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Abstract—Wi-Fi enabled devices periodically broadcast unen-
crypted management information which can easily be used for
an involuntary tracking of users in an area of interest. However,
reliable trajectory estimations on this data remain challenging,
due to arbitrary and imprecise position fixes of moving targets.
Probabilistic methods can help to increase the estimation accu-
racy significantly, but may degrade other important metrics, e.g.
scalability, complexity, or robustness. In this paper, we investigate
probabilistic solutions for a feasible tracking system for indoor
scenarios. Beside the usage of Viterbi’s algorithm and a common
particle filter, we propose a novel state particle filter with a more
restricted transition model based on discrete state nodes. All
methods are compared and evaluated on various user traces using
real Wi-Fi captures from common mobile devices at our office
building. The results indicate that the proposed state particle
filter performs best in terms of accuracy, and precision while
using a smaller amount of particles which renders this approach
scalable, and thus, feasible for indoor tracking systems.

I. INTRODUCTION

For an ubiquitous network connectivity, Wi-Fi enabled
devices automatically scan for access points (APs) in their
vicinity sending out IEEE 802.11 probe requests. These un-
encrypted frames contain certain management information,
e.g., the device’s specific MAC address, or distinct network
names. Such information can be easily captured by any Wi-
Fi card in reach operating in monitor mode. This technique
has been successfully used in order to estimate pedestrian
flows [1], or user trajectories [2]. Overall, capturing Wi-Fi
signals from passing mobile devices involve high potentials for
a low-cost and fine-grained indoor pedestrian tracking system,
due to the fact, that no additional hardware, nor any active
user participation is required. Furthermore, this technique
renders current estimations of actual user flows possible being
of great interest for management, commercial or emergency
purposes in public buildings. Beside these potentials, however,
the reliability of such Wi-Fi based tracking systems is often
limited, due to imprecise position fixes of moving targets, as
demonstrated in this work. Wi-Fi location estimates are often
inaccurate, due to physical factors, e.g., fluctuations in received
signal strengths caused by multipath propagation effects.

In this paper, we address these limitations, in order to
make Wi-Fi based indoor tracking systems more accurate and
feasible. Therefore, we use knowledge about humans’ mobil-
ity and investigate well-adopted probabilistic methods. More

specific, we apply the Viterbi algorithm, and a commonly used
sequential importance resampling (SIR) particle filter on a
weighted kNN fingerprinting technique based on passive Wi-
Fi captures. For this purpose, we take advantage of a Hidden
Markov Model (HMM) based on discrete state nodes which
cover all possible paths a user can take within a given building.

Furthermore, we introduce another particle filter with a more
restricted transition model, related to the coordinates of the
proposed state nodes of our HMM. The aim of our so-called
state particle filter (sPF) is to achieve adequate results in terms
of accuracy and robustness, while reducing the amount of
particles for scalability reasons. To our knowledge, this has
not been presented for Wi-Fi based indoor tracking systems.

All methods are evaluated on various user traces based on
real Wi-Fi captures from mobile devices at our office building.
They are compared in terms of common metrics for indoor po-
sitioning systems, e.g., accuracy, precision, etc. Furthermore,
the impact of the state node density is investigated, and a
heuristic for an adequate state node placement is introduced.

The reminder of this paper is structured as follows: Section
II briefly reveals related work. Section III describes technical
background and presents basic principles of our methodolo-
gies. Our evaluation is introduced in Section IV, and finally,
Section V concludes this paper giving hints on future work.

II. RELATED WORK

Wi-Fi based indoor tracking involves a long research history.
RADAR [3], is seen as one of the first in-building tracking
systems. It uses Wi-Fi fingerprinting with a nearest neighbor
algorithm achieving a median spatial error distance of 2.94 me-
ters. In an enhanced version, Bahl et al. performed a Viterbi-
like algorithm for continuous user tracking and reduced the
error distance to 2.37 meters [4]. Krumm and Horvitz [5]
applied two HMMs and inferred motion and location infor-
mation of a mobile client based on Wi-Fi measurements. Like
us, they used Viterbi on a graph of discrete location nodes,
and a similar transition model respecting pedestrians’ speeds.
They obtained a median error of 1.53 meters based on ten
short walks while performing Wi-Fi active scans.

