The diagonal derivative of a skew Schur polynomial

Darij Grinberg^{*}, Nazar Korniichuk[†] Kostiantyn Molokanov[‡] and Severyn Khomych[§]

version 1.0, 21 February 2024

Abstract. We prove a formula for the image of a skew Schur polynomial $s_{\lambda/\mu}(x_1, x_2, ..., x_N)$ under the differential operator $\nabla := \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \cdots + \frac{\partial}{\partial x_N}$. This generalizes a formula of Weigandt for $\nabla(s_\lambda)$.

1. Notations and definitions

Fix a nonnegative integer *N*. Let $R = \mathbb{Z}[x_1, x_2, ..., x_N]$ be the ring of polynomials in *N* indeterminates $x_1, x_2, ..., x_N$ with integer coefficients.

Let $\nabla : R \to R$ be the operator $\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \dots + \frac{\partial}{\partial x_N}$. This map ∇ is a derivation (i.e., it is \mathbb{Z} -linear and satisfies $\nabla (fg) = (\nabla f)g + f(\nabla g)$ for all $f, g \in R$). We call it the *diagonal derivative* since (in the language of analysis) it is the directional derivative with respect to the vector $(1, 1, \dots, 1)$. (The notation ∇ comes from the related operator in [Nenash20], but this is not the vector differential operator ∇ known from analysis.)

We let [N] denote the set $\{1, 2, \ldots, N\}$.

For each $i \in [N]$, we let e_i be the *N*-tuple $(0, 0, ..., 0, 1, 0, 0, ..., 0) \in \mathbb{Z}^N$ where the 1 is at the *i*-th position. Addition and subtraction of *N*-tuples are defined entrywise (i.e., these *N*-tuples are viewed as vectors in the \mathbb{Z} -module \mathbb{Z}^N). Thus, if $\mu \in \mathbb{Z}^N$ is any *N*-tuple, then $\mu + e_i$ is the *N*-tuple obtained from μ by increasing the *i*-th entry by 1.

^{*}Department of Mathematics, Drexel University, Philadelphia, U.S.A. (darijgrinberg@gmail.com) *Kyiv Natural-Scientific Lyceum No. 145, Kyiv, Ukraine (n.korniychuk.a@gmail.com)

[‡]Kyiv Natural-Scientific Lyceum No. 145, Kyiv, Ukraine (kostyamolokanov@gmail.com)

[§]Brucknergymnasium Wels, Austria (severyn.khomych@gmail.com)

We shall use the standard notations regarding symmetric polynomials in N variables x_1, x_2, \ldots, x_N as introduced (e.g.) in [Stembr02] (but we write N for what was called n in [Stembr02]).

If $a \in \mathbb{Z}^N$ is any *N*-tuple, and if $i \in [N]$, then the notation a_i shall denote the *i*-th entry of *a* (so that $a = (a_1, a_2, ..., a_N)$).

We let \mathcal{P}_N denote the set of all *N*-tuples $a \in \mathbb{Z}^N$ that satisfy

$$a_1 \ge a_2 \ge \cdots \ge a_N \ge 0.$$

For instance, if N = 3, then the *N*-tuples (3, 1, 0) and (2, 2, 1) belong to \mathcal{P}_N , while the *N*-tuples (2, 1, -1) and (1, 2, 1) don't.

The *N*-tuples in \mathcal{P}_N are called *partitions of length* $\leq N$ (or *partitions with at most N nonzero terms*, following the terminology of [Stembr02]). In algebraic combinatorics, such an *N*-tuple $a \in \mathcal{P}_N$ usually gets identified with the infinite sequence $(a_1, a_2, \ldots, a_N, 0, 0, 0, \ldots)$, which is called an (integer) partition. Any integer partition has a so-called *Young diagram* assigned to it (see, e.g., [Stanle12, §1.7]). If $\mu \in \mathcal{P}_N$, and if $i \in [N]$ is such that the *N*-tuple $\mu + e_i$ again belongs to \mathcal{P}_N , then the Young diagram of $\mu + e_i$ is obtained from the Young diagram of μ by adding a single box.

For any integer *n*, we let h_n denote the complete homogeneous symmetric polynomial in the variables $x_1, x_2, ..., x_N$. It is defined by

$$h_n := \sum_{\substack{(i_1, i_2, \dots, i_N) \in \mathbb{N}^N; \\ i_1 + i_2 + \dots + i_N = n}} x_1^{i_1} x_2^{i_2} \cdots x_N^{i_N}, \tag{1}$$

where $\mathbb{N} := \{0, 1, 2, ...\}$ is the set of all nonnegative integers (so that the sum ranges over all *N*-tuples $(i_1, i_2, ..., i_N)$ of nonnegative integers satisfying $i_1 + i_2 + \cdots + i_N = n$). (Thus, $h_0 = 1$, and $h_n = 0$ for each negative *n*.) Clearly, $h_n \in \mathbb{R}$ for each $n \in \mathbb{Z}$.

If λ and μ are two *N*-tuples in \mathcal{P}_N , then the notation $s_{\lambda/\mu}$ denotes the skew Schur polynomial $s_{\lambda/\mu}(x_1, x_2, ..., x_N)$ (see, e.g., [Stembr02] for a definition¹). (Note that this is called a "skew Schur function" in [Stembr02], but more commonly the latter word is reserved for the analogous object in infinitely many variables.) The *Jacobi– Trudi formula* says that any $\lambda \in \mathcal{P}_N$ and $\mu \in \mathcal{P}_N$ satisfy

$$s_{\lambda/\mu} = \det\left(h_{\lambda_i - \mu_j - i + j}\right)_{i,j \in [N]}$$
(2)

(where the notation $(a_{i,j})_{i,j\in[N]}$ means the $N \times N$ -matrix with given entries $a_{i,j}$). Proofs of this formula can be found (e.g.) in [GriRei20, (2.4.16)] or [Stanle24,

¹To be more precise, $s_{\lambda/\mu}$ is defined in [Stembr02] in the case when $\mu \leq \lambda$ (meaning that $\mu_i \leq \lambda_i$ for each $i \in [N]$). In all other cases, $s_{\lambda/\mu}$ is defined to be 0.

