Rook sums in the symmetric group algebra

Darij Grinberg (Drexel University)

Howard University, DC, 2024-04-07
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/dc2024.pdf paper (draft): https:
//www.cip.ifi.lmu.de/~grinberg/algebra/rooksn.pdf

- Definition. Fix a commutative ring k. (The main examples are \mathbb{Z} and \mathbb{Q}.)
For each $n \in \mathbb{N}$, let S_{n} be the n-th symmetric group, and $\mathbf{k}\left[S_{n}\right]$ its group algebra over \mathbf{k}. So
$\mathbf{k}\left[S_{n}\right]=\left\{\right.$ formal linear combinations $\sum_{w \in S_{n}} \alpha_{w} w$ with $\left.\alpha_{w} \in \mathbf{k}\right\}$.
Also, let $[n]:=\{1,2, \ldots, n\}$ for each $n \in \mathbb{N}$.
- Definition. For any two subsets A and B of [n], we define the elements

$$
\nabla_{B, A}:=\sum_{\substack{w \in S_{n} ; \\ w(A)=B}} w \quad \text { and } \quad \widetilde{\nabla}_{B, A}:=\sum_{\substack{w \in S_{n} ; \\ w(A) \subseteq B}} w
$$

of \mathbf{k} [S_{n}]. We shall refer to these elements as rectangular rook sums.

- Definition. For any two subsets A and B of [n], we define the elements

$$
\nabla_{B, A}:=\sum_{\substack{w \in S_{n} ; \\ w(A)=B}} w \quad \text { and } \quad \widetilde{\nabla}_{B, A}:=\sum_{\substack{w \in S_{n} ; \\ w(A) \subseteq B}} w
$$

of \mathbf{k} [S_{n}]. We shall refer to these elements as rectangular rook sums.

- Examples.

$$
\begin{aligned}
\nabla_{\varnothing, \varnothing} & =\nabla_{[n],[n]}=\left(\text { sum of all } w \in S_{n}\right) ; \\
\nabla_{\{2\},\{1\}} & =\left(\text { sum of all } w \in S_{n} \text { sending } 1 \text { to } 2\right) ; \\
\widetilde{\nabla}_{\{2,3\},\{1\}} & =\left(\text { sum of all } w \in S_{n} \text { sending } 1 \text { to } 2 \text { or } 3\right) .
\end{aligned}
$$

- Proposition. Let A and B be two subsets of $[n]$. Then:
(a) We have $\nabla_{B, A}=0$ if $|A| \neq|B|$.
(b) We have $\widetilde{\nabla}_{B, A}=0$ if $|A|>|B|$.
- Proposition. Let A and B be two subsets of $[n]$. Then:
(a) We have $\nabla_{B, A}=0$ if $|A| \neq|B|$.
(b) We have $\widetilde{\nabla}_{B, A}=0$ if $|A|>|B|$.
(c) We have $\widetilde{\nabla}_{B, A}=\sum_{\substack{V \in B_{;},|V|=|A|}} \nabla_{V, A}$.
- Proposition. Let A and B be two subsets of [n]. Then:
(a) We have $\nabla_{B, A}=0$ if $|A| \neq|B|$.
(b) We have $\widetilde{\nabla}_{B, A}=0$ if $|A|>|B|$.
(c) We have $\widetilde{\nabla}_{B, A}=\sum_{V \subseteq B ;} \nabla_{V, A}$.

$$
|V|=|A|
$$

(d) We have $\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A}$.
(e) If $|A|=|B|$, then $\nabla_{B, A}=\widetilde{\nabla}_{B, A}$.

- Proposition. Let A and B be two subsets of [n]. Then:
(a) We have $\nabla_{B, A}=0$ if $|A| \neq|B|$.
(b) We have $\widetilde{\nabla}_{B, A}=0$ if $|A|>|B|$.
(c) We have $\widetilde{\nabla}_{B, A}=\sum_{\substack{V \in B_{i} \\|V|=|A|}} \nabla_{V, A}$.
(d) We have $\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A \text {. }}$
(e) If $|A|=|B|$, then $\nabla_{B, A}=\widetilde{\nabla}_{B, A}$.

Next, let $S: \mathbf{k}\left[S_{n}\right] \rightarrow \mathbf{k}\left[S_{n}\right]$ be the antipode of $\mathbf{k}\left[S_{n}\right]$; this is the \mathbf{k}-linear map sending each permutation $w \in S_{n}$ to w^{-1}. Then:
(f) We have $S\left(\nabla_{B, A}\right)=\nabla_{A, B}$.
(g) We have $S\left(\widetilde{\nabla}_{B, A}\right)=\widetilde{\nabla}_{[n] \backslash A,[n] \backslash B}$.

