
Extracting Context Information from Wi-Fi Captures

Lorenz Schauer
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München
Munich, Germany

lorenz.schauer@ifi.lmu.de

Claudia Linnhoff-Popien
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München
Munich, Germany

linnhoff@ifi.lmu.de

ABSTRACT
Inferring a user’s current situation is the basis of context-
aware services. However, users rarely provide access to their
sensor data, and hence extracting context information re-
mains challenging in real-world scenarios. In this paper, we
present an overall concept for inferring mobility, location,
and role information from users based on passively recorded
Wi-Fi signals. Several methods are investigated and an ex-
tended Viterbi-based approach is presented to determine
dwelling and motion periods. This information is used to
enhance the mobility model for probabilistic indoor local-
ization. In addition, we compute various features to classify
users according to their role. The presented concept is evalu-
ated on simulated data and discussed on real Wi-Fi captures.
Our results show, that the proposed Viterbi-based approach
performs best for inferring mobility states and can improve
the localization accuracy in most instances. Furthermore, it
helps to increase the classification performance and indicates
strong cluster tendencies in our real-world dataset.

CCS Concepts
•Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools;
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1. INTRODUCTION
Nowadays, mobile devices are equipped with several sen-

sors enabling context-aware services being useful for per-
sonal and commercial purposes. Beside location, Abowd
et al. [1] discovered identity, time and activity as primary
context types for characterization of a user’s situation. A
lot of work exists where sensor data is collected from mo-
bile phones in order to determine the user’s position [2] or
his/her mobility status [6]. However, they require an active
participation which is rarely given in real-world scenarios.
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Therefore, we investigate Wi-Fi as a promising way for in-
ferring context information from mobile users without their
consent or even awareness. Wi-Fi enabled devices broad-
cast IEEE 802.11 probe requests to discover access points
in reach. These frames contain unencrypted device specific
information and simple monitor units suffice to sniff them in
an area of interest and in a passive manner. The technique
has been already applied to infer context information, e.g.,
mobility status [22], location [13], or user role [17].

In contrast to these works, we present an overall concept
to extract the mentioned primary types of context informa-
tion out of passive Wi-Fi captures. More precisely, we firstly
investigate deterministic and probabilistic approaches to in-
fer the user’s mobility state, such as dwelling and motion
periods. The result is further processed to enhance the mo-
bility model of our state particle filter, introduced in [20], to
receive more accurate position fixes. Subsequently, we iden-
tify three feature groups out of raw Wi-Fi signal readings
(1), the inferred mobility status (2), and extracted location
information (3). For each group, we compute appropriate
features and investigate their ability for user role classifica-
tion. Overall, our main contributions are as follows:

• Investigation of various methods and enhancements of
a Viterbi-based approach to infer mobility information.

• Extension to our previously presented state particle
filter for estimating user trajectories.

• Presentation of a novel simulation tool for Wi-Fi sniff-
ing providing data with ground truth for evaluation.

• Evaluation of the proposed concept and discussion of
obtained results with real Wi-Fi captures.

In summary, the paper is structured as follows: Section 2 re-
veals related work. Our concept is described in detail within
Section 3. Section 4 presents the evaluation and the obtained
results which are briefly discussed in Section 5 related to
real-world data. Finally, Section 6 concludes the paper and
gives hints on future work.

2. RELATED WORK
Inferring motion and location information from Wi-Fi time

series has gathered high interest in the last decade. LOCA-
DIO, developed by Krumm and Horvitz [9], is seen as one
of the first systems inferring a user’s motion state by using
Wi-Fi. Unlike us, it only considers the variance of received
signal strengths (RSS) from the currently strongest access
point and uses a two-state hidden Markov model (HMM)
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Figure 1: Schematic overview of our concept.

