entry of C into 1 by swapping the 1-st row
with the 2-nd row. Denote the resulting matrix by C′. Thus, C′ =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

. Notice that the new matrix C′ is still a permutation matrix

(by Lemma 3.117, applied to A = C, B = C′, u = 1 and v = 2), but now
has its first diagonal entry equal to 1. Since C′ was obtained from C by
swapping the 1-st row with the 2-nd row, we can conversely obtain C from
C′ by swapping the 1-st row with the 2-nd row. According to Proposition
3.105 (applied to n, 1, 2 and C′ instead of m, u, v and C), this means that
C = T1,2C′.

Step 2: Let us turn the (2, 2)-th entry of C′ into 1 by swapping the 2-nd row
with the 4-th row. Denote the resulting matrix by C′′. Thus, C′′ =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. Again, the new matrix C′′ is still a permutation matrix

(by Lemma 3.117, applied to A = C′, B = C′′, u = 2 and v = 4), and
still has its first diagonal entry equal to 1 (since the 1-st row has not been
changed); but now its second diagonal entry is also 1. Similarly to how we
found that C = T1,2C′ in Step 1, we now obtain C′ = T2,4C′′.

Step 3: Let us turn the (3, 3)-th entry of C′′ into 1 by swapping the 3-rd row
with the 4-th row. Denote the resulting matrix by C′′′. Thus, C′′′ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. Again, the new matrix C′′′ is still a permutation ma-

trix, and the first two diagonal entries are still equal to 1; and now the
third diagonal entry has become 1 as well. Similarly to how we found that
C = T1,2C′ in Step 1, we now obtain C′′ = T3,4C′′′.

Step 4: We should now turn the (4, 4)-th entry of C′′′ into 1, but fortunately this
is unnecessary: It already is 1.

We have thus turned all diagonal entries into 1. Our final matrix C′′′ thus
equals I4 (since it is a permutation matrix). Combining the three equalities we
have found, we obtain

C = T1,2 C′︸︷︷︸
=T2,4C′′

= T1,2T2,4 C′′︸︷︷︸
=T3,4C′′′

= T1,2T2,4T3,4 C′′′︸︷︷︸
=I4

= T1,2T2,4T3,4 I4 = T1,2T2,4T3,4.

Thus we have represented C as a product of swapping matrices.
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Example 3.120 (c) essentially demonstrates how Theorem 3.116 (or, more pre-
cisely, the =⇒ direction of Theorem 3.116) can be proven in the general case (sim-
ilarly to how Example 3.64 (c) outlines the proof of Theorem 3.63, and how Exam-
ple 3.96 (c) outlines the proof of Theorem 3.95). Transforming the example into an
actual rigorous proof, however, requires work: Not only would we have to formal-
ize the algorithm, but we would also need to formally justify that the algorithm
works85. In Section 3.20, we shall give a proof of Theorem 3.116 which is, more or
less, the one suggested by Example 3.120 (c); however, it will be organized rather
differently (for the sake of easier readability)86.

One easy corollary of Theorem 3.116 is the following:

Proposition 3.121. Let n ∈ N. Let A and B be two n × n-matrices that are
permutation matrices. Then, AB is also a permutation matrix.

Furthermore, we can show:

Proposition 3.122. Let n ∈ N. Let A be an n× n-matrix that is a permutation
matrix. Then:

(a) The matrix A is invertible.
(b) Its inverse is A−1 = AT.
(c) This inverse A−1 is a permutation matrix.

Proposition 3.123. Let n ∈ N and m ∈ N. Let P be an n × n-matrix that is
a permutation matrix. Let C be an n × m-matrix. Then, the n × m-matrix PC
can be obtained from C by rearranging the rows in a certain way that depends
on P. (In more rigorous terms, this means that there exists a bijective map w :
{1, 2, . . . , n} → {1, 2, . . . , n} such that every i ∈ {1, 2, . . . , n} satisfies rowi (PC) =
roww(i) C. If this sounds confusing to you, think of this map w as a way to match
up the rows of PC with the rows of C such that each row of PC equals the
corresponding row of C. We will go over this in more detail in Section 3.21.)

Example 3.124. Let n = 3 and m = 2. Let C be the 3× 2-matrix

 a b
a′ b′

a′′ b′′

. Let

P be the 3× 3-matrix

 0 1 0
0 0 1
1 0 0

; as we know, this is a permutation matrix.

Then, Proposition 3.123 claims that the 3× 2-matrix PC can be obtained from C

85For example, we would need to verify that each step results in a permutation matrix, and that the
k-th step (for each k) leaves the first k− 1 diagonal entries unchanged.

86Namely, instead of using a procedure with several steps, it will be based on an induction ar-
gument. The ideas will, of course, be the same; this is just an example of how algorithmic
arguments can be rewritten as induction proofs.
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by rearranging the rows in a certain way. And this can indeed be confirmed by
a computation:

PC =

 0 1 0
0 0 1
1 0 0

 a b
a′ b′

a′′ b′′

 =

 a′ b′

a′′ b′′

a b

 .

The rearrangement moves the first row to the very bottom, while letting the other
two rows slide up one level. Other permutation matrices P would produce other
rearrangements.

Proposition 3.123 is (in a sense) a partial generalization of Proposition 3.105 (al-
though, of course, not a complete generalization, since it fails to specify the precise
rearrangement). A similar partial generalization can be stated for Proposition 3.107;
this time, of course, it will be the columns (not the rows) that get rearranged in CP.

We will prove Proposition 3.123 in Section 3.21.

3.20. (*) Proofs about permutation matrices

Let us now catch up on some proofs that we promised in the previous section.

Proof of Lemma 3.118. We want to prove that In is a permutation matrix. According
to the definition of a “permutation matrix”, this means proving that In satisfies the
following three statements:

Statement 1: Each entry of In is either a 0 or a 1.

Statement 2: Each row of In has exactly one entry equal to 1.

Statement 3: Each column of In has exactly one entry equal to 1.

Hence, it remains to prove that Statements 1, 2 and 3 are satisfied.
But Statement 1 is obvious. Statement 2 is also clear (since each row of In has

exactly one entry equal to 1 – namely, the diagonal entry), and Statement 3 is clear
as well (for similar reasons). Thus, Statements 1, 2 and 3 are satisfied. This proves
Lemma 3.118.

Proof of Lemma 3.119. Let M be any product of swapping n× n-matrices. We must
show that M is a permutation matrix.

We have assumed that M is a product of swapping n × n-matrices. In other
words, M = Ak Ak−1 · · · A1 for some k ∈ N and some k swapping n× n-matrices
A1, A2, . . . , Ak. Consider this k and these A1, A2, . . . , Ak.

We shall show that

Ai Ai−1 · · · A1 is a permutation matrix (125)
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for every i ∈ {0, 1, . . . , k} (where, as usual, A0A−1 · · · A1 has to be interpreted as
an empty product and thus equals In).

[Proof of (125): We will prove (125) by induction over i:
Induction base: Lemma 3.118 says that In is a permutation matrix. In other words,

A0A−1 · · · A1 is a permutation matrix87. In other words, (125) holds for i = 0. This
completes the induction base.

Induction step: Let j ∈ {0, 1, . . . , k} be positive. Assume (as the induction hypothe-
sis) that (125) holds for i = j− 1. We must show that (125) holds for i = j.

The induction hypothesis tells us that (125) holds for i = j− 1. In other words,
Aj−1Aj−2 · · · A1 is a permutation matrix. Set C = Aj−1Aj−2 · · · A1. Thus, C is a
permutation matrix (since Aj−1Aj−2 · · · A1 is a permutation matrix).

But Aj is a swapping n × n-matrix (since A1, A2, . . . , Ak are k swapping n × n-
matrices). In other words, Aj has the form Aj = Tu,v, where u and v are two distinct
elements of {1, 2, . . . , n}. Consider these u and v.

Now,
Aj Aj−1 · · · A1 = Aj︸︷︷︸

=Tu,v

(
A1A2 · · · Aj−1

)︸ ︷︷ ︸
=C

= Tu,vC. (126)

But Proposition 3.105 (applied to m = n) shows that Tu,vC is the n × n-matrix
obtained from C by swapping the u-th row with the v-th row. Hence, Lemma 3.117
(applied to A = C and B = Tu,vC) shows that Tu,vC is a permutation matrix. In
light of (126), this rewrites as follows: Aj Aj−1 · · · A1 is a permutation matrix. In
other words, (125) holds for i = j. This completes the induction step, and thus the
inductive proof of (125).]

Now, (125) (applied to i = k) yields that Ak Ak−1 · · · A1 is a permutation ma-
trix. In other words, M is a permutation matrix (since M = Ak Ak−1 · · · A1). This
completes the proof of Lemma 3.119.

The general proof of Theorem 3.116 follows the idea outlined in Example 3.120
(c), but we are going to make it more manageable by introducing a convenient
notion:

Definition 3.125. Let n ∈ N and k ∈ {0, 1, . . . , n}. An n× n-matrix A is said to
be k-identical if it satisfies A1,1 = A2,2 = · · · = Ak,k = 1. (Note that the condition
A1,1 = A2,2 = · · · = Ak,k = 1 means “Ai,i = 1 for each i ∈ {1, 2, . . . , k}”. Thus, if
k = 0, then this condition is vacuously true, since there exists no i ∈ {1, 2, . . . , k}
in this case.)

This notion allows us to speak about our procedure from Example 3.120 (c) more
crisply: We started with an arbitrary permutation matrix C, which was 0-identical.
Then, in Step 1, we made it 1-identical by switching two rows. Then, in Step 2,
we made it 2-identical by switching two further rows. Then, in Step 3, we made it
3-identical by switching two further rows. Then, in Step 4, we made it 4-identical

87since A0 A−1 · · · A1 = (empty product of n× n-matrices) = In
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by doing nothing (since it already was 4-identical). At the end of the procedure, it
was an identity matrix.

Here are some properties of k-identical permutation matrices:

Lemma 3.126. Let n ∈N and k ∈ {0, 1, . . . , n}. Let A be an n× n-matrix. Assume
that A is a k-identical permutation matrix.

(a) If k = n, then A = In.
(b) For each v ∈ {k + 1, k + 2, . . . , n}, there exists some u ∈ {k + 1, k + 2, . . . , n}

such that Au,v = 1.
(c) If k < n and Ak+1,k+1 = 1, then A is a (k + 1)-identical permutation matrix.
(d) If u and v are two distinct elements of {k + 1, k + 2, . . . , n} satisfying v =

k + 1 and Au,v = 1, then Tu,v A is a (k + 1)-identical permutation matrix.

Proof of Lemma 3.126. We have assumed that A is a permutation matrix. According
to the definition of a “permutation matrix”, this means that A satisfies the following
three statements:

Statement 1: Each entry of A is either a 0 or a 1.

Statement 2: Each row of A has exactly one entry equal to 1.

Statement 3: Each column of A has exactly one entry equal to 1.

Thus, we know that Statements 1, 2 and 3 are satisfied.
We have assumed that A is k-identical. In other words,

A1,1 = A2,2 = · · · = Ak,k = 1 (127)

(by the definition of “k-identical”). In other words,

Ai,i = 1 for each i ∈ {1, 2, . . . , k} . (128)

Next, we observe that

Ai,j = δi,j for all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , n} (129)

88.

88Proof of (129): Let i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , n}. We must prove that Ai,j = δi,j.
We have i ∈ {1, 2, . . . , k}. Hence, Ai,i = 1 (by (128)).
We are in one of the following two cases:
Case 1: We have i = j.
Case 2: We have i 6= j.
Let us first consider Case 1. In this case, we have i = j. Hence, j = i, so that Ai,j = Ai,i = 1.

Comparing this with δi,j = 1 (since i = j), we obtain Ai,j = δi,j. Hence, Ai,j = δi,j is proven in
Case 1.

Let us now consider Case 2. In this case, we have i 6= j. Thus, δi,j = 0.
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(a) Assume that k = n. Then, every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfy
Ai,j = (In)i,j

89. In other words, each entry of the matrix A equals the correspond-
ing entry of In. In other words, A = In. This proves Lemma 3.126 (a).

(b) Let v ∈ {k + 1, k + 2, . . . , n}. Statement 3 shows that each column of A has
exactly one entry equal to 1. In particular, the v-th column has exactly one entry
equal to 1. In other words, there exists exactly one i ∈ {1, 2, . . . , n} such that
Ai,v = 1. Consider this i. We are going to show that i ∈ {k + 1, k + 2, . . . , n}.

In fact, assume the contrary. Thus, i /∈ {k + 1, k + 2, . . . , n}. Combining i ∈
{1, 2, . . . , n} with i /∈ {k + 1, k + 2, . . . , n}, we obtain

i ∈ {1, 2, . . . , n} \ {k + 1, k + 2, . . . , n} = {1, 2, . . . , k} .

Hence, Ai,v = δi,v (by (129), applied to j = v). But i ∈ {1, 2, . . . , k}, so that i ≤ k.
However, v ≥ k + 1 (since v ∈ {k + 1, k + 2, . . . , n}). Hence, k + 1 ≤ v, and thus
i ≤ k < k + 1 ≤ v. Thus, i 6= v, so that δi,v = 0 and thus Ai,v = δi,v = 0. This
contradicts Ai,v = 1 6= 0.

This contradiction shows that our assumption was false. Hence, i ∈ {k + 1, k + 2, . . . , n}
is proven. Thus, there exists some u ∈ {k + 1, k + 2, . . . , n} such that Au,v = 1
(namely, u = i). This proves Lemma 3.126 (b).

(c) Assume that k < n and Ak+1,k+1 = 1. We need to show that A is a (k + 1)-
identical permutation matrix.

Combining (127) with Ak+1,k+1 = 1, we obtain A1,1 = A2,2 = · · · = Ak+1,k+1 = 1.
But the matrix A is (k + 1)-identical if and only if A1,1 = A2,2 = · · · = Ak+1,k+1 =

1 (because this is how “(k + 1)-identical” is defined). Thus, the matrix A is (k + 1)-

Now, assume (for the sake of contradiction) that Ai,j 6= 0. But Ai,j is an entry of A, and thus
is either a 0 or a 1 (by Statement 1). In other words, Ai,j = 0 or Ai,j = 1. Therefore, Ai,j = 1
(since Ai,j 6= 0). Combining this with Ai,i = 1, we conclude that the i-th row of A has at least
two entries equal to 1: namely, the entries Ai,i and Ai,j. (And these two entries actually lie in
different cells, since i 6= j.)

But each row of A has exactly one entry equal to 1 (because Statement 2 is satisfied). In
particular, the i-th row of A has exactly one entry equal to 1. This contradicts the fact that the
i-th row of A has at least two entries equal to 1. This contradiction shows that our assumption
(that Ai,j 6= 0) was false. Hence, we have Ai,j = 0. Compared with δi,j = 0, this yields Ai,j = δi,j.
Thus, Ai,j = δi,j is proven in Case 2.

Now, Ai,j = δi,j is proven in each of the two Cases 1 and 2. Hence, Ai,j = δi,j always holds. In
other words, (129) is proven.

89Proof. Recall that In =
(
δi,j
)

1≤i≤n, 1≤j≤n (by the definition of In). Hence, every i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , n} satisfy

(In)i,j = δi,j. (130)

But {1, 2, . . . , n} = {1, 2, . . . , k} (since n = k). Now, every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}
satisfy

Ai,j = δi,j (by (129), since i ∈ {1, 2, . . . , n} = {1, 2, . . . , k})
= (In)i,j (by (130)) .
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identical (since A1,1 = A2,2 = · · · = Ak+1,k+1 = 1). Also, A is a permutation matrix.
The proof of Lemma 3.126 (c) is thus complete.

(d) Let u and v be two distinct elements of {k + 1, k + 2, . . . , n} satisfying v =
k + 1 and Au,v = 1. We must prove that Tu,v A is a (k + 1)-identical permutation
matrix.

Let B = Tu,v A. Proposition 3.105 (applied to m = n and C = A) shows that Tu,v A
is the n× n-matrix obtained from A by swapping the u-th row with the v-th row.
Since B = Tu,v A, this rewrites as follows: B is the n× n-matrix obtained from A by
swapping the u-th row with the v-th row. Hence, Lemma 3.117 shows that B is a
permutation matrix. We shall next show that B is (k + 1)-identical.

Recall that B is the n× n-matrix obtained from A by swapping the u-th row with
the v-th row. Hence, the following facts hold:

Fact 4: The u-th row of the matrix B equals the v-th row of A.

Fact 5: The v-th row of the matrix B equals the u-th row of A.

Fact 6: If i ∈ {1, 2, . . . , n} is such that i 6= u and i 6= v, then the i-th row
of the matrix B equals the i-th row of A.

Now, using Fact 6, we can easily see that Bi,i = Ai,i for each i ∈ {1, 2, . . . , k} 90.
Hence, for each i ∈ {1, 2, . . . , k}, we have Bi,i = Ai,i = 1 (by (128)). In other words,

B1,1 = B2,2 = · · · = Bk,k = 1. (131)

But Fact 5 shows that each entry of the v-th row of the matrix B equals the
corresponding entry of the u-th row of A. In other words, Bv,j = Au,j for each
j ∈ {1, 2, . . . , n}. Applying this to j = v, we obtain Bv,v = Au,v = 1. Since v = k + 1,
this rewrites as Bk+1,k+1 = 1. Combining this with (131), we obtain B1,1 = B2,2 =
· · · = Bk+1,k+1 = 1.

But the matrix B is (k + 1)-identical if and only if B1,1 = B2,2 = · · · = Bk+1,k+1 = 1
(because this is how “(k + 1)-identical” is defined). Thus, the matrix B is (k + 1)-
identical (since B1,1 = B2,2 = · · · = Bk+1,k+1 = 1). Hence, B is a (k + 1)-identical
permutation matrix (since we already know that B is a permutation matrix). In
other words, Tu,v A is a (k + 1)-identical permutation matrix (since B = Tu,v A).
This proves Lemma 3.126 (d).

Next, we show a slightly stronger version of the =⇒ direction of Theorem 3.116:

90Proof. Let i ∈ {1, 2, . . . , k}. Then, i ≤ k < k + 1 ≤ u (since u ≥ k + 1 (since u ∈
{k + 1, k + 2, . . . , n})). Hence, i 6= u. The same argument (but made for v instead of u) shows
that i 6= v. Hence, Fact 6 shows that the i-th row of the matrix B equals the i-th row of A. In
other words, each entry of the i-th row of the matrix B equals the corresponding entry of the
i-th row of A. In other words, Bi,j = Ai,j for each j ∈ {1, 2, . . . , n}. Applying this to j = i, we
obtain Bi,i = Ai,i. Qed.
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Lemma 3.127. Let n ∈ N and p ∈ {0, 1, . . . , n}. Let A be an n × n-matrix. If
A is an (n− p)-identical permutation matrix, then A is a product of at most p
swapping matrices.

Proof of Lemma 3.127. We shall prove Lemma 3.127 by induction over p:
Induction base: If A is an (n− 0)-identical permutation matrix, then A is a product

of at most 0 swapping matrices91. In other words, Lemma 3.127 holds for p = 0.
This completes the induction base.

Induction step: Let q ∈ {0, 1, . . . , n} be positive. Assume (as the induction hypoth-
esis) that Lemma 3.127 holds for p = q− 1. We must now prove that Lemma 3.127
holds for p = q.

Assume that A is an (n− q)-identical permutation matrix. We shall show that

A is a product of at most q swapping matrices. (132)

Set k = n− q. Thus, A is a k-identical permutation matrix (since A is an (n− q)-
identical permutation matrix).

We have k = n − q ∈ {0, 1, . . . , n} (since q ∈ {0, 1, . . . , n}). Furthermore, k =
n− q < n (since q is positive), so that k ≤ n− 1 (since k and n are integers).

Set v = k + 1. Then, v = k + 1 ≥ k + 1 and v = k + 1 ≤ n (since k ≤ n− 1), so
that v ∈ {k + 1, k + 2, . . . , n}. Hence, Lemma 3.126 (b) shows that there exists some
u ∈ {k + 1, k + 2, . . . , n} such that Au,v = 1. Consider this u. We are in one of the
following two cases:

Case 1: We have u = k + 1.

Case 2: We have u 6= k + 1.

Let us first consider Case 1. In this case, we have u = k + 1. From u = k + 1
and v = k + 1, we obtain Au,v = Ak+1,k+1, so that Ak+1,k+1 = Au,v = 1. Hence,
Lemma 3.126 (c) shows that A is a (k + 1)-identical permutation matrix. Since

k︸︷︷︸
=n−q

+1 = n− q + 1 = n− (q− 1), this rewrites as follows: A is an (n− (q− 1))-

identical permutation matrix. But the induction hypothesis shows that Lemma
3.127 holds for p = q− 1. Hence, Lemma 3.127 can be applied to p = q− 1 (since
A is an (n− (q− 1))-identical permutation matrix). As a result, we conclude that
A is a product of at most q − 1 swapping matrices. In other words, there exists
some s ∈ {0, 1, . . . , q− 1} such that A is a product of at most s swapping matrices.
Consider this s. Thus, A is a product of at most q swapping matrices (since A is a
product of s swapping matrices, but we have s ∈ {0, 1, . . . , q− 1} ⊆ {0, 1, . . . , q}).
In other words, (132) holds. Hence, (132) is proven in Case 1.

91Proof. Assume that A is an (n− 0)-identical permutation matrix. In other words, A is an n-
identical permutation matrix. Lemma 3.126 (a) (applied to k = n) thus yields A = In. Thus
A = In = (the empty product of swapping matrices) (since the empty product of swapping
matrices is defined to be In). Hence, A is a product of 0 swapping matrices. Thus, A is a product
of at most 0 swapping matrices. Qed.
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Let us now consider Case 2. In this case, we have u 6= k + 1. Thus, u 6= k + 1 = v.
Therefore, Lemma 3.126 (d) reveals that Tu,v A is a (k + 1)-identical permutation
matrix. Since k︸︷︷︸

=n−q

+1 = n− q + 1 = n− (q− 1), this rewrites as follows: Tu,v A is

an (n− (q− 1))-identical permutation matrix. But the induction hypothesis shows
that Lemma 3.127 holds for p = q− 1. Hence, Lemma 3.127 can be applied to q− 1
and Tu,v A instead of p and A (since Tu,v A is an (n− (q− 1))-identical permutation
matrix). As a result, we conclude that Tu,v A is a product of at most q− 1 swapping
matrices. In other words, there exists some s ∈ {0, 1, . . . , q− 1} and some s swap-
ping matrices M1, M2, . . . , Ms such that Tu,v A = M1M2 · · ·Ms. Consider this s and
these M1, M2, . . . , Ms.

From s ∈ {0, 1, . . . , q− 1}, we obtain s + 1 ∈ {1, 2, . . . , q} ⊆ {0, 1, . . . , q}.
Proposition 3.110 (b) yields that the matrix Tu,v is invertible, and its inverse is

(Tu,v)
−1 = Tu,v. Thus, Tu,vTu,v = In. Hence, Tu,vTu,v︸ ︷︷ ︸

=In

A = In A = A, so that

A = Tu,v Tu,v A︸ ︷︷ ︸
=M1 M2···Ms

= Tu,vM1M2 · · ·Ms.

But Tu,v is a swapping matrix (by the definition of a “swapping matrix”), and the
matrices M1, M2, . . . , Ms are swapping matrices as well. Hence, Tu,v, M1, M2, . . . , Ms
are swapping matrices. Thus, Tu,vM1M2 · · ·Ms is a product of s + 1 swapping ma-
trices. In other words, A is a product of s + 1 swapping matrices (since A =
Tu,vM1M2 · · ·Ms). Hence, A is a product of at most q swapping matrices (since
s + 1 ∈ {0, 1, . . . , q}). In other words, (132) holds. Hence, (132) is proven in Case 2.

Now, we have proven (132) in each of the two Cases 1 and 2. Hence, (132) always
holds. In other words, A is a product of at most q swapping matrices.

Now, forget that we assumed that A is an (n− q)-identical permutation matrix.
Thus, we have shown that if A is an (n− q)-identical permutation matrix, then A
is a product of at most q swapping matrices. In other words, Lemma 3.127 holds
for p = q. This completes the induction step. Thus, Lemma 3.127 is proven by
induction.

Theorem 3.116 is now an easy consequence of the above:

Proof of Theorem 3.116. ⇐=: Lemma 3.119 says that any product of swapping ma-
trices is a permutation matrix. Hence, if C is a product of swapping matrices, then
C is a permutation matrix. This proves the⇐= direction of Theorem 3.116.
=⇒: We need to prove that if C is a permutation matrix, then C is a product of

swapping matrices.
So let us assume that C is a permutation matrix. Clearly, the matrix C is 0-

identical92. In other words, the matrix C is (n− n)-identical (since 0 = n − n).

92Proof. The matrix C satisfies the equality C1,1 = C2,2 = · · · = C0,0 = 1 (in fact, this equality is
vacuously true). But according to the definition of “0-identical”, this means precisely that C is
0-identical. Qed.
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Thus, Lemma 3.127 (applied to p = n and A = C) shows that C is a product of at
most n swapping matrices. Hence, C is a product of swapping matrices. This is
precisely what we had to prove. This proves the =⇒ direction of Theorem 3.116.
Hence, the proof of Theorem 3.116 is complete.

Proof of Proposition 3.121. Theorem 3.116 (applied to C = A) shows that A is a per-
mutation matrix if and only if A is a product of swapping matrices. Thus, A is a
product of swapping matrices (since A is a permutation matrix). The same argu-
ment (applied to B instead of A) shows that B is a product of swapping matrices.

Now, we know that each of the two matrices A and B is a product of swapping
matrices. Hence, their product AB is the product of two products of swapping
matrices. Therefore, AB is itself a product of swapping matrices (since a product of
two products of swapping matrices must itself be a product of swapping matrices).

Theorem 3.116 (applied to C = AB) shows that AB is a permutation matrix if and
only if AB is a product of swapping matrices. Thus, AB is a permutation matrix
(since AB is a product of swapping matrices). This proves Proposition 3.121.

Let us now come to the proof of Proposition 3.122. Parts (a) and (c) of Proposition
3.122 could be verified similarly to how we have proved Theorem 3.67 (but using
Theorem 3.116 now); but this would not help us proving part (b). So we take a
different path instead.