In recent years, real-time tracking has gained high attention,
due to the increased usage of mobile devices. Trogh et al. [6]
presented a real-time indoor tracking system using Viterbi and
semantic data. Position fixes are performed similarly to our

http://ieeexplore.ieee.org/document/7743658/


2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 04-07 October 2016, Madrid, Spain

work, using Wi-Fi fingerprinting on a pre-calculated radio map
on grid points. An average median accuracy of below 2 meters
has been obtained. Musa and Eriksson [2] performed passive
Wi-Fi scans at different monitors for tracking unmodified
smartphones. They estimated the most likely trajectories of
individuals for outdoor scenarios using Viterbi algorithm on a
HMM at road networks. They observed a mean error under 70
meters compared to GPS readings. Other Wi-Fi based indoor
tracking systems calculate the location probability distribution
of a mobile target by considering the difference in the received
signal strengths at two monitors [7], or perform a lateration
algorithm achieving a lower mean accuracy of 15 meters [8].

Beside the Viterbi algorithm, particle filters combined with
floor plan information are also widely adopted for probabilistic
localization and tracking [9], [10]. Bartoletti et al. [11] present
a passive indoor tracking system of moving targets using
a common particle filter and time of arrival estimations at
ultra-wideband sensors. Khan et al. [12] compared Kalman
filter, extended Kalman filter, and particle filter for target
tracking using signal strength measurements. Chen et al. [13]
investigated multiple target tracking for indoor scenarios, and
discussed simplifications to the SIR particle filter.

However, none of the presented works compare performance
metrics of both Viterbi algorithm and particle filter for Wi-
Fi based indoor tracking systems, and thus, we fill in this
gap. Furthermore, a state particle filter focusing on state node
locations of an underlying HMM, as it is proposed in this
work, could not have been found in literature.

III. BASIC PRINCIPLES

In this section, we firstly give a brief overview of technical
background for passive Wi-Fi tracking, before presenting basic
principles of our methods.

A. Wi-Fi Tracking

From a mobile device’s perspective, network discovery can
be performed passively, or actively. For the first, a client
merely listens on beacon frames which are periodically trans-
mitted by APs over all operating channels. Due to mismatching
channels, clients may miss transmitted beacons using the
passive procedure. Therefore, mobile devices prefer active
scanning, due to lower energy-consumption and shorter dis-
covery time of APs [14]. In this case, clients send out probe
requests iteratively for each channel and wait for a certain
period while listening for corresponding probe responses.

Probe requests contain unencrypted device specific infor-
mation, such as the client’s MAC address, and other manage-
ment information. These frames can be sniffed by any Wi-Fi
card operating in monitor mode within communication range.
Hence, continuous active scans captured by different monitor
nodes in an area of interest can be used to track users’ locations
and corresponding trajectories, as proven in [2]. However, the
wide communication range, the fluctuations in received signal
strengths (RSS), and the arbitrary bursts of probe requests
transmitted by mobile devices render position fixes inaccurate.

Hence, accurate indoor positioning techniques are required for
our purpose.

B. Passive Wi-Fi Localization

Wi-Fi fingerprinting, firstly presented in RADAR [3], is
one of the most popular technique for indoor localization.
Basically, it consists of two phases: an offline training phase
where an RSS vector of all APs in reach is determined
at certain reference points. The vectors and corresponding
locations are stored into a radio map. In an online phase,
the user actively scans for APs in reach, and the resulting
RSS vector is compared with the entries in the radio map.
Finally, the most probable user location is returned. Note,
that in case of passive Wi-Fi localization, the mobile phone
scans its vicinity without an active user participation, and
the RSS vector is determined by the monitor nodes. Wi-Fi
fingerprinting achieves adequate positioning results, but also
requires high efforts for recording the radio map. To bypass
this problem, we determine the radio map by calculating the
RSS vector for each reference point to all available APs using
the standard logarithmic path loss model with wall attenuation
factor (WAF) for indoor environments. Related to [15], the
received signal power from a certain reference point at an AP
is calculated by the following equation:

Prx(d) = A− 10n log10(d)− l ·WAF (1)

with A being the transmission power, n denotes the path
loss exponent, and l is the amount of walls arranged in
the Euclidean distance d between sender and receiver. Note,
that the model parameters n, A, and WAF are empirically
determined for our test set.