(7.69)]². We can use the formula (2) as a definition of $s_{\lambda/\mu}$ here, as we will need no other properties of $s_{\lambda/\mu}$. However, it is worth observing that

$$s_{\lambda/\mu} = 0 \tag{3}$$

unless $\mu \subseteq \lambda$ (that is, unless $\mu_i \leq \lambda_i$ for each $i \in [N]$).

2. The results

The main result of this note is the following formula, which generalizes Weigandt's recent result [Weigan23, The Symmetric Derivative Rule]:

Theorem 2.1. Let *a* and *b* be two integers such that a + b = N - 1. Let $\lambda \in \mathcal{P}_N$ and $\mu \in \mathcal{P}_N$. Define two further *N*-tuples $\ell \in \mathbb{Z}^N$ and $m \in \mathbb{Z}^N$ by setting

$$\ell_i := \lambda_i - i$$
 and $m_i := \mu_i - i$ for each $i \in [N]$.

Then,

$$\nabla\left(s_{\lambda/\mu}\right) = \sum_{\substack{i \in [N];\\\lambda-e_i \in \mathcal{P}_N}} \left(\ell_i + a\right) s_{(\lambda-e_i)/\mu} + \sum_{\substack{i \in [N];\\\mu+e_i \in \mathcal{P}_N}} \left(b - m_i\right) s_{\lambda/(\mu+e_i)}.$$

Example 2.2. Let N = 3 and $\lambda = (3, 2, 1)$ and $\mu = (1, 1, 0)$. Then, the *N*-tuples ℓ and *m* defined in Theorem 2.1 are $\ell = (2, 0, -2)$ and m = (0, -1, -3). Let *a* and *b* be two integers such that a + b = N - 1 = 2. Thus, Theorem 2.1 says that

$$\begin{aligned} \nabla \left(s_{(3,2,1)/(1,1,0)} \right) \\ &= \sum_{i \in \{1,2,3\}} \left(\ell_i + a \right) s_{((3,2,1)-e_i)/(1,1,0)} + \sum_{i \in \{1,3\}} \left(b - m_i \right) s_{(3,2,1)/((1,1,0)+e_i)} \\ &= \left(2 + a \right) s_{(2,1,1)/(1,1,0)} + \left(0 + a \right) s_{(3,1,1)/(1,1,0)} + \left(-2 + a \right) s_{(3,2,0)/(1,1,0)} \\ &+ \left(b - 0 \right) s_{(3,2,1)/(2,1,0)} + \left(b - (-3) \right) s_{(3,2,1)/(1,1,1)}. \end{aligned}$$

Note that the second sum has no i = 2 addend, since $\mu + e_2 = (1, 2, 0) \notin \mathcal{P}_N$.

²Both texts [GriRei20, (2.4.16)] and [Stanle24, (7.69)] state the Jacobi–Trudi formula for Schur functions in infinitely many variables $x_1, x_2, x_3, ...$ instead of Schur polynomials in finitely many variables $x_1, x_2, ..., x_N$. However, the latter version can be obtained from the former by setting $x_{N+1}, x_{N+2}, x_{N+3}, ...$ to 0.

Note also that [Stanle24, (7.69)] assumes that $\mu \subseteq \lambda$, but the proofs do not require this assumption.

Remark 2.3. Let us comment on the combinatorial meaning of Theorem 2.1. A pair (μ, λ) of N-tuples $\lambda, \mu \in \mathcal{P}_N$ is called a *skew partition* if $\mu \subseteq \lambda$ (that is, $\mu_i \leq \lambda_i$) for each $i \in [N]$). Such a skew partition (μ, λ) has a *skew Young diagram* assigned to it, which is defined as the set difference of the Young diagrams of λ and μ . This diagram is denoted by λ/μ .

 $\lambda, \mu \in \mathcal{P}_{N}$. The sum $\sum_{\substack{i \in [N]; \\ \lambda - e_{i} \in \mathcal{P}_{N}}} (\ell_{i} + a) s_{(\lambda - e_{i})/\mu}$ $\sum_{\substack{i \in [N]; \\ -e_{i} \in \mathcal{P}_{N}}} (\ell_{i} + a) s_{(\lambda - e_{i})/\mu}$, because any addend Let λ/μ be a skew partition with $\lambda, \mu \in \mathcal{P}_N$. The sum

in Theorem 2.1 can be rewritten as $-e_i \in \mathcal{P}_N;$

 $\mu \subseteq \lambda - e_i$ in which $\mu \subseteq \lambda - e_i$ does not hold is 0 by (3). This is a sum over all skew partitions obtained from λ/μ by removing an outer corner (i.e., a removable box on the southeastern boundary of λ/μ). Moreover, the number $\ell_i = \lambda_i - i$ tells us which diagonal this corner belongs to.

 $(b-m_i) s_{\lambda/(\mu+e_i)}$ can be rewritten Likewise, the sum as

 $\sum_{\substack{i \in [N];\\ \mu+e_i \in \mathcal{P}_N;}} (b-m_i) s_{\lambda/(\mu+e_i)}, \text{ which is a sum over all skew partitions obtained}$

$$\mu + e_i \in P_N$$

 $\mu + e_i \subset \lambda$

from λ/μ by removing an inner corner (i.e., a removable box on the northwestern boundary of λ/μ). Moreover, the number $m_i = \mu_i - i$ tells us which diagonal this corner belongs to.

Remark 2.4. Let $\lambda \in \mathcal{P}_N$. Let $\ell_i := \lambda_i - i$ for each $i \in [N]$. Set $\mu := (0, 0, \dots, 0) \in \mathcal{P}_N$. \mathcal{P}_N . Then, the skew Schur polynomial $s_{\lambda/\mu}$ is usually called s_{λ} . The only $i \in [N]$ satisfying $\mu + e_i \in \mathcal{P}_N$ is 1. Hence, Theorem 2.1 (applied to a = N and b = -1) vields

$$\nabla (s_{\lambda}) = \sum_{\substack{i \in [N]; \\ \lambda - e_i \in \mathcal{P}_N}} (\ell_i + N) s_{\lambda - e_i} + \underbrace{(1 - 0 + (-1))}_{=0} s_{\lambda/(\mu + e_1)}$$
$$= \sum_{\substack{i \in [N]; \\ \lambda - e_i \in \mathcal{P}_N}} (\ell_i + N) s_{\lambda - e_i},$$

which recovers [Weigan23, The Symmetric Derivative Rule].