Proof of Proposition 3.122. We have assumed that A is a permutation matrix. Ac-
cording to the definition of a “permutation matrix”, this means that A satisfies the
following three statements:

Statement 1: Each entry of A is either a 0 or a 1.

Statement 2: Each row of A has exactly one entry equal to 1.

Statement 3: Each column of A has exactly one entry equal to 1.

Thus, we know that Statements 1, 2 and 3 are satisfied.
We have AT =

(
Aj,i
)

1≤i≤n, 1≤j≤n (by the definition of AT). Hence,(
AT
)

i,j
= Aj,i for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} . (133)

We are next going to show that

AT is a permutation matrix. (134)

[Proof of (134): We must show that AT is a permutation matrix. According to
the definition of a “permutation matrix”, this means proving that AT satisfies the
following three statements:

Statement 4: Each entry of AT is either a 0 or a 1.
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Statement 5: Each row of AT has exactly one entry equal to 1.

Statement 6: Each column of AT has exactly one entry equal to 1.

Hence, it remains to prove that Statements 4, 5 and 6 are satisfied.
The definition of AT shows that the entries of AT are precisely the entries of A,

just moved to different cells. Thus, Statement 4 follows from Statement 1. Hence,
Statement 4 is satisfied.

Let i ∈ {1, 2, . . . , n}. The i-th column of A has exactly one entry equal to 1 (by
Statement 3). In other words, there exists exactly one j ∈ {1, 2, . . . , n} satisfying
Aj,i = 1. In view of (133), this rewrites as follows: There exists exactly one j ∈
{1, 2, . . . , n} satisfying

(
AT)

i,j = 1. In other words, the i-th row of AT has exactly
one entry equal to 1.

Now, forget that we fixed i. We thus have shown that for each i ∈ {1, 2, . . . , n},
the i-th row of AT has exactly one entry equal to 1. In other words, each row of AT

has exactly one entry equal to 1. This proves Statement 5.
A similar argument (but with the roles of rows and columns switched, and also

the roles of i and j switched, and using Statement 2 instead of Statement 3) can be
used to prove Statement 6.

We thus have shown that Statements 4, 5 and 6 are satisfied. As we have said,
this completes the proof of (134).]

Every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfy(
AAT

)
i,j
= δi,j. (135)

[Proof of (135): Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}.
The i-th row of A has exactly one entry equal to 1 (by Statement 2). In other

words, there exists a unique u ∈ {1, 2, . . . , n} satisfying Ai,u = 1. Consider this u.
We have

Ai,k = δk,u for every k ∈ {1, 2, . . . , n} (136)
93.

93Proof of (136): Let k ∈ {1, 2, . . . , n}. We must prove that Ai,k = δk,u.
We will prove this by contradiction. Thus, assume the contrary. Hence, Ai,k 6= δk,u.
If we had k = u, then we would have Ai,k = Ai,u = 1 = δk,u (since δk,u = 1 (because k = u)),

which would contradict Ai,k 6= δk,u. Thus, we cannot have k = u. We therefore must have k 6= u.
(Yes, we have just done a proof by contradiction inside a proof by contradiction. This is perfectly
legitimate!)

Since k 6= u, we have δk,u = 0. On the other hand, Statement 1 shows that each entry of A is
either a 0 or a 1. In particular, Ai,k is either a 0 or a 1 (since Ai,k is an entry of A). Since Ai,k is
not a 0 (because Ai,k 6= δk,u = 0), we therefore conclude that Ai,k is a 1. In other words, Ai,k = 1.

So we know that both numbers Ai,k and Ai,u are equal to 1. These numbers Ai,k and Ai,u are
two entries of the i-th row of A, and lie in different cells (since k 6= u). Thus, the i-th row of
A has at least two entries equal to 1 (namely, the entries Ai,k and Ai,u). This contradicts the
fact that the i-th row of A has exactly one entry equal to 1. This contradiction shows that our
assumption must have been false. Hence, Ai,k = δk,u is proven. In other words, (136) is proven.
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On the other hand, the u-th column of A has exactly one entry equal to 1 (by
Statement 3). We can use this to show that

Aj,u = δi,j (137)

94.
But Proposition 2.28 (applied to m = n, p = n and B = AT) shows that(

AAT
)

i,j
=

n

∑
k=1

Ai,k︸︷︷︸
=δk,u

(by (136))

(
AT
)

k,j︸ ︷︷ ︸
=Aj,k

(by (133), applied
to k instead of i)

=
n

∑
k=1

δk,u Aj,k =
n

∑
k=1

Aj,kδk,u = Aj,u

(by Proposition 2.40, applied to p = 1, q = n, r = u and ak = Aj,k). Hence,(
AAT)

i,j = Aj,u = δi,j (by (137)). This proves (135).]
On the other hand, In =

(
δi,j
)

1≤i≤n, 1≤j≤n. Hence, every i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , n} satisfy (In)i,j = δi,j. Comparing this with (135), we find that every
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} satisfy

(
AAT)

i,j = (In)i,j. In other words,

each entry of the matrix AAT equals the corresponding entry of In. Therefore,
AAT = In.

Now, let us change our point of view. We have just shown that AAT = In. But
(134) shows that AT is a permutation matrix. Hence, the argument that we used
to prove AAT = In can also be applied to AT instead of A. It therefore yields
AT (AT)T

= In. Since
(

AT)T
= A (indeed, this follows from Proposition 2.9), this

rewrites as AT A = In.
Now, the two equalities AAT = In and AT A = In (combined) show that the

matrix AT is an inverse of A. Hence, the matrix A is invertible, and its inverse is
A−1 = AT. This proves parts (a) and (b) of Proposition 3.122. It remains to prove
part (c). But this is obvious now: From (134), we know that AT is a permutation

94Proof of (137): We will prove this by contradiction. Thus, assume the contrary. Hence, Aj,u 6= δi,j.
If we had i = j, then we would have

Aj,u = Ai,u (since j = i)

= 1 = δi,j
(
since δi,j = 1 (because i = j)

)
,

which would contradict Aj,u 6= δi,j. Thus, we cannot have i = j. We therefore must have i 6= j.
(Once again, we have just made a proof by contradiction within a proof by contradiction.)

Since i 6= j, we have δi,j = 0. On the other hand, Statement 1 shows that each entry of A is
either a 0 or a 1. In particular, Aj,u is either a 0 or a 1 (since Aj,u is an entry of A). Since Aj,u is
not a 0 (because Aj,u 6= δi,j = 0), we therefore conclude that Aj,u is a 1. In other words, Aj,u = 1.

So we know that both numbers Ai,u and Aj,u are equal to 1. These numbers Ai,u and Aj,u are
two entries of the u-th column of A, and lie in different cells (since i 6= j). Thus, the u-th column
of A has at least two entries equal to 1 (namely, the entries Ai,u and Aj,u). This contradicts the
fact that the u-th column of A has exactly one entry equal to 1. This contradiction shows that our
assumption must have been false. Hence, Aj,u = δi,j is proven. In other words, (137) is proven.
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matrix. Since A−1 = AT, this rewrites as follows: A−1 is a permutation matrix.
This proves Proposition 3.122 (c).

Let me add one more result, which somewhat extends the =⇒ direction of The-
orem 3.116:

Proposition 3.128. Let n ∈ N. A simple swapping matrix will mean an n × n-
matrix of the form Tk,k+1 for some k ∈ {1, 2, . . . , n− 1}.

Each permutation matrix of size n× n is a product of simple swapping matri-
ces.

Example 3.129. Let n = 3. Then, there are three swapping matrices: T1,2, T1,3 and
T2,3. (You can also write down T2,1, T3,1 and T3,2, but these are the same three
matrices by different names.) Out of these three matrices, two (namely, T1,2 and
T2,3) are simple swapping matrices (in the sense of Proposition 3.128), whereas
the remaining one (T1,3) is not.

Proposition 3.128 (applied to n = 3) says that each permutation matrix of
size 3× 3 is a product of simple swapping matrices. Let us check this for the
permutation matrix T1,3. Just writing T1,3 as the product of itself alone does
not count anymore, because (as we said) T1,3 is not a simple swapping matrix.
However, we can write T1,3 as the product T1,2T2,3T1,2, and this does the trick.
(Alternatively, you can write T1,3 as the product T2,3T1,2T2,3. Again, there are
many possibilities.)

Proof of Proposition 3.128 (sketched). We will not need Proposition 3.128, so let me
only give a brief outline of its proof.

We want to prove that each permutation matrix of size n × n is a product of
simple swapping matrices. But the =⇒ direction of Theorem 3.116 shows that each
permutation matrix of size n × n is a product of swapping matrices. Hence, it
suffices to prove that

each swapping matrix is a product of simple swapping matrices. (138)

So let A be a swapping matrix. Thus, A = Tu,v for two distinct elements u and
v of {1, 2, . . . , n}. Consider these u and v. We can WLOG assume that u < v (since
otherwise, we can simply switch u with v, without changing A because Tu,v = Tv,u).
So, assume this. Then, I claim that

Tu,v = (Tu,u+1Tu+1,u+2 · · · Tv−2,v−1) Tv−1,v (Tv−2,v−1Tv−3,v−2 · · · Tu,u+1) . (139)

(To ease understanding, let me explain how the right hand side of (139) should
be interpreted: The first parenthesized factor, Tu,u+1Tu+1,u+2 · · · Tv−2,v−1, is the
product of all Tk,k+1 with k ranging over {u, u + 1, . . . , v− 2} in increasing or-
der. If the set {u, u + 1, . . . , v− 2} is empty, then this product has to be under-
stood as the empty product (which equals In as usual). The second parenthe-
sized factor, Tv−2,v−1Tv−3,v−2 · · · Tu,u+1, is the product of all Tk,k+1 with k ranging
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over {u, u + 1, . . . , v− 2} in decreasing order. Again, it is the empty product if
{u, u + 1, . . . , v− 2} is empty (and thus equals In in this case).)

Clearly, the equality (139) represents Tu,v as a product of simple swapping ma-
trices; thus, once it is proven, the claim (138) will immediately follow.

One way to prove (139) is to rewrite the right hand side of (139) as

(Tu,u+1Tu+1,u+2 · · · Tv−2,v−1) Tv−1,v (Tv−2,v−1Tv−3,v−2 · · · Tu,u+1) In. (140)

By using Proposition 3.105 repeatedly, we thus see that it is the matrix obtained
from In by:

• first, swapping the u-th row with the (u + 1)-th row,

• then, swapping the (u + 1)-th row with the (u + 2)-th row,

• and so on, until finally swapping the (v− 2)-th row with the (v− 1)-th row,

• then, swapping the (v− 1)-th row with the v-th row,

• then, swapping the (v− 2)-th row with the (v− 1)-th row,

• then, swapping the (v− 3)-th row with the (v− 2)-th row,

• and so on, until finally swapping the u-th row with the (u + 1)-th row.

This sequence of swappings has the following consequence: The u-th row has
been moved further and further down (by repeatedly getting swapped with the
next row) until it finally found rest in the position of the v-th row; then, the former
v-th row has been moved further and further up (by repeatedly getting swapped
with the previous row) until it finally found rest in the position of the u-th row. At
the end of this process, the u-th and the v-th rows have traded places, but all the
other rows have remained at the positions where they started out (although some
of them were temporarily moved back and forth in the process). So the right hand
side of (139) can be obtained from In by swapping the u-th row with the v-th row.
But (according to Corollary 3.108 (a)) the matrix Tu,v can be obtained in exactly the
same way. Hence, the right hand side of (139) simply is Tu,v. Thus, (139) is proven.
As explained, this proves Proposition 3.128.

(If you are looking for a more rigorous proof of (139) – without the swapping
process so confusingly described above –, you can also proceed by induction over
v− u. In the induction step, (139) is derived from the equality

Tu+1,v = (Tu+1,u+2Tu+2,u+3 · · · Tv−2,v−1) Tv−1,v (Tv−2,v−1Tv−3,v−2 · · · Tu+1,u+2) ,

which follows from the induction hypothesis. The details are, again, omitted.)
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3.21. (*) Permutation matrices and permutations

In Definition 3.112, we have defined permutation matrices as matrices satisfying
three particular conditions. This may not be their most natural definition, and
certainly has the disadvantage of making them look like curiosities rather than like
something important. In this section, I shall show a different approach to them
which better demonstrates their significance. The idea is that permutation matrices
are matrix representations of permutations, a fundamental notion of combinatorics
(= the theory of finite sets).

First, let me recall some basic terminology:

• A map95 f : X → Y between two sets X and Y is said to be injective if it has
the following property:

– If x1 and x2 are two elements of X satisfying f (x1) = f (x2), then x1 = x2.
(In words: If two elements of X are sent to one and the same element of
Y by f , then these two elements of X must have been equal in the first
place. In other words: An element of X is uniquely determined by its
image under f .)

Injective maps are often called “one-to-one maps” or “injections”.

For example:

– The map Z → Z, x 7→ 2x (this is the map that sends each integer x to
2x) is injective, because if x1 and x2 are two integers satisfying 2x1 = 2x2,
then x1 = x2.

– The map Z→ Z, x 7→ x2 (this is the map that sends each integer x to x2)
is not injective, because if x1 and x2 are two integers satisfying x2

1 = x2
2,

then we do not necessarily have x1 = x2. (For example, if x1 = −1 and
x2 = 1, then x2

1 = x2
2 but not x1 = x2.)

• A map f : X → Y between two sets X and Y is said to be surjective if it has
the following property:

– For each y ∈ Y, there exists some x ∈ X satisfying f (x) = y. (In words:
Each element of Y is an image of some element of X under f .)

Surjective maps are often called “onto maps” or “surjections”.

For example:

– The map Z → Z, x 7→ x + 1 (this is the map that sends each integer x
to x + 1) is surjective, because each integer y has some integer satisfying
x + 1 = y (namely, x = y− 1).

95The words “map”, “mapping”, “function”, “transformation” and “operator” are synonyms in
mathematics. (That said, mathematicians often show some nuance by using one of them and
not the other. However, we do not need to concern ourselves with this here.)
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– The map Z → Z, x 7→ 2x (this is the map that sends each integer x
to 2x) is not surjective, because not each integer y has some integer x
satisfying 2x = y. (For instance, y = 1 has no such x, since y is odd.)

– The map {1, 2, 3, 4} → {1, 2, 3, 4, 5} , x 7→ x (this is the map sending
each x to x) is not surjective, because not each y ∈ {1, 2, 3, 4, 5} has some
x ∈ {1, 2, 3, 4} satisfying x = y. (Namely, y = 5 has no such x.)

• A map f : X → Y between two sets X and Y is said to be bijective if it
is both injective and surjective. Bijective maps are often called “one-to-one
correspondences” or “bijections”.

For example:

– The map Z → Z, x 7→ x + 1 is bijective, since it is both injective and
surjective.

– The map {1, 2, 3, 4} → {1, 2, 3, 4, 5} , x 7→ x is not bijective, since it is not
surjective.

– The map Z→ Z, x 7→ x2 is not bijective, since it is not injective. (It also
is not surjective.)

• If X is a set, then idX denotes the map from X to X that sends each x ∈ X
to x itself. (In words: idX denotes the map which sends each element of X to
itself.) The map idX is often called the identity map on X, and often denoted
by id (when X is clear from the context or irrelevant). The identity map idX
is always bijective.

• If f : X → Y and g : Y → Z are two maps, then the composition g ◦ f of
the maps g and f is defined to be the map from X to Z that sends each
x ∈ X to g ( f (x)). (In words: The composition g ◦ f is the map from X
to Z that applies the map f first and then applies the map g.) You might
find it confusing that this map is denoted by g ◦ f (rather than f ◦ g), given
that it proceeds by applying f first and g last; however, this has its reasons:
It satisfies (g ◦ f ) (x) = g ( f (x)). Had we denoted it by f ◦ g instead, this
equality would instead become ( f ◦ g) (x) = g ( f (x)), which would be even
more confusing.

• If f : X → Y is a map between two sets X and Y, then an inverse of f means
a map g : Y → X satisfying f ◦ g = idY and g ◦ f = idX. (In words, the
condition “ f ◦ g = idY” means “if you start with some element y ∈ Y, then
apply g, then apply f , then you get y back”, or equivalently “the map f
undoes the map g”. Similarly, the condition “g ◦ f = idX” means “if you start
with some element x ∈ X, then apply f , then apply g, then you get x back”,
or equivalently “the map g undoes the map f ”. Thus, an inverse of f means
a map g : Y → X that both undoes and is undone by f .)
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The map f : X → Y is said to be invertible if and only if an inverse of f exists.
If an inverse of f exists, then it is unique96, and thus is called the inverse of f ,
and is denoted by f−1.

For example:

– The map Z→ Z, x 7→ x + 1 is invertible, and its inverse is Z→ Z, x 7→
x− 1.

– The map Q \ {1} → Q \ {0} , x 7→ 1
1− x

is invertible, and its inverse is

the map Q \ {0} → Q \ {1} , x 7→ 1− 1
x

.

A map f : X → Y is invertible if and only if it is bijective.

• If X is a set, then a permutation of X means a bijective (i.e., invertible) map
X → X.

Each permutation of the set {1, 2, . . . , n} (for any n ∈ N) determines a permuta-
tion matrix:

Definition 3.130. Let n ∈ N. Let w be a permutation of {1, 2, . . . , n} (that is,
a bijection {1, 2, . . . , n} → {1, 2, . . . , n}). Then, we define an n × n-matrix Pw

by Pw =
(

δw(i),j

)
1≤i≤n, 1≤j≤n

. In other words, Pw is the n × n-matrix with the

following entries:

• For each i ∈ {1, 2, . . . , n}, the i-th row has an entry equal to 1 in the w (i)-th
position (that is, the (i, w (i))-th entry of the matrix is 1).

• All other entries are 0.

Example 3.131. Let n = 4. There are 24 permutations of the set {1, 2, 3, 4}. One
of them is the map u : {1, 2, 3, 4} → {1, 2, 3, 4} that sends 1, 2, 3, 4 to 3, 1, 4, 2,

respectively. The matrix Pu corresponding to this map u is


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

.

Proposition 3.132. Let n ∈N.
(a) If w is a permutation of {1, 2, . . . , n}, then Pw is a permutation matrix.
(b) Let P be a permutation matrix of size n× n. Then, there exists a unique

permutation w of {1, 2, . . . , n} such that P = Pw.

96This is not hard to show. In fact, the situation is very similar to inverses of matrices; in particular,
we can define “left inverses” and “right inverses”, and prove analogues of Proposition 3.6 and
Corollary 3.7 for maps instead of matrices.
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Proof of Proposition 3.132 (sketched). (a) Let w be a permutation of {1, 2, . . . , n}. Thus,
w is a bijective map, i.e., an injective and surjective map.

We want to show that Pw is a permutation matrix. According to the definition of
a “permutation matrix”, we therefor must prove the following three statements:

Statement 1: Each entry of Pw is either a 0 or a 1.

Statement 2: Each row of Pw has exactly one entry equal to 1.

Statement 3: Each column of Pw has exactly one entry equal to 1.

Statement 1 follows immediately from the definition of Pw.
Statement 2 follows from the definition as well: For each i ∈ {1, 2, . . . , n}, the i-th

row of Pw has exactly one entry equal to 1 (namely, the entry in position w (i)).
It remains to prove Statement 3. Fix j ∈ {1, 2, . . . , n}. We must show that the j-th

column of Pw has exactly one entry equal to 1. In other words, we must prove that
there exists exactly one i ∈ {1, 2, . . . , n} satisfying w (i) = j.

Since w is surjective, there exists at least one such i. Since w is injective, there
exists at most one such i (because if i1 and i2 are two such i, then w (i1) = j and
w (i2) = j, so that w (i1) = w (i2), and thus the injectivity of w leads to i1 = i2).
Combining the previous two sentences, we conclude that there exists exactly one
such i. Thus, Statement 3 is proven.

We have now proven all three Statements 1, 2 and 3. Hence, Pw is a permutation
matrix, so that we have proven Proposition 3.132 (a).

(b) We know that P is a permutation matrix. In other words, the following three
statements hold:

Statement 1: Each entry of P is either a 0 or a 1.

Statement 2: Each row of P has exactly one entry equal to 1.

Statement 3: Each column of P has exactly one entry equal to 1.

Now, define a map w : {1, 2, . . . , n} → {1, 2, . . . , n} as follows:
Let i ∈ {1, 2, . . . , n}. Then, the i-th row of P has exactly one entry equal to 1 (by

Statement 2). In other words, there exists exactly one j ∈ {1, 2, . . . , n} such that
Pi,j = 1. Define w (i) to be this j.

Thus, we have defined w (i) for each i ∈ {1, 2, . . . , n}. Hence, the map w :
{1, 2, . . . , n} → {1, 2, . . . , n} is defined.

Described in words, the map w sends each i ∈ {1, 2, . . . , n} to the position of the
unique entry equal to 1 in the i-th row of P. Condition 1 shows that all the other
entries are zeroes. Hence, the entries of the matrix P can be described as follows:

• For each i ∈ {1, 2, . . . , n}, the (i, w (i))-th entry of P is 1.

• All remaining entries of P are 0.
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In other words, for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, the (i, j)-th

entry of P is

{
1, if j = w (i) ;
0, if j 6= w (i)

= δj,w(i) = δw(i),j. Thus, the matrix P equals(
δw(i),j

)
1≤i≤n, 1≤j≤n

.

Now, the map w is injective97 and surjective98. Hence, w is bijective. Thus, w is a
permutation of {1, 2, . . . , n}. The definition of Pw thus yields Pw =

(
δw(i),j

)
1≤i≤n, 1≤j≤n

.

Comparing this with P =
(

δw(i),j

)
1≤i≤n, 1≤j≤n

, we obtain P = Pw.

We thus have shown that there exists at least one permutation w of {1, 2, . . . , n}
such that P = Pw. It remains to prove that there exists at most one such permu-
tation w. Fortunately, this is easy: The requirement that P = Pw determines w
uniquely, since the values of w can be read off the matrix Pw (namely, w (i) is the
position of the entry equal to 1 in the i-th row of Pw). Hence, Proposition 3.132 (b)
is proven.

Proposition 3.132 shows that the permutation matrices of size n × n (for any
given n ∈N) are precisely the matrices of the form Pw with w being a permutation
of {1, 2, . . . , n}. Moreover, it shows that each permutation matrix can be written in
this form in a unique way. Hence, the map

{permutations of {1, 2, . . . , n}} → {permutation matrices of size n× n} ,
w 7→ Pw

99 is a bijection. Therefore, there are as many permutation matrices of size n× n as
there are permutations of {1, 2, . . . , n}. This allows us to prove Proposition 3.114:

Proof of Proposition 3.114 (sketched). We have just seen that there are as many per-
mutation matrices of size n× n as there are permutations of {1, 2, . . . , n}. Hence, it
suffices to show that there are precisely n! permutations of {1, 2, . . . , n}.
97Proof. Let i1 and i2 be two elements of {1, 2, . . . , n} such that w (i1) = w (i2). We must show that

i1 = i2.
We have Pi1,w(i1) = 1 (by the definition of w) and Pi2,w(i2) = 1 (similarly). Since w (i1) = w (i2),

we have Pi2,w(i1) = Pi2,w(i2) = 1.
If i1 6= i2, then the equalities Pi1,w(i1) = 1 and Pi2,w(i1) = 1 show that the w (i1)-th column of P

has (at least) two entries equal to 1 (namely, the entries in cells (i1, w (i1)) and (i2, w (i1))); but
this flies in the face of the fact that the w (i1)-th column of P has exactly one entry equal to 1
(which follows from Statement 3). Hence, we cannot have i1 6= i2. We thus have i1 = i2. This
completes the proof that w is injective.

98Proof. Let j ∈ {1, 2, . . . , n}. Then, the j-th column of P has exactly one entry equal to 1 (by
Statement 3). In other words, there exists exactly one i ∈ {1, 2, . . . , n} such that Pi,j = 1. Consider
this i. Then, Pi,j = 1, so that w (i) = j (by the definition of w). Hence, we have shown that, for
each j ∈ {1, 2, . . . , n}, there exists some i ∈ {1, 2, . . . , n} satisfying w (i) = j. In other words, the
map w is surjective.

99By this, I mean: the map from the set of all permutations of {1, 2, . . . , n} to the set of all permu-
tation matrices of size n× n that sends each permutation w to the permutation matrix Pw.
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How do we choose a permutation w of {1, 2, . . . , n} ? Clearly, it suffices to
choose each of its n values w (1) , w (2) , . . . , w (n) among the numbers in the set
{1, 2, . . . , n}. These n values must be distinct (because w has to be a permutation,
and thus injective). Also, these n values must cover all of the set {1, 2, . . . , n} (since
w has to be a permutation, and thus surjective); however, it turns out that this is
already guaranteed if we choose these n values to be distinct (because n distinct
values chosen among the numbers in {1, 2, . . . , n} will always cover all of the set
{1, 2, . . . , n}). Hence, we need to choose n distinct numbers w (1) , w (2) , . . . , w (n)
among the numbers in the set {1, 2, . . . , n}. Here is one way to do this:

• First, choose a value for w (1). There are n possible choices for this (since
w (1) has to belong to {1, 2, . . . , n}).

• Second, choose a value for w (2). There are n − 1 possible choices for this
(since w (2) has to belong to {1, 2, . . . , n}, but must not equal w (1), since we
want the n numbers w (1) , w (2) , . . . , w (n) to be distinct).

• Third, choose a value for w (3). There are n− 2 possible choices for this (since
w (3) has to belong to {1, 2, . . . , n}, but must not equal any of w (1) and w (2),
since we want the n numbers w (1) , w (2) , . . . , w (n) to be distinct).

• Fourth, choose a value for w (4). There are n − 3 possible choices for this
(since w (4) has to belong to {1, 2, . . . , n}, but must not equal any of w (1) , w (2) , w (3),
since we want the n numbers w (1) , w (2) , . . . , w (n) to be distinct).

• And so on.

• At the last step, choose a value for w (n). There are n − (n− 1) possible
choices for this (since w (n) has to belong to {1, 2, . . . , n}, but must not equal
any of w (1) , w (2) , . . . , w (n− 1), since we want the n numbers w (1) , w (2) , . . . , w (n)
to be distinct).

We thus get a total of n · (n− 1) · (n− 2) · (n− 3) · · · · · (n− (n− 1)) possible
choices. In other words, we get a total of n! possible choices100. Hence, there are
precisely n! permutations of {1, 2, . . . , n}. As we have said, this proves Proposition
3.114.