- The simplest rectangular rook sum is

$$
\nabla_{\varnothing, \varnothing}=\left(\text { sum of all } w \in S_{n}\right)
$$

Easily, $\nabla_{\varnothing, \varnothing}^{2}=n!\nabla_{\varnothing, \varnothing}$, so that

$$
P\left(\nabla_{\varnothing, \varnothing}\right)=0 \quad \text { for the polynomial } P(x)=x(x-n!)
$$

- The simplest rectangular rook sum is

$$
\nabla_{\varnothing, \varnothing}=\left(\text { sum of all } w \in S_{n}\right)
$$

Easily, $\nabla_{\varnothing, \varnothing}^{2}=n!\nabla_{\varnothing, \varnothing}$, so that

$$
P\left(\nabla_{\varnothing, \varnothing}\right)=0 \quad \text { for the polynomial } P(x)=x(x-n!) .
$$

- Question: What polynomials P satisfy $P\left(\nabla_{B, A}\right)=0$ or $P\left(\widetilde{\nabla}_{B, A}\right)=0$ for arbitrary A, B ? In particular, what is the minimal polynomial of $\widetilde{\nabla}_{B, A}$? (The only interesting $\nabla_{B, A}$'s are those for $|A|=|B|$, and they agree with $\widetilde{\nabla}_{B, A}$, so that we need not study them separately.)
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{2,4,5,6\}},\{1,2\}$ for $n=6$ is $(x-288) x(x+12)(x+36)$.
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{2,4,5,6\},\{1,2\}}$ for $n=6$ is $(x-288) x(x+12)(x+36)$.
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{1,2,5,6\},\{1,2,3\}}$ for $n=6$ is $(x-144)(x+16) x^{2}$.
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{2,4,5,6\},\{1,2\}}$ for $n=6$ is $(x-288) x(x+12)(x+36)$.
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{1,2,5,6\},\{1,2,3\}}$ for $n=6$ is $(x-144)(x+16) x^{2}$.
- Looks like the minimal polynomial always splits over \mathbb{Z} (i.e., factors into linear factors)!
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{2,4,5,6\},\{1,2\}}$ for $n=6$ is $(x-288) x(x+12)(x+36)$.
- Example. The minimal polynomial of $\widetilde{\nabla}_{\{1,2,5,6\},\{1,2,3\}}$ for $n=6$ is $(x-144)(x+16) x^{2}$.
- Looks like the minimal polynomial always splits over \mathbb{Z} (i.e., factors into linear factors)!
- How can we prove this?

A product rule

- A crucial step in the proof is a product rule for $\nabla \mathrm{s}$:
- Theorem (product rule). Let A, B, C, D be four subsets of $[n]$ such that $|A|=|B|$ and $|C|=|D|$. Then,

$$
\nabla_{D, C} \nabla_{B, A}=\omega_{B, C} \sum_{\substack{U \subseteq D, V \subseteq A ; \\|U|=|V|}}(-1)^{|U|-|B \cap C|}\binom{|U|}{|B \cap C|} \nabla_{U, V} .
$$

Here, for any two subsets B and C of $[n]$, we set

$$
\omega_{B, C}:=|B \cap C|!\cdot|B \backslash C|!\cdot|C \backslash B|!\cdot|[n] \backslash(B \cup C)|!\in \mathbb{Z}
$$

A product rule

- A crucial step in the proof is a product rule for $\nabla \mathrm{s}$:
- Theorem (product rule). Let A, B, C, D be four subsets of $[n]$ such that $|A|=|B|$ and $|C|=|D|$. Then,

$$
\nabla_{D, C} \nabla_{B, A}=\omega_{B, C} \sum_{\substack{U \subseteq D, V \subseteq A^{\prime} \\|U|=|V|}}(-1)^{|U|-|B \cap C|}\binom{|U|}{|B \cap C|} \nabla_{U, V}
$$

Here, for any two subsets B and C of $[n]$, we set

$$
\omega_{B, C}:=|B \cap C|!\cdot|B \backslash C|!\cdot|C \backslash B|!\cdot|[n] \backslash(B \cup C)|!\in \mathbb{Z}
$$

- Proof. Nice exercise in enumeration! First step is to show that

$$
\nabla_{D, C} \nabla_{B, A}=\omega_{B, C} \sum_{\substack{w \in S_{n} ; \\|w(A) \cap D|=|B \cap C|}} w .
$$

- Recall that $\widetilde{\nabla}_{B, A}$ is the sum of all $\nabla_{V, A}$'s for $V \subseteq B$ satisfying $|V|=|A|$. Thus, the product rule rewrites as follows:
- Theorem (product rule, rewritten). Let A, B, C, D be four subsets of [n] such that $|A|=|B|$ and $|C|=|D|$. Then,

$$
\nabla_{D, C} \nabla_{B, A}=\omega_{B, C} \sum_{V \subseteq A}(-1)^{|V|-|B \cap C|}\binom{|V|}{|B \cap C|} \widetilde{\nabla}_{D, V}
$$

An incomplete filtration

- Now, fix a subset D of $[n]$. Define

$$
\mathcal{F}_{k}:=\operatorname{span}\left\{\widetilde{\nabla}_{D, C} \mid C \subseteq[n] \text { with }|C| \leq k\right\}
$$

for each $k \in \mathbb{Z}$.