Once Theorem 2.1 is proved, we will derive the following curious corollary:

Corollary 2.5. Let $\lambda \in \mathcal{P}_N$ and $\mu \in \mathcal{P}_N$. Then,

$$\sum_{\substack{i\in[N];\\\lambda-e_i\in\mathcal{P}_N}} s_{(\lambda-e_i)/\mu} = \sum_{\substack{i\in[N];\\\mu+e_i\in\mathcal{P}_N}} s_{\lambda/(\mu+e_i)}.$$

We note that Corollary 2.5 follows easily from the theory of skewing operators (see [GriRei20, §2.8]) and the Pieri rule.³ But we shall prove both Theorem 2.1 and Corollary 2.5 elementarily.

3. A lemma on $\nabla(h_n)$

First we need a formula for the image of the complete homogeneous symmetric polynomial h_n under the operator ∇ :

Lemma 3.1. Let *n* be a integer. Then, $\nabla(h_n) = (n + N - 1)h_{n-1}$.

Proof of Lemma 3.1. For each $k \in [N]$, we have

$$\begin{split} \frac{\partial}{\partial x_{k}}h_{n} &= \frac{\partial}{\partial x_{k}} \sum_{\substack{(i_{1},i_{2},\dots,i_{N}) \in \mathbb{N}^{N}; \\ i_{1}+i_{2}+\dots+i_{N}=n}} x_{1}^{i_{1}} x_{2}^{i_{2}}\dots x_{N}^{i_{N}}} \quad (by (1)) \\ &= \sum_{\substack{(i_{1},i_{2},\dots,i_{N}) \in \mathbb{N}^{N}; \\ i_{1}+i_{2}+\dots+i_{N}=n}} \underbrace{\frac{\partial}{\partial x_{k}} \left(x_{1}^{i_{1}} x_{2}^{i_{2}}\dots x_{N}^{i_{N}} \right)}{\left| \frac{\partial}{\partial x_{k}} \left(x_{1}^{i_{1}} x_{2}^{i_{2}}\dots x_{N}^{i_{N}} \right) \right|}{\left| \frac{\partial}{\partial x_{k}} \left(x_{1}^{i_{1}} x_{2}^{i_{1}}\dots x_{N}^{i_{N}} \right) \right|}{\left| \frac{\partial}{\partial x_{k}} \left(x_{1}^{i_{1}} x_{2}^{i_{2}}\dots x_{N}^{i_{N}} \right) \right|}{\left| \frac{\partial}{\partial x_{k}} \left(x_{1}^{i_{1}} x_{2}^{i_{1}}\dots x_{N}^{i_{N}} \right) \right|}{$$

³In a nutshell: Corollary 2.5 is obtained by taking the equality $s_{\mu}^{\perp}(s_{1}^{\perp}s_{\lambda}) = (s_{1}s_{\mu})^{\perp}s_{\lambda}$, which holds on the level of symmetric functions in infinitely many indeterminates $x_{1}, x_{2}, x_{3}, ...$ (a consequence of [GriRei20, Proposition 2.8.2 (ii)]), and expanding both of its sides using the Pieri rules [GriRei20, (2.7.1) and (2.8.3)].

Summing this equality over all $k \in [N]$, we obtain

$$\sum_{k \in [N]} \frac{\partial}{\partial x_k} h_n = \sum_{k \in [N]} \sum_{\substack{(i_1, i_2, \dots, i_N) \in \mathbb{N}^N; \\ i_1 + i_2 + \dots + i_N = n - 1}} (i_k + 1) x_1^{i_1} x_2^{i_2} \cdots x_N^{i_N}$$

$$= \sum_{\substack{(i_1, i_2, \dots, i_N) \in \mathbb{N}^N; \\ i_1 + i_2 + \dots + i_N = n - 1}} \underbrace{\left(\sum_{k \in [N]} (i_k + 1)\right)}_{=(i_1 + 1) + (i_2 + 1) + \dots + (i_N + 1)} x_1^{i_1} x_2^{i_2} \cdots x_N^{i_N}$$

$$= \underbrace{(n - 1 + N)}_{=n + N - 1} \underbrace{\sum_{\substack{(i_1, i_2, \dots, i_N) \in \mathbb{N}^N; \\ i_1 + i_2 + \dots + i_N = n - 1 \\ (i_1 + i_2 + \dots + i_N = n - 1)}}_{=h_{n-1}} x_1^{i_1} x_2^{i_2} \cdots x_N^{i_N} = (n + N - 1) h_{n-1}.$$

This can be rewritten as $\nabla (h_n) = (n + N - 1) h_{n-1}$ (since $\nabla = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \dots + \frac{\partial}{\partial x_N} = \sum_{k \in [N]} \frac{\partial}{\partial x_k}$). Thus, Lemma 3.1 is proved.

4. Lemmas on determinants

We will next need a few simple lemmas about determinants:

Lemma 4.1. Let $\lambda, \mu \in \mathcal{P}_N$. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Then,

$$\det\left(h_{\ell_i-m_j}\right)_{i,j\in[N]}=s_{\lambda/\mu}.$$

Proof of Lemma 4.1. For every $i, j \in [N]$, we have $\ell_i = \lambda_i - i$ (by the definition of ℓ) and $m_j = \mu_j - j$ (similarly). Subtracting these two equalities from each other, we obtain that

$$\ell_i - m_j = \lambda_i - i - (\mu_j - j) = \lambda_i - \mu_j - i + j$$
 for every $i, j \in [N]$.