Here is a further property of permutation matrices constructed out of permuta-
tions:

100since

n · (n− 1) · (n− 2) · (n− 3) · · · · · (n− (n− 1))
= n · (n− 1) · (n− 2) · (n− 3) · · · · · 1 = 1 · 2 · · · · · n = n!
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Proposition 3.133. Let n ∈N.
(a) If x and y are two permutations of {1, 2, . . . , n}, then PxPy = Py◦x.
(b) If w is a permutation of {1, 2, . . . , n}, then (Pw)

−1 = Pw−1 .
(c) We have Pid{1,2,...,n} = In.
(d) Let u and v be two distinct elements of {1, 2, . . . , n}. Let τu,v be the permu-

tation of {1, 2, . . . , n} which sends u to v, sends v to u, and sends each other ele-
ment of {1, 2, . . . , n} to itself. (For example, if n = 7, then τ2,5 sends 1, 2, 3, 4, 5, 6, 7
to 1, 5, 3, 4, 2, 6, 7, respectively.) Then, Pτu,v = Tu,v.

We leave the easy proof to the reader.
As we have said, Proposition 3.132 shows that the map

{permutations of {1, 2, . . . , n}} → {permutation matrices of size n× n} ,
w 7→ Pw

is a bijection. This map provides a “dictionary” between permutations of {1, 2, . . . , n}
and permutation matrices of size n× n (so to speak). Proposition 3.133 (a) shows
that (under this “dictionary”) composition of permutations “corresponds” to mul-
tiplication of permutation matrices (except that the order of the factors is reversed).
Proposition 3.133 (b) shows that the inverse of a permutation gets “translated” into
the inverse of the corresponding permutation matrix. Proposition 3.133 (c) shows
that the identity permutation id{1,2,...,n} “corresponds” to the identity matrix In. Fi-
nally, Proposition 3.133 (d) shows that the permutations τu,v “correspond” to the
swapping matrices Tu,v. Using this “dictionary”, we can translate theorems about
permutations into theorems about permutation matrices, and vice versa. For in-
stance, the translation of Proposition 3.128 into the language of permutations is the
following fact:

Proposition 3.134. Let n ∈ N. A simple transposition will mean a permutation in
Sn that has the form τk,k+1 for some k ∈ {1, 2, . . . , n− 1} (where τk,k+1 is defined
as in Proposition 3.133 (d)).

Each permutation of {1, 2, . . . , n} is a product of simple transpositions.

Arguably, in this translated form, this proposition is rather obvious. It merely
says that any rearrangement of the numbers 1, 2, . . . , n can be obtained from the list
(1, 2, . . . , n) by repeatedly swapping adjacent entries. This should be quite clear,
at least intuitively (the “bubble sort” algorithm provides a way to obtain the list
(1, 2, . . . , n) from our rearrangement by repeatedly swapping adjacent entries; now,
all that remains to be done is to perform these swaps backwards in order to get
from (1, 2, . . . , n) to the rearrangement).

Next, let us prove Proposition 3.123. Let us first state a more precise version of
this proposition:

https://en.wikipedia.org/wiki/Bubble_sort
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Proposition 3.135. Let n ∈N and m ∈N. Let w be a permutation of {1, 2, . . . , n}.
Let P be the n× n-matrix Pw. Let C be an n×m-matrix. Then,

rowi (PC) = roww(i) C for every i ∈ {1, 2, . . . , n} .

Proof of Proposition 3.135. We have P = Pw =
(

δw(i),j

)
1≤i≤n, 1≤j≤n

(by the definition

of Pw). Thus,

Pi,j = δw(i),j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n} . (141)

Now, Proposition 2.28 (applied to n, m, P and C instead of m, p, A and B) shows
that

(PC)i,j =
n

∑
k=1

Pi,kCk,j for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m} .

Hence, for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have

(PC)i,j =
n

∑
k=1

Pi,k︸︷︷︸
=δw(i),k

(by (141), applied
to k instead of j)

Ck,j =
n

∑
k=1

δw(i),kCk,j︸ ︷︷ ︸
=Ck,jδw(i),k

=
n

∑
k=1

Ck,j δw(i),k︸ ︷︷ ︸
=δk,w(i)

(since δu,v=δv,u
for any two

objects u and v)

=
n

∑
k=1

Ck,jδk,w(i) = Cw(i),j (142)

(by Proposition 2.40, applied to p = 1, q = n, r = w (i) and ak = Ck,j).
Now, let i ∈ {1, 2, . . . , n}. Then, the definition of roww(i) C yields roww(i) C =(

Cw(i),y

)
1≤x≤1, 1≤y≤m

. But the definition of rowi (PC) yields

rowi (PC) =

 (PC)i,y︸ ︷︷ ︸
=Cw(i),y

(by (142), applied to j=y)


1≤x≤1, 1≤y≤m

=
(

Cw(i),y

)
1≤x≤1, 1≤y≤m

.

Comparing this with roww(i) C =
(

Cw(i),y

)
1≤x≤1, 1≤y≤m

, we obtain rowi (PC) =

roww(i) C. This proves Proposition 3.135.

Proof of Proposition 3.123. Proposition 3.132 (b) shows that there exists a unique
permutation w of {1, 2, . . . , n} such that P = Pw. Consider this w. Proposition
3.135 yields that

rowi (PC) = roww(i) C for every i ∈ {1, 2, . . . , n} .
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In other words, the i-th row of PC equals the w (i)-th row of C for each i ∈
{1, 2, . . . , n}. Since w is a permutation of {1, 2, . . . , n}, this shows that the rows
of PC are the rows of C, rearranged. Hence, the matrix PC can be obtained from C
by rearranging the rows. This proves Proposition 3.123.

3.22. The standard row operations

I shall now introduce the standard row operations – certain transformations acting
on matrices, changing some of their rows while leaving others unchanged. We have
already encountered them in some proofs above (for instance, the “downward row
additions” in the proof of Theorem 3.63 were one type of row operations), but now
we shall give them the systematic treatment they deserve and see them collaborate
on producing in Gaussian elimination.

Definition 3.136. For the rest of Chapter 3, we shall use the word “transforma-
tion” in a rather specific meaning: Let n ∈N. A transformation of n-rowed matrices
will mean a map

{matrices with n rows} → {matrices with n rows} .

In other words, a transformation of n-rowed matrices is a map that transforms each
matrix with n rows into a new matrix with n rows.

We shall use the arrow notation for transformations: If O is some transforma-
tion of n-rowed matrices, and if C and D are two matrices, then we will use the
notation “C O−→ D” when we want to say that the transformation O transforms
C into D. For example, ifM denotes the transformation of 2-rowed matrices that

multiplies each entry of a matrix by 3, then
(

a b c
a′ b′ c′

)
M−→

(
3a 3b 3c
3a′ 3b′ 3c′

)
.

More generally, if O1,O2, . . . ,Om is a sequence of transformations of n-rowed
matrices, and if C0, C1, . . . , Cm are some matrices, then we will use the notation

“C0
O1−→ C1

O2−→ · · · Om−→ Cm” when we want to say that the transposition Oi
transforms Ci−1 into Ci for each i ∈ {1, 2, . . . , m}. Examples for this will appear
below once we have defined some actual transformations.

We will also sometimes draw arrows in two directions. Namely: If O and P
are two transformations of n-rowed matrices, and if C and D are two matrices,

then we will use the notation “C
O−→
←−
P

D” when we want to say that the transfor-

mation O transforms C into D while the transformation P transforms D into C.
This will often happen when two transformations O and P are inverse to each
other (i.e., each of them undoes the other).

Definition 3.137. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Let λ be a number.
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Consider the transformation which transforms an n × m-matrix C (for some
m ∈ N) into the product Aλ

u,vC, where Aλ
u,v is the λ-addition matrix as defined

in Definition 3.53. It is the transformation that modifies an n× m-matrix C by
adding λ rowv C to the u-th row (according to Proposition 3.56). This transfor-
mation will be called the row addition Aλ

u,v. (We are using the same symbol Aλ
u,v

for the transformation and for the λ-addition matrix, since they are so closely
related; nevertheless, they are not one and the same thing. I hope that the reader
will be able to keep them apart.)

The row addition Aλ
u,v is called a downward row addition if u > v, and is called

an upward row addition if u < v.

Note that two matrices C and D (with n rows each) satisfy C
Aλ

u,v−→ D if and
only if they satisfy D = Aλ

u,vC. (This is because the row addition Aλ
u,v transforms

each n×m-matrix C into Aλ
u,vC.)

Note that the row addition Aλ
u,v is inverse to the row addition A−λ

u,v (since the
matrices Aλ

u,v and A−λ
u,v are inverse). Hence, if two matrices C and D (with n rows

each) satisfy C
Aλ

u,v−→ D, then they satisfy C
Aλ

u,v−→
←−
A−λ

u,v

D.

Example 3.138. The row addition A5
1,3 modifies a 3 × m-matrix C by adding

5 row3 C to the 1-st row of C. Thus, this row addition transforms any 3× 4-matrix a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 into

 a1 + 5a3 b1 + 5b3 c1 + 5c3 d1 + 5d3
a2 b2 c2 d2
a3 b3 c3 d3

. Using the

arrow notation, we can write this as follows: a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 A5
1,3−→

 a1 + 5a3 b1 + 5b3 c1 + 5c3 d1 + 5d3
a2 b2 c2 d2
a3 b3 c3 d3

 .

For example,

 1 3 2 1
0 4 −1 1
2 −1 3 1

 A5
1,3−→

 11 −2 17 6
0 4 −1 1
2 −1 3 1

.

Definition 3.139. Let n ∈N. Let u ∈ {1, 2, . . . , n}. Let λ be a nonzero number.
Consider the transformation which transforms an n × m-matrix C (for some

m ∈ N) into the product Sλ
uC, where Sλ

u is the λ-scaling matrix as defined in
Definition 3.85. It is the transformation that modifies an n×m-matrix C by scal-
ing the u-th row by λ (according to Proposition 3.88). This transformation will
be called the row scaling Sλ

u . (We are using the same symbol Sλ
u for the transfor-

mation and for the λ-scaling matrix. Again, this should not lead to confusion.)

Note that two matrices C and D (with n rows each) satisfy C
Sλ

u−→ D if and
only if they satisfy D = Sλ

uC. (This is because the row scaling Sλ
u transforms each
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n×m-matrix C into Sλ
uC.)

Note that the row scaling Sλ
u is inverse to the row scaling S1/λ

u (since the matri-
ces Sλ

u and S1/λ
u are inverse). Hence, if two matrices C and D (with n rows each)

satisfy C
Sλ

u−→ D, then they satisfy C
Sλ

u−→
←−
S1/λ

u

D.

Example 3.140. The row scaling S5
2 modifies a 3×m-matrix C by scaling the 2-nd

row by 5. Thus, this row scaling transforms any 3× 2-matrix

 a1 b1
a2 b2
a3 b3

 into a1 b1
5a2 5b2
a3 b3

.

Definition 3.141. Let n ∈N. Let u and v be two distinct elements of {1, 2, . . . , n}.
Consider the transformation which transforms an n × m-matrix C (for some

m ∈ N) into the product Tu,vC, where Tu,v is the swapping matrix as defined
in Definition 3.102. It is the transformation that modifies an n×m-matrix C by
swapping the u-th row with the v-th row (according to Proposition 3.105). This
transformation will be called the row swap Tu,v. (We are using the same symbol
Tu,v for the transformation and for the swapping matrix.)

Note that two matrices C and D (with n rows each) satisfy C
Tu,v−→ D if and

only if they satisfy D = Tu,vC. (This is because the row swap Tu,v transforms
each n×m-matrix C into Tu,vC.)

Note that the row swap Tu,v is inverse to itself (since the matrices Tu,v and Tu,v

are inverse). Hence, if two matrices C and D (with n rows each) satisfy C
Tu,v−→ D,

then they satisfy C
Tu,v−→
←−
Tu,v

D.

Example 3.142. The row swap T1,3 modifies a 4× m-matrix C by swapping the
1-st row of C with the 3-rd row of C. Thus, this row swap transforms any 4× 2-

matrix


a1 b1
a2 b2
a3 b3
a4 b4

 into


a3 b3
a2 b2
a1 b1
a4 b4

. Using the arrow notation, we can write this

as follows: 
a1 b1
a2 b2
a3 b3
a4 b4

 T1,3−→


a3 b3
a2 b2
a1 b1
a4 b4

 .
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For example,


1 2
3 4
5 6
7 8

 T1,3−→


5 6
3 4
1 2
7 8

.

Definition 3.143. Let n ∈ N. The standard row operations (on matrices with n
rows) are:

• row additions (i.e., transformations of the form Aλ
u,v);

• row scalings (i.e., transformations of the form Sλ
u);

• row swaps (i.e., transformations of the form Tu,v).

These row operations allow us to “reduce” any matrix to a certain simple form
– called a row echelon form – that has many zeroes (in a sense, it is close to upper-
triangular, although the two notions are not exactly the same) and that allows for
easily solving linear systems.

3.23. Row-echelon matrices

Definition 3.144. Let n ∈ N and m ∈ N. An n× m-matrix A is said to be zero
if and only if A = 0n×m. In other words, an n×m-matrix A is said to be zero if
and only if all entries of A are zero.

An n×m-matrix A is said to be nonzero if A is not zero. (This does not mean
that all entries of A are nonzero!)

Definition 3.145. Let m ∈ N. Let v = (v1, v2, . . . , vm) be a 1× m-matrix (i.e., a
row vector of size m). If v is nonzero (i.e., if not all entries of v are zero), then the
smallest i ∈ {1, 2, . . . , m} satisfying vi 6= 0 is called the pivot index of v and will
be denoted by pivind v. Furthermore, the value of vi for this smallest i is called
the pivot entry of v. (Thus, the pivot entry of v is the first nonzero entry of v.)

Example 3.146. The row vector (0, 6, 7, 0, 9) has pivot index 2 (because if we write
it as (v1, v2, v3, v4, v5), then the smallest i ∈ {1, 2, 3, 4, 5} satisfying vi 6= 0 is 2)
and pivot entry 6.

The row vector (0, 0,−1,−1, 0) has pivot index 3 and pivot entry −1.
The row vector (0, 0, 0, 0, 0) has no pivot index (since it is zero).

Definition 3.147. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) Let i ∈ {1, 2, . . . , n} be such that rowi A is nonzero. Then, the cell

(i, pivind (rowi A)) is called the pivot cell in the i-th row of A. (In words, this
is the leftmost cell in the i-th row of A that has a nonzero entry.)
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(b) The pivot cells of A are the pivot cells in the i-th row of A, where i ranges
over all elements of {1, 2, . . . , n} for which rowi A is nonzero. The pivot entries of
A are the entries of A in the pivot cells. (In other words, the pivot entries of A
are the leftmost nonzero entries of all nonzero rows of A.)

Example 3.148. The pivot cells of the matrix


7 3 1
0 0 0
0 0 4
0 −1 2

 are (1, 1), (3, 3) and

(4, 2), and the respective pivot entries are 7, 4 and −1. There is no pivot cell in
the 2-nd row, since this row is zero.

Definition 3.149. Let n ∈N and m ∈N. Let A be an n×m-matrix.
We say that A is a row-echelon matrix if for each i ∈ {1, 2, . . . , n− 1}, the fol-

lowing holds:

• either rowi+1 A is zero,

• or both rows rowi A and rowi+1 A are nonzero, and satisfy
pivind (rowi A) < pivind (rowi+1 A) (that is, the pivot cell in the i-th
row of A is strictly further left than the pivot cell in the (i + 1)-th row of
A).

Instead of saying that “A is a row-echelon matrix”, it is customary to say that
“A is in row-echelon form”.

Example 3.150. (a) Let A be the 3× 4-matrix

 −2 3 4 5
0 0 2 1
0 0 0 3

. Then, A is a

row-echelon matrix. In fact, all rows of A are nonzero, and each i ∈ {1, 2} satis-
fies pivind (rowi A) < pivind (rowi+1 A) (indeed, we have pivind (row1 A) = 1,
pivind (row2 A) = 3 and pivind (row3 A) = 4). The pivot cells of A are (1, 1),
(2, 3) and (3, 4).

(b) Let A be the 3× 4-matrix

 −2 3 4 5
0 0 2 1
0 0 4 3

 instead. Then, A is not a row-

echelon matrix. Indeed, i = 2 fails to satisfy the condition in Definition 3.149
(because pivind (row2 A) = 3 and pivind (row3 A) = 3, but row3 A is nonzero).
The pivot cells of A are (1, 1), (2, 3) and (3, 3).

(c) Let A be the 5 × 4-matrix


7 3 1 0
0 −1 2 2
0 0 3 0
0 0 0 0
0 0 0 0

 instead. Then, A is a

row-echelon matrix. In fact, each i ∈ {1, 2} satisfies pivind (rowi A) <
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pivind (rowi+1 A) (because pivind (row1 A) = 1, pivind (row2 A) = 2 and
pivind (row3 A) = 3), whereas for each i ∈ {3, 4}, the vector rowi+1 A is zero
(since row4 A and row5 A is zero). The pivot cells of A are (1, 1), (2, 2) and (3, 3).

(d) Let A be the 3× 4-matrix

 7 3 1 0
0 0 0 0
0 0 3 0

 instead. Then, A is not a row-

echelon matrix. Indeed, i = 2 fails to satisfy the condition in the definition of
3.149 (because rowi A is zero, but rowi+1 A is nonzero). The pivot cells of A are
(1, 1) and (3, 3).

(e) Let A be an invertibly upper-triangular n× n-matrix (for some n ∈ N) in-
stead. (See Definition 3.30 (b) for the meaning of “invertibly upper-triangular”.)
Then, A is a row-echelon matrix. In fact, each i ∈ {1, 2, . . . , n− 1} satisfies
pivind (rowi A) < pivind (rowi+1 A) (because pivind (rowk A) = k for each
k ∈ {1, 2, . . . , n}). The pivot cells of A are (1, 1) , (2, 2) , . . . , (n, n).

(f) On the other hand, not every upper-triangular n×n-matrix is a row-echelon

matrix. For instance,

 1 2 3
0 0 1
0 0 1

 is not a row-echelon matrix, since the pivot

indices of its 2-nd and 3-rd rows are equal.

From the examples just given, it shouldn’t be hard to build an intuition for row-
echelon matrices. Roughly speaking, a matrix A is row-echelon if and only if

• a nonzero row of A cannot follow a zero row of A, and

• the first nonzero entry in each nonzero row of A is strictly further right than
that in the row before.

Here are some first simple observations:

Proposition 3.151. Let A be an n× m-matrix. Assume that A is a row-echelon
matrix. Let k be the number of nonzero rows of A.

(a) The first k rows of A are nonzero, whereas the last n− k rows of A are zero.
(b) The pivot cells of A are the k cells

(1, pivind (row1 A)) , (2, pivind (row2 A)) , . . . , (k, pivind (rowk A)) .

(c) We have

pivind (row1 A) < pivind (row2 A) < · · · < pivind (rowk A) .

Proof of Proposition 3.151. The matrix A is a row-echelon matrix. Thus, the condi-
tion in Definition 3.149 shows that, for each i ∈ {1, 2, . . . , n− 1}, the following
holds:

if rowi+1 A is nonzero, then rowi A is nonzero. (143)
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Hence, a nonzero row of A cannot follow a zero row. Using this fact, it is easy to
see that the nonzero rows of A are “concentrated at the top”, i.e., there exists some
` ∈ {0, 1, . . . , n} such that the first ` rows of A are nonzero whereas the last n− `
rows of A are zero. Consider this `. (Note that ` = 0 if all rows of A are zero, and
` = n if all rows of A are nonzero.) Clearly, the number of nonzero rows of A is `.
But we have denoted this number by k. Thus, ` = k. So we conclude that the first
k rows of A are nonzero whereas the last n− k rows of A are zero (since the first
` rows of A are nonzero whereas the last n− ` rows of A are zero). This proves
Proposition 3.151 (a).101

(c) Proposition 3.151 (a) shows that the first k rows of A are nonzero. In other
words, rowi+1 A is nonzero for each i ∈ {0, 1, . . . , k− 1}. The condition in Defi-
nition 3.149 thus shows that each i ∈ {1, 2, . . . , k− 1} satisfies pivind (rowi A) <
pivind (rowi+1 A) (since A is a row echelon matrix). In other words,

pivind (row1 A) < pivind (row2 A) < · · · < pivind (rowk A) . (144)

This proves Proposition 3.151 (c).
(b) Proposition 3.151 (a) shows that the first k rows of A are nonzero whereas the

last n− k rows of A are zero. Thus, the pivot cells of A are the pivot cells in the
first k rows of A. In other words, they are the k cells

(1, pivind (row1 A)) , (2, pivind (row2 A)) , . . . , (k, pivind (rowk A)) .

This proves Proposition 3.151 (b).

Proposition 3.152. Let A be a matrix.
(a) Each row of A has at most one pivot cell.
(b) Assume that A is a row-echelon matrix. Each column of A has at most one

pivot cell.

101If you find this proof insufficiently rigorous, you can argue as follows instead: If all rows of A
are zero, then k = 0 (since k is the number of nonzero rows of A), and therefore Proposition
3.151 (a) is obvious in this case. Hence, we WLOG assume that k 6= 0. Thus, there exists at
least one nonzero row of A. In other words, there exists at least one i ∈ {1, 2, . . . , n} such
that rowi A is nonzero. Let h be the largest such i. Thus, rowh A is nonzero, but all the rows
rowh+1 A, rowh+2 A, . . . , rown A are zero.

We know that rowh A is nonzero. Hence, by applying (143) repeatedly, we can conclude that
all the h rows rowh A, rowh−1 A, rowh−2 A, . . . , row1 A are nonzero. (Strictly speaking, we are
saying that rowh−j A is nonzero for each j ∈ {0, 1, . . . , h− 1}; this can be proven by induction
over j.) In other words, all the h rows row1 A, row2 A, . . . , rowh A are nonzero (since their order
does not matter for us). In other words, the first h rows of A are nonzero (since the first h rows
of A are row1 A, row2 A, . . . , rowh A).

But recall that rowh+1 A, rowh+2 A, . . . , rown A are zero. In other words, the last n− h rows of
A are zero (since the last n− h rows of A are rowh+1 A, rowh+2 A, . . . , rown A are zero).

Thus, we know that the first h rows of A are nonzero, whereas the last n− h rows of A are
zero. Hence, the number of nonzero rows of A is h. But the number of nonzero rows of A is k
(since this is how we defined k). Comparing the previous two sentences, we obtain h = k.

But recall that the first h rows of A are nonzero, whereas the last n− h rows of A are zero.
Since h = k, this rewrites sa follows: The first k rows of A are nonzero, whereas the last n− k
rows of A are zero. This proves Proposition 3.151 (a) again.
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Proof of Proposition 3.152. (a) This is clear from the definition of a pivot cell. (More
precisely, each nonzero row of A has exactly one pivot cell, whereas a nonzero row
of A has no pivot cell.)

(b) Let n ∈N and m ∈N be such that A is an n×m-matrix. Let k be the number
of nonzero rows of A. Proposition 3.151 (c) yields

pivind (row1 A) < pivind (row2 A) < · · · < pivind (rowk A) . (145)

Proposition 3.151 (b) shows that the pivot cells of A are the k cells

(1, pivind (row1 A)) , (2, pivind (row2 A)) , . . . , (k, pivind (rowk A)) .

Therefore, (145) shows that each of these cells lies strictly further left than the next.
Therefore, these cells lie in distinct columns. In other words, each column of A has
at most one pivot cell. This proves Proposition 3.152 (b).

The main importance of row-echelon matrices is that when A is a row-echelon
matrix, the equation Ax = b can be solved by a simple method called “back-
substitution”. Before explaining this method in full generality, let me give four
examples (in increasing order of complexity):102

Example 3.153. Let A =

 4 3 4
0 −1 2
0 0 5

 and b =

 3
1
5

. We want to solve the

equation Ax = b; in other words, we want to find all column vectors x of size 3
that satisfy Ax = b.

Write the unknown vector x in the form x =

 x1
x2
x3

. Multiplying

the equalities A =

 4 3 4
0 −1 2
0 0 5

 and x =

 x1
x2
x3

, we obtain Ax = 4 3 4
0 −1 2
0 0 5

 x1
x2
x3

 =

 4x1 + 3x2 + 4x3
−x2 + 2x3

5x3

 and b =

 3
1
5

. Hence, the

equation Ax = b rewrites as

 4x1 + 3x2 + 4x3
−x2 + 2x3

5x3

 =

 3
1
5

. This, in turn, is

102Notice that in each of the following examples, A is a row-echelon matrix. However, the pivot cells
differ:

• In Example 3.153, each row has a pivot cell, and each column has a pivot cell.

• In Example 3.154, each row has a pivot cell, but not each column does.

• In Example 3.155 and in Example 3.156, not each row has a pivot cell. These two examples
differ in b (specifically, in the entry of b in the row in which A has no pivot cell).
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equivalent to the following system of linear equations:
4x1 + 3x2 + 4x3 = 3;
−x2 + 2x3 = 1;

5x3 = 5
. (146)

The system (146) has a particularly simple form: each of its equations can be
solved for some variable as long as we resolve them in the appropriate order.
Namely:

1. We can solve the third equation in (146) for x3, yielding the solution x3 = 1.

2. Now that we have found the value of x3, we can substitute it into the second
equation in (146), so that the latter equation becomes −x2 + 2 · 1 = 1. We
can now solve this equation for x2, obtaining x2 = 1.

3. Now that we have found the values of x2 and x3, we can substitute them
into the first equation in (146), so that the latter equation becomes 4x1 + 3 ·
1 + 4 · 1 = 3. We can now solve this equation for x1, obtaining x1 = −1.

Altogether, we have now found x1 = −1, x2 = 1 and x3 = 1. In other words,

x =

 −1
1
1

. Thus, we have shown that each column vector x satisfying Ax = b

must equal to

 −1
1
1

.

Conversely, the vector x =

 −1
1
1

 actually does satisfy Ax = b; this is

because we did not “throw away any requirements”:

1. When we solved the third equation in (146) for x3, we ensured that our
solution x3 = 1 actually does satisfy this third equation.

2. When we rewrote the second equation in (146) as −x2 + 2 · 1 = 1 and
solved it for x2, we ensured that our solution x2 = 1 actually does satisfy
the second equation, as long as x3 = 1.