An incomplete filtration

- Now, fix a subset D of $[n]$. Define

$$
\mathcal{F}_{k}:=\operatorname{span}\left\{\widetilde{\nabla}_{D, C} \mid C \subseteq[n] \text { with }|C| \leq k\right\}
$$

for each $k \in \mathbb{Z}$. Of course,

$$
\mathcal{F}_{n} \supseteq \mathcal{F}_{n-1} \supseteq \cdots \supseteq \mathcal{F}_{0} \supseteq \mathcal{F}_{-1}=0
$$

It is easy to see that \mathcal{F}_{0} is spanned by
$\widetilde{\nabla}_{D, \varnothing}=\nabla_{\varnothing, \varnothing}=\sum_{w \in S_{n}} w$.

- Now, fix a subset D of $[n]$. Define

$$
\mathcal{F}_{k}:=\operatorname{span}\left\{\widetilde{\nabla}_{D, C} \mid C \subseteq[n] \text { with }|C| \leq k\right\}
$$

for each $k \in \mathbb{Z}$. Of course,

$$
\mathcal{F}_{n} \supseteq \mathcal{F}_{n-1} \supseteq \cdots \supseteq \mathcal{F}_{0} \supseteq \mathcal{F}_{-1}=0
$$

- For any subset $C \subseteq[n]$ and any $k \in \mathbb{N}$, we define the integer

$$
\delta_{D, C, k}:=\sum_{\substack{B \subseteq D_{i} \\|B|=k}} \omega_{B, C}(-1)^{k-|B \cap C|}\binom{k}{|B \cap C|} \in \mathbb{Z} .
$$

- Now, fix a subset D of $[n]$. Define

$$
\mathcal{F}_{k}:=\operatorname{span}\left\{\widetilde{\nabla}_{D, C} \mid C \subseteq[n] \text { with }|C| \leq k\right\}
$$

for each $k \in \mathbb{Z}$. Of course,

$$
\mathcal{F}_{n} \supseteq \mathcal{F}_{n-1} \supseteq \cdots \supseteq \mathcal{F}_{0} \supseteq \mathcal{F}_{-1}=0
$$

- For any subset $C \subseteq[n]$ and any $k \in \mathbb{N}$, we define the integer

$$
\delta_{D, C, k}:=\sum_{\substack{B \subseteq D_{i} \\|B|=k}} \omega_{B, C}(-1)^{k-|B \cap C|}\binom{k}{|B \cap C|} \in \mathbb{Z} .
$$

- Proposition. Let $C \subseteq[n]$ satisfy $|C|=|D|$. Let $k \in \mathbb{N}$. Then,

$$
\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}
$$

An incomplete filtration

- Now, fix a subset D of $[n]$. Define

$$
\mathcal{F}_{k}:=\operatorname{span}\left\{\widetilde{\nabla}_{D, C} \mid C \subseteq[n] \text { with }|C| \leq k\right\}
$$

for each $k \in \mathbb{Z}$. Of course,

$$
\mathcal{F}_{n} \supseteq \mathcal{F}_{n-1} \supseteq \cdots \supseteq \mathcal{F}_{0} \supseteq \mathcal{F}_{-1}=0
$$

- For any subset $C \subseteq[n]$ and any $k \in \mathbb{N}$, we define the integer

$$
\delta_{D, C, k}:=\sum_{\substack{B \subseteq D_{i} \\|B|=k}} \omega_{B, C}(-1)^{k-|B \cap C|}\binom{k}{|B \cap C|} \in \mathbb{Z} .
$$

- Proposition. Let $C \subseteq[n]$ satisfy $|C|=|D|$. Let $k \in \mathbb{N}$. Then,

$$
\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}
$$

- Proof. Follows from the rewritten product rule.

Annihilating polynomials, 1

- So we have proved $\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}$ whenever $|C|=|D|$ and $k \in \mathbb{N}$.

Annihilating polynomials, 1

- So we have proved $\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}$ whenever $|C|=|D|$ and $k \in \mathbb{N}$.
Since $\nabla_{D, C} \in \mathcal{F}_{n}$ and $\mathcal{F}_{-1}=0$, this entails

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, C}-\delta_{D, C, k}\right)\right) \nabla_{D, C}=0
$$

Annihilating polynomials, 1

- So we have proved $\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}$ whenever $|C|=|D|$ and $k \in \mathbb{N}$.
Since $\nabla_{D, C} \in \mathcal{F}_{n}$ and $\mathcal{F}_{-1}=0$, this entails

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, C}-\delta_{D, C, k}\right)\right) \nabla_{D, C}=0
$$

- However, the \mathcal{F}_{k} depend only on D, not on C, so that we can apply the same reasoning to any linear combination

$$
\nabla_{D, \alpha}:=\sum_{\substack{C \subseteq[n] ; \\|C|=|D|}} \alpha_{C} \nabla_{D, C}
$$

of $\nabla_{D, C}$'s instead of a single $\nabla_{D, C}$.

Annihilating polynomials, 1

- So we have proved $\left(\nabla_{D, C}-\delta_{D, C, k}\right) \mathcal{F}_{k} \subseteq \mathcal{F}_{k-1}$ whenever $|C|=|D|$ and $k \in \mathbb{N}$.
Since $\nabla_{D, C} \in \mathcal{F}_{n}$ and $\mathcal{F}_{-1}=0$, this entails

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, C}-\delta_{D, C, k}\right)\right) \nabla_{D, C}=0
$$

- However, the \mathcal{F}_{k} depend only on D, not on C, so that we can apply the same reasoning to any linear combination

$$
\nabla_{D, \alpha}:=\sum_{\substack{C \subseteq[n] ; \\|C|=|D|}} \alpha_{C} \nabla_{D, C}
$$

of $\nabla_{D, C}$'s instead of a single $\nabla_{D, C}$.