Hence, we can rewrite (2) as $s_{\lambda/\mu} = \det \left(h_{\ell_i - m_j} \right)_{i,j \in [N]}$. This proves Lemma 4.1. \Box

Lemma 4.2. Let $\lambda, \mu \in \mathcal{P}_N$ and $k \in [N]$ be such that $\lambda - e_k \in \mathcal{P}_N$. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Then,

$$\det\left(h_{(\ell-e_k)_i-m_j}\right)_{i,j\in[N]}=s_{(\lambda-e_k)/\mu}.$$

Proof of Lemma 4.2. Recall that the *N*-tuple ℓ is defined from the *N*-tuple λ by subtracting 1 from its 1-st entry, subtracting 2 from its 2-nd entry, subtracting 3 from its 3-rd entry, etc.. Thus, the *N*-tuple $\ell - e_k$ is obtained from $\lambda - e_k$ in the same way. Hence, Lemma 4.1 (applied to $\lambda - e_k$ and $\ell - e_k$ instead of λ and ℓ) yields

$$\det\left(h_{(\ell-e_k)_i-m_j}\right)_{i,j\in[N]}=s_{(\lambda-e_k)/\mu}$$

This proves Lemma 4.2.

Lemma 4.3. Let $\lambda, \mu \in \mathcal{P}_N$ and $k \in [N]$ be such that $\mu + e_k \in \mathcal{P}_N$. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Then,

$$\det\left(h_{\ell_i-(m+e_k)_j}\right)_{i,j\in[N]}=s_{\lambda/(\mu+e_k)}$$

Proof of Lemma 4.3. Similarly to Lemma 4.2, we can show this by applying Lemma 4.1 to $\mu + e_k$ and $m + e_k$ instead of μ and m.

Lemma 4.4. Let $\lambda, \mu \in \mathcal{P}_N$ and $k \in [N]$ be such that $\lambda - e_k \notin \mathcal{P}_N$. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Then,

$$\det\left(h_{(\ell-e_k)_i-m_j}\right)_{i,j\in[N]}=0.$$

Proof of Lemma 4.4. The definition of e_k yields that the only nonzero entry of e_k is $(e_k)_k = 1$. Hence, in particular, $(e_k)_{k+1} = 0$.

We have $\lambda \in \mathcal{P}_N$, so that $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$. Recall that $k \in [N]$, so that $k \le N$. Hence, we are in one of the following two cases:

Case 1: We have k < N.

Case 2: We have k = N.

Let us first consider Case 1. In this case, we have k < N. The definition of e_k yields $\lambda - e_k = (\lambda_1, \lambda_2, ..., \lambda_{k-1}, \lambda_k - 1, \lambda_{k+1}, ..., \lambda_N)$ (this is the *N*-tuple λ with its *k*-th entry decreased by 1). Thus, the chain of inequalities

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{k-1} \ge \lambda_k - 1 \ge \lambda_{k+1} \ge \cdots \ge \lambda_N \ge 0$$
 does not hold

(since $\lambda - e_k \notin \mathcal{P}_N$). Therefore, the inequality $\lambda_k - 1 \ge \lambda_{k+1}$ must be violated (since all the other inequality signs in this chain follow from $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$). In other words, we have $\lambda_k - 1 < \lambda_{k+1}$. Since λ_k and λ_{k+1} are integers, this entails $\lambda_k - 1 \le \lambda_{k+1} - 1$, so that $\lambda_k \le \lambda_{k+1}$. Combining this with $\lambda_k \ge \lambda_{k+1}$ (which follows from $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$), we obtain $\lambda_k = \lambda_{k+1}$.

Now, the definition of ℓ yields $\ell_k = \lambda_k - k$. Hence,

$$(\ell - e_k)_k = \underbrace{\ell_k}_{=\lambda_k - k} - \underbrace{(e_k)_k}_{=1} = \underbrace{\lambda_k}_{=\lambda_{k+1}} - k - 1 = \lambda_{k+1} - k - 1.$$

Furthermore, the definition of ℓ yields $\ell_{k+1} = \lambda_{k+1} - (k+1)$. Hence,

$$(\ell - e_k)_{k+1} = \ell_{k+1} - \underbrace{(e_k)_{k+1}}_{=0} = \ell_{k+1} = \lambda_{k+1} - (k+1) = \lambda_{k+1} - k - 1.$$

Comparing this with $(\ell - e_k)_k = \lambda_{k+1} - k - 1$, we obtain $(\ell - e_k)_k = (\ell - e_k)_{k+1}$. Hence, for each $j \in [N]$, we have

$$h_{(\ell-e_k)_k-m_j} = h_{(\ell-e_k)_{k+1}-m_j}.$$

In other words, each entry in the *k*-th row of the matrix $(h_{(\ell-e_k)_i-m_j})_{i,j\in[N]}$ equals the corresponding entry in the (k+1)-st row of this matrix. Thus, the matrix $(h_{(\ell-e_k)_i-m_j})_{i,j\in[N]}$ has two equal rows (namely, its *k*-th and (k+1)-st rows). Hence, its determinant is 0. This proves Lemma 4.4 in Case 1.

Let us now consider Case 2. In this case, we have k = N. Hence, $\lambda - e_k = \lambda - e_N = (\lambda_1, \lambda_2, ..., \lambda_{N-1}, \lambda_N - 1)$ (this is the *N*-tuple λ with its *N*-th entry decreased by 1). Thus, the chain of inequalities

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{N-1} \geq \lambda_N - 1 \geq 0$$
 does not hold

(since $\lambda - e_k \notin \mathcal{P}_N$). Therefore, the inequality $\lambda_N - 1 \ge 0$ must be violated (since all the other inequality signs in this chain follow from $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$). In other words, we have $\lambda_N - 1 < 0$. In other words, $\lambda_k - 1 < 0$ (since k = N). Thus, $\lambda_k < 1$. Now,

$$(\ell - e_k)_k = \underbrace{\ell_k}_{\substack{=\lambda_k - k \\ \text{(by the definition of }\ell)}} - \underbrace{(e_k)_k}_{=1} = \underbrace{\lambda_k}_{<1} - \underbrace{k}_{=N} - 1 < 1 - N - 1 = -N$$

On the other hand, for each $j \in [N]$, we have $m_j = \mu_j - j$ (by the definition of m) and thus $m_j = \underbrace{\mu_j}_{\geq 0} - \underbrace{j}_{\leq N} \geq 0 - N = -N > (\ell - e_k)_k$ (since $(\ell - e_k)_k < -N$).