A position fix for a mobile device with MAC address MAC
at time t is performed, when an RSS observation obsMAC,t,m

is made at a Wi-Fi monitor node m ∈ M . Due to the
nature of probe request burst, obsMAC,t,m is calculated as
the mean of captured RSS values from one MAC address at
m during the time span [t, t + ∆t], rather than considering
only a point in time. The RSS observation vector −→vo is
determined based on the observations of all monitor nodes:
−→vo = (obsMAC,t,m1 , ..., obsMAC,t,mM

). If there is no observa-
tion made at m for MAC during the time span [t, t+ ∆t], the
corresponding entry is set to obsMAC,t,m = −100 dBm, as it
is proposed in [16] for treatment of missing RSS values.

Based on the calculated radio map and −→vo of an observed
target, we perform a common deterministic location estimation
using weighted kNN classification, with wi, i ∈ {1, ..., k}
being determined by:

wi =

di k∑
j=1

1

dj

−1

(2)

where di = dist(−→vo ,−→ri ) denotes the Euclidean distance in
signal space between −→vo and the specific record −→ri of the
radio map. The target’s position is then estimated by the
sum of weighted k position candidates. Considering the time
series of passive Wi-Fi localizations, we are interested in the
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most accurate path taken by the user. Therefore, we consider
both Viterbi algorithm and particle filter, as well-adopted
probabilistic methods, and map them to our problem.

C. Viterbi Algorithm

The Viterbi algorithm provides an optimal solution to
the problem of estimating the most likely sequence of a
discrete time finite-state Markov process [17]. Hence, for
our trajectory estimation problem, we firstly define a HMM
λ = (S;O;A;B;π) with hidden states S, observations O,
transition probabilities A, observation probabilities B, and an
initial probability distribution π.

1) Hidden States: The state model must cover all paths a
user can take in a fine-granular manner. Thus, we deploy state
nodes based on both the building topology and pedestrians’
mobility. Indoor environments typically consist of rooms, and
corridors. We focus on the latter, due to the assumption,
that passive Wi-Fi based estimations do not provide sufficient
accuracy for tracking on room level, and generally, people
mainly move within corridors. According to the map-matching
problem on road networks in [2], we treat corridor intersec-
tions as vertices and corridors as edges which are divided into
smaller segments for a higher granularity. Each vertex and
segment is represented by one state node.

In contrast to road networks, a person can stay, move on,
or return at each state node without any turn-restrictions.
Consecutive state nodes are placed in line-of-sight condition
with a certain distance di,j between node i ∈ S and node
j ∈ S which we determine using the following heuristic:
considering an average pedestrian speed vp and the time
span of Wi-Fi observations ∆t, the distance is calculated as
di,j = vp ·∆t. This ensures, that state transitions in our HMM
for every Wi-Fi observation also return the most probable state
node for a person moving on average speed, and at least one
state node during an observation time span is passed. Notice,
Viterbi expects periodic observations which may also include
no detections for a specific MAC address at time t.

2) Transition Probabilities: A transition is performed based
on periodic observations and the underling transition proba-
bilities. If no observation is made for a MAC address during
one step, we cannot make any assumption about the target’s
movement. If an observation is made and the RSS vector −→vo
is determined, we calculate the time difference δt to the last
observation of this target. Considering the distances from the
actual state node i to any other state node x in the given
building, we determine the velocity vx required for reaching
x in the given time by calculating vx =

di,x
δt , with di,x

being the walking distance from i to x. Assuming, that the
pedestrian’s velocity is a normal distributed random variable
V ∼ N (µ, σ2) with µ = vp and σ2 = 1, we consider a folded
normal distribution Y = |V | and test vx against the probability
density function (pdf) fY , in order to determine the transition
probability p(i→ x) from i to x:

p(i→ x) = fY (vx;µ, σ2) (3)

As initial probability distribution π, we consider the observa-
tion probability over the first observation.