- Thus we find:
- Theorem. Let $D \subseteq[n]$. Let $\alpha=\left(\alpha_{C}\right)_{C \subseteq[n] ;|C|=|D|}$ be a family of scalars in \mathbf{k} indexed by the $|D|$-element subsets of [n]. Then,

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, \alpha}-\delta_{D, \alpha, k}\right)\right) \nabla_{D, \alpha}=0
$$

where

$$
\begin{aligned}
\nabla_{D, \alpha} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \nabla_{D, C} \in \mathbf{k}\left[S_{n}\right] \quad \text { and } \\
\delta_{D, \alpha, k} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \delta_{D, C, k} \in \mathbf{k}
\end{aligned}
$$

- Theorem. Let $D \subseteq[n]$. Let $\alpha=\left(\alpha_{C}\right)_{C \subseteq[n] ;|C|=|D|}$ be a family of scalars in \mathbf{k} indexed by the $|D|$-element subsets of [n]. Then,

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, \alpha}-\delta_{D, \alpha, k}\right)\right) \nabla_{D, \alpha}=0
$$

where

$$
\begin{aligned}
\nabla_{D, \alpha} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \nabla_{D, C} \in \mathbf{k}\left[S_{n}\right] \quad \text { and } \\
\delta_{D, \alpha, k} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \delta_{D, C, k} \in \mathbf{k}
\end{aligned}
$$

- Thus, the minimal polynomial of $\nabla_{D, \alpha}$ splits over \mathbf{k}.
- Theorem. Let $D \subseteq[n]$. Let $\alpha=\left(\alpha_{C}\right)_{C \subseteq[n] ;|C|=|D|}$ be a family of scalars in \mathbf{k} indexed by the $|D|$-element subsets of [n]. Then,

$$
\left(\prod_{k=0}^{|D|}\left(\nabla_{D, \alpha}-\delta_{D, \alpha, k}\right)\right) \nabla_{D, \alpha}=0
$$

where

$$
\begin{aligned}
\nabla_{D, \alpha} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \nabla_{D, C} \in \mathbf{k}\left[S_{n}\right] \quad \text { and } \\
\delta_{D, \alpha, k} & :=\sum_{\substack{C \subseteq[n] ; \\
|C|=|D|}} \alpha_{C} \delta_{D, C, k} \in \mathbf{k}
\end{aligned}
$$

- Thus, the minimal polynomial of $\nabla_{D, \alpha}$ splits over \mathbf{k}.
- In particular, the minimal polynomial of $\widetilde{\nabla}_{D, C}$ splits over \mathbb{Z} (since $\widetilde{\nabla}_{D, C}=\nabla_{D, \alpha}$ for an appropriate α).

The formal Nabla-algebra: definition and conjecture

- The product rule for the ∇ 's suggests another question.
- The product rule for the ∇ 's suggests another question.
- The ∇ 's are not linearly independent (e.g., we have $\left.\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A}\right)$.
What happens if we create linearly independent "abstract ∇ 's" (call them Δ 's) and define their product using the product rule?
- The product rule for the ∇ 's suggests another question.
- The ∇ 's are not linearly independent (e.g., we have $\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A)}$.
What happens if we create linearly independent "abstract ∇ 's" (call them Δ 's) and define their product using the product rule?
- Definition. For any two subsets A and B of [n] satisfying $|A|=|B|$, introduce a formal symbol $\Delta_{B, A}$. Let \mathcal{D} be the free \mathbf{k}-module with basis $\left(\Delta_{B, A}\right)_{A, B \subseteq[n]}$ with $|A|=|B|$. Define a multiplication on \mathcal{D} by

$$
\Delta_{D, C} \Delta_{B, A}:=\omega_{B, C} \sum_{\substack{U \subseteq D, V \subseteq A_{;}^{\prime} \\|U|=|V|}}(-1)^{|U|-|B \cap C|}\binom{|U|}{|B \cap C|} \Delta_{U, V}
$$

- The product rule for the ∇ 's suggests another question.
- The ∇ 's are not linearly independent (e.g., we have $\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A)}$.
What happens if we create linearly independent "abstract ∇ 's" (call them Δ 's) and define their product using the product rule?
- Definition. For any two subsets A and B of [n] satisfying $|A|=|B|$, introduce a formal symbol $\Delta_{B, A}$. Let \mathcal{D} be the free \mathbf{k}-module with basis $\left(\Delta_{B, A}\right)_{A, B \subseteq[n]}$ with $|A|=|B|$. Define a multiplication on \mathcal{D} by

$$
\Delta_{D, C} \Delta_{B, A}:=\omega_{B, C} \sum_{\substack{U \subseteq D, V \in \subseteq \\|U|=|V|}}(-1)^{|U|-|B \cap C|}\binom{|U|}{|B \cap C|} \Delta_{U, V} .
$$