3. When we rewrote the first equation in (146) as 4x1 + 3 · 1 + 4 · 1 = 3 and
solved it for x1, we ensured that our solution x1 = −1 actually does satisfy
the second equation, as long as x2 = 1 and x3 = 1.

Looking back at these steps, we thus conclude that the values x1 = −1, x2 = 1

and x3 = 1 (that is, x =

 −1
1
1

) do satisfy all the three equations in (146). (Of
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course, we could also have checked this by computing Ax for these values; but
it is important to know that this computation is unnecessary – the method we
used comes with a guarantee that its result is correct!)

We can now conclude that the equation Ax = b has a unique solution, namely

x =

 −1
1
1

.

Example 3.154. Let A =

 4 3 0 4
0 −1 3 2
0 0 0 5

 and b =

 3
1
5

. We want to solve

the equation Ax = b; in other words, we want to find all column vectors x of
size 4 that satisfy Ax = b.

Write the unknown vector x in the form x =


x1
x2
x3
x4

. Then, Ax =

 4 3 0 4
0 −1 3 2
0 0 0 5




x1
x2
x3
x4

 =

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

5x4

 and b =

 3
1
5

. Hence,

the equation Ax = b rewrites as

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

5x4

 =

 3
1
5

. This, in turn,

is equivalent to the following system of linear equations:
4x1 + 3x2 + 4x4 = 3;
−x2 + 3x3 + 2x4 = 1;

5x4 = 5
. (147)

The system (147) can be solved similarly to (146), with one more complication:

1. We can solve the third equation in (147) for x4, yielding the solution x4 = 1.

2. There is no equation (147) that “begins with x3” (i.e., that has x3 appear
with nonzero coefficient, but x1 and x2 with zero coefficients). Thus, we
have nothing to solve for x3. (Of course, we could try solving the second
equation in (147) for x3; but this would require a value of x2, which for
now is just as unknown as x3.)

Instead of solving an equation for x3, let us treat x3 as a known! In other
words, let us define a number r by r = x3, and pretend that x3 = r is an
explicit value for x3.

3. Now that we have “found” the values of x3 and x4 (the word “found” is in
scare quotes because all we know about x3 is that x3 = r), we can substitute
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them into the second equation in (147), so that the latter equation becomes
−x2 + 3r + 2 · 1 = 1. We can now solve this equation for x2, obtaining
x2 = 3r + 1.

4. Now that we have “found” the values of x2, x3 and x4, we can substitute
them into the first equation in (147), so that the latter equation becomes
4x1 + 3 (3r + 1)+ 4 · 1 = 3. We can now solve this equation for x1, obtaining

x1 = −9
4

r− 1.

Altogether, we have now found x1 = −9
4

r− 1, x2 = 3r + 1, x3 = r and x4 = 1.
In other words,

x =


−9

4
r− 1

3r + 1
r
1

 . (148)

Thus, we have found that each column vector x satisfying Ax = b must have the
form (148) for some number r ∈ R.

Conversely, any column vector x of the form (148) (for any real number r ∈ R)
actually does satisfy Ax = b. The reason for this is similar to the one we gave in
Example 3.153: Namely, in the process of finding the solution (148), we did not
“throw away any requirements”.

So we have learned that a column vector x satisfies Ax = b if and only if it has
the form (148) for some number r ∈ R. Thus, the equation Ax = b has infinitely
many solutions – namely, its solutions are all vectors x of the form (148) with
r ∈ R. This explains why we were unable to find an equation to solve for x3:
Different solutions x have different values of x3.

Example 3.155. Let A =

 4 3 0 4
0 −1 3 2
0 0 0 0

 and b =

 3
1
5

. We want to solve

the equation Ax = b; in other words, we want to find all column vectors x of
size 4 that satisfy Ax = b.

Write the unknown vector x in the form x =


x1
x2
x3
x4

. Then, Ax =

 4 3 0 4
0 −1 3 2
0 0 0 0




x1
x2
x3
x4

 =

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

0

 and b =

 3
1
5

. Hence,
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the equation Ax = b rewrites as

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

0

 =

 3
1
5

. This, in turn,

is equivalent to the following system of linear equations:
4x1 + 3x2 + 4x4 = 3;
−x2 + 3x3 + 2x4 = 1;

0 = 5
. (149)

The system (149) can be solved very easily: Its third equation (that is, 0 = 5)
is never satisfied (no matter what x is). Thus, the whole system (149) is never
satisfied. In other words, Ax = b is never satisfied. Hence, Ax = b has no
solutions.

Example 3.156. Let A =

 4 3 0 4
0 −1 3 2
0 0 0 0

 and b =

 3
1
0

. We want to solve

the equation Ax = b; in other words, we want to find all column vectors x of
size 4 that satisfy Ax = b.

Write the unknown vector x in the form x =


x1
x2
x3
x4

. Then, Ax =

 4 3 0 4
0 −1 3 2
0 0 0 0




x1
x2
x3
x4

 =

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

0

 and b =

 3
1
0

. Hence,

the equation Ax = b rewrites as

 4x1 + 3x2 + 4x4
−x2 + 3x3 + 2x4

0

 =

 3
1
0

. This, in turn,

is equivalent to the following system of linear equations:
4x1 + 3x2 + 4x4 = 3;
−x2 + 3x3 + 2x4 = 1;

0 = 0
. (150)

The system (150) can be solved similarly to (150), after a very simple first step:

1. The third equation in (150) is always satisfied (since it says that 0 = 0), and
thus places no restrictions on x. Hence, it can be discarded.

2. There is no equation (150) that “begins with x4” (i.e., that has x4 appear
with nonzero coefficient, but x1, x2 and x3 with zero coefficients). As in
Example 3.154, we use this as an opportunity to treat x4 as a known. In
other words, let us define a number r by r = x4, and pretend that x4 = r is
an explicit value for x4.
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3. There is no equation (150) that “begins with x3” (i.e., that has x3 appear
with nonzero coefficient, but x1 and x2 with zero coefficients). As in Exam-
ple 3.154, we use this as an opportunity to treat x3 as a known. In other
words, let us define a number s by s = x3, and pretend that x3 = s is an
explicit value for x3. (Of course, we must not reuse an existing variable
such as r here.)

4. Now that we have “found” the values of x3 and x4, we can substitute them
into the second equation in (150), so that the latter equation becomes −x2 +
3s + 2r = 1. We can now solve this equation for x2, obtaining x2 = 2r +
3s− 1.

5. Now that we have “found” the values of x2, x3 and x4, we can substitute
them into the first equation in (150), so that the latter equation becomes
4x1 + 3 (2r + 3s− 1) + 4r = 3. We can now solve this equation for x1,

obtaining x1 =
3
2
− 9

4
s− 5

2
r.

Altogether, we have now found x1 =
3
2
− 9

4
s− 5

2
r, x2 = 2r + 3s− 1, x3 = s and

x4 = r. In other words,

x =


3
2
− 9

4
s− 5

2
r

2r + 3s− 1
s
r

 . (151)

Thus, we have found that each column vector x satisfying Ax = b must have the
form (151) for some numbers r, s ∈ R.

Conversely, any column vector x of the form (151) (for any real numbers r, s ∈
R) actually does satisfy Ax = b. This holds, again, for the same reason as in
Example 3.153.

So we have learned that a column vector x satisfies Ax = b if and only if it
has the form (151) for some numbers r, s ∈ R. Thus, the equation Ax = b has
infinitely many solutions – namely, its solutions are all vectors x of the form (151)
with r, s ∈ R.

We have now seen four examples of an algorithm for solving equations of the
form Ax = b where A is a row-echelon matrix. The general form of the algorithm
should now be easy to guess, but let me pin it down:

[...] [THE BELOW IS INCOMPLETE]

Theorem 3.157. Let n ∈ N and m ∈ N. Let A be an n×m-matrix. Let b be an
n× 1-vector. Assume that A is a row-echelon matrix.

Consider the problem of finding all solutions to the equation Ax = b. In other
words, we want to find all m× 1-matrices x satisfying Ax = b. This problem can
be solved by the following algorithm (called back-substitution):
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1. Set b =


b1
b2
...

bn

 and x =


x1
x2
...

xm

. Multiplying the equalities A =


A1,1 A1,2 · · · A1,m
A2,1 A2,2 · · · A2,m

...
... . . . ...

An,1 An,2 · · · An,m

 and x =


x1
x2
...

xm

, we obtain

Ax =


A1,1 A1,2 · · · A1,m
A2,1 A2,2 · · · A2,m

...
... . . . ...

An,1 An,2 · · · An,m




x1
x2
...

xm



=


A1,1x1 + A1,2x2 + · · ·+ A1,mxm
A2,1x1 + A2,2x2 + · · ·+ A2,mxm

...
An,1x1 + An,2x2 + · · ·+ An,mxm

 .

Thus, the equation Ax = b rewrites as
A1,1x1 + A1,2x2 + · · ·+ A1,mxm
A2,1x1 + A2,2x2 + · · ·+ A2,mxm

...
An,1x1 + An,2x2 + · · ·+ An,mxm

 =


b1
b2
...

bn



(since b =


b1
b2
...

bn

). Hence, it is equivalent to the system


A1,1x1 + A1,2x2 + · · ·+ A1,mxm = b1;
A2,1x1 + A2,2x2 + · · ·+ A2,mxm = b2;

...
An,1x1 + An,2x2 + · · ·+ An,mxm = bn

. (152)

This is a system of n linear equations in the m unknowns x1, x2, . . . , xm. We
thus focus on solving this system.

2. Let k be the number of nonzero rows of A. Then, the last n− k rows of A are
zero (by Proposition 3.151 (a)). Hence, the last n− k equations in the system
(152) have the form 0 = bi for some i ∈ {n− k + 1, n− k + 2, . . . , n}. If at
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least one of the values bn−k+1, bn−k+2, . . . , bn is nonzero, then the equation
Ax = b has no solution. In this case, we should stop right here, since the
problem is solved. (This is the situation we have encountered in Example
3.155.)

3. Assume now that none of the values bn−k+1, bn−k+2, . . . , bn is nonzero.
Thus, all of the values bn−k+1, bn−k+2, . . . , bn are zero. Hence, the last n− k
equations in the system (152) have the form 0 = 0, and therefore can be
discarded (since they are automatically true). (Notice that if n − k = 0,
then we are discarding nothing.)

We are thus left with the first k equations:
A1,1x1 + A1,2x2 + · · ·+ A1,mxm = b1;
A2,1x1 + A2,2x2 + · · ·+ A2,mxm = b2;

...
Ak,1x1 + Ak,2x2 + · · ·+ Ak,mxm = bk

(153)

4. For each i ∈ {1, 2, . . . , k}, set φ (i) = pivind (rowi A). Then, Proposition
3.151 (c) says that

φ (1) < φ (2) < · · · < φ (k) .

[...]

Proof of Theorem 3.157. We only need to show that in step 2 [...]

[...]

3.24. <TODO> Gaussian elimination and the row echelon form

[...]
(to be continued)
TO-DO LIST! (This will appear eventually:)

TODO 3.158. Gaussian elimination: C = E∗U, where E∗ is a product of elemen-
tary matrices (Aλ

u,v, Sλ
i , Tu,v) and U is a row-echelon matrix.

TODO 3.159. How this generalizes things shown before.

TODO 3.160. Example of Gaussian elimination: Start with the matrix C =
3 2 1 6
3 2 1 7
0 1 −1 0
−1 2 −3 0

. Want to bring it into row echelon form by using downward
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row additions (i.e., row operations Aλ
u,v with u > v), row scalings (i.e., row

operations Sλ
u with λ 6= 0) and row swappings (i.e., row operations Tu,v) only.

Subtracting row 1 from row 2 gives new matrix C′ =


3 2 1 6
0 0 0 1
0 1 −1 0
−1 2 −3 0

.

Thus C = A1
2,1C′.

Subtracting
−1
3

times row 1 from row 4 gives new matrix C′′ =
3 2 1 6
0 0 0 1
0 1 −1 0

0
8
3
−8

3
2

. Thus C′ = A−1/3
4,1 C′′.

Now, the first column looks like row echelon form.
The entry 0 in cell (2, 2) prevents the first two columns from being row-

echelon. Thus, swap it with a nonzero entry further down.

Swapping rows 2 and 3 gives new matrix C′′′ =


3 2 1 6
0 1 −1 0
0 0 0 1

0
8
3
−8

3
2

. Thus

C′′ = T2,3C′′′.

Subtracting
8
3

times row 2 from row 4 gives new matrix C′′′′ =
3 2 1 6
0 1 −1 0
0 0 0 1
0 0 0 2

. Thus C′′′ = A8/3
4,2 C′′′′.

Now, the first two columns look like row echelon form.
Usually we would have to do some operations for the third column, but this

time we are in luck: The first three columns already look like row echelon form,
so no operations are needed here.

However, the fourth column still needs an operation: It has a nonzero entry
below its pivot 1.

Subtracting 2 times row 3 from row 4 gives new matrix C′′′′′ =
3 2 1 6
0 1 −1 0
0 0 0 1
0 0 0 0

. Thus C′′′′ = A2
4,3C′′′′′.

The matrix C′′′′′ is in row echelon form; its pivot entries are in cells (1, 1), (2, 2)
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and (3, 4). Altogether,

C = A1
2,1 C′︸︷︷︸

=A−1/3
4,1 C′′

= A1
2,1A−1/3

4,1 C′′︸︷︷︸
=T2,3C′′′

= A1
2,1A−1/3

4,1 T2,3 C′′′︸︷︷︸
=A8/3

4,2 C′′′′

= A1
2,1A−1/3

4,1 T2,3A8/3
4,2 C′′′′︸︷︷︸

=A2
4,3C′′′′′

= A1
2,1A−1/3

4,1 T2,3A8/3
4,2 A2

4,3C′′′′′.

We could tweak C′′′′′ furthermore (by row operations) to obtain a row-reduced
echelon matrix, which is characterized by the properties that (a) each pivot entry
equals 1, and (b) in each column containing a pivot entry, all other entries are 0.
To achieve (a), we merely have to apply some row scaling operations. To achieve
(b), we need to apply upward row additions, i.e., row operations Aλ

u,v with u < v;
this way we can clear out the entries above each pivot.

But if we allow ourselves column operations as well, then we can even end up
with a matrix which has entries 1 in cells (1, 1) , (2, 2) , . . . , (k, k) for some k, and
entries 0 in all other cells. (Think of it as a truncated identity matrix, except that
it is rectangular.)

TODO 3.161. History: [Grcar10] reference.

TODO 3.162. How to solve Uv = b (back-substitution; beware of zero rows).

TODO 3.163. Thus, solve Cv = b.

TODO 3.164. How to see whether a matrix C is invertible using Gauss.

3.25. <TODO> PLU decomposition

TODO 3.165. PLU decomposition (not sure). (I didn’t do PLU in class properly,
and doing it right is subtle. [OlvSha06, Example 1.12] does it.)

TODO 3.166. Most of the time, P = In, because there is no need to permute
rows when the entries are nonzero.

3.26. <TODO> Determinants (briefly)

Determinants are not a central player in these notes. Nevertheless, they are suffi-
ciently important to be mentioned. I consider them to be one of the most beautiful
objects in mathematics, and they are also one of the most useful in pure mathemat-
ics (particularly, in all breeds of algebra and combinatorics). However, their use
in applied mathematics is rather limited (apart from “small” cases like matrices of
size 2× 2, 3× 3 and 4× 4, occurring in physics and geometry for well-known rea-
sons). Thus, I shall give no proofs and barely state the most crucial results. Three
good references on determinants are:
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• [LaNaSc16, Chapter 8] does the definitions and the basic properties really
well. I highly recommend it.

• [Heffer16, Chapter Four] also has a neat treatment of determinants, although
unfortunately it requires Gauss-Jordan elimination (which I have not done
above, and which I find out-of-place in an introduction to determinants). It
has many examples and explains the geometric meaning of 2× 2-determinants
(as areas of triangles) and 3× 3-determinants (as volumes of tetrahedra).

• [BarSch73, Chapter 4] doesn’t always have the best proof (in particular, it uses
some properties of singular matrices that we have not yet learned), but seems
to be written well and with attention to detail.

Apart from that, lots of other texts define and discuss determinants: some slop-
pily, some rather well.103 When reading other sources, be aware of a possible
conflict of notations: Namely, we are using the notation Ai,j for the (i, j)-th entry of
a matrix A; but most authors use the notation Ai,j for something different (namely,
the (i, j)-th “cofactor” of A).

TODO 3.167. Recall Example 3.4 (e): The number ad− bc governs whether the

matrix
(

a b
c d

)
has an inverse. Does such a number exist for larger matrices?

Yes, it does, and is called the determinant.

TODO 3.168. The determinant of an n × n-matrix A is a number, denoted by
det A and defined later. (Some authors call it |A|, but we will not.)

TODO 3.169. Defining the determinant of an n× n-matrix is not that easy. Let
us first do it for small cases:

det
(

a1 a2
b1 b2

)
= a1b2 − a2b1;

det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 = a1b2c3 − a1c2b3 − b1a2c3 + b1c2a3 + c1a2b3 − c1b2a3;

det
(

a
)
= a;

det () = 1.

(The last equality says that the determinant of a 0× 0-matrix is 1, and yes, that’s
sometimes useful.)

103Olver’s and Shakiban’s treatment of determinants in [OlvSha06, §1.9] is very minimalistic and in-
complete (in particular, they never bother proving that the determinant is well-defined). On the
opposite side of the spectrum, two really rigorous and detailed treatments are Gill Williamson’s
notes [Gill12, Chapter 3] and my [Grinbe16]; but the downside of “rigorous” is “unmotivated
and lacking intuition”, and the downside of “detailed” is “extremely long”. You will want to
strike your own balance. As I said, I recommend [LaNaSc16, Chapter 8].
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TODO 3.170. Let me give three versions of the definition of det A for all n:

• First version (informal and sloppy): Set

det


a1 a2 · · · an
b1 b2 · · · bn
...

... . . . ...
z1 z2 · · · zn


= sum of terms of the form ±?1?2 · · ·?n,

where the question marks in each term are some permutation (= rearrange-
ment) of the letters a, b, . . . , z, and the ± sign depends on the rearrange-
ment. How exactly? Any rearrangement can be sorted into increasing
order (i.e., into ab . . . z) by switching pairs of letters; e.g. (for n = 5) we can
sort the rearrangement caebd as follows:

caebd→ cabed (here we switched e with b)
→ baced (here we switched c with b)
→ abced (here we switched b with a)
→ abcde (here we switched e with d) .

Notice that we used 4 switches here. The rule for the ± sign is: If the
rearrangement needs an even number of switches, then it’s a +; if an odd
number, then it’s a −.

• Second version (formal): Recall that each permutation matrix P is a product
of several swapping matrices (i.e., of Tu,v’s). Define sign (P) to be +1 if P is
the product of an even number of swapping matrices; define sign (P) to be
−1 if P is the product of an odd number of swapping matrices. It is not ob-
vious that this definition is legitimate (because if P would be representable
both as an even product and as an odd product, then sign (P) would have
to be +1 and −1 at the same time!), but it is nevertheless true (it can be
shown that no P can ever be representable both as even product and as odd
product). If P is a permutation matrix and A is an n× n-matrix, then the
P-product of A shall mean the product of all entries of A in those cells in

which P has a 1. For example, if P =

 1 0 0
0 0 1
0 1 0

, then the P-product of a1 a2 a3
b1 b2 b3
c1 c2 c3

 is a1b3c2, because the cells in which P has a 1 are the cells

(1, 1), (2, 3) and (3, 2), and the entries of A in these cells are a1, b3 and c2.
Now, the determinant det A of A is the sum of

sign (P) · (the P-product of A)

for all permutation matrices P.
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• Third version (formal, uses Section 3.21): Let

det A = ∑
σ∈Sn

(−1)σ A1,σ(1)A2,σ(2) · · · An,σ(n),

where Sn denotes the set of all permutations of {1, 2, . . . , n}, and the num-
ber (−1)σ is defined as follows: Proposition 3.134 shows that the permu-
tation σ can be written as a product of k simple transpositions for some
k ∈ N. If this k is even, then set (−1)σ = 1; if this k is odd, then set
(−1)σ = −1. (Again, we need to prove that this definition is legitimate,
i.e., that (−1)σ is never defined to be 1 and −1 at the same time.)

Note that the third version of the definition is merely the formalization of the
first version. The second version is just the translation of the third version into
the language of permutation matrices.

TODO 3.171. State the main properties of determinants:

• We have det (0n×n) = 0 for all n > 0.

• We have det (In) = 1 for all n.

• We have det
(

AT) = det A for any square matrix A.

• The determinant is multilinear in the rows (i.e., linear in each row, as long
as the other rows are fixed). For example,

det

 a1 a2 a3
b1 + b′1 b2 + b′2 b3 + b′3

c1 c2 c3


= det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

+ det

 a1 a2 a3
b′1 b′2 b′3
c1 c2 c3


and

det

 a1 a2 a3
λb1 λb2 λb3
c1 c2 c3

 = λ det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 .

See [LaNaSc16, Theorem 8.2.3, 3.] for a precise statement (but for columns
instead of rows).

• Note that det (A + B) 6= det A + det B in general.

• Switching two rows of a matrix A negates det A (that is, if B is obtained
from A by switching two rows, then det B = −det A).

• If A has two equal rows, then det A = 0.
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• If A has a row filled with zeroes, then det A = 0.

• If we add a multiple of some row of A to another row, then det A does not
change.

• All of the above properties that reference rows also hold for columns.

• If A is upper-triangular or lower-triangular, then det A is the product of the
diagonal entries of A.

• We have det (AB) = det A · det B for any two n× n-matrices A and B. This
fact is not obvious, and is one of the miracles of mathematics. It is probably
the main reason why determinants are useful!

• An n× n-matrix A is invertible if and only if det A 6= 0.

• For each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, let A∼i,∼j denote the
(n− 1) × (n− 1)-matrix obtained from A by removing the i-th row and
the j-th column. For example, a1 a2 a3

b1 b2 b3
c1 c2 c3


∼1,∼2

=

(
b1 b3
c1 c3

)
.

Let adj A be the n × n-matrix
(
(−1)i+j det

(
A∼j,∼i

))
1≤i≤n, 1≤j≤n

. (This is

called the adjugate of A.) Then,

A · adj A = adj A · A = det A · In.

• For every p ∈ {1, 2, . . . , n}, we have

det A =
n

∑
q=1

(−1)p+q Ap,q det
(

A∼p,∼q
)

.

This is called “Laplace expansion in the p-th row”, and gives us a way to
compute det A using determinants of (n− 1)× (n− 1)-matrices.

• For every q ∈ {1, 2, . . . , n}, we have

det A =
n

∑
p=1

(−1)p+q Ap,q det
(

A∼p,∼q
)

.

This is called “Laplace expansion in the q-th column”.
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3.27. <TODO> The rest

TODO 3.172. (*) SageMath examples.

TODO 3.173. (*) What holds over rings, what over fields.

4. <TODO> Vector spaces

TODO 4.1. Introduction into vector spaces.
We shall now switch to what feels like a different subject: the theory of vector

spaces. Soon, we will see that this is closely related to the matrix algebra that we
have been doing above, and in some sense is like doing linear algebra in a more
abstract language (as opposed to doing something completely different). But
first, we introduce the relevant notions without reference to the matrix theory
done above.

(...... This all needs to be filled in. So far, this is a stenographic lecture plan
rather than a set of lecture notes ......)

4.1. <DRAFT> Vector spaces

References for vector spaces: [LaNaSc16, §4.1-§4.2] (possibly the best one), [OlvSha06,
§2.1] (focusses on the analysis-related and applied stuff) and [Heffer16, Two.I.1].

Definition 4.2. A vector space (over R) is a set V equipped with two binary oper-
ations:

• a binary operation called “+”, which takes as its input two elements v and
w of V, and yields an element of V called v + w;

• a binary operation called “·”, which takes as its input a number λ ∈ R and
an element v of V, and yields an element of V called λ · v or λv,

as well as a chosen element of V called
−→
0 , with the following properties:

(a) We have v + w = w + v for all v ∈ V and w ∈ V. (This is called “commuta-
tivity of addition”.)

(b) We have u + (v + w) = (u + v) + w for all u ∈ V, v ∈ V and w ∈ V. (This
is called “associativity of addition”.)

(c) We have v +
−→
0 =

−→
0 + v = v for all v ∈ V. (This is called “neutrality of

−→
0 ”.)

(d) For each v ∈ V, there exists some element w ∈ V satisfying v + w =
w + v = 0. (This is called “existence of additive inverses”. The element w is
called the additive inverse of v, and is usually called −v; it is uniquely determined
by v (this is not hard to check).)

(e) We have (λ + µ) v = λv + µv for all λ ∈ R, µ ∈ R and v ∈ V. (This is
called “right distributivity”.)
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(f) We have λ (v + w) = λv + λw for all λ ∈ R, v ∈ V and w ∈ V. (This is
called “left distributivity”.)

(g) We have (λµ) v = λ (µv) for all λ ∈ R, µ ∈ R and v ∈ V. (This is called
“associativity of scaling”. It allows us to write λµv for both (λµ) v and λ (µv).)

(h) We have 1v = v for all v ∈ V. (This is called “neutrality of 1”.)
(i) We have 0v =

−→
0 for all v ∈ V.

(j) We have λ
−→
0 =

−→
0 for all λ ∈ R.

The operation + is called the addition of the vector space; the operation · is
called the scaling of the vector space; the element

−→
0 is called the zero vector (or

the origin) of the vector space. The elements of V are called vectors. (These are
familiar-sounding names for abstract things. The operation + may and may not
have anything to do with addition of numbers. The operation · may and may
not be related to scaling of numbers. The element

−→
0 may and may not be the

number 0. The elements of V, which we call “vectors”, may and may not be the
kinds of vectors we are used to seeing (i.e., row vectors and column vectors);
they can just as well be polynomials or functions or numbers or matrices. You
should think of the word “vector” as meaning “element of a vector space”, not as
meaning “a list of numbers”; the latter meaning is too restrictive. The properties
(a), (b), . . ., (j) are requiring that the operations + and · and the element

−→
0

“behave like” the addition and scaling of matrices and the zero matrix, at least
as far as their most basic properties are concerned; however, they still leave a lot
of freedom to decide what these operations and this elements should be.)