3) Observation Probabilities: As mentioned before, with-
out observations we have no information about the person’s
movement. This is contrary to [2], where non-detections are
considered using an underlying emission probability model
for mobile phones. However, dealing with non-detections is
critical for us, due to two reasons: first, a generic emission
probability model for the numerous types of existing mobile
devices is hard to find, and second, due to the arbitrary
nature of probe request bursts, non-detections do not implicitly
prove that a target has not passed a monitor’s coverage range.
Hence, we consider observations only and determine their
probabilities for our HMM as follows: a theoretical RSS vector
−→vs is pre-calculated for each state node using the standard log-
arithmic path loss model from Section III-B. As in the Horus
system [18], we assume that an RSS measure X at a certain
location from one transmitter follows a normal distribution
X ∼ N (µ, σ2), with mean µ, and standard deviation σ. The
observation probability p(obs |s) at a state node s ∈ S for a
given observation −→vo is determined using the pdf fX :

p(obs |s) =

M∏
i=1

fX(oi;µi, σ
2) (4)

with oi ∈ −→vo , µi ∈ −→vs , and M being the set of Wi-Fi monitors.
4) Viterbi-Path Estimation: We have just described our

HMM λ = (S;O;A;B;π). Given λ, and a continuous
time-series of observations for a particular MAC address
o = −→vo1, ...,−→voT ∈ O∗, the Viteri algorithm produces the most
likely sequence of hidden states q∗ = s∗1, ..., s

∗
T ∈ ST , called

Viterbi-Path which denotes the most probable user trajectory.
However, fix hidden state nodes restrict the solution space, and
may negatively influence the estimation accuracy. Therefore,
we now investigate a particle filter technique.

D. Particle Filter

Particle filters present a nonparametric alternative to the
Bayes filter dealing with non-linear and non-Gaussian esti-
mation problems. The main idea is to represent the posterior
believe by a set of random state samples (called particles)
with associated weights, in order to compute estimates based
on this believe. The basic filter algorithm, known as sequential
importance sampling (SIS), approximates the posterior density
p(Xk|Zk) of states Xk, considering the past observations Zk
up to time k [19]:

p(Xk|Zk) ≈
N∑
i=1

wik δ(Xk −Xi
k) (5)

where Xi
k denotes the i-th particles up to time k of the

posterior with weight wik. One key feature is the resampling
step, where particles are re-sampled according to their weight.
A so-called sequential importance resampling (SIR) filter is
also applied in this work consisting of the following steps:
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1) Initialization step: For initialization, a temporary set of
N particles X0 = {x10, ..., xN0 } is randomly placed on free
space of the building plan for time 0 using a continuous
uniform pdf f(xi0). Each particle xi0 is then located at li0. It
has an assigned initial velocity vi0 with orientation oi0 based
on the continuous uniform pdf from 0 to vmax, and 0 to
2∗π, respectively. We consider vmax = 10ms−1 as maximum
pedestrian’s speed for indoor scenarios.

2) Prediction Step: For each particle xik ∈ Xk, we de-
termine a new particle xik+1 with location lik+1, its velocity
vik+1, and its new orientation oik+1 using the transition pdf
p(xik+1|xik) based on the underlying mobility model according
to Widyawan et al. [20]:

lik+1 =

[
lik+1x

lik+1y

]
=

[
likx + vik cos(oik)∆t+ nk

liky + vik sin(oik)∆t+ nk

]
(6)

As it is shown, a particle’s new position is derived from its last
position, velocity, and orientation considering the elapsed time
∆t to the last prediction step, and an optional noise parameter
nk. In our case, nk is ignored, and ∆t depends on both the
timestamp of the last Wi-Fi measurement and the humans’
step duration which is treated as a constant parameter cstep =
0.8 s. The new velocity and orientation is calculated for each
prediction step using the following equations:

vik+1 = |N (vik, 1ms
−1∆t)| (7)

oik+1 = N
(
oik, 2π − arctan

(
0.5
√
vik ∆t

))
(8)

with N (µ, σ2) denoting a random choice out of a normal
distribution with mean µ and standard deviation σ.