for smoothing. The mobility context is further used for an-
other HMM to infer the user’s location. According to the
authors, they infer the mobility state with a 87% accuracy.
Wind et al. [25] analyzed human mobility by inferring stop
locations form Wi-Fi data. They periodically scan for vis-
ible access points and determine start and stop times for
complete environments. In contrast, Shen et al. [22] con-
sidered dwell times for a feature-based room level localiza-
tion. Their approach supports detecting the correct room in
case of indistinguishable Wi-Fi fingerprints. They also de-
termined sharp changes as walking periods in smoothed RSS
time-series achieving a 10% improvement to the histogram
method. Ruiz-Ruiz et al. [17] also extracted context infor-
mation from passive Wi-Fi captures at a hospital environ-
ment. Beside users’ role and locations, they determine dif-
ferent features, such as stationary or moving devices. Quin
et al. [16] presented the Mo-Fi system for estimating human
presence activities based on Wi-Fi sniffing data. They de-
termined 4 activity patterns and reached a detection rate of
87.4%. Muthukrishnan et al. [14] also investigated several
approaches for determining dwell times based on passively
recorded Wi-Fi captures and used the extracted informa-
tion to improve state-of-the art RSS-based localization al-
gorithms. They reached over 90% of precision and recall.
However, they do not consider probabilistic methods.

To the best of our knowledge, we present the first over-
all concept for extracting primary types of context informa-
tion from Wi-Fi captures. It extends some of the described
works, e.g., LOCADIO for inferring mobility states, and in-
troduces novel results for role classification based on differ-
ent feature groups.

3. CONCEPT
Our concept is illustrated in Figure 1 and consist of the

following major steps which are subsequently described:

1. Capture Wi-Fi Data: monitor units listen for IEEE
802.11 probe requests in an area of interest.

2. Extract Information: based on Wi-Fi captures, we in-
fer mobility and location information. Furthermore,
time/signal information are extracted from raw data.

3. Compute Features: features are computed represent-
ing time/signal, activity and location information.

4. Perform Classification: based on the feature groups
(FG) from the previous step, user roles are classified
using common machine learning techniques.

3.1 Capture Wi-Fi Data
Wi-Fi, standardized in IEEE 802.11 [5], uses management

frames for network discovery which can be performed either
actively, or passively. Mobile clients prefer the active mode

sending out probe request frames iteratively for each chan-
nel. These frames contain unencrypted device specific in-
formation, e.g., the MAC address, which can be captured
by any Wi-Fi card in range which is set into monitor mode.
The technique shows high potentials for user tracking [21].

According to [3], probe requests are sent out every two
minutes on average, regardless of the device’s connection
status. Our own experiments confirm these results. At least
for Android devices, we also observed a significant gain of
probe request bursts if the device is used and not in idle
mode. Furthermore, we always detect probe requests when a
mobile device is activated, e.g., powered on, or home button
is pressed. These observations are incorporated in our Wi-Fi
sniffing simulation tool which is described in Section 4.1.

3.2 Extract Information
As shown in Figure 1, we extract 3 types of information

out of captured Wi-Fi data: time/signal, mobility and lo-
cation information. The former is easy to extract, because
time and signal information can be directly read from raw
captures. However, raw signal readings include noise and
may be corrupted by multi-path propagations which com-
monly occur in buildings [19]. Therefore, we propose other
methods to extract mobility and location information.

3.2.1 Mobility Information
Theoretically, mobility information could also be inferred

by continuous and accurate position fixes. However, this
is still a challenging task especially within buildings, due to
missing reliable positioning systems for real-world scenarios.
Hence, we concentrate on inferring the mobility information
from raw Wi-Fi captures, rather than computing motion
states on uncertain location estimations.

The goal is to detect sharp changes in signal readings in-
dicating a user’s motion, while constant RSS values over
a period of time indicate that the user is dwelling [10].
In order to distinguish between both mobility patterns, we
firstly smooth the raw RSS readings, due to outlier elimina-
tion. For a better imagination, Figure 2 depicts an example
where 5 monitor nodes capture Wi-Fi data of a user moving
through a building for nearly two hours and stays at 4 dif-
ferent rooms with variable dwell times. The ground truth is
illustrated by gray areas denoting the user’s movement and
by white regions marking the dwelling periods.