We shall often speak of “the vector space V” or say that “V is a vector space”,
but of course, the vector space is not just the set V; it is (as we have defined it)
the set V endowed with the two operations + and · and the element

−→
0 . The

two operations and the element
−→
0 are part of the data; if you modify them, then

you end up with a different vector space, even if the set V is the same! However,
most of the time, we will not have several different vector spaces sharing one
and the same set V; therefore, we will be able to speak of “the vector space V”
and assume that the reader knows what operations + and · and what element
−→
0 we mean.

We have just defined the notion of a “vector space over R” (also known as a “real
vector space”). We can similarly define a “vector space over Q” (by replacing each
“R” in the above definition by “Q”) and a “vector space over C” (by replacing each
“R” in the above definition by “C”). Most of the vector spaces we shall be studying
below are vector spaces over R, but the other options are also useful. (If you have
read Definition 2.52, you will have no trouble defining a “vector space over K” for
every field K.)

Note that our definition of a vector space is somewhat similar to the definition
of a commutative ring (Definition 2.50). At least as far as the operation + alone
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is concerned, the requirements on it are literally the same in the two definitions104

(commutativity of addition, associativity of addition, neutrality of
−→
0 and existence

of additive inverses). However, the similarity ends here: The binary operation ·
(“multiplication”) in Definition 2.50 works differently from the binary operation ·
(“scaling”) in Definition 4.2. The former takes two inputs in the commutative ring,
whereas the latter takes one input in R and one input in the vector space. The
axioms still have certain similarities, but they should not fool you into believing
that commutative rings are vector spaces (or vice versa).

If you compare our Definition 4.2 with other definitions of a “vector space” you
find in the literature (for example, [LaNaSc16, Definition 4.1.1], [OlvSha06, Defini-
tion 2.1] or [Heffer16, Definition Two.I.1]), you will notice that they are slightly
different: For example, [LaNaSc16, Definition 4.1.1], [OlvSha06, Definition 2.1]
or [Heffer16, Definition Two.I.1] are lacking our properties (i) and (j), whereas
[Kowals16, Definition 2.3.1] is missing our properties (d) and (j). However, the def-
initions are nevertheless equivalent (i.e., they define precisely the same notion of a
vector space). The reason for that is some of the properties we required in Defini-
tion 4.2 are redundant (i.e., they follow from the other properties, so that nothing
changes if we leave them out). For example:

Proposition 4.3. Property (d) in Definition 4.2 follows from properties (e), (h)
and (i). Thus, we could leave out property (d) from the definition.

Proof of Proposition 4.3. Assume that properties (e), (h) and (i) hold. We must now
prove property (d).

Let v ∈ V. Then,

(−1) v + v︸︷︷︸
=1v

(by property (h))

= (−1) v + 1v = ((−1) + 1)︸ ︷︷ ︸
=0

v

(by property (e), applied to λ = −1 and µ = 1)

= 0v =
−→
0 (by property (i))

and

v︸︷︷︸
=1v

(by property (h))

+ (−1) v = 1v + (−1) v = (1 + (−1))︸ ︷︷ ︸
=0

v

(by property (e), applied to λ = 1 and µ = −1)

= 0v =
−→
0 (by property (i)) .

Hence, there exists some element w ∈ V satisfying v + w = w + v = 0 (namely,
w = (−1) v). Thus, property (d) is proven. Hence, we have shown that property
(d) follows from properties (e), (h) and (i). This proves Proposition 4.3.

104assuming that we identify the
−→
0 in Definition 4.2 with the 0 in Definition 2.50
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Proposition 4.4. Property (j) in Definition 4.2 follows from properties (g) and (i).
Thus, we could omit property (j) from the definition.

Proof of Proposition 4.4. Assume that properties (g) and (i) hold. We must now
prove property (j).

Let λ ∈ R. Then, property (i) (applied to v =
−→
0 ) yields 0 · −→0 =

−→
0 . Thus,

λ
(

0 · −→0
)
= λ
−→
0 , so that

λ
−→
0 = λ

(
0 · −→0

)
= (λ · 0)︸ ︷︷ ︸

=0

−→
0

(
by property (g), applied to µ = 0 and v =

−→
0
)

= 0 · −→0 =
−→
0 .

Thus, property (j) is proven. Hence, we have shown that property (j) follows from
properties (g) and (i). This proves Proposition 4.4.

Proposition 4.5. Property (i) in Definition 4.2 follows from properties (b), (c), (d)
and (e). Thus, we could omit property (i) from the definition.

Proof of Proposition 4.5. Assume that properties (b), (c), (d) and (e) hold. We must
now prove property (i).

Let v ∈ V. Property (e) (applied to λ = 0 and µ = 0) yields (0 + 0) v = 0v + 0v.
Hence, 0v + 0v = (0 + 0)︸ ︷︷ ︸

=0

v = 0v.

But we can apply property (d) to 0v instead of v. We thus conclude that there
exists some element w ∈ V satisfying 0v + w = w + 0v =

−→
0 . Consider this w.

Property (b) (applied to 0v, 0v and w instead of u, v and w) yields 0v+(0v + w) =

(0v + 0v)︸ ︷︷ ︸
=0v

+w = 0v + w. Since 0v + w =
−→
0 , this rewrites as 0v +

−→
0 =

−→
0 .

Property (c) (applied to 0v instead of v) yields 0v +
−→
0 =

−→
0 + 0v = 0v. Com-

paring 0v +
−→
0 =

−→
0 with 0v +

−→
0 = 0v, we obtain 0v =

−→
0 . Thus, property (i) is

proven. Hence, we have shown that property (i) follows from properties (b), (c),
(d) and (e). This proves Proposition 4.5.

However, we cannot simultaneously omit both properties (d) and (i) from the
definition: Each of them is redundant provided the other stays in, but without the
other they are not redundant.

The vector
−→
0 in Definition 4.2 is often written as 0. This is an “abuse of notation”

(because the vector
−→
0 is not literally the number 0), but mostly harmless as there

is rarely a possibility of confusion.

4.2. <DRAFT> Examples and constructions of vector spaces

Before we do anything interesting with vector spaces, let me show various exam-
ples of them:
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Example 4.6. Let n ∈ N and m ∈ N. The set of all n × m-matrices with real
entries shall be denoted by Rn×m. This set Rn×m is a vector space – or, more
precisely, it becomes a vector space if we define the operation “+” as addition
of matrices (conveniently, we have already been denoting this addition by “+”
throughout these notes), define the operation “·” as scaling of matrices (again,
we have fortunately always been calling it “·”), and define the zero vector

−→
0 as

the zero matrix 0n×m. Proving that the properties in Definition 4.2 are satisfied
is easy; in fact, they all boil down to simple facts about matrices.

Thus, n × m-matrices are vectors (in the vector space Rn×m). This does not
mean that they are row vectors or column vectors; we are instead using the word
“vector” in its general meaning of “element of a vector space” here.

Of course, row vectors and column vectors are vectors as well (because they
are matrices). The vector space of all column vectors of size n is Rn×1 (since
column vectors of size n are n× 1-matrices). We will denote this vector space by
Rn. (Beware that some authors also use the notation Rn for the vector space of
all row vectors of size n, which is R1×n. Some authors go as far as pretend that
column vectors and row vectors are the same, but this is dangerous, since matrix
multiplication treats them differently!)

Notice that multiplication of matrices does not matter for the vector space
Rn×m. Even if there was no such thing as a product of two matrices, Rn×m

would still be a vector space, since vector spaces only need addition and scaling
(and

−→
0 ), but no multiplication of vectors.

Definition 4.7. The notations Rn×m and Rn introduced in Example 4.6, as well
as the vector space structure on Rn×m, will be used throughout these notes.

Example 4.8. Some simpler examples:

• The set R of all real numbers itself is a vector space (with addition being
addition, scaling being multiplication, and

−→
0 being the number 0.)

• The set C of all complex numbers is a vector space (with addition being
addition, scaling being multiplication, and

−→
0 being the number 0.)

• The one-element set {0} is also a vector space (with addition, scaling and
−→
0 being defined in the only possible way – there is only one choice).

Example 4.9. Consider the set R∞ of all infinite sequences (a1, a2, a3, . . .) of real
numbers. This set R∞ is also a vector space, with addition defined by

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .)

(that is, entry by entry), scaling defined by

λ (a1, a2, a3, . . .) = (λa1, λa2, λa3, . . .)
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(thus, again, entry by entry), and
−→
0 defined by

−→
0 = (0, 0, 0, . . .) .

(It makes sense to think of infinite sequences as 1×∞-matrices; thus, the above
definitions of +, · and

−→
0 are precisely the rules we set for matrices.)

Example 4.10. Let S be any set. Consider the set RS of all maps from S to R.
Then, RS becomes a vector space, if we define +, · and

−→
0 as follows:

• If f ∈ RS and g ∈ RS are two maps, then their sum f + g is defined to be
the map from S to R that sends each s ∈ S to f (s) + g (s). Thus,

( f + g) (s) = f (s) + g (s) for every s ∈ S.

This is called pointwise addition (because it means that we add two maps by
adding their values at each point).

• If f ∈ RS is a map and λ is a number, then the map λ f is defined to be the
map from S to R that sends each s ∈ S to λ · f (s). Thus,

(λ f ) (s) = λ · f (s) for every s ∈ S.

This is called pointwise scaling (because it means that we scale a map by
scaling its value at each point).

• We define
−→
0 ∈ RS to be the map from S to R that sends each s ∈ S to 0.

This is called the constant-0 map, since it is constant and all its values are 0.

This example can be viewed as a generalization of the previous examples.
Namely:

• An n × m-matrix A with real entries can be viewed as a map from
{1, 2, . . . , n} × {1, 2, . . . , m} to R (namely, as the map which sends each
(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m} to the (i, j)-th entry Ai,j of the matrix
A). Conversely, each map from {1, 2, . . . , n} × {1, 2, . . . , m} to R can be en-
coded by an n×m-matrix (whose entries are the values of the map). Thus,
we can identify the n×m-matrices (with real entries) with the maps from
{1, 2, . . . , n} × {1, 2, . . . , m} to R. In other words, we can identify the set
Rn×m with the set R{1,2,...,n}×{1,2,...,m}. It is easily seen that the addition +,
the scaling · and the zero vector

−→
0 of the vector space Rn×m (as defined in

Example 4.6) are identical with the addition +, the scaling · and the zero
vector

−→
0 of the vector space R{1,2,...,n}×{1,2,...,m} (as defined in the current

example), once we identify the two sets. Hence, the vector space Rn×m can
be identified with the vector space R{1,2,...,n}×{1,2,...,m}.
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• The vector space R (from Example 4.8) can be identified with the vector
space R{1}.

• The vector space C (from Example 4.8) can be identified with the vector
space R{1,2} (since a complex number is defined as a pair of two real num-
bers, and since the addition of two complex numbers is componentwise,
and so is the scaling of a complex number by a real number).

• Recall that ∅ denotes the empty set (i.e., the set {}). The vector space {0}
(from Example 4.8) can be identified with the vector space R∅. Indeed, the
only element 0 of {0} can be equated with the only map from ∅ to R.

• The vector space R∞ (from Example 4.9) can be identified with the vector
space R{1,2,3,...}.

I have not explained what it really means to “identify” two sets or vector
spaces. Roughly speaking, identifying two sets S and T means matching up each
element of S with an element of T (in such a way that each element of T ends
up matched with exactly one element of S) and pretending that each element is
identical to its match. When S and T are vector spaces, one additionally wants
to ensure that this matching has the property that adding two elements of S
has the same result as adding their matches in T, and similarly for scaling, and
finally that the zero vector of S is matched with the zero vector of T. This is all
satisfied in our above examples. Of course, this is still vague and imprecise. A
rigorous way to formalize the idea of “identifying” is the concept of isomorphisms
(i.e., invertible linear maps) between vector spaces; we shall introduce this concept
later.

Example 4.11. The set of continuous functions from R to R is a vector space as
well. Again, addition and scaling are pointwise (i.e., defined in the same way as
in Example 4.10), and again the zero vector is the constant-0 map. What makes
this definition work is that:

• the sum of two continuous functions is continuous;

• the result of scaling a continuous function by a real λ is again continuous;

• the constant-0 map is continuous.

Example 4.12. The set of all polynomial functions from R to R is a vector space,
too. (A function f : R → R is said to be a polynomial function if there ex-
ist some n ∈ N and some a0, a1, . . . , an ∈ R such that every x ∈ R satisfies
f (x) = a0 + a1x + a2x2 + · · · + anxn. For instance, the function f that sends
each x ∈ R to 2 (x + 3)2 x3 + 2 is a polynomial function, because it satisfies
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f (x) = 2 (x + 3)2 x3 + 2 = 2 + 0x + 0x2 + 18x3 + 12x4 + 2x5 for all x ∈ R.)

Example 4.13. The set of all constant functions from R to R is a vector space
as well. But it can be identified with the vector space R (see Example 4.10 for
the meaning of “identify”); in fact, any real number r ∈ R corresponds to the
constant function that sends everything to r.

Example 4.14. You probably have seen at least two notions of “vectors” in ana-
lytic geometry: vectors in the plane, and vectors in space. The former kind of
vectors can be identified with elements of R2, and the latter can be identified
with elements of R3. Namely:

• In the plane, a vector that starts at the origin and ends at the point (a, b) is

identified with the column vector
(

a
b

)
∈ R2. (Every vector in the plane

can be made to start at the origin, and its ending point is then uniquely
determined; thus, this definition is legitimate.)

• In space, a vector that starts at the origin and ends at the point (a, b, c) is

identified with the column vector

 a
b
c

 ∈ R3.

Let me show two ways to construct new vector spaces from given vector spaces;
this, of course, can be used to obtain lots of further examples.

Definition 4.15. Let V and W be two sets. Recall that V ×W denotes the set of
all pairs (v, w) with v ∈ V and w ∈ W. This set V ×W is called the Cartesian
product (or simply the product) of the two sets V and W.

Now, assume that V and W are two vector spaces. Then, we make the Carte-
sian product V ×W into a vector space as well. Namely, we define

• its addition by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) (154)

(that is, entry by entry),

• its scaling by
λ (v, w) = (λv, λw) (155)

(that is, entry by entry), and

• its zero vector by
−→
0 =

(−→
0 ,
−→
0
)

(156)

(that is, entry by entry again).
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(Let me dwell on the precise meaning of the equalities (154), (155) and (156). The
sign “+” appears three times in (154), and each time it has a slightly different
meaning. Namely, the sign “+” on the left hand side of (154) stands for the
addition of the vector space V ×W (which we are defining). The sign “+”
in “v1 + v2” stands for the addition of the vector space V. The sign “+” in
“w1 + w2” stands for the addition of the vector space W. Similarly, the meanings
of the expressions “λ (v, w)”, “λv” and “λw” in (155) are slightly different, since
each of these refers to the scaling of a different vector space. Finally, the three
terms “

−→
0 ” in (156) are the zero vectors of three different vector spaces (namely,

of V ×W, of V and of W, in order of appearance).)
The vector space V ×W is called the Cartesian product of the vector spaces V

and W.
We can similarly define the Cartesian product of several vector spaces

V1, V2, . . . , Vn. It is again a vector space; its elements are n-tuples (v1, v2, . . . , vn)
for which each vi belongs to the corresponding Vi; its addition, scaling and zero
vector are again defined entry by entry.

Definition 4.16. Let V be a vector space. Let S be a set. Recall that VS denotes
the set of all maps from S to V. We make VS into a vector space as well. Namely,
we define its addition +, its scaling ·, and its zero vector

−→
0 as follows:

• If f ∈ VS and g ∈ VS are two maps, then their sum f + g is defined to be
the map from S to V that sends each s ∈ S to f (s) + g (s) (where the “+”
in “ f (s) + g (s)” refers to the addition of V). Thus,

( f + g) (s) = f (s) + g (s) for every s ∈ S.

This is called pointwise addition (because it means that we add two maps by
adding their values at each point).

• If f ∈ VS is a map and λ is a number, then the map λ f is defined to be
the map from S to V that sends each s ∈ S to λ · f (s) (where the “·” in
“λ · f (s)” refers to the scaling of V). Thus,

(λ f ) (s) = λ · f (s) for every s ∈ S.

This is called pointwise scaling (because it means that we scale a map by
scaling its value at each point).

• We define
−→
0 ∈ VS to be the map from S to V that sends each s ∈ S to

−→
0

(the zero vector of V). This is called the constant-
−→
0 map, since it is constant

and all its values are
−→
0 .

This example, of course, generalizes Example 4.10: If we set V = R, then VS

becomes precisely the vector space RS defined in Example 4.10.
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4.3. <DRAFT> (*) The summation sign for vectors

In Section 2.9, we have introduced the summation sign ∑ for sums of numbers;
in Section 2.14, we have introduced the analogous summation sign ∑ for sums of
matrices. In the same way, we can define the summation sign ∑ for sums of vectors
in an arbitrary vector space:

Definition 4.17. Let V be a vector space. Let p and q be two integers such that

p ≤ q + 1. Let vp, vp+1, . . . , vq be some vectors in V. Then,
q
∑

k=p
vk means the sum

vp + vp+1 + · · ·+ vq. (This sum is well-defined, since each vector space satisfies
a “general associativity law” similar to Proposition 2.23. Moreover, the order of
its addends does not matter, as can be proven using property (a) in Definition
4.2.)

The notation
q
∑

k=p
vk is analogous to the notation

q
∑

k=p
ak introduced in Definition

2.26 (and to the notation
q
∑

k=p
Ak introduced in Definition 2.43). The same remarks

and clarifications done for the latter notation in Definition 2.27 apply to the

former notation. There is only one difference: When the sum
q
∑

k=p
vk has no

addends (i.e., when p ≥ q + 1), its value is defined to be the zero vector
−→
0 (of

the vector space V) rather than the number 0.

The summation sign ∑ for vectors (that we have just defined) generalizes both
the summation sign ∑ for numbers and the summation sign ∑ for matrices (since
numbers and matrices can both be viewed as vectors).

Most properties of the summation sign ∑ that hold for numbers can be straight-
forwardly generalized to vectors (in an arbitrary vector space). Some of them can
even be generalized in several ways: For example, in Proposition 2.29, we can re-
place the numbers ap, ap+1, . . . , aq by vectors (while b remains a number), or we
can replace the number b by a vector (while ap, ap+1, . . . , aq remain numbers; for

this generalization, we should rewrite the products bak and b
q
∑

k=p
ak as akb and(

q
∑

k=p
ak

)
b). (We cannot replace both ap, ap+1, . . . , aq and b by vectors, since the

product of two vectors is not defined!) Let me state the two resulting generaliza-
tions explicitly (with slightly modified names):

Proposition 4.18. Let V be a vector space. Let p and q be two integers such that
p ≤ q + 1. Let vp, vp+1, . . . , vq be some vectors in V. Let b be a number. Then,

q

∑
k=p

bvk = b
q

∑
k=p

vk.
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(The expression
q
∑

k=p
bvk has to be read as

q
∑

k=p
(bvk).)

Proposition 4.19. Let V be a vector space. Let p and q be two integers such that
p ≤ q + 1. Let ap, ap+1, . . . , aq be some numbers. Let v ∈ V be a vector. Then,

q

∑
k=p

akv =

(
q

∑
k=p

ak

)
v.

(The expression
q
∑

k=p
akv has to be read as

q
∑

k=p
(akv).)

Let me also state the straightforward generalization of Proposition 2.40 to vectors:

Proposition 4.20. Let V be a vector space. Let p and q be two integers such that
p ≤ q. Let r ∈ {p, p + 1, . . . , q}. Let vp, vp+1, . . . , vq be some vectors in V. Then,

q

∑
k=p

δk,rvk = vr.

4.4. <TODO> Subspaces

References for subspaces: [LaNaSc16, §4.3] (possibly the best one), [OlvSha06,
§2.2] (focusses on the analysis-related and applied stuff) and [Heffer16, Two.I.2].

When U is a subset of a vector space V, we can try to make U itself into a vector
space by “inheriting” the addition, the scaling and the zero vector from V: That
is, we define the sum v + w of two vectors v ∈ U and w ∈ U to be the result of
adding v and w as elements of V. Similarly, we define λv for λ ∈ R and v ∈ U to
be the result of scaling v by λ as element of V. Finally, we define the zero vector
−→
0 of U as the zero vector

−→
0 of V. However, this all works (i.e., makes U into a

vector space) only if the vectors appearing in these definitions end up in U: For
example, our definition of v + w actually defines an addition on U only if the sum
v + w actually belongs to U for all v ∈ U and w ∈ U. Similarly, scaling on U is
well-defined only if λv ∈ U for all λ ∈ R and v ∈ U. Finally, the zero vector

−→
0

of U is well-defined only if the zero vector
−→
0 of V actually belongs to U. Let me

collect all these conditions in one notion:

Definition 4.21. Let U be a subset of a vector space V. We say that U is a subspace
(or vector subspace) of V if the following three conditions hold:

(a) We have
−→
0 ∈ U (where

−→
0 is the zero vector of V).

(b) We have v + w ∈ U for all v ∈ U and w ∈ U.
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(c) We have λv ∈ U for all λ ∈ R and v ∈ U.
Note that condition (b) is often put into words as follows: “The subset U is

closed under addition” (since it says, roughly speaking, that if you start with ele-
ments of U, then you cannot escape U by applying addition). Similarly, condition
(c) is often stated as follows: “The subset U is closed under scaling”. Hence, the
subset U is a subspace of V if and only if U contains the zero vector, is closed
under addition and is closed under scaling.

Proposition 4.22. Let U be a subspace of a vector space V. Then, U becomes a
vector space, if we let it “inherit” the addition +, the scaling · and the zero vector
−→
0 from V. Here, “inheriting” means that:

• we define the sum v + w of two vectors v ∈ U and w ∈ U to be the result
of adding v and w as elements of V.

• we define λv for λ ∈ R to v ∈ U to be the result of scaling v by λ as element
of V.

• we define the zero vector
−→
0 of U as the zero vector

−→
0 of V.

Proof of Proposition 4.22. The “inherited” operations on U are clearly well-defined.
(For example, the condition (b) in Definition 4.21 shows that the “inherited” addi-
tion is actually an addition on U. Similarly, condition (c) shows that the “inherited”
scaling is actually a scaling, and condition (a) shows that the “inherited” zero vec-
tor actually is in U.)

It remains to prove that the ten properties (a), (b), (c), (d), (e), (f), (g), (h), (i) and
(j) from Definition 4.2 are satisfied for U instead of V. This is almost completely
straightforward: We know that these ten properties are satisfied for V (since V is a
vector space). Since the operations on U are “inherited” from V, this immediately
yields that the nine properties (a), (b), (c), (e), (f), (g), (h), (i) and (j) are also
satisfied for U instead of V. However, this argument does not prove that property
(d) is satisfied for U instead of V: We know that it holds for V, but we cannot
immediately conclude that it must also hold for U instead of V (because there is
no obvious reason why the element w whose existence is claimed in property (d)
must belong to U). Fortunately, we can ignore property (d), since Proposition 4.3
shows that this property is redundant. Hence, U is a vector space (since the nine
properties (a), (b), (c), (e), (f), (g), (h), (i) and (j) are satisfied for U instead of V).
This proves Proposition 4.22.

Remark 4.23. Some authors replace condition (a) in Definition 4.21 by the seem-
ingly weaker condition that U be nonempty. However, this weaker condition is
actually equivalent to condition (a) (as long as condition (c) is assumed). Indeed,
if U is nonempty, then we can pick any v ∈ U, and then we can observe that
−→
0 = 0v ∈ U (by condition (c), applied to λ = 0); thus, condition (a) holds.
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4.5. <DRAFT> Examples and constructions of subspaces

4.5.1.
{−→

0
}

and V

Examples of subspaces, and general ways to construct subspaces, abound. Let us
first go for the very lowest-hanging fruits:

Proposition 4.24. Let V be a vector space.
(a) The subset

{−→
0
}

of V is a subspace of V.
(b) The subset V of V is a subspace of V.

Proof of Proposition 4.24. Straightforward, and left to the reader. (For instance,
{−→

0
}

is closed under addition because the only possible sum of two elements of
{−→

0
}

is
−→
0 +
−→
0 =

−→
0 , which of course belongs to

{−→
0
}

.)

Please note that the subset
{−→

0
}

in Proposition 4.24 (a) is not the empty set! (It

contains the zero vector
−→
0 , whereas the empty set contains nothing.) That said,

it is “as close to the empty set as a subspace of V can get”: It contains only the
zero vector

−→
0 , which any subspace of V is forced to contain. It is easy to see that{−→

0
}

is the intersection of all subspaces of V. (In contrast, the empty set ∅ is the
intersection of all subsets of V.)

4.5.2. Some examples of subspaces of R3

Let us now get our hands dirty and verify some examples of subspaces and non-
subspaces:

Example 4.25. Recall that Rn denotes the vector space of all column vectors of
size n. (We defined this in Example 4.6.)

(a) Let A be the subset{
(x1, x2, x3)

T ∈ R3 | x1 − x2 + 2x3 = 0
}

of R3. Then, A is a subspace of R3.
(b) Let B be the subset{

(x1, x2, x3)
T ∈ R3 | x1 = 2x2 = 3x3

}
of R3. Then, B is a subspace of R3.

(c) Let C be the subset{
(x1, x2, x3)

T ∈ R3 | x1 − x2 + 2x3 = 1
}
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of R3. Then, C is not a subspace of R3.
(d) Let D be the subset {

(u, 0, 2u + v)T | u, v ∈ R
}

of R3. (Note that the letter v stands for a number here, not for a vector.) Then,
D is a subspace of R3.

(e) Let E be the subset {
(u, 0, u + 1)T | u ∈ R

}
of R3. Then, E is not a subspace of R3.

(f) Let F be the subset {
(x1, x2, x3)

T | x1x2x3 = 0
}

of R3. Then, F is not a subspace of R3.
(g) Let G be the subset{

(x1, x2, x3)
T | x1, x2, x3 ∈ Q

}
of R3. (Recall that Q is the set of all rational numbers.) Then, G is not a subspace
of R3.

(h) Let H be the subset{
(u, 0, 2u + v + 1)T | u, v ∈ R

}
of R3. Then, H is a subspace of R3. (Actually, H = D.)