- Theorem. This makes \mathcal{D} into a nonunital \mathbf{k}-algebra.
- The product rule for the ∇ 's suggests another question.
- The ∇ 's are not linearly independent (e.g., we have $\nabla_{B, A}=\nabla_{[n] \backslash B,[n] \backslash A)}$.
What happens if we create linearly independent "abstract ∇ 's" (call them Δ 's) and define their product using the product rule?
- Definition. For any two subsets A and B of [n] satisfying $|A|=|B|$, introduce a formal symbol $\Delta_{B, A}$. Let \mathcal{D} be the free \mathbf{k}-module with basis $\left(\Delta_{B, A}\right)_{A, B \subseteq[n]}$ with $|A|=|B|$. Define a multiplication on \mathcal{D} by

$$
\Delta_{D, C} \Delta_{B, A}:=\omega_{B, C} \sum_{\substack{U \subseteq D, V \in A_{;} \\|U|=|V|}}(-1)^{|U|-|B \cap C|}\binom{|U|}{|B \cap C|} \Delta_{U, V} .
$$

- Theorem. This makes \mathcal{D} into a nonunital \mathbf{k}-algebra.
- Conjecture. If n ! is invertible in \mathbf{k}, then this algebra \mathcal{D} has a unity.
- Example. For $n=1$, the nonunital algebra \mathcal{D} has basis (u, v) with $u=\Delta_{\varnothing, \varnothing}$ and $v=\Delta_{\{1\},\{1\}}$, and multiplication

$$
u u=u v=v u=u, \quad v v=v
$$

It is just $\mathbf{k} \times \mathbf{k}$.

- Example. For $n=1$, the nonunital algebra \mathcal{D} has basis (u, v) with $u=\Delta_{\varnothing, \varnothing}$ and $v=\Delta_{\{1\},\{1\}}$, and multiplication

$$
u u=u v=v u=u, \quad v v=v
$$

It is just $\mathbf{k} \times \mathbf{k}$.

- Example. For $n=2$, the nonunital algebra \mathcal{D} has basis $\left(u, v_{11}, v_{12}, v_{21}, v_{22}, w\right)$ with $u=\Delta_{\varnothing, \varnothing}$ and $v_{i j}=\Delta_{\{i\},\{j\}}$ and $w=\Delta_{[2],[2]}$. The multiplication on \mathcal{D} is

$$
\begin{aligned}
u u & =u w=w u=2 u, \quad u v_{i j}=v_{i j} u=u, \\
v_{d c} v_{b a} & =u-v_{d a} \quad \text { if } b \neq c ; \\
v_{d c} v_{b a} & =v_{d a} \quad \text { if } b=c, \\
v_{i j} w & =v_{i 1}+v_{i 2}, \quad \quad w v_{i j}=v_{1 j}+v_{2 j}, \\
w w & =2 w .
\end{aligned}
$$

This nonunital \mathbf{k}-algebra \mathcal{D} has a unity if and only if 2 is invertible in \mathbf{k}. This unity is $\frac{1}{4}\left(v_{11}+v_{22}-v_{12}-v_{21}+2 w\right)$.

- Question. Is \mathcal{D} a known object? Since \mathcal{D} is a free \mathbf{k}-module of rank $\binom{2 n}{n}$, could \mathcal{D} be a nonunital \mathbb{Z}-form of the planar rook algebra (which is known to be $\cong \prod_{k=0}^{n} \mathbf{k}\binom{n}{k} \times\binom{ n}{k}$)?
- Question. Is \mathcal{D} a known object? Since \mathcal{D} is a free \mathbf{k}-module of rank $\binom{2 n}{n}$, could \mathcal{D} be a nonunital \mathbb{Z}-form of the planar rook algebra (which is known to be $\cong \prod_{k=0}^{n} \mathbf{k}\binom{n}{k} \times\binom{ n}{k}$)?
- Question. Barring that, is there a nice proof of the above theorem?
- Let us generalize the $\nabla_{B, A}$.
- Let us generalize the $\nabla_{B, A}$.
- Definition. A set composition of $[n]$ is a tuple $\mathbf{U}=\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ of disjoint nonempty subsets of $[n]$ such that $U_{1} \cup U_{2} \cup \cdots \cup U_{k}=[n]$. We set $\ell(\mathbf{U})=k$ and call k the length of \mathbf{U}.
- Let us generalize the $\nabla_{B, A}$.
- Definition. A set composition of $[n]$ is a tuple $\mathbf{U}=\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ of disjoint nonempty subsets of $[n]$ such that $U_{1} \cup U_{2} \cup \cdots \cup U_{k}=[n]$. We set $\ell(\mathbf{U})=k$ and call k the length of \mathbf{U}.
- Definition. Let SC (n) be the set of all set compositions of [n].
- Let us generalize the $\nabla_{B, A}$.
- Definition. A set composition of $[n]$ is a tuple $\mathbf{U}=\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ of disjoint nonempty subsets of $[n]$ such that $U_{1} \cup U_{2} \cup \cdots \cup U_{k}=[n]$. We set $\ell(\mathbf{U})=k$ and call k the length of \mathbf{U}.
- Definition. Let SC (n) be the set of all set compositions of [n].
- Definition. If $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ are two set compositions of [n] having the same length, then we define the row-to-row sum

$$
\nabla_{\mathbf{B}, \mathbf{A}}:=\sum_{\substack{w \in S_{n} ; \\ w\left(A_{i}\right)=B_{i} \text { for all } i}} w \quad \text { in } \mathbf{k}\left[S_{n}\right]
$$