In contrast to related work, we use the Savitzky–Golay
filter for smoothing, because it keeps best the important
features, e.g., distribution of maxima and minima. Other
tested filters, such as running mean, or Kalman filter have
shown more falsified results in our settings. The effect can
be observed by comparing Figure 2a and 2b.

Finally, we use the smoothed RSS time-series and calcu-
late an average distance value in a sliding window approach
with window size tw and step size s = tw/2. Note, higher dis-
tance values represent an increased variance within the time-
window indicating moving periods. For our example, Figure
2c depicts the obtained distance curve where high peaks are
located around real moving periods denoting an adequate
result. This allows us to distinguish between dwelling and
moving times. It applies, the better the matching of sharp
changes with ground truth, the more accurate the classifica-
tion result. Hence, we consider readings from several Wi-Fi
monitor units, rather than considering only the strongest
signal, like LOCADIO. As denoted in [7], this should return
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Figure 2: Wi-Fi captures from 5 nodes observing one user. Gray areas denote real moving periods.

more distinguishable patterns. Overall, we investigate the
following distance functions for our purpose:

• Cosine similarity: representing the similarity of 2 non
zero vectors by considering the cosine of the angel.
This measure was successfully used in our previous
work [12] returning a similarity value between 0 (com-
pletely different) and 1 (equal). Here, the average of
the cosine similarities between all pairs of RSS obser-
vation vectors within a time-window are considered.

• Euclidean distance: representing the difference of two
n-dimensional vectors p and q by computing the dis-
tance d(p, q) =

√∑n
i=1(pi − qi)2. In contrast to [14],

we calculate the average Euclidean distance between
all pairs of RSS observation vectors within a time-
window, rather than only between the first and last
measurements.

• Sum of range: representing the sum of the maximum
change of captures from each monitor within a time-
window. In comparison to the former functions, we
now consider each monitor records separately, rather
than computing observation vectors.

• Variance: representing the mean variance over cap-
tures from each monitor within a time-window. The
variance or similar measures, e.g., mean standard de-
viation, are commonly used for inferring mobility, like
in [9, 23]. Hence, it can be used as benchmark.

Note, that if we have no observation during a certain time-
window, which is very common in real-world scenarios, we
interpolate the distance by using the distance function on
the previous and the last observation. Finally, a binary de-
cision is required whether the user is moving or dwelling.

On the one hand, this can be performed deterministi-
cally, like in [14, 22] by using a certain threshold θ. For
distances greater than θ, the user is seen as ”moving”, or
marked as ”still” otherwise. On the other hand, a proba-
bilistic approach on an underlying movement model could
be used to infer more accurate mobility information with-
out requiring any threshold. Therefore, we create an HMM
λ = (S;O;A;B;π) with two hidden states ”still” and ”mov-
ing” S = {s,m}, like the LOCADIO system [9] or Com-
PoScan [7]. In contrast, we consider the computed distance
for each time-window as our observations O. Furthermore,
we assume a higher probability for state changes in the real
world and define the transition probability matrix A as:

A =

(
as,s as,m
am,s am,m

)
=

(
0.99 0.01
0.01 0.99

)

In order to estimate the observation probabilities B, we as-
sume that the distance observations for a mobility state S
follow a normal distribution XS ∼ N (µS , σ

2
S). We deter-

mine mean µS and standard deviation σS by observing the
distributions of our distance values for both patterns. Obvi-
ously, µS and σS are higher in case of S = m when a user is
in motion. Overall, the observation probability p(obs |S) for
being in state S observing a distance value d is determined
by using the probability density function fXS :

p(obs |S) = fXS (d;µS , σ
2
S) (1)

For the initial probability π, we consider πm = 0.9, due to
the assumption that the user has recently entered a moni-
tor’s coverage range, and thus he/she is in motion. Based
on this model, we use the Viterbi algorithm and determine
the most likely sequence of state changes for a mobile user.