Thus, for each $j \in [\overline{N}]$, we have $(\ell - e_k)_k - m_j < 0$ and therefore

$$h_{(\ell - e_k)_k - m_i} = 0$$
 (since $h_i = 0$ for all $i < 0$).

In other words, each entry in the *k*-th row of the matrix $(h_{(\ell-e_k)_i-m_j})_{i,j\in[N]}$ is zero. Thus, the matrix $(h_{(\ell-e_k)_i-m_j})_{i,j\in[N]}$ has a zero row (namely, its *k*-th row). Hence, its determinant is 0. This proves Lemma 4.4 in Case 2.

We have now proved Lemma 4.4 in both cases.

Lemma 4.5. Let $\lambda, \mu \in \mathcal{P}_N$ and $k \in [N]$ be such that $\mu + e_k \notin \mathcal{P}_N$. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Then,

$$\det\left(h_{\ell_i-(m+e_k)_j}\right)_{i,j\in[N]}=0.$$

Proof of Lemma 4.5. This is similar to Case 2 in the proof of Lemma 4.4. Here are the details:

The definition of e_k yields $\mu + e_k = (\mu_1, \mu_2, ..., \mu_{k-1}, \mu_k + 1, \mu_{k+1}, ..., \mu_N)$ (this is the *N*-tuple μ with its *k*-th entry increased by 1).

We have $\mu \in \mathcal{P}_N$, so that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_N \ge 0$. However, we have $\mu + e_k \notin \mathcal{P}_N$, so that the chain of inequalities

$$\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{k-1} \ge \mu_k + 1 \ge \mu_{k+1} \ge \cdots \ge \mu_N \ge 0$$
 does not hold

(since $\mu + e_k = (\mu_1, \mu_2, \dots, \mu_{k-1}, \mu_k + 1, \mu_{k+1}, \dots, \mu_N)$). Hence, the inequality $\mu_{k-1} \ge \mu_k + 1$ must be violated (since all the other inequalities in this chain follow from $\mu_1 \ge \mu_2 \ge \dots \ge \mu_N \ge 0$). In other words, we must have k > 1 and $\mu_{k-1} < \mu_k + 1$. From $\mu_{k-1} < \mu_k + 1$, we obtain $\mu_{k-1} \le \mu_k$ (since μ_{k-1} and μ_k are integers).

Combining this with $\mu_{k-1} \ge \mu_k$ (since $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_N$), we obtain $\mu_{k-1} = \mu_k$.

The definition of e_k yields that the only nonzero entry of e_k is $(e_k)_k = 1$. Hence, in particular, $(e_k)_{k-1} = 0$.

The definition of *m* yields $m_k = \mu_k - k$ and $m_{k-1} = \mu_{k-1} - (k-1)$. Now,

$$(m+e_k)_k = \underbrace{m_k}_{=\mu_k-k} + \underbrace{(e_k)_k}_{=1} = \mu_k - k + 1 = \mu_k - (k-1).$$

Comparing this with

$$(m+e_k)_{k-1} = m_{k-1} + \underbrace{(e_k)_{k-1}}_{=0} = m_{k-1} = \underbrace{\mu_{k-1}}_{=\mu_k} - (k-1) = \mu_k - (k-1),$$

we obtain $(m + e_k)_k = (m + e_k)_{k-1}$. Now, for each $i \in [N]$, we have

$$h_{\ell_i - (m + e_k)_k} = h_{\ell_i - (m + e_k)_{k-1}}$$
 (since $(m + e_k)_k = (m + e_k)_{k-1}$).

In other words, each entry in the *k*-th column of the matrix $(h_{\ell_i - (m+e_k)_j})_{i,j \in [N]}$ equals the corresponding entry in the (k-1)-st column of this matrix. Thus, the matrix $(h_{\ell_i - (m+e_k)_j})_{i,j \in [N]}$ has two equal columns (namely, its *k*-th and (k-1)-st columns). Hence, its determinant is 0. This proves Lemma 4.5.

Finally, we will need the Leibniz rule for products of multiple factors:⁴

⁴Recall that $R = \mathbb{Z}[x_1, x_2, \dots, x_n].$

Lemma 4.6. For any $a_1, a_2, \ldots, a_n \in R$, we have

$$\nabla (a_1 a_2 \cdots a_n) = \sum_{k=1}^n a_1 a_2 \cdots a_{k-1} \nabla (a_k) a_{k+1} a_{k+2} \cdots a_n.$$

Proof of Lemma 4.6. This holds not just for ∇ but actually for any derivation of any ring, and can be easily proved by induction on *n* using the Leibniz rule.

5. The last lemma

We now have everything in place for the proofs of Theorem 2.1 and Corollary 2.5. However, to keep our computation short, let us outsource a part of it to a lemma:

Lemma 5.1. Let σ be a permutation of the set [N]. Let $\ell, m \in \mathbb{Z}^N$ be two *N*-tuples of integers. Let *a* and *b* be two integers such that a + b = N - 1. Then,

$$\nabla\left(\prod_{i=1}^{N}h_{\ell_{i}-m_{\sigma(i)}}\right) = \sum_{k=1}^{N}\left(\ell_{k}+a\right)\prod_{i=1}^{N}h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} + \sum_{k=1}^{N}\left(b-m_{k}\right)\prod_{i=1}^{N}h_{\ell_{i}-(m+e_{k})_{\sigma(i)}}$$