3) Importance Sampling Step: In this step, the measure-
ment zk+1 is incorporated into the new particle set by calcu-
lating the importance factor, denoted as a individual particle
weight wik+1. This reflects the probability of zk+1 under the
particle xik+1, denoted as wik+1 = p(zk+1|xik+1). Note, that
the weight of particles which have crossed a non-walkable
space, is set to 0. Overall, the set of weighted particles
approximate the Bayes filter posterior believe.

In our case, a measurement zk consists of an observed
RSS vector −→vo . In order to calculate the particles’ weight, we
determine the measurement distribution (µ, σ), with µ being
the position fix returned by the proposed location estimation
technique of Section III-B. For determination of σ, we use the
Laplace error estimator, introduced by Marcus [21]. Finally, a
particle’s weight can be directly derived from the pdf of the
Laplace error estimator using its current location lik+1:

p(zk+1|xik+1) = pdf laplaceµ,σ (lik+1) (9)

As last step, the particle weights are normalized resulting in
a total weight sum of

∑N
i=1 w

i
k+1 = 1.

4) Resampling Step: This is a key step of SIR particle
filters, where low-weighted particles are probably destroyed,
and high-weighted particles are duplicated. This is performed
by drawing N particles with replacement out of the current
particle set according to the associated weights. The result is

(a) Initialization Step (b) Prediction Step

Fig. 1. Illustration of state particle filter where particles move according to
their orientation (marked as arrows) based on state node locations (black dots).

a new temporary set of N particles Xk+1 which is given to
the next prediction step.

5) Path Estimation: For each iteration, a person’s position
is determined by the average location of Xk+1. The result-
ing position sequence after all iterations represents the most
probable user trajectory. Due to the sequential processing for
a finite set of N particles, we obtain a linear time complexity
of O(N). Hence, the proposed SIR particle filter indicates
a higher scalability than Viterbi while N � |S|2. However,
conducted experiments, e.g., in [9], or [10], show that 400 and
more particles are required to achieve an adequate accuracy
minimizing the scalability. Therefore, a modification to the
described algorithm is now introduced.

E. State Particle Filter

The goal of our state particle filter (sPF) is to achieve
accurate estimations while keeping the amount of required
particles low for scalability reasons. For this purpose, we
combine the fixed hidden state model of Section III-C, with the
open space mobility model of Widyawan et al. [20]. Hence,
we apply the following restrictions to the initialization and
prediction step of the described SIR particle filter:

1) Initialization Step: Instead of placing particles randomly,
we now consider the locations of |S| hidden states and
place a set of N particles uniformly at these locations, with
N = i × |S|, i ∈ N. Again, each particle assigns an initial
velocity vi0 and orientation oi0. While vi0 is still determined by
the continuous uniform pdf like before, oi0 is now randomly
set to one of the visible neighbor state nodes, as exemplarily
depicted in Figure 1a. Note, that a state node is visible if it’s
in line-of-sight condition to the particle. Overall, particles are
initially forced to move along the state node graph.

2) Prediction Step: In order to map the transition pdf
p(xik+1|xik) to our state node model, a particle’s orientation
change is restricted by the state node locations. Instead of us-
ing Equation 8, a particle’s orientation oik is now set according
to the angle between its current location lik and one randomly
chosen visible state node. If more states are in line-of-sight to
the particle within a small angle range α ± 2.5◦, the particle
will move towards the closest of these nodes. If it passes a
certain state node during the prediction duration, the particle’s



2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 04-07 October 2016, Madrid, Spain

Require: A:= Angel matrix, D:= Distance matrix
for all i ∈ N do

Determine vik from vik−1 by Equation 7
idx = randomChoiceOf(isF inite(A[lik]))
Set orientation: oik = A[lik][idx]
Determine distance to node: dist = D[lik][idx]
Calculate time to node: tn = dist/vik
while tn < ∆t do