3.2.2 Location Information
Location inference from Wi-Fi captures is a huge research

field, but still a challenging task, especially for indoor sce-
narios. In our previous work [20], we have presented a novel
particle filter which uses an underling state graph for esti-
mating spatial user trajectories. The idea is to restrict the
transition model for particles in order to get more accurate
and robust positioning results while keeping the amount of
particles low for scalability reasons. In principle, the par-
ticles are forced to move along the state graph with the
freedom to estimate a position between the deployed state
nodes. Please consider [20] for more details. However, the
drawback of our so-called state particle filter is a limited so-
lution space depending on the state graph which may lead
to a lower accuracy for dwelling periods.

Hence, the novel idea is to reduce this problem by in-
tegrating the mobility information from the previous step.
While the user is estimated as ”moving”, the state particle
filter operates like before. However, if the user is denoted as
”still”, we use the model for free space movement according
to Widyawan et al. [8], and adapt the velocity between 0 and
1 m/h. This renders small positioning corrections possible
while the user is dwelling. Note, that adequate mobility in-
formation is required for every prediction step which is rarely
given for passive Wi-Fi captures. Therefore, we interpolate
between the estimated states, and use a small timespan for
switching between both transition models.

3.3 Compute Features
We compute a set of statistical features for each informa-

tion category, i.e., time/signal, activity, and location. The
goal is to represent the information of each group for user
role classification. According to [11], we consider maximum,



minimum, mean, median, standard deviation, entropy, root
mean square error, and the 75th percentile as representa-
tive features for each group. Furthermore, we compute the
following group specific features:

• General features (time/signal): we determine the time
of both first and last observations. Furthermore, the
total time of observations, the average of observations
per second, and the percentage of non-observations for
the total time are considered. Overall, 49 features are
computed including the features from above.

• Activity features: out of the inferred mobility infor-
mation, we extract the time spans for dwelling and
motion periods resulting in 18 features for this group.

• Location features: we extract the covered distance from
each estimated user trajectory. Based on this, we con-
sider the amount of position fixes and the total length
of the walking distance as features resulting in 10 fea-
tures for this group.

With the proposed feature groups we are able to consider in-
dividual and combinations of features for classification. To-
tally, an amount of 77 features can be used.

3.4 Perform Classification
In order to obtain reasonable classification results and to

avoid overfitting effects we investigate 3 approved methods
for feature selection: variance threshold, k-best selection us-
ing chi-squared statistic, and the principal component anal-
ysis (PCA). The latter is the most promising method. Ba-
sically, it performs a decomposition of multivariate datasets
into a set of successive orthogonal components representing
the maximal variance.

Before executing the classification task, the selected fea-
tures have to be scaled transforming them to standard nor-
mally distributed data with zero mean and unit variance.
This is a common requirement for many machine learning
estimators [15]. The selection of an adequate estimator for
our purpose is investigated during evaluation.

4. EVALUATION
We evaluate our concept on simulated data. Therefore, we

firstly introduce our simulation tool for generating realistic
Wi-Fi observations with a known ground truth.

4.1 Simulation of Wi-Fi Captures
Our simulation tool consist of 3 major models: environ-

ment, mobility, and a probe request transmission model.

4.1.1 Environment Model
Like in [18], we use a 2-d bitmap representation of a down-

loaded building plan1. This image is further processed, re-
moving doors, room labels, signs, etc. Afterwards, the image
is converted into a binary bitmap, where walkable and non-
walkable regions are represented by white and black pixels,
respectively.