- Let us generalize the $\nabla_{B, A}$.
- Definition. A set composition of $[n]$ is a tuple $\mathbf{U}=\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ of disjoint nonempty subsets of $[n]$ such that $U_{1} \cup U_{2} \cup \cdots \cup U_{k}=[n]$. We set $\ell(\mathbf{U})=k$ and call k the length of \mathbf{U}.
- Definition. Let SC (n) be the set of all set compositions of [n].
- Definition. If $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ are two set compositions of [n] having the same length, then we define the row-to-row sum

$$
\nabla_{\mathbf{B}, \mathbf{A}}:=\sum_{\substack{w \in S_{n} ; \\ w\left(A_{i}\right)=B_{i} \text { for all } i}} w \quad \text { in } \mathbf{k}\left[S_{n}\right] .
$$

- Example. We have

$$
\nabla_{B, A}=\nabla_{\mathbf{B}, \mathbf{A}} \quad \text { for } \mathbf{B}=(B,[n] \backslash B) \text { and } \mathbf{A}=(A,[n] \backslash A)
$$

- Proposition. Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ and
$\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$.
(a) We have $\nabla_{\mathbf{B}, \mathbf{A}}=0$ unless $\left|A_{i}\right|=\left|B_{i}\right|$ for all i.
(b) We have $\nabla_{\mathbf{B}, \mathbf{A}}=\nabla_{\mathbf{B} \sigma, \mathbf{A} \sigma}$ for any $\sigma \in S_{k}$ (acting on set compositions by permuting the blocks).
(c) We have $S\left(\nabla_{\mathbf{B}, \mathbf{A}}\right)=\nabla_{\mathbf{A}, \mathbf{B}}$, where $S(w)=w^{-1}$ for all $w \in S_{n}$ as before.
- Proposition. Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ and
$\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$.
(a) We have $\nabla_{\mathbf{B}, \mathbf{A}}=0$ unless $\left|A_{i}\right|=\left|B_{i}\right|$ for all i.
(b) We have $\nabla_{\mathbf{B}, \mathbf{A}}=\nabla_{\mathbf{B} \sigma, \mathbf{A} \sigma}$ for any $\sigma \in S_{k}$ (acting on set compositions by permuting the blocks).
(c) We have $S\left(\nabla_{\mathbf{B}, \mathbf{A}}\right)=\nabla_{\mathbf{A}, \mathbf{B}}$, where $S(w)=w^{-1}$ for all $w \in S_{n}$ as before.
- The minimal polynomial of $\nabla_{\mathbf{B}, \mathbf{A}}$ does not always split over \mathbb{Z} unless $\ell(\mathbf{A}) \leq 2$.
- Proposition. Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$.
(a) We have $\nabla_{\mathbf{B}, \mathbf{A}}=0$ unless $\left|A_{i}\right|=\left|B_{i}\right|$ for all i.
(b) We have $\nabla_{\mathbf{B}, \mathbf{A}}=\nabla_{\mathbf{B} \sigma, \mathbf{A} \sigma}$ for any $\sigma \in S_{k}$ (acting on set compositions by permuting the blocks).
(c) We have $S\left(\nabla_{\mathbf{B}, \mathbf{A}}\right)=\nabla_{\mathbf{A}, \mathbf{B}}$, where $S(w)=w^{-1}$ for all $w \in S_{n}$ as before.
- The minimal polynomial of $\nabla_{\mathbf{B}, \mathbf{A}}$ does not always split over \mathbb{Z} unless $\ell(\mathbf{A}) \leq 2$.
- The $\nabla_{\mathbf{B}, \mathbf{A}}$ are not entirely new:

The Murphy basis of $\mathbf{k}\left[S_{n}\right]$ consists of the elements $\nabla_{\mathbf{B}, \mathbf{A}}$ for the standard set compositions \mathbf{A} and \mathbf{B} of $[n]$. Here, "standard" means that the blocks are the rows of a standard Young tableau (in particular, they must be of partition shape). See G. E. Murphy, On the Representation Theory of the Symmetric Groups and Associated Hecke Algebras, 1991.

- Theorem. Let $\mathcal{A}=\mathbf{k}\left[S_{n}\right]$. Let $k \in \mathbb{N}$. We define two k-submodules \mathcal{I}_{k} and \mathcal{J}_{k} of \mathcal{A} by

$$
\mathcal{I}_{k}:=\operatorname{span}\left\{\nabla_{\mathbf{B}, \mathbf{A}} \mid \mathbf{A}, \mathbf{B} \in \mathrm{SC}(n) \text { with } \ell(\mathbf{A})=\ell(\mathbf{B}) \leq k\right\}
$$

and

$$
\mathcal{J}_{k}:=\mathcal{A} \cdot \operatorname{span}\left\{\boldsymbol{\alpha}_{U}^{-} \mid U \subseteq[n] \text { of size } k+1\right\} \cdot \mathcal{A}
$$

where

$$
\boldsymbol{\alpha}_{U}^{-}:=\sum_{\sigma \in S_{U}}(-1)^{\sigma} \sigma \in \mathbf{k}\left[S_{n}\right] .
$$