Proof of Lemma 5.1. Fix $k \in [N]$. The *N*-tuple $\ell - e_k$ differs from the *N*-tuple ℓ only in its *k*-th entry, which is smaller by 1. Thus, the product $\prod_{i=1}^{N} h_{(\ell-e_k)_i-m_{\sigma(i)}}$ differs from the product $\prod_{i=1}^{N} h_{\ell_i-m_{\sigma(i)}}$ only in its *k*-th factor, which is $h_{(\ell_k-1)-m_{\sigma(k)}}$ instead of $h_{\ell_k-m_{\sigma(k)}}$. Hence,

$$\prod_{i=1}^{N} h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} = \underbrace{h_{(\ell_{k}-1)-m_{\sigma(k)}}}_{=h_{\ell_{k}-m_{\sigma(k)}-1}} \prod_{\substack{i \in [N];\\i \neq k}} h_{\ell_{i}-m_{\sigma(i)}} \\
= h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N];\\i \neq k}} h_{\ell_{i}-m_{\sigma(i)}}.$$
(4)

The *N*-tuple $m + e_{\sigma(k)}$ differs from the *N*-tuple *m* only in its $\sigma(k)$ -th entry, which is larger by 1. Thus, the product $\prod_{i=1}^{N} h_{\ell_i - (m + e_{\sigma(k)})_{\sigma(i)}}$ differs from the product $\prod_{i=1}^{N} h_{\ell_i - m_{\sigma(i)}}$ only in its *k*-th factor, which is $h_{\ell_k - (m_{\sigma(k)} + 1)}$ instead of $h_{\ell_k - m_{\sigma(k)}}$ (since all the remain-

ing factors satisfy $i \neq k$ and therefore $\sigma(i) \neq \sigma(k)$). Hence,

$$\prod_{i=1}^{N} h_{\ell_{i} - (m + e_{\sigma(k)})_{\sigma(i)}} = \underbrace{h_{\ell_{k} - (m_{\sigma(k)} + 1)}}_{= h_{\ell_{k} - m_{\sigma(k)} - 1}} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i} - m_{\sigma(i)}}$$

$$= h_{\ell_{k} - m_{\sigma(k)} - 1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i} - m_{\sigma(i)}}.$$
(5)

Forget that we fixed *k*. We thus have proved the equalities (4) and (5) for each $k \in [N]$.

Since the ring *R* is commutative, we can rewrite Lemma 4.6 as follows: For any $a_1, a_2, \ldots, a_n \in R$, we have

$$\nabla\left(\prod_{i=1}^n a_i\right) = \sum_{k=1}^n \nabla\left(a_k\right) \prod_{\substack{i \in [n]; \\ i \neq k}} a_i.$$

Applying this to N = n and $a_i = h_{\ell_i - m_{\sigma(i)}}$, we obtain

$$\begin{split} \nabla \left(\prod_{i=1}^{N} h_{\ell_{i}-m_{\sigma(i)}}\right) \\ &= \sum_{k=1}^{N} \underbrace{\nabla \left(h_{\ell_{k}-m_{\sigma(k)}}\right)}_{(by \text{ Lemma 3.1})} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}}}_{i \neq k} \\ &= \sum_{k=1}^{N} \underbrace{\left(\ell_{k}-m_{\sigma(k)}+N-1\right)}_{(i \in N-1=a+b)} h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}}}_{i \neq k} \\ &= \sum_{k=1}^{N} \left(\left(\ell_{k}+a\right) + \left(b-m_{\sigma(k)}\right)\right) h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}} + \sum_{\substack{i \neq k \\ i \neq k}}^{N} \left(b-m_{\sigma(k)}\right) \underbrace{h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}}}_{i \neq k} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \underbrace{h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-m_{\sigma(i)}}}_{i \neq k} + \sum_{\substack{i \neq k \\ i \neq k}}^{N} \left(b-m_{\sigma(k)}\right) \underbrace{h_{\ell_{k}-m_{\sigma(k)}-1} \prod_{\substack{i \in [N]; \\ i \neq k}} h_{\ell_{i}-(m+e_{\sigma(k)})_{\sigma(i)}}}_{i \neq k} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} + \sum_{k=1}^{N} \left(b-m_{\sigma(k)}\right) \prod_{i=1}^{N} h_{\ell_{i}-(m+e_{\sigma(k)})_{\sigma(i)}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} + \sum_{k=1}^{N} \left(b-m_{k}\right) \prod_{i=1}^{N} h_{\ell_{i}-(m+e_{\sigma(k)})_{\sigma(i)}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} + \sum_{k=1}^{N} \left(b-m_{k}\right) \prod_{i=1}^{N} h_{\ell_{i}-(m+e_{\sigma(k)})_{\sigma(i)}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{(\ell-e_{k})_{i}-m_{\sigma(i)}} + \sum_{k=1}^{N} \left(b-m_{k}\right) \prod_{i=1}^{N} h_{\ell_{i}-(m+e_{\sigma(k)})_{\sigma(i)}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{\ell_{i}-e_{k}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+a\right) \prod_{i=1}^{N} h_{\ell_{k}-e_{k}} \\ &= \sum_{k=1}^{N} \left(\ell_{k}+$$

(here, we have substituted *k* for $\sigma(k)$ in the second sum, since $\sigma: [N] \to [N]$ is a bijection). This proves Lemma 5.1.

6. Proofs of the main results

Proof of Theorem 2.1. Let S_N denote the *N*-th symmetric group (i.e., the group of all permutations of [N]). Let $(-1)^{\sigma}$ denote the sign of any permutation σ . The definition of a determinant says that

$$\det (a_{i,j})_{i,j\in[N]} = \sum_{\sigma\in S_N} (-1)^{\sigma} \prod_{i=1}^N a_{i,\sigma(i)}$$
(6)

for any matrix $(a_{i,j})_{i,j\in[N]} \in \mathbb{R}^{N\times N}$. Now, Lemma 4.1 yields

$$s_{\lambda/\mu} = \det\left(h_{\ell_i - m_j}\right)_{i,j \in [N]} = \sum_{\sigma \in S_N} (-1)^{\sigma} \prod_{i=1}^N h_{\ell_i - m_{\sigma(i)}}$$