4.1.2 Mobility Model
We take the modified pathway mobility model form our

previous work [18] in order to simulate the behavior of people

1http://www.uni-muenchen.de/funktionen/
gebaeudeplaene/7070 d 00.pdf

for indoor scenarios: enter a building through an entrance
door, walking to one or more rooms, leaving the building
through an entrance door. The underlying assumption is,
that a person always try to walk directly to a certain room
to execute a particular objective. Hence, we simulate stay
times, when the user arrives at a particular room.

4.1.3 Transmission Model
Probe requests are sent out in irregular intervals. Hence,

we firstly determine the transmission probability ptx for a
certain point in time. On the basis of our observations, we
determine 3 key factors with a significant impact on ptx:

1. Activity: as mentioned in Section 3.1, probes are sent
out, when the user starts an activity, and hence, this
has to be considered separately.

2. Time: as mentioned before, probes are sent out every
two minutes on average. Furthermore, the probability
for a user’s activity increases with time.

3. Device: the probing interval depends on the used de-
vice. E.g, Goodall [4] estimated an interval between
18 and 82 seconds for various phones. Additionally, we
measured a doubled frequency for an iOS compared to
an Android phone in normal usage pattern.

With respect to these factors, we determine ptx on the basis
of pactivity, the probability that a user’s activity occurs, and
pdevice, the probability of device-specific transmissions:

pactivity = timelastActivity ·cactivity (2)

pdevice = FX(timelastProbe) (3)

where timelastActivity denotes the elapsed time since the last
activity, and timelastProbe to the last probe transmission,
respectively. Obviously, pactivity increases with time, and
cactivity is a constant value determining an upper threshold
for activities. In Equation 3, FX(timelastProbe) denotes the
cumulative density function (cdf) of X ∼ N (µ, σ2). This
represents a normal distributed probing behavior of a cer-
tain device X with average time interval µ and its standard
deviation σ which can be empirically determined. Due to
[4], we use µ = 65 seconds and σ = 20 seconds, and add a
device specific value to respect the varying probing behavior.

At each simulation step, we determine timelastActivity and
timelastProbe and decide if a probe will be sent with respect to
pactivity or pdevice. In case of a positive decision, we simulate
the transmission using the standard logarithmic path loss
model with wall attenuation factor WAF:

Prx(d) = A− 10n log10(d)− l ·WAF

where A is the transmission power, n the path loss expo-
nent, and l represents the amount of walls in the distance d
between sender and receiver. The parameters have been de-
termined empirically in [20]. Due to erroneous Wi-Fi trans-
missions, we decide with a probability of 0.75 that a package
is successfully captured. In this case, each monitor saves the
corresponding timestamp, the RSS value, the ground truth
position and the device identifier. This information is ag-
gregated to one observation vector and the sequence of cor-
responding vectors represents one user for the given time in
the given environment. This is the same procedure like in
real scenarios leading to comparable data.



Figure 3: As setup, 5 Wi-Fi nodes (black stars) mon-
itor the depicted section of our university building.

4.2 Experimental Setup
According to [20], we deploy 5 monitors within our uni-

versity building capturing probe requests on a typical week-
day. This dataset will be consulted for discussion in Section
5. Figure 3 depicts the setup on the used building plan,
represented as 2-d bitmap. For evaluation, the same setup
is created by our simulation tool and 480 users are created
based on 4 typical user role patterns (120 users per pattern):

1. Worker: is working in the building. Arrives between
8:00 and 10:00 am, goes to the office, changes rooms
several times during the day, and finally leaves the
building between 5:00 and 7:00 pm.

2. Student: goes to lectures. Arrives between 10:00 am
and 4:00 pm, goes to a lecture room, stays their for
the lecture (80 to 120 minutes), and finally leaves and
may come back later. Note, this group simulates users
with little dwelling periods of long durations.

3. Cleaner: has to clean all rooms in the morning. Arrives
between 7:00 and 12:00 am, goes to every room in the
building and stays there for a short period of time (1
to 5 minutes). Note, this group simulates users with a
lot of dwelling and moving periods of short durations.