Then:

- Theorem. Let $\mathcal{A}=\mathbf{k}\left[S_{n}\right]$. Let $k \in \mathbb{N}$. We define two k-submodules \mathcal{I}_{k} and \mathcal{J}_{k} of \mathcal{A} by

$$
\mathcal{I}_{k}:=\operatorname{span}\left\{\nabla_{\mathbf{B}, \mathbf{A}} \mid \mathbf{A}, \mathbf{B} \in \mathrm{SC}(n) \text { with } \ell(\mathbf{A})=\ell(\mathbf{B}) \leq k\right\}
$$

and

$$
\mathcal{J}_{k}:=\mathcal{A} \cdot \operatorname{span}\left\{\boldsymbol{\alpha}_{U}^{-} \mid U \subseteq[n] \text { of size } k+1\right\} \cdot \mathcal{A}
$$

where

$$
\boldsymbol{\alpha}_{U}^{-}:=\sum_{\sigma \in S_{U}}(-1)^{\sigma} \sigma \in \mathbf{k}\left[S_{n}\right] .
$$

Then:
(a) Both \mathcal{I}_{k} and \mathcal{J}_{k} are ideals of \mathcal{A}, and are preserved under S.

- Theorem (cont'd).
(b) We have

$$
\begin{aligned}
& \mathcal{I}_{k}=\mathcal{J}_{k}^{\perp}=\operatorname{LAnn} \mathcal{J}_{k}=\operatorname{RAnn} \mathcal{J}_{k} \quad \text { and } \\
& \mathcal{J}_{k}=\mathcal{I}_{k}^{\perp}=\operatorname{LAnn} \mathcal{I}_{k}=\operatorname{RAnn} \mathcal{I}_{k} .
\end{aligned}
$$

Here, \mathcal{U}^{\perp} means orthogonal complement wrt the standard bilinear form on \mathcal{A}, whereas LAnn and RAnn mean left and right annihilators.

- Theorem (cont'd).
(b) We have

$$
\begin{aligned}
& \mathcal{I}_{k}=\mathcal{J}_{k}^{\perp}=\operatorname{LAnn} \mathcal{J}_{k}=\operatorname{RAnn} \mathcal{J}_{k} \quad \text { and } \\
& \mathcal{J}_{k}=\mathcal{I}_{k}^{\perp}=\operatorname{LAnn} \mathcal{I}_{k}=\operatorname{RAnn} \mathcal{I}_{k} .
\end{aligned}
$$

Here, \mathcal{U}^{\perp} means orthogonal complement wrt the standard bilinear form on \mathcal{A}, whereas LAnn and RAnn mean left and right annihilators.
(c) The \mathbf{k}-module \mathcal{I}_{k} is free of rank $=\#$ of
$(1,2, \ldots, k+1)$-avoiding permutations in S_{n}.
(d) The \mathbf{k}-module \mathcal{J}_{k} is free of rank $=\#$ of $(1,2, \ldots, k+1)$-nonavoiding permutations in S_{n}.

- Theorem (cont'd).
(b) We have

$$
\begin{aligned}
& \mathcal{I}_{k}=\mathcal{J}_{k}^{\perp}=\operatorname{LAnn} \mathcal{J}_{k}=\operatorname{RAnn} \mathcal{J}_{k} \quad \text { and } \\
& \mathcal{J}_{k}=\mathcal{I}_{k}^{\perp}=\operatorname{LAnn} \mathcal{I}_{k}=\operatorname{RAnn} \mathcal{I}_{k} .
\end{aligned}
$$

Here, \mathcal{U}^{\perp} means orthogonal complement wrt the standard bilinear form on \mathcal{A}, whereas LAnn and RAnn mean left and right annihilators.
(c) The \mathbf{k}-module \mathcal{I}_{k} is free of rank $=\#$ of $(1,2, \ldots, k+1)$-avoiding permutations in S_{n}.
(d) The \mathbf{k}-module \mathcal{J}_{k} is free of rank $=\#$ of $(1,2, \ldots, k+1)$-nonavoiding permutations in S_{n}.
(e) The quotients $\mathcal{A} / \mathcal{J}_{k}$ and $\mathcal{A} / \mathcal{I}_{k}$ are also free, with the same ranks as \mathcal{I}_{k} and \mathcal{J}_{k} (respectively), and with bases consisting of (residue classes of) the relevant permutations.