(by (6)). Applying the \mathbb{Z} -linear map ∇ to both sides of this equality, we find

$$\begin{aligned} \nabla \left(s_{\lambda/\mu} \right) \\ &= \sum_{\sigma \in S_N} \left(-1 \right)^{\sigma} \nabla \left(\prod_{i=1}^N h_{\ell_i - m_{\sigma(i)}} \right) \\ &= \sum_{\sigma \in S_N} \left(-1 \right)^{\sigma} \left(\sum_{k=1}^N \left(\ell_k + a \right) \prod_{i=1}^N h_{(\ell - e_k)_i - m_{\sigma(i)}} + \sum_{k=1}^N \left(b - m_k \right) \prod_{i=1}^N h_{\ell_i - (m + e_k)_{\sigma(i)}} \right) \\ &\quad \text{(by Lemma 5.1)} \\ &= \sum_{\sigma \in S_N} \left(-1 \right)^{\sigma} \sum_{k=1}^N \left(\ell_k + a \right) \prod_{i=1}^N h_{(\ell - e_k)_i - m_{\sigma(i)}} + \sum_{\sigma \in S_N} \left(-1 \right)^{\sigma} \sum_{k=1}^N \left(b - m_k \right) \prod_{i=1}^N h_{\ell_i - (m + e_k)_{\sigma(i)}} \end{aligned}$$

In view of

$$\begin{split} \sum_{\sigma \in S_N} (-1)^{\sigma} \sum_{k=1}^N (\ell_k + a) \prod_{i=1}^N h_{(\ell - e_k)_i - m_{\sigma(i)}} \\ &= \sum_{k=1}^N (\ell_k + a) \underbrace{\sum_{\sigma \in S_N} (-1)^{\sigma} \prod_{i=1}^N h_{(\ell - e_k)_i - m_{\sigma(i)}}}_{=\det\left(h_{(\ell - e_k)_i - m_j}\right)_{i,j \in [N]}} \\ &= \det\left(h_{(\ell - e_k)_i - m_j}\right)_{i,j \in [N]} \\ &= \sum_{k \in [N]; \atop \lambda - e_k \in \mathcal{P}_N} (\ell_k + a) \underbrace{\det\left(h_{(\ell - e_k)_i - m_j}\right)_{i,j \in [N]}}_{=S_{(\lambda - e_k)/\mu}} \\ &= \sum_{\substack{k \in [N]; \atop \lambda - e_k \in \mathcal{P}_N} (\ell_k + a) \underbrace{\det\left(h_{(\ell - e_k)_i - m_j}\right)_{i,j \in [N]}}_{(by \text{ Lemma 4.2})} \\ &= \sum_{\substack{k \in [N]; \atop \lambda - e_k \in \mathcal{P}_N} (\ell_k + a) s_{(\lambda - e_k)/\mu} = \sum_{\substack{i \in [N]; \\ \lambda - e_i \in \mathcal{P}_N}} (\ell_i + a) s_{(\lambda - e_i)/\mu} \end{split}$$

and

$$\begin{split} \sum_{\sigma \in S_{N}} (-1)^{\sigma} \sum_{k=1}^{N} (b - m_{k}) \prod_{i=1}^{N} h_{\ell_{i} - (m + e_{k})_{\sigma(i)}} \\ &= \sum_{k=1}^{N} (b - m_{k}) \underbrace{\sum_{\substack{\sigma \in S_{N} \\ \sigma \in S_{N}}} (-1)^{\sigma} \prod_{i=1}^{N} h_{\ell_{i} - (m + e_{k})_{\sigma(i)}}}_{(by (6))} \\ &= \underbrace{\sum_{k=1}^{N} (b - m_{k}) \underbrace{\det \left(h_{\ell_{i} - (m + e_{k})_{j}}\right)_{i,j \in [N]}}_{(by Lemma 4.5)} \\ &= \sum_{\substack{k \in [N]; \\ \mu + e_{k} \in \mathcal{P}_{N}} (b - m_{k}) \underbrace{\det \left(h_{\ell_{i} - (m + e_{k})_{j}}\right)_{i,j \in [N]}}_{(by Lemma 4.3)} \\ &= \sum_{\substack{k \in [N]; \\ \mu + e_{k} \in \mathcal{P}_{N}} (b - m_{k}) \underbrace{s_{\lambda/(\mu + e_{k})}}_{(by Lemma 4.3)} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b - m_{i}) \underbrace{s_{\lambda/(\mu + e_{i})}}_{\mu + e_{i} \in \mathcal{P}_{N}} (b -$$

this can be rewritten as

$$\nabla\left(s_{\lambda/\mu}\right) = \sum_{\substack{i \in [N];\\\lambda-e_i \in \mathcal{P}_N}} \left(\ell_i + a\right) s_{(\lambda-e_i)/\mu} + \sum_{\substack{i \in [N];\\\mu+e_i \in \mathcal{P}_N}} \left(b - m_i\right) s_{\lambda/(\mu+e_i)}.$$

Thus, Theorem 2.1 is proved.

Proof of Corollary 2.5. Define $\ell, m \in \mathbb{Z}^N$ as in Theorem 2.1. Theorem 2.1 (applied to a = N - 1 and b = 0) yields

$$\nabla\left(s_{\lambda/\mu}\right) = \sum_{\substack{i \in [N];\\ \lambda - e_i \in \mathcal{P}_N}} \left(\ell_i + N - 1\right) s_{(\lambda - e_i)/\mu} + \sum_{\substack{i \in [N];\\ \mu + e_i \in \mathcal{P}_N}} \left(0 - m_i\right) s_{\lambda/(\mu + e_i)}.$$

Theorem 2.1 (applied to a = N and b = -1) yields

$$\nabla\left(s_{\lambda/\mu}\right) = \sum_{\substack{i \in [N];\\\lambda-e_i \in \mathcal{P}_N}} \left(\ell_i + N\right) s_{(\lambda-e_i)/\mu} + \sum_{\substack{i \in [N];\\\mu+e_i \in \mathcal{P}_N}} \left(-1 - m_i\right) s_{\lambda/(\mu+e_i)}.$$

Subtracting the latter equality from the former, we find

$$\begin{split} 0 &= \sum_{\substack{i \in [N];\\ \lambda - e_i \in \mathcal{P}_N}} (-1) \, s_{(\lambda - e_i)/\mu} + \sum_{\substack{i \in [N];\\ \mu + e_i \in \mathcal{P}_N}} s_{\lambda/(\mu + e_i)} \\ &= -\sum_{\substack{i \in [N];\\ \lambda - e_i \in \mathcal{P}_N}} s_{(\lambda - e_i)/\mu} + \sum_{\substack{i \in [N];\\ \mu + e_i \in \mathcal{P}_N}} s_{\lambda/(\mu + e_i)}. \end{split}$$

In other words,

$$\sum_{\substack{i\in[N];\\\lambda-e_i\in\mathcal{P}_N}}s_{(\lambda-e_i)/\mu}=\sum_{\substack{i\in[N];\\\mu+e_i\in\mathcal{P}_N}}s_{\lambda/(\mu+e_i)}.$$

This proves Corollary 2.5.