4. Random: behaves randomly. Arrives between 7:00 am
and 6:00 pm, goes to several rooms and stay there
between 1 and 120 minutes. Note, this group simulates
noisy data which is very common in real scenarios.

4.3 Inferring Mobility Information
Based on our experimental setup, we investigate the pro-

posed methods of Section 3.2.1 for mobility inference. Hence,
we compute the presented distance functions on our simu-
lation data with tw = 90 seconds. We assume, this time is
long enough to cover at least one probe on average for all
phones, and short enough to detect brief movements.

As a first step, we evaluate the accuracy related to ground
truth when performing deterministic decisions. For this pur-
pose, we empirically determine a fixed threshold θ for each
distance function. Note, this may influence the overall clas-
sification result and is not generalizable. Therefore, we also
determine a dynamic threshold θvar by computing the av-
erage of all local maxima in the distance curve. For both
fixed and dynamic thresholds we calculate precision, recall
and F-score as well-adopted metrics for classification tasks.
More precisely, we calculate the unweighted mean for each
label, i.e., still and moving, in order to ignore label imbal-
ance. This prevents biased results, especially in case of long
dwelling and short moving periods or vice versa.
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Figure 4: Evaluation of different methods for mobil-
ity inference using precision, recall, and F-score.

Figure 4a depicts the results for our investigations. Ob-
viously, the metric of precision (considering the amount of
selected relevant items) is over 0.8 in case of a fixed thresh-
old, except for the variance distance. In contrast, the values
for the recall metric are very low (under 0.58) denoting that
more false negatives than false positives decisions are made
on average. Only in case of the variance distance, the chosen
threshold seems more suitable returning the highest F-score
(harmonic mean of precision and recall). However, the re-
sults demonstrate that a fixed threshold is not feasible for
extracting accurate mobility information in general. In con-
trast, the results based on a dynamic threshold, as shown
below in Figure 4a, depict more balanced values for preci-
sion and recall. In terms of the F-score metric, we observe
comparable results related to the former with fixed threshold
lying over 60% for each distance function. The best value of
68% is observed in case of the Euclidean distance which is
not a reliable result. Hence, we conclude that our determin-
istic methods (even with dynamic threshold) are not suitable
for our purpose. The reason is, that they are too inflexible
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Figure 5: Distributions of location errors before and
after integrating mobility information.

to deal with a wide range of various user behaviors.
Next, we evaluate our probabilistic approach. We use the

Euclidean distance for our observations O, as it performed
best in the previous investigations. As reference system, we
implement LOCADIO, described in [9], which differs to our
approach in terms of O,A,B, and π. Figure 4b depicts the
results for both systems in case of the presented user role
patterns and the overall mean which is comparable to the
Euclidean distance function of Figure 4a. Obviously, our ap-
proach performs more accurate and more balanced in terms
of precision and recall for all patterns. Beside the cleaner
behavior which models a high frequency of mobility state
changes, we reach a high F-score of more than 0.91 (even
for random) and a mean F-score of 0.84. This indicates a
suitable performance in general. In comparison, our refer-
ence implementation has major difficulties with the cleaner
behavior. For the others it achieves an F-score of more than
0.73, and 0.63 for the mean which is slightly worse than the
value reached by our dynamic threshold. Only in case of
the student class we achieve a more suitable value of nearly
80% which comes close to the result shown by Krumm et
al. However, our reference system do not show a reliable
classification performance in general, and hence, we use our
approach for the following steps. Note, that the increased
performance of 21% is mainly caused by the usage of the
Euclidean distance over 5 monitored signals instead of using
just the variance of the strongest signal.

4.4 Inferring Location Information
According to our previous work [20], we use the average

pairwise and the discrete Fréchet distance to investigate the
localization error of the state particle filter (sPF) before
and after integrating the inferred mobility information (cf.
Section 3.2.2). The former considers the mean error over
pairwise Euclidean distances between estimated and ground
truth positions. The latter is a common distance measure
for trajectories and can be seen as the minimum length of
a leash between a man and his dog while both walking on
their paths without going backwards.