Proof of Example 4.25. Recall how subspaces are defined (see Definition 4.21). Thus,
in order to prove that some subset U of R3 is a subspace of R3, we must prove that
it satisfies the three conditions (a), (b) and (c) of Definition 4.21 (i.e., that it contains
the zero vector, is closed under addition, and is closed under scaling). On the other
hand, in order to prove that some subset U of R3 is not a subspace of R3, it suffices
to prove that it fails at least one of these three conditions (a), (b) and (c). (Often, a
subset U will fail two or all three of these conditions, but we do not need to check
them all: Failing one is enough.) Let us now apply this strategy to the subsets A,
B, C, D, E, F and G:

(a) We want to show that A is a subspace of R3. Thus, we need to show that A
contains the zero vector, is closed under addition, and is closed under scaling. Let
us do this:

Proof that A contains the zero vector: Recall that the zero vector of R3 is 03×1 =

(0, 0, 0)T. This vector 03×1 lies in A if and only if 0− 0 + 2 · 0 = 0 (by the definition
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of A). Thus, 03×1 lies in A (since 0− 0+ 2 · 0 = 0 holds). In other words, A contains
the zero vector.

Proof that A is closed under addition: Let v ∈ A and w ∈ A. We must prove that
v + w ∈ A.

Write the vector v ∈ A ⊆ R3 in the form v = (v1, v2, v3)
T (for three real numbers

v1, v2, v3 ∈ R). Since (v1, v2, v3)
T = v ∈ A, we have v1 − v2 + 2v3 = 0.

Write the vector w ∈ A ⊆ R3 in the form w = (w1, w2, w3)
T (for three real

numbers w1, w2, w3 ∈ R). Since (w1, w2, w3)
T = w ∈ A, we have w1−w2 + 2w3 = 0.

From v = (v1, v2, v3)
T and w = (w1, w2, w3)

T, we obtain

v + w = (v1, v2, v3)
T + (w1, w2, w3)

T = (v1 + w1, v2 + w2, v3 + w3)
T

(since column vectors are added entry by entry). Thus, in order to prove that
v + w ∈ A, we must show that (v1 + w1) − (v2 + w2) + 2 (v3 + w3) = 0 (by the
definition of A). But showing this is easy: Just notice that

(v1 + w1)− (v2 + w2) + 2 (v3 + w3)

= (v1 − v2 + 2v3)︸ ︷︷ ︸
=0

+ (w1 − w2 + 2w3)︸ ︷︷ ︸
=0

= 0 + 0 = 0.

Thus, we have proven that v + w ∈ A. This completes the proof of the fact that A
is closed under addition.

Proof that A is closed under scaling: Let λ ∈ R and v ∈ A. We must prove that
λv ∈ A.

Write the vector v ∈ A ⊆ R3 in the form v = (v1, v2, v3)
T (for three real numbers

v1, v2, v3 ∈ R). Since (v1, v2, v3)
T = v ∈ A, we have v1 − v2 + 2v3 = 0.

From v = (v1, v2, v3)
T, we obtain

λv = λ (v1, v2, v3)
T = (λv1, λv2, λv3)

T

(since column vectors are scaled entry by entry). Thus, in order to prove that
λv ∈ A, we must show that λv1 − λv2 + 2λv3 = 0 (by the definition of A). But
showing this is easy: Just notice that

λv1 − λv2 + 2λv3 = λ (v1 − v2 + 2v3)︸ ︷︷ ︸
=0

= λ0 = 0.

Thus, we have proven that λv ∈ A. This completes the proof of the fact that A is
closed under scaling.

We now have shown that A contains the zero vector, is closed under addition,
and is closed under scaling. Hence, A is a subspace of R3. Example 4.25 (a) is
proven.

(b) The chain of equations x1 = 2x2 = 3x3 in the definition of B is equivalent
to “x1 = 2x2 and 2x2 = 3x3”. The proof of Example 4.25 (b) proceeds similarly
to the above proof of Example 4.25 (a), with the only difference that instead of the
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single equation x1 − x2 + 2x3 = 0, we now have to keep track of the two equations
x1 = 2x2 and 2x2 = 3x3. Let me only show one part of the proof, namely the
verification that B is closed under addition:

Proof that B is closed under addition: Let v ∈ B and w ∈ B. We must prove that
v + w ∈ B.

Write the vector v ∈ B ⊆ R3 in the form v = (v1, v2, v3)
T (for three real numbers

v1, v2, v3 ∈ R). Since (v1, v2, v3)
T = v ∈ B, we have v1 = 2v2 and 2v2 = 3v3.

Write the vector w ∈ B ⊆ R3 in the form w = (w1, w2, w3)
T (for three real

numbers w1, w2, w3 ∈ R). Since (w1, w2, w3)
T = w ∈ B, we have w1 = 2w2 and

2w2 = 3w3.
From v = (v1, v2, v3)

T and w = (w1, w2, w3)
T, we obtain

v + w = (v1, v2, v3)
T + (w1, w2, w3)

T = (v1 + w1, v2 + w2, v3 + w3)
T

(since column vectors are added entry by entry). Thus, in order to prove that
v + w ∈ B, we must show that v1 + w1 = 2 (v2 + w2) and 2 (v2 + w2) = 3 (v3 + w3)
(by the definition of B). But showing this is easy: Just notice that

v1︸︷︷︸
=2v2

+ w1︸︷︷︸
=2w2

= 2v2 + 2w2 = 2 (v2 + w2) and

2 (v2 + w2) = 2v2︸︷︷︸
=3v3

+ 2w2︸︷︷︸
=3w3

= 3v3 + 3w3 = 3 (v3 + w3) .

Thus, we have proven that v + w ∈ B. This completes the proof of the fact that B is
closed under addition.

Proving that B contains the zero vector and is closed under scaling is left to the
reader. (As I have said, the proofs are similar to the corresponding proofs for A,
and the changes that need to be done are essentially the same as we did in the
proof that B is closed under addition.) Thus, Example 4.25 (b) is proven.

(c) The zero vector
−→
0 = 03×1 = (0, 0, 0)T of R3 does not belong to C (since it

does not satisfy 0− 0 + 2 · 0 = 1). Hence, C does not contain the zero vector. As a
consequence, C cannot be a subspace of R3. Thus, Example 4.25 (c) is proven.

(Notice that C furthermore fails to be closed under addition, and also fails to be
closed under scaling. Each of these failures gives another reason why C is not a
subspace of R3. We just chose to use the simplest reason instead, namely that it
fails to contain the zero vector.)

(d) We want to show that D is a subspace of R3. Thus, we need to show that
D contains the zero vector, is closed under addition, and is closed under scaling.
Before we do this, let us rewrite the definition of D as follows:

D =
{
(u, 0, 2u + v)T | u, v ∈ R

}
=
{
(x, 0, 2x + y)T | x, y ∈ R

}
(157)
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(here, we have renamed the indices u and v as x and y). (The reason for rewriting
D this way was to get rid of the letters u and v; indeed, we are going to reuse these
letters for vectors.)

Proof that D contains the zero vector: Recall that the zero vector of R3 is 03×1 =

(0, 0, 0)T. This vector 03×1 has the form (u, 0, 2u + v)T for some u, v ∈ R (namely,
for u = 0 and v = 0). Thus, it belongs to D (by the definition of D). In other words,
D contains the zero vector.

Proof that D is closed under addition: Let v ∈ D and w ∈ D. We must prove that
v + w ∈ D.

We have v ∈ D =
{
(x, 0, 2x + y)T | x, y ∈ R

}
(by (157)). In other words, v has

the form (x, 0, 2x + y)T for some x, y ∈ R. Fix two such x, y, and denote them by
xv, yv. (I do not want to simply call them x, y, because I will introduce two other
such x, y shortly.) Thus, xv, yv are real numbers and satisfy v = (xv, 0, 2xv + yv)

T.
We have w ∈ D =

{
(x, 0, 2x + y)T | x, y ∈ R

}
(by (157)). In other words, w has

the form (x, 0, 2x + y)T for some x, y ∈ R. Fix two such x, y, and denote them by
xw, yw. Thus, xw, yw are real numbers and satisfy w = (xw, 0, 2xw + yw)

T.
From v = (xv, 0, 2xv + yv)

T and w = (xw, 0, 2xw + yw)
T, we obtain

v + w = (xv, 0, 2xv + yv)
T + (xw, 0, 2xw + yw)

T

=

xv + xw, 0 + 0︸ ︷︷ ︸
=0

, (2xv + yv) + (2xw + yw)︸ ︷︷ ︸
=2(xv+xw)+(yv+yw)


T

(since column vectors are added entry by entry)

= (xv + xw, 0, 2 (xv + xw) + (yv + yw))
T .

Thus, the vector v + w has the form (x, 0, 2x + y)T for some x, y ∈ R (namely, for
x = xv + xw and y = yv + yw). In other words, v+w ∈

{
(x, 0, 2x + y)T | x, y ∈ R

}
.

In view of (157), this rewrites as v + w ∈ D. This completes the proof of the fact
that D is closed under addition.

Proof that D is closed under scaling: Let λ ∈ R and v ∈ D. We must prove that
λv ∈ D.

We have v ∈ D =
{
(x, 0, 2x + y)T | x, y ∈ R

}
(by (157)). In other words, v has

the form (x, 0, 2x + y)T for some x, y ∈ R. Fix two such x, y, and denote them by
xv, yv. Thus, xv, yv are real numbers and satisfy v = (xv, 0, 2xv + yv)

T.
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Hence,

λv = λ (xv, 0, 2xv + yv)
T =

λxv, λ0︸︷︷︸
=0

, λ (2xv + yv)︸ ︷︷ ︸
=2·λxv+λyv


T

(since column vectors are scaled entry by entry)

= (λxv, 0, 2 · λxv + λyv)
T .

Thus, the vector λv has the form (x, 0, 2x + y)T for some x, y ∈ R (namely, for
x = λxv and y = λyv). In other words, λv ∈

{
(x, 0, 2x + y)T | x, y ∈ R

}
. In view

of (157), this rewrites as λv ∈ D. This completes the proof of the fact that D is
closed under scaling.

We now have shown that D contains the zero vector, is closed under addition,
and is closed under scaling. Hence, D is a subspace of R3. Example 4.25 (d) is
proven.

(e) There exists no u ∈ R satisfying (0, 0, 0)T = (u, 0, u + 1)T (because any such
u would have to satisfy 0 = u and 0 = u + 1 at the same time; but this is clearly
impossible). In other words, (0, 0, 0)T is not a vector of the form (u, 0, u + 1)T

with u ∈ R. In other words, (0, 0, 0)T /∈
{
(u, 0, u + 1)T | u ∈ R

}
. Since E ={

(u, 0, u + 1)T | u ∈ R
}

, this rewrites as (0, 0, 0)T /∈ E.

But recall that the zero vector of the vector space R3 is (0, 0, 0)T. Hence, this zero
vector does not lie in E (since (0, 0, 0)T /∈ E). In other words, E does not contain the
zero vector. Consequently, E cannot be a subspace of R3. Thus, Example 4.25 (e) is
proven.

(f) The subset F is not closed under addition. In fact, if we set v = (1, 0, 0)T and
w = (0, 1, 1)T, then v ∈ F (since 1 · 0 · 0 = 0) and w ∈ F (since 0 · 1 · 1 = 0), but
v + w = (1, 1, 1)T /∈ F (since 1 · 1 · 1 6= 0).

Since F is not closed under addition, F is not a subspace of R3 (even though, as
the reader can easily check, F contains the zero vector and is closed under scaling).
This proves Example 4.25 (f).

(g) The subset G is not closed under scaling. In fact, if we set λ =
√

2 and

v = (1, 0, 0)T, then v ∈ G (since 1, 0, 0 ∈ Q), but λv =
(√

2, 0, 0
)T

/∈ G (since not all

of
√

2, 0, 0 belong to Q).
Since G is not closed under scaling, G is not a subspace of R3 (even though, as the

reader can easily check, G contains the zero vector and is closed under addition).
This proves Example 4.25 (g).

(h) I claim that H = D.
In order to prove this, it suffices to show that H ⊆ D and D ⊆ H.
Proof of H ⊆ D: Let h ∈ H. Thus, h ∈ H =

{
(u, 0, 2u + v + 1)T | u, v ∈ R

}
. In
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other words, h has the form (u, 0, 2u + v + 1)T for some u, v ∈ R. Consider these
u, v.

Now, h = (u, 0, 2u + v + 1)T. Hence, h has the form (x, 0, 2x + y)T for some x, y ∈
R (namely, for x = u and y = v+ 1). In other words, h ∈

{
(x, 0, 2x + y)T | x, y ∈ R

}
.

In view of (157), this rewrites as h ∈ D.
Now, we have proven that h ∈ D for each h ∈ H. In other words, H ⊆ D.
Proof of D ⊆ H: Let d ∈ D. Then, d ∈ D =

{
(x, 0, 2x + y)T | x, y ∈ R

}
(by

(157)). In other words, d has the form d = (x, 0, 2x + y)T for some x, y ∈ R. Con-
sider these x, y.

Now, d =

x, 0, 2x + y︸︷︷︸
=(y−1)+1


T

= (x, 0, 2x + (y− 1) + 1)T. Hence, d has the

form (u, 0, 2u + v + 1)T for some u, v ∈ R (namely, for u = x and v = y− 1). In
other words, d ∈

{
(u, 0, 2u + v + 1)T | u, v ∈ R

}
. In light of{

(u, 0, 2u + v + 1)T | u, v ∈ R
}
= H, this rewrites as d ∈ H.

We have now shown that d ∈ H for each d ∈ D. In other words, D ⊆ H.
Combining the relations H ⊆ D and D ⊆ H, we obtain H = D. Since D is a

subspace of R3 (this was proven in Example 4.25 (d)), we thus know that H is a
subspace of R3. Example 4.25 (h) is proven.

4.5.3. The kernel of a matrix

You might have spotted some patterns in Example 4.25. For instance, you have
noticed that the subsets A and B were “carved out” of R3 by systems of linear
equations with no constant terms (i.e., linear equations of the form a1x1 + a2x2 +
a3x3 = 0, or equivalent to such equations). This is a general pattern: Any subset
of Rn “carved out” by a system of linear equations with no constant terms105 is
a subspace of Rn. Let me state (and prove) this fact in a slightly cleaner form,
replacing the system of linear equations by a matrix equation106:

Proposition 4.26. Let n ∈ N and m ∈ N. Let A be an m× n-matrix. Let Ker A
denote the subset

{x ∈ Rn | Ax = 0m×1}

105Such systems are called homogeneous systems in [OlvSha06, §1.8].
106In fact, recall (from Proposition 3.2) that a system of linear equations in n unknowns x1, x2, . . . , xn

can be rewritten as a single equation Ax = b for the column vector x =


x1
x2
...

xn

 ∈ Rn. When

the system has no constant terms, the vector b is the zero vector 0m×1, and so the single equation
Ax = b becomes Ax = 0m×1.
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of Rn. (Recall that Rn stands for the vector space Rn×1 of all column vectors of
size n.) Then, Ker A is a subspace of Rn.

Proposition 4.26 generalizes both Example 4.25 (a) and Example 4.25 (b).107 The
proof of Proposition 4.26 is essentially like the proofs given for those examples, but
shorter because working with matrices is simpler than dealing with lots of single
entries:

Proof of Proposition 4.26. We want to show that Ker A is a subspace of Rn. Thus, we
need to show that Ker A contains the zero vector, is closed under addition, and is
closed under scaling. Let us do this:

Proof that Ker A contains the zero vector: We have A0n×1 = 0m×1. Hence, 0n×1 ∈
{x ∈ Rn | Ax = 0m×1} = Ker A. In other words, Ker A contains the zero vector
(since 0n×1 is the zero vector of the vector space Rn).

Proof that Ker A is closed under addition: Let v ∈ Ker A and w ∈ Ker A. We must
prove that v + w ∈ Ker A.

We have v ∈ Ker A = {x ∈ Rn | Ax = 0m×1}. In other words, Av = 0m×1.
Similarly, Aw = 0m×1. Now, A (v + w) = Av︸︷︷︸

=0m×1

+ Aw︸︷︷︸
=0m×1

= 0m×1 + 0m×1 = 0m×1.

Hence, v + w ∈ {x ∈ Rn | Ax = 0m×1} = Ker A. This completes the proof of the
fact that Ker A is closed under addition.

Proof that Ker A is closed under scaling: Let λ ∈ R and v ∈ Ker A. We must prove
that λv ∈ Ker A.

We have v ∈ Ker A = {x ∈ Rn | Ax = 0m×1}. In other words, Av = 0m×1. Now,
A (λv) = λ Av︸︷︷︸

=0m×1

= λ0m×1 = 0m×1. Hence, λv ∈ {x ∈ Rn | Ax = 0m×1} = Ker A.

This completes the proof of the fact that Ker A is closed under scaling.
We now have shown that Ker A contains the zero vector, is closed under addi-

tion, and is closed under scaling. Hence, Ker A is a subspace of Rn. This proves
Proposition 4.26.

Definition 4.27. Let n ∈N and m ∈N. Let A be an m× n-matrix. The subspace
Ker A of Rn introduced in Proposition 4.26 is called the kernel (or the nullspace)
of A. (Some authors also denote it by ker A.)

We will see some examples of kernels later; for now, let me only show one
particularly simple example, namely the kernel of a zero matrix:

107Indeed, you can easily check that the subset A of R3 in Example 4.25 (a) is Ker
(

1 −1 2
)
,

whereas the subset B of R3 in Example 4.25 (b) is Ker
(

1 −2 0
0 2 −3

)
(since the condition

x1 = 2x2 = 3x3 defining B is equivalent to the system
{

x1 − 2x2 = 0;
2x2 − 3x3 = 0 ).
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Proposition 4.28. Let n ∈N and m ∈N. Then, Ker (0m×n) = Rn.

Proof of Proposition 4.28. The definition of Ker (0m×n) yields Ker (0m×n) = {x ∈ Rn | 0m×nx = 0m×1}.
But every x ∈ Rn satisfies 0m×nx = 0m×1. Hence, {x ∈ Rn | 0m×nx = 0m×1} =
{x ∈ Rn} = Rn. Thus, Ker (0m×n) = {x ∈ Rn | 0m×nx = 0m×1} = Rn. This proves
Proposition 4.28.

4.5.4. The span of k vectors

Here is another fairly general construction of a subspace:

Definition 4.29. Let V be a vector space. Let v1, v2, . . . , vk be finitely many vectors
in V.

(a) A linear combination of v1, v2, . . . , vk means a vector of the form

λ1v1 + λ2v2 + · · ·+ λkvk with λ1, λ2, . . . , λk ∈ R.

(In words: A linear combination of v1, v2, . . . , vk means a vector obtained by first
scaling each of v1, v2, . . . , vk by some real number, and then adding the results.)

(b) The span of v1, v2, . . . , vk is the set of all linear combinations of v1, v2, . . . , vk.
This set is denoted by span (v1, v2, . . . , vk). Many authors also denote it by
span (v1, v2, . . . , vk), but this notation risks confusion with the inner product of
two vectors v and w (which will be introduced later, and which will be denoted
by 〈v, w〉).

Note that span (v1, v2, . . . , vk) is defined as the set of all linear combinations
of v1, v2, . . . , vk; but the latter linear combinations are the vectors of the form
λ1v1 + λ2v2 + · · ·+ λkvk with λ1, λ2, . . . , λk ∈ R. Hence, span (v1, v2, . . . , vk) is
the set of all vectors of the form λ1v1 + λ2v2 + · · ·+ λkvk with λ1, λ2, . . . , λk ∈ R.
In other words,

span (v1, v2, . . . , vk) = {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R} . (158)

Remark 4.30. The span span () (that is, the span of no vectors) is the subspace{−→
0
}

of V (not the empty set!). This is because
−→
0 is a linear combination of

an empty list of vectors (being the empty sum). This might appear somewhat
counterintuitive, but is natural and important.

Proposition 4.31. Let V be a vector space. Let v1, v2, . . . , vk be finitely many
vectors in V. Then, span (v1, v2, . . . , vk) (that is, the span of v1, v2, . . . , vk) is a
subspace of V.

Proof of Proposition 4.31. We want to show that span (v1, v2, . . . , vk) is a subspace of
V. Thus, we need to show that span (v1, v2, . . . , vk) contains the zero vector, is
closed under addition, and is closed under scaling. Let us do this:
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Proof that span (v1, v2, . . . , vk) contains the zero vector: We have 0v1 + 0v2 + · · ·+
0vk =

−→
0 +
−→
0 + · · ·+−→0 =

−→
0 . Thus,

−→
0 = 0v1 + 0v2 + · · ·+ 0vk. Hence, the vector−→

0 has the form λ1v1 + λ2v2 + · · · + λkvk for some λ1, λ2, . . . , λk ∈ R (namely,
for λi = 0). In other words,

−→
0 is a linear combination of v1, v2, . . . , vk. In other

words,
−→
0 ∈ span (v1, v2, . . . , vk) (since span (v1, v2, . . . , vk) is the set of all linear

combinations of v1, v2, . . . , vk). In other words, span (v1, v2, . . . , vk) contains the
zero vector (since

−→
0 is the zero vector of the vector space V).

Proof that span (v1, v2, . . . , vk) is closed under addition: Let v ∈ span (v1, v2, . . . , vk)
and w ∈ span (v1, v2, . . . , vk). We must prove that v + w ∈ span (v1, v2, . . . , vk).

We have

v ∈ span (v1, v2, . . . , vk) = {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R}

(by (158)). In other words, there exist some λ1, λ2, . . . , λk ∈ R satisfying v = λ1v1 +
λ2v2 + · · ·+ λkvk. Fix these λ1, λ2, . . . , λk, and denote them by µ1, µ2, . . . , µk. Thus,
µ1, µ2, . . . , µk are elements of R and satisfy v = µ1v1 + µ2v2 + · · ·+ µkvk.

We have

w ∈ span (v1, v2, . . . , vk) = {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R}

(by (158)). In other words, there exist some λ1, λ2, . . . , λk ∈ R satisfying w =
λ1v1 + λ2v2 + · · ·+ λkvk. Fix these λ1, λ2, . . . , λk, and denote them by κ1, κ2, . . . , κk.
Thus, κ1, κ2, . . . , κk are elements of R and satisfy w = κ1v1 + κ2v2 + · · ·+ κkvk.

Adding the equalities v = µ1v1 + µ2v2 + · · ·+ µkvk and w = κ1v1 + κ2v2 + · · ·+
κkvk, we obtain

v + w = (µ1v1 + µ2v2 + · · ·+ µkvk) + (κ1v1 + κ2v2 + · · ·+ κkvk)

= (µ1v1 + κ1v1) + (µ2v2 + κ2v2) + · · ·+ (µkvk + κkvk)

= (µ1 + κ1) v1 + (µ2 + κ2) v2 + · · ·+ (µk + κk) vk.

Hence, the vector v+w has the form λ1v1 +λ2v2 + · · ·+λkvk for some λ1, λ2, . . . , λk ∈
R (namely, for λi = µi + κi). In other words,

v + w ∈ {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R} .

In view of (158), this rewrites as v + w ∈ span (v1, v2, . . . , vk). This completes the
proof of the fact that span (v1, v2, . . . , vk) is closed under addition.

Proof that span (v1, v2, . . . , vk) is closed under scaling: Let λ ∈ R and v ∈ span (v1, v2, . . . , vk).
We must prove that λv ∈ span (v1, v2, . . . , vk).

We have

v ∈ span (v1, v2, . . . , vk) = {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R}

(by (158)). In other words, there exist some λ1, λ2, . . . , λk ∈ R satisfying v = λ1v1 +
λ2v2 + · · ·+ λkvk. Fix these λ1, λ2, . . . , λk, and denote them by µ1, µ2, . . . , µk. Thus,
µ1, µ2, . . . , µk are elements of R and satisfy v = µ1v1 + µ2v2 + · · ·+ µkvk.
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Multiplying both sides of the equality v = µ1v1 + µ2v2 + · · ·+ µkvk by λ, we find

λv = λ (µ1v1 + µ2v2 + · · ·+ µkvk) = λµ1v1 + λµ2v2 + · · ·+ λµkvk.

Hence, the vector λv has the form λ1v1 +λ2v2 + · · ·+λkvk for some λ1, λ2, . . . , λk ∈
R (namely, for λi = λµi). In other words,

λv ∈ {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R} .

In view of (158), this rewrites as λv ∈ span (v1, v2, . . . , vk). This completes the proof
of the fact that span (v1, v2, . . . , vk) is closed under scaling.

We now have shown that span (v1, v2, . . . , vk) contains the zero vector, is closed
under addition, and is closed under scaling. Hence, span (v1, v2, . . . , vk) is a sub-
space of V. This proves Proposition 4.31.

Example 4.32. It is easy to construct examples of spans. Here is one:
Let x = (1, 0, 2)T and y = (0, 0, 1)T. Then, x and y are two vectors in R3. What

is their span span (x, y) ? The equality (158) (applied to V = R3, k = 2 and
(v1, v2, . . . , vk) = (x, y)) yields

span (x, y) = {λ1x + λ2y | λ1, λ2 ∈ R} =

u x︸︷︷︸
=(1,0,2)T

+v y︸︷︷︸
=(0,0,1)T

| u, v ∈ R


(here, we have renamed the indices λ1 and λ2 as u and v)

=


u (1, 0, 2)T + v (0, 0, 1)T︸ ︷︷ ︸
=(u·1+v·0,u·0+v·0,u·2+v·1)T

=(u,0,2u+v)T

| u, v ∈ R


=
{
(u, 0, 2u + v)T | u, v ∈ R

}
.

This is precisely the set D defined in Example 4.25 (d). In particular, this shows
once again that the latter set D is a subspace of R3 (since Proposition 4.31 shows
that span (x, y) is a subspace of R3). Thus, we have found a new proof of the
claim of Example 4.25 (d).

The following property of spans is fundamental:

Proposition 4.33. Let V be a vector space. Let v1, v2, . . . , vk be finitely many
vectors in V.

(a) The vectors v1, v2, . . . , vk belong to the span span (v1, v2, . . . , vk).
(b) If U is a subspace of V that contains the vectors v1, v2, . . . , vk, then

span (v1, v2, . . . , vk) ⊆ U.