- Theorem (cont'd).
(f) If n ! is invertible in \mathbf{k}, then $\mathcal{A}=\mathcal{I}_{k} \oplus \mathcal{J}_{k}$ (internal direct sum) as \mathbf{k}-modules, and $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ as \mathbf{k}-algebras.
- Theorem (cont'd).
(f) If n ! is invertible in \mathbf{k}, then $\mathcal{A}=\mathcal{I}_{k} \oplus \mathcal{J}_{k}$ (internal direct sum) as \mathbf{k}-modules, and $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ as \mathbf{k}-algebras.
- Proof. When \mathbf{k} is a char-0 field, this can be done using representations (note that $\nabla_{\mathbf{B}, \mathbf{A}}$ vanishes on each Specht module S^{λ} with $\ell(\lambda)>\ell(\mathbf{A})$). In particular, $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ is (up to iso? morally?) a coarsening of the Artin-Wedderburn decomposition of \mathcal{A}.
- Theorem (cont'd).
(f) If n ! is invertible in \mathbf{k}, then $\mathcal{A}=\mathcal{I}_{k} \oplus \mathcal{J}_{k}$ (internal direct sum) as \mathbf{k}-modules, and $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ as \mathbf{k}-algebras.
- Proof. When \mathbf{k} is a char-0 field, this can be done using representations (note that $\nabla_{\mathbf{B}, \mathbf{A}}$ vanishes on each Specht module S^{λ} with $\ell(\lambda)>\ell(\mathbf{A})$). In particular, $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ is (up to iso? morally?) a coarsening of the Artin-Wedderburn decomposition of \mathcal{A}.
The case of general \mathbf{k} is harder and has to be done from scratch.
- Theorem (cont'd).
(f) If n ! is invertible in \mathbf{k}, then $\mathcal{A}=\mathcal{I}_{k} \oplus \mathcal{J}_{k}$ (internal direct sum) as \mathbf{k}-modules, and $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ as \mathbf{k}-algebras.
- Proof. When \mathbf{k} is a char-0 field, this can be done using representations (note that $\nabla_{\mathbf{B}, \mathbf{A}}$ vanishes on each Specht module S^{λ} with $\ell(\lambda)>\ell(\mathbf{A})$). In particular, $\mathcal{A} \cong \mathcal{I}_{k} \times \mathcal{J}_{k}$ is (up to iso? morally?) a coarsening of the Artin-Wedderburn decomposition of \mathcal{A}.
The case of general \mathbf{k} is harder and has to be done from scratch.
- Question. Is there a product rule for the $\nabla_{\mathbf{B}, \mathbf{A}}$'s?
- Question. How much of the representation theory of S_{n} can be developed using the $\nabla_{\mathbf{B}, \mathbf{A}}$'s? (e.g., I think you can prove $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n$! using the Murphy basis and the Garnir relations.)

Unrelated(?): A commuting family, 1

- Here is something rather different.
- Here is something rather different.
- The following is joint work with Theo Douvropoulos, inspired by the work of Mukhin/Tarasov/Varchenko on the Gaudin Bethe ansatz.
- Here is something rather different.
- The following is joint work with Theo Douvropoulos, inspired by the work of Mukhin/Tarasov/Varchenko on the Gaudin Bethe ansatz.
- Definition. Let $\sigma \in S_{n}$ be a permutation. Then, we define

$$
\begin{aligned}
\operatorname{exc} \sigma & :=(\# \text { of } i \in[n] \text { such that } \sigma(i)>i) \\
\operatorname{anxc} \sigma & :=(\# \text { of } i \in[n] \text { such that } \sigma(i)<i)
\end{aligned}
$$

(the "excedance number" and the "anti-excedance number" of σ).

- Here is something rather different.
- The following is joint work with Theo Douvropoulos, inspired by the work of Mukhin/Tarasov/Varchenko on the Gaudin Bethe ansatz.
- Definition. Let $\sigma \in S_{n}$ be a permutation. Then, we define

$$
\begin{aligned}
\operatorname{exc} \sigma & :=(\# \text { of } i \in[n] \text { such that } \sigma(i)>i) \\
\operatorname{anxc} \sigma & :=(\# \text { of } i \in[n] \text { such that } \sigma(i)<i)
\end{aligned}
$$

(the "excedance number" and the "anti-excedance number" of σ).

- For any $a, b \in \mathbb{N}$, define

$$
\mathbf{X}_{a, b}:=\sum_{\substack{\sigma \in S_{n} ; \\ e x c o=a ; \\ \text { anxc } \sigma=b}} \sigma \in \mathbf{k}\left[S_{n}\right] .
$$

- Conjecture. The elements $\mathbf{X}_{a, b}$ for all $a, b \in \mathbb{N}$ commute (for fixed n).
- Checked for all $n \leq 7$ using SageMath.
- The antipode plays well with these elements:

$$
S\left(\mathbf{X}_{a, b}\right)=\mathbf{X}_{b, a} .
$$

- Question. What can be said about the \mathbf{k}-subalgebra $\mathbf{k}\left[\mathbf{X}_{a, b} \mid a, b \in\{0,1, \ldots, n\}\right]$ of $\mathbf{k}\left[S_{n}\right]$? Note:

n	1	2	3	4	5	6
$\operatorname{dim}\left(\mathbb{Q}\left[\mathbf{X}_{a, b}\right]\right)$	1	2	4	10	26	76

So far, this looks like the $\#$ of involutions in S_{n}, which is exactly the dimension of the Gelfand-Zetlin subalgebra (generated by the Young-Jucys-Murphy elements)!

- What is the exact relation?
- Per Alexandersson and Theo Douvropoulos for conversations in 2023 that motivated this project.
- Nadia Lafrenière, Jon Novak, Vic Reiner, Richard P. Stanley for helpful comments.
- the organizers for the invitation.
- you for your patience.