Figure 5 depicts the localization error distributions for
each user pattern. In case of the pairwise distance (cf. Fig-
ure 4a), we observe a correlation between the accuracy of
inferred mobility states and the improvement of our sPF,
e.g., the student group performs more accurate while the
random and cleaner group perform even worse. This indi-
cates that additional mobility information could improve the
underlying movement model, but only if the information is
reliable, e.g., more than 0.92 for F-score in our case.

Table 1: Classification performance on all features.
Features Classifiers
FG # D. Tree R. Forest SVM MLP Vote
1 49 0.95 0.98 0.97 0.97 0.97
2 18 0.87 0.93 0.85 0.88 0.90
3 10 0.66 0.73 0.73 0.72 0.74

1+2 67 0.95 0.99 0.97 0.97 0.98
1+3 59 0.95 0.99 0.97 0.97 0.97
2+3 28 0.85 0.92 0.88 0.89 0.90
All 77 0.94 0.99 0.97 0.97 0.98

In case of the discrete Fréchet distance (cf. Figure 5b) we
observe an improvement for all cases, except for the cleaner
class. However, the differences are only marginal (between
1 and 1.5 meters for the mean) which indicates that the
original movement model already fits the requirements for
general scenarios. Overall, we make oppositional observa-
tions: the pairwise distance shows increased and the Fréchet
distance shows decreased error distributions for most of the
cases. This is due to the fact, that the Fréchet distance
considers complete trajectories, rather than single position
fixes. On the one hand, the reduced speed of particles in-
dicates a positive effect on the overall path error. On the
other hand, however, our extension leads to increased errors
for several position fixes, in particular during the transition
of the user’s mobility state, or when the estimated mobility
state differs from ground truth. In summary, we use the
extended approach in the sequel for user role classification,
due to the higher accuracy for trajectory estimations.

4.5 User Role Classification
The goal is to assign the correct user role label, i.e., worker,

student, cleaner, or random, to each of our 480 simulated
samples using the extracted feature groups (FG) or their
combinations. Thus, we perform a ten-fold stratified cross-
validation, which should reduce overfitting, as stated in [24].

First, we analyze the classification performance without
feature selection. Training and testing are performed on
scaled features using well-adopted classifiers provided by
[15], such as: decision tree, random forest with 100 estima-
tors, support vector machine (SVM), multi-layer perceptron
(MLP), and a voting classifier which uses a majority vote
over the combination of the named classifiers. Table 1 de-
picts the results where the best values for each classifier are
highlighted in gray. Overall, we observe high values (> 0.93)
for all classifiers when general features (FG 1) are involved.
In contrast, activity (FG 2) or location (FG 3) features per-
form worse. This indicates that time/signal features include
the most significant information for our user role patterns.
We will discuss this point for real captures later in Section
5. With additional information from activity and/or loca-
tion features, we could marginally improve the classification
performance in case of random forest and voting. Due to the
fact that our simulations consist of only 4 well-defined user
role patterns, we still observe an overfitting effect, expressed
by very high success rates, e.g., 99% for random forest.

In order to reduce this effect and to improve the gen-
eralization of our models, we now select a subset of sig-
nificant features before analyzing the classification perfor-
mance. Therefore, we perform feature selection, as described
in Section 3.4 and repeat our last test. The PCA method



Table 2: Classification performance on selected fea-
tures based on PCA with k=10.