Notes on linear algebra (Wednesday 4th December, 2019, 15:09) page 209

Propositions 4.31 and 4.33 are often stated together in one single laconic sen-
tence: “The span span (v1, v2, . . . , vk) of k vectors v1, v2, . . . , vk is the smallest sub-
space of V that contains v1, v2, . . . , vk” (where “smallest” means that any other
subspace of V that contains v1, v2, . . . , vk must contain span (v1, v2, . . . , vk) as a sub-
set). This sentence includes the claim of Proposition 4.31 (since it says that the
span span (v1, v2, . . . , vk) is a subspace of V), the claim of Proposition 4.33 (a) (since
it says that this span contains v1, v2, . . . , vk), and the claim of Proposition 4.33 (b)
(since it says that this span is the smallest subspace of V that contains v1, v2, . . . , vk).

We shall prove Proposition 4.33 later (in Section 4.6).
How to actually compute the kernel of a matrix? The next three examples illus-

trate a method:

Example 4.34. Let n = 4 and m = 3. Let A be the m × n-matrix 1 3 0 1
2 0 1 2
0 6 −2 0

. Let us find the kernel Ker A of A. Proposition 4.26 tells

us that Ker A will be a subspace of Rn = R4; but it does not tell us which one.
To find out, we will have to do some work.

The definition of Ker A yields

Ker A = {x ∈ Rn | Ax = 0m×1} =
{

x ∈ R4 | Ax = 03×1

}
(since n = 4 and m = 3). Hence, finding Ker A means finding all vectors x ∈ R4

satisfying Ax = 03×1. In other words, it means solving the equation Ax = 03×1.
We know how to do this using Gaussian elimination:

Let x = (x1, x2, x3, x4)
T ∈ R4. Then, Ax = 03×1 rewrites as

 1 3 0 1
2 0 1 2
0 6 −2 0




x1
x2
x3
x4

 =

 0
0
0

 .

This is equivalent to the system of equations
1x1 + 3x2 + 0x3 + 1x4 = 0;
2x1 + 0x2 + 1x3 + 2x4 = 0;

0x1 + 6x2 + (−2) x3 + 0x4 = 0
.

The solutions x of this system are precisely the vectors of the form

x =


−r
0
0
r

 for r ∈ R.
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Thus,

Ker A =
{

x ∈ R4 | Ax = 03×1

}

=



−r
0
0
r

 | r ∈ R

 (159)

=

r


−1
0
0
1

 | r ∈ R

 (160)

since


−r
0
0
r

 = r


−1
0
0
1

 for each r ∈ R



= span



−1
0
0
1


 .

We have thus written Ker A as a span of vectors (in our case: one vector) in R4.
This is not the only way to do so, but it is probably the most explicit and simplest
way.

Example 4.35. Let n = 3 and m = 3. Let A be the m× n-matrix

 1 2 2
2 4 4
3 6 6

.

Let us find the kernel Ker A of A.
The method is the same as in Example 4.34, but the last few steps are a bit

more complicated. Again, finding Ker A means solving the equation Ax = 03×1
(but this time, x is to lie in R3).

Let x = (x1, x2, x3)
T ∈ R3. Then, Ax = 03×1 rewrites as 1 2 2

2 4 4
3 6 6

 x1
x2
x3

 =

 0
0
0

 .

This is equivalent to the system of equations
1x1 + 2x2 + 2x3 = 0;
2x1 + 4x2 + 4x3 = 0;
3x1 + 6x2 + 6x3 = 0

.
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The solutions x of this system are precisely the vectors of the form

x =

 −2r− 2s
r
s

 for r, s ∈ R.

Thus,

Ker A =
{

x ∈ R3 | Ax = 03×1

}
=


 −2r− 2s

r
s

 | r, s ∈ R

 (161)

=

r

 −2
1
0

+ s

 −2
0
1

 | r, s ∈ R

 (162)

since

 −2r− 2s
r
s

 = r

 −2
1
0

+ s

 −2
0
1

 for each r, s ∈ R


= span

 −2
1
0

 ,

 −2
0
1

 .

We have thus written Ker A as a span of vectors (in our case: two vectors) in R3.
Again, there are various other ways to do so.

Let me explain how I got from (161) to (162). I have rewritten

 −2r− 2s
r
s


as r

 −2
1
0

+ s

 −2
0
1

. The purpose of this step was to “push the variables

r and s out of the column vector”, so that the result would be of the form “r
times a constant column vector plus s times a constant column vector”. And the
ultimate purpose of this was to write Ker A as a span of two column vectors.

You should be able to do such transformations yourself! To illustrate the
method in a bit more detail, let me state it as a two-step procedure:

1. First, decompose the vector

 −2r− 2s
r
s

 into a sum of two vectors by

isolating all multiples of r into one vector and all multiples of s into another.
Thus,  −2r− 2s

r
s

 =

 −2r
r
0

+

 −2s
0
s

 .
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2. Now, push the factor r out of the first vector (i.e., rewrite

 −2r
r
0

 as

r

 −2
1
0

), and push the factor s out of the second vector (i.e., rewrite −2s
0
s

 as s

 −2
0
1

). The result is r

 −2
1
0

+ s

 −2
0
1

.

In hindsight, the passage from (159) to (160) has been another instance of such

a transformation. Namely, I have rewritten


−r
0
0
r

 as r


−1
0
0
1

 in order to

“push the r out of the column vector”. Of course, this was simpler because we
had only one variable (hence, no need to isolate) and therefore only one constant
vector.

Here is another example of such a transformation:

5r + 2s + 3t
t

−2r + 3s
s
−3r

r
0


= r



5
0
−2
0
−3
1
0


+ s



2
0
3
1
0
0
0


+ t



3
1
0
0
0
0
0


.

Example 4.36. Let n = 2 and m = 2. Let A be the m× n-matrix
(

1 2
2 3

)
. Let us

find the kernel Ker A of A.
The method is the same as in Example 4.34, and this time we will actually have

it a lot easier, as long as we do not get confused by empty lists and zero vectors.
Finding Ker A means solving the equation Ax = 02×1 for x ∈ R2.

Let x = (x1, x2)
T ∈ R2. Then, Ax = 02×1 rewrites as(

1 2
2 3

)(
x1
x2

)
=

(
0
0

)
.

This is equivalent to the system of equations{
1x1 + 2x2 = 0;
2x1 + 3x2 = 0 .
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The solutions x of this system are precisely the vectors of the form

x =

(
0
0

)
.

Thus,

Ker A =
{

x ∈ R2 | Ax = 02×1

}
=


(

0
0

)
︸ ︷︷ ︸
=02×1

 = {02×1} .

This is as simple a result as we can get, but if we actually want to rewrite Ker A
as a span, we can achieve this by proceeding as in Examples 4.34 and 4.35:

Ker A =
{

x ∈ R2 | Ax = 02×1

}
=


(

0
0

)
︸ ︷︷ ︸

=(empty sum)


= {(empty sum)} = span () (the span of no vectors) .

Here, we have “decomposed” the zero vector
(

0
0

)
into an empty sum, and

realized that the set consisting of the empty sum is precisely the set of all linear
combinations of no vectors, i.e., the span of no vectors. Thus, Ker A is the span
of no vectors.

4.5.5. The image of a matrix

A further way to construct subspaces is the following:

Definition 4.37. Let A be an n × m-matrix. We define ARm to be the subset
{Ax | x ∈ Rm} of Rn. This subset ARm is called the column space (or the image,
or the range) of A.

The name “column space” for ARm in Definition 4.37 might appear strange at
first, but we will soon see why it is justified: In Proposition 4.38 (a) below, we will
show that it is the span of the columns of A. The name “image” is due to the fact
that ARm is the image of the map Rm → Rn, x 7→ Ax.

Various authors have different notations for the column space ARm of a matrix
A. It is called rng A in [OlvSha06]; other notations for it include Range A, Im A,
and A (Rm).

Proposition 4.38. Let A be an n×m-matrix.
(a) We have ARm = span (col1 A, col2 A, . . . , colm A).
(b) The set ARm is a subspace of Rn.
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Before we prove this, let us show a simple lemma:

Lemma 4.39. Let A be an n×m-matrix. Let (x1, x2, . . . , xm)
T ∈ Rm. Then,

A (x1, x2, . . . , xm)
T = x1 col1 A + x2 col2 A + · · ·+ xm colm A.

Proof of Lemma 4.39. For each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we have(
colj A

)
i,1 = Ai,j (163)

(because colj A is the j-th column of A, and thus its i-th entry is the (i, j)-th entry
of A). Now, for each i ∈ {1, 2, . . . , n}, we have

(x1 col1 A + x2 col2 A + · · ·+ xm colm A)i,1

= (x1 col1 A)i,1︸ ︷︷ ︸
=x1(col1 A)i,1

(since matrices are
scaled entry by entry)

+ (x2 col2 A)i,1︸ ︷︷ ︸
=x2(col2 A)i,1

(since matrices are
scaled entry by entry)

+ · · ·+ (xm colm A)i,1︸ ︷︷ ︸
=xm(colm A)i,1

(since matrices are
scaled entry by entry)(

since matrices are added entry by entry
(more precisely, we are using Proposition 2.45 here)

)
= x1 (col1 A)i,1︸ ︷︷ ︸

=Ai,1
(by (163),

applied to j=1)

+x2 (col2 A)i,1︸ ︷︷ ︸
=Ai,2

(by (163),
applied to j=2)

+ · · ·+ xm (colm A)i,1︸ ︷︷ ︸
=Ai,m

(by (163),
applied to j=m)

= x1Ai,1 + x2Ai,2 + · · ·+ xm Ai,m. (164)

Set B = (x1, x2, . . . , xm)
T. Then, B is an m× 1-matrix, and its entries are

Bk,1 = xk for each k ∈ {1, 2, . . . , m} . (165)

Now, AB is an n× 1-matrix (since A is an n×m-matrix and B is an m× 1-matrix),
i.e., a column vector of size n. For each i ∈ {1, 2, . . . , n}, we have

(AB)i,1 = Ai,1 B1,1︸︷︷︸
=x1

(by (165),
applied to k=1)

+Ai,2 B2,1︸︷︷︸
=x2

(by (165),
applied to k=2)

+ · · ·+ Ai,m Bm,1︸︷︷︸
=xm

(by (165),
applied to k=m)

(by Proposition 2.19 (a), applied to p = 1 and j = 1)
= Ai,1x1 + Ai,2x2 + · · ·+ Ai,mxm

= x1Ai,1 + x2Ai,2 + · · ·+ xm Ai,m

= (x1 col1 A + x2 col2 A + · · ·+ xm colm A)i,1

(by (164)). In other words, for each i ∈ {1, 2, . . . , n}, the i-th entry of the column
vector AB equals the i-th entry of the column vector x1 col1 A + x2 col2 A + · · ·+
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xm colm A (because the i-th entry of any column vector v is vi,1). Thus, the column
vector AB equals x1 col1 A + x2 col2 A + · · ·+ xm colm A. In other words,

AB = x1 col1 A + x2 col2 A + · · ·+ xm colm A.

Since B = (x1, x2, . . . , xm)
T, this rewrites as

A (x1, x2, . . . , xm)
T = x1 col1 A + x2 col2 A + · · ·+ xm colm A.

Lemma 4.39 is proven.

Proof of Proposition 4.38. (a) Applying (158) to V = Rn, k = m and vi = coli A, we
obtain

span (col1 A, col2 A, . . . , colm A)

= {λ1 col1 A + λ2 col2 A + · · ·+ λm colm A | λ1, λ2, . . . , λm ∈ R}
= {x1 col1 A + x2 col2 A + · · ·+ xm colm A | x1, x2, . . . , xm ∈ R} (166)

(here, we have renamed the summation indices λ1, λ2, . . . , λm as x1, x2, . . . , xm). But

ARm = {Ax | x ∈ Rm} (by the definition of ARm)

=

 A (x1, x2, . . . , xm)
T︸ ︷︷ ︸

=x1 col1 A+x2 col2 A+···+xm colm A
(by Lemma 4.39)

| x1, x2, . . . , xm ∈ R

 here, we have substituted (x1, x2, . . . , xm)
T for x,

since the elements x of Rm are exactly the column vectors

of the form (x1, x2, . . . , xm)
T with x1, x2, . . . , xm ∈ R


= {x1 col1 A + x2 col2 A + · · ·+ xm colm A | x1, x2, . . . , xm ∈ R} .

Comparing this with (166), we obtain ARm = span (col1 A, col2 A, . . . , colm A). This
proves Proposition 4.38 (a).

(b) Proposition 4.31 (applied to V = Rn, k = m and vi = coli A) shows that
span (col1 A, col2 A, . . . , colm A) is a subspace of Rn. In other words, ARm is a sub-
space of Rn (since Proposition 4.38 (a) yields ARm = span (col1 A, col2 A, . . . , colm A)).
This proves Proposition 4.38 (b).

The probably simplest example of an image is the following:

Proposition 4.40. Let n ∈N and m ∈N. Then, 0n×mRm = {0n×1}.

Proof of Proposition 4.40. The definition of 0n×mRm yields

0n×mRm =

0n×mx︸ ︷︷ ︸
=0n×1

| x ∈ Rm

 = {0n×1 | x ∈ Rm} ⊆ {0n×1} . (167)
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On the other hand, 0n×1 = 0n×m0m×1 ∈ 0n×mRm (since 0m×1 ∈ Rm), and thus
{0n×1} ⊆ 0n×mRm. Combining this with (167), we obtain 0n×mRm = {0n×1}. This
proves Proposition 4.40.

4.5.6. Subspaces from subspaces

Next, let us see two ways to construct subspaces from other subspaces:

Proposition 4.41. Let V be a vector space. Let U1 and U2 be two subspaces of V.
Then, U1 ∩U2 is a subspace of V.

Proof of Proposition 4.41. Clearly, U1 ∩U2 is a subset of V (since U1 ∩U2 ⊆ U1 ⊆ V).
We want to show that U1 ∩ U2 is a subspace of V. Thus, we need to show that
U1 ∩ U2 contains the zero vector, is closed under addition, and is closed under
scaling. Let us do this:

Proof that U1 ∩U2 contains the zero vector: The set U1 is a subspace of V, and thus
contains the zero vector. In other words,

−→
0 ∈ U1. Similarly,

−→
0 ∈ U2. Combining

−→
0 ∈ U1 with

−→
0 ∈ U2, we obtain

−→
0 ∈ U1 ∩U2. In other words, U1 ∩U2 contains

the zero vector (since
−→
0 is the zero vector of the vector space V).

Proof that U1 ∩U2 is closed under addition: Let v ∈ U1 ∩U2 and w ∈ U1 ∩U2. We
must prove that v + w ∈ U1 ∩U2.

We have v ∈ U1 ∩ U2 ⊆ U1 and w ∈ U1 ∩ U2 ⊆ U1. But U1 is a subspace of
V, and thus is closed under addition. Hence, from v ∈ U1 and w ∈ U1, we can
conclude that v + w ∈ U1. The same argument (but with the roles of U1 and U2
interchanged) shows that v + w ∈ U2.

We now know that the element v+w lies in both sets U1 and U2; therefore, v+w
lies in their intersection U1 ∩U2. In other words, v + w ∈ U1 ∩U2. This completes
the proof of the fact that U1 ∩U2 is closed under addition.

Proof that U1 ∩ U2 is closed under scaling: This proof is left to the reader. (It is
similar to the above proof that U1 ∩U2 is closed under addition.)

We now have shown that U1 ∩U2 contains the zero vector, is closed under addi-
tion, and is closed under scaling. Hence, U1 ∩U2 is a subspace of V. This proves
Proposition 4.41.

Definition 4.42. Let V be a vector space. Let U1 and U2 be two subspaces of V.
Then, U1 + U2 denotes the set

{u1 + u2 | u1 ∈ U1 and u2 ∈ U2} .

This set U1 + U2 is called the sum of the subspaces U1 and U2.

Proposition 4.43. Let V be a vector space. Let U1 and U2 be two subspaces of V.
Then, U1 + U2 is a subspace of V.
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Proof of Proposition 4.43. We have

U1 + U2 = {u1 + u2 | u1 ∈ U1 and u2 ∈ U2} (168)

(by the definition of U1 + U2). Hence, the elements of U1 + U2 are vectors of the
form u1 + u2 with u1 ∈ U1 and u2 ∈ U2; clearly, these vectors all belong to V.
Hence, U1 + U2 is a subset of V. We want to show that U1 + U2 is a subspace of
V. Thus, we need to show that U1 + U2 contains the zero vector, is closed under
addition, and is closed under scaling. Let us do this:

Proof that U1 + U2 contains the zero vector: The set U1 is a subspace of V, and
thus contains the zero vector. In other words,

−→
0 ∈ U1. Similarly,

−→
0 ∈ U2. Now,

−→
0 =

−→
0 +
−→
0 . Hence,

−→
0 is a vector of the form u1 + u2 with u1 ∈ U1 and u2 ∈ U2

(namely, u1 =
−→
0 and u2 =

−→
0 ). In other words,

−→
0 ∈ {u1 + u2 | u1 ∈ U1 and u2 ∈ U2} .

In light of (168), this rewrites as
−→
0 ∈ U1 + U2. In other words, U1 + U2 contains

the zero vector (since
−→
0 is the zero vector of the vector space V).

Proof that U1 + U2 is closed under addition: Let v ∈ U1 + U2 and w ∈ U1 + U2. We
must prove that v + w ∈ U1 + U2.

We have v ∈ U1 + U2 = {u1 + u2 | u1 ∈ U1 and u2 ∈ U2}. In other words, v has
the form v = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2. Denote these u1 and u2 by v1
and v2. Thus, v1 ∈ U1 and v2 ∈ U2 and v = v1 + v2.

We have w ∈ U1 + U2 = {u1 + u2 | u1 ∈ U1 and u2 ∈ U2}. In other words, w
has the form w = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2. Denote these u1 and u2
by w1 and w2. Thus, w1 ∈ U1 and w2 ∈ U2 and w = w1 + w2.

Now, the set U1 is a subspace of V, and thus is closed under addition. Hence,
from v1 ∈ U1 and w1 ∈ U1, we can conclude that v1 + w1 ∈ U1. Similarly, v2 + w2 ∈
U2.

Adding the equalities v = v1 + v2 and w = w1 + w2, we obtain

v + w = (v1 + v2) + (w1 + w2) = (v1 + w1) + (v2 + w2) .

Hence, v + w has the form v + w = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2 (namely,
for u1 = v1 + w1 and u2 = v2 + w2) 108. In other words,

v + w ∈ {u1 + u2 | u1 ∈ U1 and u2 ∈ U2} .

In light of (168), this rewrites as v + w ∈ U1 + U2. This completes the proof of the
fact that U1 + U2 is closed under addition.

Proof that U1 + U2 is closed under scaling: We leave this proof to the reader. (It is
similar to the above proof that U1 + U2 is closed under addition.)

We now have shown that U1 + U2 contains the zero vector, is closed under addi-
tion, and is closed under scaling. Hence, U1 + U2 is a subspace of V. This proves
Proposition 4.43.

108Here, we are using the observations (made above) that v1 + w1 ∈ U1 and v2 + w2 ∈ U2.
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Generalizing Definition 4.42, we can define the sum U1 + U2 + · · ·+ Un of any
(finite) number of subspaces U1, U2, . . . , Un of V. This, too, will be a subspace of V.
The proof of this is analogous to our above proof of Proposition 4.43.

Proposition 4.44. Let V1 and V2 be two vector spaces. Let U1 be a subspace of
V1. Let U2 be a subspace of V2. Then, U1 ×U2 is a subspace of V1 × V2. (See
Definition 4.15 for the definition of the vector space V1 ×V2.)

Proof of Proposition 4.44. Every element of U1 ×U2 is a pair (u1, u2) ∈ U1 ×U2. All
such pairs (u1, u2) belong to V1 × V2

109. Hence, U1 ×U2 is a subset of V1 × V2.
We want to show that U1 ×U2 is a subspace of V1 × V2. Thus, we need to show
that U1×U2 contains the zero vector, is closed under addition, and is closed under
scaling. Let us do this:

Proof that U1 × U2 contains the zero vector: In the following, we will denote the
zero vector of a vector space W by

−→
0 W . (We are using this notation instead of

the usual notation
−→
0 , because we want to be able to distinguish between the zero

vectors of different vector spaces.)
The set U1 is a subspace of V1, and thus contains the zero vector. In other words,
−→
0 V1 ∈ U1. Similarly,

−→
0 V2 ∈ U2. Now, the definition of

−→
0 V1×V2 yields

−→
0 V1×V2 =(−→

0 V1 ,
−→
0 V2

)
∈ U1 ×U2 (since

−→
0 V1 ∈ U1 and

−→
0 V2 ∈ U2). In other words, U1 ×U2

contains the zero vector (of the vector space V1 ×V2).
Proof that U1 ×U2 is closed under addition: Let v ∈ U1 ×U2 and w ∈ U1 ×U2. We

must prove that v + w ∈ U1 ×U2.
We have v ∈ U1 ×U2. In other words, v is a pair of the form v = (u1, u2) for

some u1 ∈ U1 and u2 ∈ U2. Denote these u1 and u2 by v1 and v2. Thus, v1 ∈ U1
and v2 ∈ U2 and v = (v1, v2).

We have w ∈ U1 ×U2. In other words, w is a pair of the form w = (u1, u2) for
some u1 ∈ U1 and u2 ∈ U2. Denote these u1 and u2 by w1 and w2. Thus, w1 ∈ U1
and w2 ∈ U2 and w = (w1, w2).

Now, the set U1 is a subspace of V1, and thus is closed under addition. Hence,
from v1 ∈ U1 and w1 ∈ U1, we can conclude that v1 + w1 ∈ U1. Similarly, v2 + w2 ∈
U2.

Adding the equalities v = (v1, v2) and w = (w1, w2), we obtain

v + w = (v1, v2) + (w1, w2) = (v1 + w1, v2 + w2) .

Hence, v + w has the form v + w = (u1, u2) for some u1 ∈ U1 and u2 ∈ U2 (namely,
for u1 = v1 + w1 and u2 = v2 + w2) 110. In other words, v + w ∈ U1 ×U2. This
completes the proof of the fact that U1 ×U2 is closed under addition.

Proof that U1 ×U2 is closed under scaling: We leave this proof to the reader. (It is
similar to the above proof that U1 ×U2 is closed under addition.)

109Proof. Let (u1, u2) ∈ U1×U2. Then, u1 ∈ U1 and u2 ∈ U2. Hence, u1 ∈ U1 ⊆ V1 and u2 ∈ U2 ⊆ V2.
Thus, (u1, u2) ∈ V1 ×V2, qed.

110Here, we are using the observations (made above) that v1 + w1 ∈ U1 and v2 + w2 ∈ U2.
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We now have shown that U1 ×U2 contains the zero vector, is closed under ad-
dition, and is closed under scaling. Hence, U1 ×U2 is a subspace of V1 × V2. This
proves Proposition 4.44.

4.5.7. Matrix spaces

As we have seen in Example 4.6, the n × m-matrices (with real entries, for given
n and m) form a vector space, called Rn×m. How do subspaces of this space look
like? Let us see some examples of subspaces of R2×2:

Example 4.45. (a) Let A be the subset{(
a b
c d

)
∈ R2×2 | a + b + c + d = 0

}
of R2×2. Then, A is a subspace of R2×2.

(b) Let B be the subset{(
a b
c d

)
∈ R2×2 | ab + cd = 0

}
of R2×2. Then, B is not a subspace of R2×2.

(c) Let C be the set of all upper-triangular 2× 2-matrices. Then, C is a subspace
of R2×2.

(d) Let D be the set of all strictly upper-triangular 2× 2-matrices. Then, D is a
subspace of R2×2.

(e) Let E be the set of all upper-unitriangular 2× 2-matrices. Then, E is not a
subspace of R2×2.

(f) Let F be the set of all invertible 2× 2-matrices. Then, F is not a subspace of
R2×2.

(g) Fix a vector p ∈ R2. Let Gp be the set of all 2 × 2-matrices X ∈ R2×2

satisfying Xp = 02×1. Then, Gp is a subspace of R2×2.

Proof of Example 4.45. This proof is similar to that of Example 4.25, except that the
vectors are now 2× 2-matrices instead of being column vectors of size 3. Again, in
order to prove that some subset U of R2×2 is a subspace of R2×2, we must prove
that it satisfies the three conditions (a), (b) and (c) of Definition 4.21; but in order
to prove that some subset U of R2×2 is not a subspace of R2×2, it suffices to show
that at least one of these three conditions is violated.

Keep in mind that the zero vector of the vector space R2×2 is the zero matrix 02×2.
We shall sometimes keep using the notation

−→
0 for it, just because it is shorter.

(a) We want to show that A is a subspace of R2×2. Thus, we need to show that A
contains the zero vector, is closed under addition, and is closed under scaling. Let
us do this:
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Proof that A contains the zero vector: Recall that the zero vector of R2×2 is 02×2 =(
0 0
0 0

)
. This vector 02×2 lies in A if and only if 0 + 0 + 0 + 0 = 0 (by the

definition of A). Thus, 02×2 lies in A (since 0 + 0 + 0 + 0 = 0 holds). In other
words, A contains the zero vector.

Proof that A is closed under addition: Let v ∈ A and w ∈ A. We must prove that
v + w ∈ A.

Write the vector111 v ∈ A ⊆ R2×2 in the form v =

(
v1,1 v1,2
v2,1 v2,2

)
(for four real

numbers v1,1, v1,2, v2,1, v2,2 ∈ R). Since
(

v1,1 v1,2
v2,1 v2,2

)
= v ∈ A, we have v1,1 + v1,2 +

v2,1 + v2,2 = 0.

Write the vector w ∈ A ⊆ R2×2 in the form w =

(
w1,1 w1,2
w2,1 w2,2

)
(for four real

numbers w1,1, w1,2, w2,1, w2,2 ∈ R). Since
(

w1,1 w1,2
w2,1 w2,2

)
= w ∈ A, we have w1,1 +

w1,2 + w2,1 + w2,2 = 0.

From v =

(
v1,1 v1,2
v2,1 v2,2

)
and w =

(
w1,1 w1,2
w2,1 w2,2

)
, we obtain

v + w =

(
v1,1 v1,2
v2,1 v2,2

)
+

(
w1,1 w1,2
w2,1 w2,2

)
=

(
v1,1 + w1,1 v1,2 + w1,2
v2,1 + w2,1 v2,2 + w2,2

)
(since matrices are added entry by entry). Thus, in order to prove that v + w ∈ A,
we must show that

(v1,1 + w1,1) + (v1,2 + w1,2) + (v2,1 + w2,1) + (v2,2 + w2,2) = 0

(by the definition of A). But showing this is easy: Just notice that

(v1,1 + w1,1) + (v1,2 + w1,2) + (v2,1 + w2,1) + (v2,2 + w2,2)

= (v1,1 + v1,2 + v2,1 + v2,2)︸ ︷︷ ︸
=0

+ (w1,1 + w1,2 + w2,1 + w2,2)︸ ︷︷ ︸
=0

= 0 + 0 = 0.