7. Final remarks

1. Clearly, Theorem 2.1 can be generalized by replacing \mathbb{Z} with any commutative ring **k**. In this generality, *a* and *b* can be any two elements of **k** (rather than just integers) satisfying $a + b = (N - 1) \cdot 1_k$. However, not much generality is gained in this way, since Corollary 2.5 easily shows that all choices of *a* and *b* lead to the same sum.

2. Theorem 2.1 can also be lifted to the "infinite setting", i.e., to the ring of symmetric functions in infinitely many variables (see, e.g., [Stanle24, Chapter 7] or [GriRei20, Chapter 2] for introductions to this ring). This is not completely straightforward, since the diagonal derivative ∇ is defined only for finitely many indeterminates and depends on their number N (for instance, $\nabla(s_{(1)}) = N$). In the infinite setting, it has to be replaced by a derivation ∇_q depending on a scalar q:

Let **k** be a commutative ring, and let $q \in \mathbf{k}$ be an element. (For example, we can have $\mathbf{k} = \mathbb{Z}[q]$ and q = q.) Let Λ be the ring of symmetric functions in infinitely many indeterminates x_1, x_2, x_3, \ldots over **k**. For each $n \in \mathbb{Z}$, we let h_n denote the *n*-th complete homogeneous symmetric function in Λ (so that $h_0 = 1$ and $h_i = 0$ for all i < 0). Let $\nabla_q : \Lambda \to \Lambda$ be the unique derivation that satisfies

$$\nabla_q (h_n) = (n + q - 1) h_{n-1}$$
 for each $n > 0$.

⁵ For $q = N \in \mathbb{N}$, this derivation is a lift of the directional derivative operator $\nabla : R \to R$ to Λ (meaning that $\nabla \circ \pi = \pi \circ \nabla_N$, where $\pi : \Lambda \to R$ is the evaluation homomorphism at $x_1, x_2, \ldots, x_N, 0, 0, 0, \ldots$). With these definitions, we can extend Theorem 2.1 to a general property of ∇_q :

Theorem 7.1. Let *a* and *b* be two elements of **k** such that a + b = q - 1. Let $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ and $\mu = (\mu_1, \mu_2, \mu_3, ...,)$ be two partitions. Set

$$\ell_i := \lambda_i - i$$
 and $m_i := \mu_i - i$ for each $i \ge 1$.

Then,

$$\nabla_q \left(s_{\lambda/\mu} \right) = \sum_{\substack{i \ge 1; \\ \lambda - e_i \text{ is a partition}}} \left(\ell_i + a \right) s_{(\lambda - e_i)/\mu} + \sum_{\substack{i \ge 1; \\ \mu + e_i \text{ is a partition}}} \left(b - m_i \right) s_{\lambda/(\mu + e_i)}.$$

⁵This condition uniquely determines a derivation of Λ , since the elements h_1, h_2, h_3, \ldots freely generate Λ as a commutative **k**-algebra. It is easy to see that this derivation ∇_q satisfies the equality $\nabla_q (h_n) = (n + q - 1) h_{n-1}$ for all $n \in \mathbb{Z}$.

Here, e_i means the infinite sequence (0, 0, ..., 0, 1, 0, 0, 0, ...) with the 1 in its *i*-th position.

The proof of this theorem is similar to our above proof of Theorem 2.1 (with the minor complication that we have to fix an $N \in \mathbb{N}$ that is strictly larger than the lengths of λ and μ , in order to apply the Jacobi–Trudi formula), and is left to the reader.

3. It is natural to attempt generalizing Theorem 2.1 to higher-order differential operators, such as $\nabla' := \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_N^2}$. However, finding similar formulas for $\nabla'(s_{\lambda/\mu})$ appears significantly harder, as the "locality" (the fact that λ and μ change only a very little) disappears: For instance, for N = 3, the expansion of $\nabla'(s_{(5,3,0)})$ in the Schur basis contains a $2s_{(2,2,2)}$ term.

Acknowledgments. The present note is a side product of the Yulia's Dream program 2023, in which three of its authors participated as student researchers and the remaining one as a mentor.

References

- [GriRei20] Darij Grinberg, Victor Reiner, *Hopf algebras in Combinatorics*, version of 27 July 2020, arXiv:1409.8356v7.
- [HPSW20] Zachary Hamaker, Oliver Pechenik, David E. Speyer, Anna Weigandt, Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley, Algebraic Combinatorics **3** (2020) no. 2, pp. 301–307.
- [Nenash20] Gleb Nenashev, Differential operators on Schur and Schubert polynomials, arXiv:2005.08329v2.
- [Stanle12] Richard P. Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge University Press 2012. See http://math.mit.edu/~rstan/ec/ for errata.
- [Stanle24] Richard P. Stanley, Enumerative Combinatorics, volume 2, second edition, Cambridge University Press 2024. See http://math.mit.edu/~rstan/ec/ for errata.
- [Stembr02] John R. Stembridge, A Concise Proof of the Littlewood-Richardson Rule, The Electronic Journal of Combinatorics 9 (2002), #N5. https://doi.org/10.37236/1666
- [Weigan23] Anna Weigandt, *Derivatives and Schubert Calculus*, talk at FPSAC conference 2023, https://www.youtube.com/watch?v=fgzB7YjGOEc