Features Classifiers
FG # D. Tree R. Forest SVM MLP Vote
1 10 0.88 0.94 0.94 0.94 0.94
2 10 0.87 0.90 0.85 0.88 0.90
3 10 0.68 0.73 0.75 0.73 0.75

1+2 20 0.92 0.96 0.96 0.97 0.97
1+3 20 0.85 0.94 0.94 0.94 0.95
2+3 20 0.84 0.90 0.84 0.88 0.88
All 30 0.87 0.96 0.96 0.96 0.97

indicates the most promising results which are exemplarily
depicted in Table 2. We chose k = 10, in order to balance
the amount of features for each group. As expected, we
observe lower success rates for nearly all combinations. Fur-
thermore, FG 1 is still involved in the most accurate results
(> 0.93), and hence we conclude that time/signal informa-
tion is essential for user role classification. An interesting
observation is that the combination of FG 1 and 2 performs
best for all classifiers indicating that the inferred activity
information can help to identify the correct user role more
precisely. In contrast, the location features still return low
success rates and could not improve the obtained results in
any case, except for the voting classifier. This may be caused
by our simulations and the simple structure of our building
leading to similar trajectories for all user groups. Hence, we
will also discuss this observation with unlabeled data from
real Wi-Fi captures in the following section.

5. DISCUSSION
For discussion, we use our proposed methods and extract

the same feature groups out of the real dataset. Due to
missing ground truth, we have to deal with unlabeled data
using methods from unsupervised learning, such as manifold
learning, or clustering. As a first step, we visualize the n-
dimensional features from all groups for both datasets using
t-distributed Stochastic Neighbor Embedding (t-SNE), also
provided by [15]. Figure 6 depicts the results for 2-d embed-
ded features. Due to missing labels, we can only guess the
user role for each data point. However, we can analyze the
structure of both datasets showing interesting properties.

In case of general features (cf. first row), our simulations
show more biased data. This is approved by a higher Hop-
kins statistic2 of Hsim = 0.66 to Hreal = 0.64 and confirms
the assumption, that 4 well-defined user role patterns do not
cover the variety of human behavior in real life.

For activity features (cf. second row), in contrast, we
observe the highest cluster tendencies in both datasets, i.e.,
Hsim = 0.73, and Hreal = 0.81. Especially for real captures
this is interesting and should be further investigated. For
the moment, we argue that dwelling and moving periods are
suitable to characterize user behaviors which corresponds to
our previous findings.

For location features (cf. last row), we observe the low-
est cluster tendency for our simulations with Hsim = 0.60.
This explains the decreased classification performance and
confirms our assumption that the simulated trajectories are

2Measures cluster tendencies in datasets by comparing near-
est neighbor distances, from H = 0: poor, to H = 1: strong.
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Figure 6: Comparison between simulated and real
data according to the proposed feature groups.

too similar to distinguish properly between different user
roles. However, in case of real Wi-Fi captures, we observe
a higher value for location than for general features, i.e.,
Hreal = 0.67. Hence, we expect that the proposed method
helps to increase the classification performance within real-
world settings, which has to be proven by future work.

In summary, both datasets show similar compositions in-
dicating the feasibility of our simulation tool. Furthermore,
the extracted feature groups, in particular the activity fea-
tures, seem to be appropriate to distinguish between differ-
ent user groups also within real-world scenarios. However, it
has also been proven that the performed simulations do not
represent the complete variety of real human behavior and
further investigations have to be made in the near future.

6. CONCLUSION
With this paper, we have proposed an overall concept for

extracting primary types of context information out of Wi-
Fi captures. Novel methods for inferring the mobility state
and the location of a user have been presented. Our evalua-
tion on simulated data has shown that a certain threshold is
not feasible for mobility inference in general. It has proven
useful to perform a Viterbi-based approach using the Eu-
clidean distance on several monitored signals leading to an
improvement of up to 21% related to our reference system.

For location inference, we have shown that reliable mo-
bility information can improve the movement model of our
state particle filter. In case of user role classification, we
state that time/signal features are essential, and a combi-
nation with selected activity features helps to increase the
success rate of up to 3%.

Finally, we conclude that our concept seems to be suit-
able in real-world settings where activity and location fea-
tures have shown strong cluster tendencies. Hence, we will
enhance our efforts in the near future using a large set of
labeled data from real captures to confirm this assumption.
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