Thus, we have proven that v + w ∈ A. This completes the proof of the fact that A
is closed under addition.

Proof that A is closed under scaling: We leave this proof to the reader again. (It is
similar to the proof of the fact that A is closed under addition, except that now we
must reason about λv instead of v + w.)

We now have shown that A contains the zero vector, is closed under addition,
and is closed under scaling. Hence, A is a subspace of R2×2. Example 4.45 (a) is
proven.

111It might appear to refer to the elements of A as vectors (after all, they are 2× 2-matrices), and to
denote them by lowercase letters. This should remind you once again that vectors (in the general
meaning of this word – i.e., elements of a vector space) can be almost anything.
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(b) The vector
(

1 0
0 1

)
∈ R2×2 belongs to B (since 1 · 0 + 0 · 1 = 0). So does

the vector
(

1 0
1 0

)
∈ R2×2 (since 1 · 0 + 1 · 0 = 0). But the sum of these vectors

does not (because it is
(

1 0
0 1

)
+

(
1 0
1 0

)
=

(
2 0
1 1

)
, which does not satisfy

2 · 0 + 1 · 1 = 0). Hence, B is not closed under addition. Thus, B is not a subspace
of R2×2. Example 4.45 (b) is proven.

(c) We want to show that C is a subspace of R2×2. Thus, we need to show that C
contains the zero vector, is closed under addition, and is closed under scaling. Let
me show only one of these three steps:

Proof that C is closed under addition: Let v ∈ C and w ∈ C. We must prove that
v + w ∈ C.

The matrix v belongs to C. In other words, v is upper-triangular (since C is the
set of all upper-triangular 2× 2-matrices). In other words,

vi,j = 0 whenever i > j (169)

(because this is how “upper-triangular” was defined). The same argument (but for
w instead of v) yields

wi,j = 0 whenever i > j. (170)

Now, every (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n} satisfying i > j must satisfy

(v + w)i,j = vi,j︸︷︷︸
=0

(by (169))

+ wi,j︸︷︷︸
=0

(by (170))

(since matrices are added entry by entry)

= 0 + 0 = 0.

In other words,
(v + w)i,j = 0 whenever i > j.

In other words, the matrix v + w is upper-triangular (since this is how “upper-
triangular” was defined). In other words, v + w ∈ C (since C is the set of all
upper-triangular 2 × 2-matrices). This completes the proof of the fact that C is
closed under addition.

As I have promised, I am omitting the proofs of the facts that C contains the zero
vector and is closed under scaling. (They are similar to the above proof, and the
modifications necessary to obtain them should be obvious by now.) Thus, Example
4.45 (c) is proven.

(d) The proof of Example 4.45 (d) is analogous to the above proof of Example
4.45 (c), except that the word “upper-triangular” must now be replaced by “strictly
upper-triangular”, and that the condition “i > j” must be replaced by “i ≥ j”.
(And, of course, the symbol “C” must be replaced by “D”.)
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(e) The vector
(

1 0
0 1

)
∈ R2×2 belongs to E (since it is an upper-unitriangular

2× 2-matrix). But the sum of this vector with itself does not (since it is
(

1 0
0 1

)
+(

1 0
0 1

)
=

(
2 0
0 2

)
, which is not upper-unitriangular). Thus, E is not closed

under addition. Thus, E is not a subspace of R2×2. Example 4.45 (e) is proven.

(f) The vectors
(

1 0
0 1

)
∈ R2×2 and

(
0 1
1 0

)
∈ R2×2 both belong to F (since

they both are invertible matrices112). But their sum does not (because it is
(

1 1
1 1

)
,

which is not invertible). Hence, F is not closed under addition. Thus, F is not a
subspace of R2×2. Example 4.45 (f) is proven.

(g) We want to show that Gp is a subspace of R2×2. Thus, we need to show that
Gp contains the zero vector, is closed under addition, and is closed under scaling.

Proof that Gp contains the zero vector: Recall that the zero vector of R2×2 is 02×2.
This vector 02×2 satisfies 02×2p = 02×1, and thus belongs to Gp (by the definition of
Gp). In other words, Gp contains the zero vector.

Proof that Gp is closed under addition: Let v ∈ Gp and w ∈ Gp. We must prove that
v + w ∈ Gp.

We have v ∈ Gp. In other words, vp = 02×1 (by the definition of Gp). (Keep in
mind that v is a 2× 2-matrix.)

We have w ∈ Gp. In other words, wp = 02×1 (by the definition of Gp).
Now, (v + w) p = vp︸︷︷︸

=02×1

+ wp︸︷︷︸
=02×1

= 02×1 + 02×1 = 02×1. In other words, v+w ∈ Gp

(by the definition of Gp). This completes the proof of the fact that Gp is closed
under addition.

Proof that Gp is closed under scaling: This proof is left to the reader.
We now have shown that Gp contains the zero vector, is closed under addition,

and is closed under scaling. Hence, Gp is a subspace of R2×2. Example 4.45 (g) is
proven.

[...]

TODO 4.46. Polynomials p such that p (3) = 0.

TODO 4.47. Functions f such that f is continuous.

TODO 4.48. Are functions [−1, 1]→ R are a subspace of the functions R→ R ?
No, since they are not even a subset.

112Actually, each of them is its own inverse.
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TODO 4.49. Are functions R→ R with image in [−1, 1] a subspace of the func-
tions R→ R ? No (e.g., scaling fails).

TODO 4.50. Subspaces of R2 and R3 in geometric terms.

[...]

4.6. <DRAFT> More on subspaces

If U is a subspace of a vector space V, then the sum of any two elements of U must
belong to U (by the definition of a subspace). The same holds for sums of any
(finite) number of elements of U:

Proposition 4.51. Let V be a vector space. Let U be a subspace of V.
(a) If u1, u2, . . . , uk are elements of U, then u1 + u2 + · · ·+ uk ∈ U.
(b) If u1, u2, . . . , uk are elements of U, then every linear combination of

u1, u2, . . . , uk also lies in U.
(c) Let u1, u2, . . . , uk be elements of U. Then,

span (u1, u2, . . . , uk) ⊆ U.

The claim of Proposition 4.51 (b) is often expressed as the following short slogan:
“A subspace U of a vector space V is closed under linear combination”.

Proof of Proposition 4.51. (a) Roughly speaking, this is just a matter of applying the
“closed under addition” axiom several times. But there is a subtlety involved (the
sum of 0 elements of U is not obtained by addition, but rather defined as

−→
0 ), and I

want to illustrate the principle of mathematical induction once again, so I am going
to present the proof in full detail.

Let u1, u2, . . . , uk be elements of U. We must show that u1 + u2 + · · ·+ uk ∈ U.
We shall prove that

u1 + u2 + · · ·+ ui ∈ U for every i ∈ {0, 1, . . . , k} . (171)

We will prove (171) by induction over i. (See the proof of Proposition 2.45 given
above for a brief explanation of what this principle means).

1. Induction base: For i = 0, the statement (171) claims that u1 + u2 + · · ·+ u0 ∈
U. In order to make sense of this, we must recall that empty sums of vectors
are defined to mean

−→
0 . Thus,

u1 + u2 + · · ·+ u0 = (empty sum of vectors) =
−→
0 .

But U is a subspace of V, and thus contains
−→
0 (this is one of the axioms for

a subspace). Thus,
−→
0 ∈ U, so that u1 + u2 + · · · + u0 =

−→
0 ∈ U. In other

words, (171) holds for i = 0. This completes the induction base.
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2. Induction step: Let j ∈ {0, 1, . . . , k− 1} be such that (171) holds for i = j. (The
statement that (171) holds for i = j is called the “induction hypothesis”.) We
must show that (171) also holds for i = j + 1.

Since (171) holds for i = j, we have u1 + u2 + · · ·+ uj ∈ U. Now,

u1 + u2 + · · ·+ uj+1 =
(
u1 + u2 + · · ·+ uj

)︸ ︷︷ ︸
∈U

+ uj+1︸︷︷︸
∈U

.

This is a sum of two vectors in U, and thus belongs to U (since U is closed
under addition). In other words, u1 + u2 + · · ·+ uj+1 ∈ U. Thus, (171) also
holds for i = j + 1. This completes the induction step.

Now, the proof of (171) is complete (since both the induction base and the induc-
tion step are complete).

Now that (171) is proven, we can simply apply (171) to i = k, and conclude that
u1 + u2 + · · ·+ uk ∈ U. This proves Proposition 4.51 (a).

(b) Let u1, u2, . . . , uk be elements of U. Let λ1, λ2, . . . , λk be real numbers.
The set U is a subspace of V, and thus is closed under scaling. Hence, the vectors

λ1u1, λ2u2, . . . , λkuk all belong to U (since the vectors u1, u2, . . . , uk belong to U).
Thus, Proposition 4.51 (a) (applied to λ1u1, λ2u2, . . . , λkuk instead of u1, u2, . . . , uk)
shows that λ1u1 + λ2u2 + · · ·+ λkuk ∈ U.

Now, we have shown that λ1u1 + λ2u2 + · · ·+ λkuk ∈ U whenever λ1, λ2, . . . , λk
are real numbers. In other words: every linear combination of u1, u2, . . . , uk also
lies in U. This proves Proposition 4.51 (b).

(c) Proposition 4.51 (b) shows that every linear combination of u1, u2, . . . , uk lies
in U. In other words, the set of all linear combinations of u1, u2, . . . , uk is a subset
of U. But since span (u1, u2, . . . , uk) is precisely the set of all linear combinations of
u1, u2, . . . , uk (in fact, this is how span (u1, u2, . . . , uk) was defined), this rewrites as
follows: span (u1, u2, . . . , uk) is a subset of U. This proves Proposition 4.51 (c).

I owe you a proof of Proposition 4.33; it can now be done quite easily:

Proof of Proposition 4.33. (a) Let i ∈ {1, 2, . . . , k}. We claim that vi ∈ span (v1, v2, . . . , vk).
[Proof: We have

0v1︸︷︷︸
=
−→
0

+ 0v2︸︷︷︸
=
−→
0

+ · · ·+ 0vi−1︸ ︷︷ ︸
=
−→
0

+ 1vi︸︷︷︸
=vi

+ 0vi+1︸ ︷︷ ︸
=
−→
0

+ 0vi+2︸ ︷︷ ︸
=
−→
0

+ · · ·+ 0vk︸︷︷︸
=
−→
0

=
−→
0 +
−→
0 + · · ·+−→0 + vi +

−→
0 +
−→
0 + · · ·+−→0 = vi,

so that vi = 0v1 + 0v2 + · · ·+ 0vi−1 + 1vi + 0vi+1 + 0vi+2 + · · ·+ 0vk. Hence, the
vector vi has the form λ1v1 + λ2v2 + · · ·+ λkvk for some λ1, λ2, . . . , λk ∈ R (namely,

for λj =

{
1, if j = i;
0, if j 6= i ). In other words,

vi ∈ {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R} .
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In view of (158), this rewrites as vi ∈ span (v1, v2, . . . , vk). 113]
Now, forget that we fixed i. We thus have shown that vi ∈ span (v1, v2, . . . , vk)

for each i ∈ {1, 2, . . . , k}. In other words, the vectors v1, v2, . . . , vk all belong to
span (v1, v2, . . . , vk). This proves Proposition 4.33 (a).

(b) Let U be a subspace of V that contains the vectors v1, v2, . . . , vk. We must
prove that span (v1, v2, . . . , vk) ⊆ U. But this follows immediately from Proposition
4.51 (c) (applied to ui = vi). Thus, Proposition 4.33 (b) is proven.

[...]
[...]

4.7. <TODO> More on spans

References for vector spaces: [LaNaSc16, §5.1] (possibly the best one), [OlvSha06,
§2.3] (focusses on the analysis-related and applied stuff) and [Heffer16, Two.I.2].

TODO 4.52. The terminology “(v1, v2, . . . , vk) spans V” (or “v1, v2, . . . , vk span
V”) means V = span (v1, v2, . . . , vk).

TODO 4.53. Ei,j span Rn×m. (Use Proposition 3.50.)

TODO 4.54. ei = Ei,1 span Rn.

TODO 4.55. How to check that a given vector is in a given span:
w ∈ span (v1, v2, . . . , vk)
⇐⇒ the equation w = λ1v1 + · · · + λkvk has at least one solution

(λ1, λ2, . . . , λk)
T ∈ Rk.

Can solve this using Gaussian elimination.

113Here is a more rigorous version of the same proof:
Proposition 4.20 (applied to p = 1, q = k and r = i) yields

k

∑
g=1

δg,ivg = vi.

(Here, we are using the letter g instead of k for the summation index, in order to avoid a clash
with the already existing meaning of the letter k.) Thus,

vi =
k

∑
g=1

δg,ivg = δ1,iv1 + δ2,iv2 + · · ·+ δk,ivk.

Hence, the vector vi has the form λ1v1 + λ2v2 + · · ·+ λkvk for some λ1, λ2, . . . , λk ∈ R (namely,
for λj = δj,i). In other words,

vi ∈ {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ R} .

In view of (158), this rewrites as vi ∈ span (v1, v2, . . . , vk).
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TODO 4.56. How to check that a given span is contained in another given span:
Checking that span (α, β) ⊆ span (γ, δ, ε) is tantamount to checking that both

α and β lie in span (γ, δ, ε) (by Proposition 4.51 (c)).

TODO 4.57. How to check that two given spans are identical?
Check that each is contained in the other.

TODO 4.58. How to write the subspace carved out by equations (i.e., a kernel)
as a span?

Solve the system.

For instance, write Ker

 1 3 2
3 9 6
2 6 4

 as a span.

Solve the system

 1 3 2
3 9 6
2 6 4

 x1
x2
x3

 =

 0
0
0

. Solution: x = −3s− 2r
s
r

. Rewrite this as x = r

 −2
0
1

 + s

 −3
1
0

 (here I have just

moved the free variables r, s outside of the vector, so that only constant numbers
have remained in the vector).

Thus, the elements of Ker

 1 3 2
3 9 6
2 6 4

 are precisely the vectors of the

form x = r

 −2
0
1

 + s

 −3
1
0

. In other words, they are the linear

combinations of

 −2
0
1

 ,

 −3
1
0

. In other words, Ker

 1 3 2
3 9 6
2 6 4

 =

span

 −2
0
1

 ,

 −3
1
0

.

TODO 4.59. Example:
(
(1, 3, 2)T , (0, 1, 1)T

)
spans W :={

(x, y, z)T | x + z = y
}
⊆ R3.

Prove this in full: Let α = (1, 3, 2)T and β = (0, 1, 1)T.
Show α, β ∈W. Conclude that span (α, β) ⊆W by Proposition 4.51 (c).
Now prove converse: Solve the system {x + z = y and write the solution as

(y− z, y, z)T = y (1, 1, 0)T + z (−1, 0, 1)T. So W = span
(
(1, 1, 0)T , (−1, 0, 1)T

)
.

Now, need to check that two spans are equal. We know how this is done.
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TODO 4.60. Example:
(
(1,−1, 1)T

)
spans X :={

(x, y, z)T | x + 3y + z = 0 and y + z = 0
}

.
Prove this too.

TODO 4.61. Exercise: what spans
{
(u− v, v− u)T

}
⊆ R2 ? Is there an easier

description?

TODO 4.62. Exercise: what spans
{
(u, v, 0)T

}
?{

(u, 0, 0)T
}

?{
(u, v, u)T

}
?{

(x1, x2, x3)
T | x2

1 + x2
2 = 0

}
?

TODO 4.63. Redundant vectors in spans can be removed.

TODO 4.64. hw3: If (w1, w2, . . . , wk) and (v1, v2, . . . , v`) are two lists of vec-
tors such that {w1, w2, . . . , wk} = {v1, v2, . . . , v`}, then span (w1, w2, . . . , wk) =
span (v1, v2, . . . , v`). In particular, if we reorder or duplicate the elements of a
list, then its span does not change.

TODO 4.65. Rest of hw3.

TODO 4.66. The list
(
1, x, x2, . . . , xn) spans the vector space Pn of all polynomial

functions R → R of degree ≤ n. (This allows the constant-0 function, which is
understood to have degree −∞.)

TODO 4.67. hw3: The subspace
{
(x1, x2, . . . , xn)

T ∈ Rn | x1 + x2 + · · ·+ xn = 0
}

of Rn is spanned by each of the two lists (e1 − en, e2 − en, . . . , en−1 − en) and
(e1 − e2, e2 − e3, . . . , en−1 − en).

Definition 4.68. A vector space V is said to be finite-dimensional if there is a
(finite) list (v1, v2, . . . , vk) spanning V.

TODO 4.69. Examples: Rn, Rn×m, R, C and all their subspaces are finite-
dimensional.

On the other hand, RR, the set of all polynomial functionss, etc. are not finite-
dimensional.

[...]
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4.8. <TODO> Linear independence

References for vector spaces: [LaNaSc16, §5.2] (possibly the best one), [OlvSha06,
§2.3] (focusses on the analysis-related and applied stuff) and [Heffer16, Two.II].

Definition 4.70. Let v1, v2, . . . , vk be vectors in a vector space V. We say that the
list (v1, v2, . . . , vk) is linearly independent if the only k-tuple (λ1, λ2, . . . , λk) of real
numbers satisfying λ1v1 + λ2v2 + · · ·+ λkvk =

−→
0 is (0, 0, . . . , 0).

Instead of saying “the list (v1, v2, . . . , vk) is linearly independent”, we can also
say “the vectors v1, v2, . . . , vk are linearly independent”. (But keep in mind that
linear independence is a property of the whole list (v1, v2, . . . , vk), not of each
single vector in this list. It often happens (for example) that two vectors a, b are
linearly independent, and two further vectors c, d are linearly independent, but
the four vectors a, b, c, d together are not linearly independent.)

TODO 4.71. Equivalent restatements of linear independence:

1. The list (v1, v2, . . . , vk) is linearly independent.

2. The vectors v1, v2, . . . , vk is linearly independent. (This is just another way
of saying things.)

3. The only k-tuple (λ1, λ2, . . . , λk) of real numbers satisfying λ1v1 + λ2v2 +

· · ·+ λkvk =
−→
0 is (0, 0, . . . , 0).

4. If λ1, λ2, . . . , λk are real numbers satisfying λ1v1 + λ2v2 + · · ·+ λkvk =
−→
0 ,

then λ1 = λ2 = · · · = λk = 0.

5. If λ1, λ2, . . . , λk are real numbers, not all zero, then λ1v1 + λ2v2 + · · · +
λkvk 6=

−→
0 .

6. For each vector v ∈ V, there exists at most one k-tuple (λ1, λ2, . . . , λk) of
real numbers satisfying λ1v1 + λ2v2 + · · ·+ λkvk = v.

7. Each i ∈ {1, 2, . . . , k} satisfies vi /∈ span (v1, v2, . . . , vi−1). (See Proposition
below.)

8. Each i ∈ {1, 2, . . . , k} satisfies vi /∈ span (v1, v2, . . . , vi−1, vi+1, vi+2, . . . , vk).
(See Proposition below.)

TODO 4.72. Example: The standard basis vectors e1, e2, . . . , en of Rn are linearly
independent.
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TODO 4.73. Non-example: The vectors e1 − e2, e2 − e3, e3 − e1 in R3 are not lin-
early independent. In fact,

1 (e1 − e2) + 1 (e2 − e3) + 1 (e3 − e1) =
−→
0 .

TODO 4.74. We say “linearly dependent” for “not linearly independent”.
Another non-example: The vectors e1,

−→
0 , e2 in R3 are linearly dependent. In

fact,
0e1 + 1 · −→0 + 0e2 =

−→
0 .

More generally, if
−→
0 appears in a list of vectors, then said list must be linearly

dependent.

TODO 4.75. Another non-example: If α and β are two vectors, then (α, β, α) is
linearly dependent. Indeed,

1α + 0β + (−1) α =
−→
0 .

More generally, if a vector in a list appears more than once, then said list is
linearly dependent.

TODO 4.76. How to check whether a list of vectors in Rn (or Rn×m) is linearly
independent?

You have to check whether the only solution of λ1v1 + λ2v2 + · · ·+ λkvk =
−→
0

is (0, 0, . . . , 0). This can be done by Gaussian elimination.

For example, is the list

 2
1
3

 ,

 1
3
6

 ,

 2
5
5

 of vectors in R3 linearly

independent?

So we are asking for the solutions of λ1

 2
1
3

 + λ2

 1
3
6

 + λ3

 2
5
5

 =

−→
0 . This rewrites as the system


2λ1 + 1λ2 + 2λ3 = 0;
1λ1 + 3λ2 + 5λ5 = 0;
3λ1 + 6λ2 + 5λ3 = 0

. The only solution is

(λ1, λ2, λ3) = (0, 0, 0). So, yes, it is linearly independent.

TODO 4.77. Visual meaning of linear independency in R2 and R3.

TODO 4.78. If (v1, v2, . . . , vk) is linearly independent, then so is every rearrange-
ment of (v1, v2, . . . , vk), and every sublist of (v1, v2, . . . , vk) too.
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TODO 4.79. Proposition: Let V be a vector space. Let v1, v2, . . . , vk be k vectors
in V. Assume that the list (v1, v2, . . . , vk) is linearly dependent. Then:

(a) There exists some i ∈ {1, 2, . . . , k} such that vi ∈ span (v1, v2, . . . , vi−1).
[Notice that when i = 1, the span span (v1, v2, . . . , vi−1) has to be interpreted as
the “empty span” span () =

{−→
0
}

.]
(b) This i satisfies span (v1, v2, . . . , vk) = span (v1, v2, . . . , vi−1, vi+1, . . . , vk).

TODO 4.80. Corollary: Let V be a vector space. Let v1, v2, . . . , vk be k vectors in
V. Then, the following are equivalent:

(a) The list (v1, v2, . . . , vk) is linearly independent.
(b) No i satisfies vi ∈ span (v1, v2, . . . , vi−1).
(c) No i satisfies vi ∈ span (v1, v2, . . . , vi−1, vi+1, . . . , vk).

TODO 4.81. Thus, if a list spans a subspace U of V, then we can keep
shrinking this list (by throwing out redundant elements) until we obtain
a linearly independent list that also spans U. For example, the list
(e1 − e2, e1, e2 − 2e1, e1 + e3, e2 + e3) spanning R3 can be shrunk by first throw-
ing out e2 − 2e1 (which is ∈ span (e1 − e2, e1)) and then throwing out e2 + e3
(which is ∈ span (e1 − e2, e1, e1 + e3)); the result is a linearly independent list
(e1 − e2, e1, e1 + e3) that still spans R3.

How do we find redundant entries in our list? One way to get them is just to
check, for each i, whether vi ∈ span (v1, v2, . . . , vi−1). Another (faster) way is to
pick a not-all-zeroes solution (λ1, λ2, . . . , λk) of the equation λ1v1 + λ2v2 + · · ·+
λkvk =

−→
0 , and take the highest i for which λi 6= 0; then, the corresponding vi is

redundant.
Exercise: Check that the list obtained at the end of this process is indeed

redundant.

TODO 4.82. The Steinitz exchange lemma is the claim that if (v1, v2, . . . , vk) is
a list of vectors in a vector space V such that V = span (v1, v2, . . . , vk), and if
(w1, w2, . . . , wl) is a linearly independent list of vectors in the same vector space
V, then

(a) we have k ≥ ` (that is, the spanning list is at least as long as the linearly
independent list), and

(b) we can obtain a basis of V by filling up the list (w1, w2, . . . , w`) with some
vectors from (v1, v2, . . . , vk). (“Filling up” means that we pick some vectors from
the list (v1, v2, . . . , vk) and append them to the list (w1, w2, . . . , w`). For example,
filling up the list (w1, w2, . . . , w`) with some vectors from (v1, v2, . . . , vk) can re-
sult in the list (w1, w2, . . . , w`, v2, v4, v9). But “some” can also be none; thus, we
might end up with (w1, w2, . . . , w`).)

The Wikipedia has a proof of the Steinitz exchange lemma, and it appears
to be among the most readable: https://en.wikipedia.org/wiki/Steinitz_
exchange_lemma#Proof . (Note that the Wikipedia talks of sets instead of lists,
but you can just read "list" for "set" there.)

https://en.wikipedia.org/wiki/Steinitz_exchange_lemma#Proof
https://en.wikipedia.org/wiki/Steinitz_exchange_lemma#Proof
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Another source is Theorem 5.2.9 in L/N/S. Notice that L/N/S are trying to
avoid talking about empty lists; this forces them to take some slightly clumsy
precautions (for example, the "v_1 is nonzero" condition in Lemma 5.2.7 is just
there because they don’t want to allow j to be 1). If you feel at home with empty
lists, you can simplify their proof of Theorem 5.2.9 as well (Step 1 becomes just a
particular case of Step k for k = 1). That said, I still prefer the proof on Wikipedia.

Another proof is in Olver/Shakiban, using Gaussian elimination.

[...]

4.9. <TODO> Bases and dimension

References for vector spaces: [LaNaSc16, §5.3-5.4] (possibly the best one), [OlvSha06,
§2.4] (focusses on the analysis-related and applied stuff) and [Heffer16, Two.III].

Definition 4.83. Let v1, v2, . . . , vk be vectors in a vector space V. We say that the
list (v1, v2, . . . , vk) is a basis of V if and only if this list spans V (that is, it satisfies
V = span (v1, v2, . . . , vk)) and is linearly independent.

Theorem 4.84. Let V be a finite-dimensional vector space. Then, any two bases
of V have the same size.

TODO 4.85. Prove this theorem using the Steinitz exchange lemma.

TODO 4.86. If (v1, v2, . . . , vk) is a linearly independent list in a vector space V,
then (v1, v2, . . . , vk) is a basis of the subspace span (v1, v2, . . . , vk).

TODO 4.87. Each spanning list can be shrunk to a basis. (This was done above,
just without saying the word “basis”.)

TODO 4.88. ........

[...]
[to be continued]
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