∆t = ∆t− tn
Set lik+1 to location of selected node
idx = randomChoiceOf(isF inite(A[lik]))
Set orientation: oik = A[lik][idx]
Determine distance to node: dist = D[lik][idx]
Calculate time to node: tn = dist/vik

end while
Determine lik+1 according to Equation 6

end for

Fig. 2. Prediction step of the state particle filter in pseudocode.

location is set to this node and its orientation changes again
towards another visible neighbor state node before its location
is predicted. The effect is, that all particles move towards a
certain state node’s position at any time, and thus, their motion
is based on the underlying state node graph, as exemplarily
illustrated in Figure 1b.

The described prediction process is given as pseudocode
in Figure 2. As you can see, we use two matrices A and D
containing angel and distance information for every possible
location to all visible state nodes. This information is easily
accessible by using the corresponding indexes, as shown in
the pseudocode. Furthermore, both matrices are precomputed
for the whole setting, and thus, there is no overhead in
comparison to other common particle filter implementations.
The remaining steps for importance sampling and resampling
are in accordance with the presented SIR particle filter. Hence,
the proposed filter represents a mixed solution to the prior
approaches where a fix state model according to Viterbi is
combined with flexible particles of a SIR particle filter.

IV. EVALUATION

The proposed methods are now evaluated in terms of well-
known performance metrics for indoor positioning systems,
summarized by Liu et al. [22]. Therefore, we firstly present
our real-world experiment in the sequel.

A. Implementation and Setup

As depicted in Figure 3, we deploy five Wi-Fi monitors on
the first floor of our office building covering a total area of
26.795 m2. Each monitor is realized by a laptop equipped
with a Netgear wireless PC card and Linux Debian 2.6. The
monitors are online and synchronized by the network time
protocol. All Wi-Fi adapters operate in monitor mode while
running tcpdum for capturing probe requests. These captures
are stored on a central server where relevant information is
aggregated to one observation vector −→vo for a particular MAC

Fig. 3. Overview of experimental setup using 5 Wi-Fi monitors (black stars).
Ground truth measurements are available within the gray marked region.

address and timespan ∆t, as mentioned in Section III-B.
We set ∆t = 5s, due to a good trade-off between distinct
RSS changes and preferably fine-granular position estimations.
For map information, we use a bitmap representation of our
office’s building plan. The hidden states are deployed along all
corridors, as described in Section III-C1. As default parameter,
the average state node distance is about 6 meters, due to an
assumed average pedestrian speed of vp = 1.2m/s and an
observation time span ∆t = 5s. For providing measurements
with ground truth positions, we walk along all areas marked in
gray in Figure 3, while performing Wi-Fi active scans at every
1.5 meters with four common smartphones, i.e., LG Nexus 4,
iPhone 4s, Samsung Galaxy S4, and Samsung Galaxy Note.
Overall, we collect Wi-Fi observations from 124 dedicated
positions.

B. Deterministic Estimation Accuracy

We firstly evaluate the estimation accuracy on the described
data set without using probabilistic methods. Therefore, we
determine the observation vectors for each test device and for
each dedicated position, and calculate the location estimates,
as described in Section III-B. Figure 4a indicates the error
distributions in meters, considering the Euclidean distance
between ground truth positions and estimations. It can be seen,
that the test devices have a negligible influence on the captured
signal strengths. Overall, we observe a root mean squared error
of 7.37 meters on average which is not adequate for reliable
indoor positioning systems. The interquartile ranges vary from
5.95 meters in case of the Nexus to 7.75 meters for the iPhone.
The Galaxy Note shows the lowest median of 4.42 meters,
but also the highest standard deviation of 7.50 meters. For all
devices we observe extreme outliers containing a positioning
error of up to 33.82 meters. In summary, these results indicate
a low estimation accuracy.

Next, we investigate the trajectory estimation accuracy
based on the observed position fixes. We create an obser-
vation graph over the ground truth positions, and generate
3 x 57 paths including 1, 2, and 3 destinations, while start
point and destinations are randomly chosen. These artificial
paths include our real Wi-Fi captures and represent the user
trajectories. Given a time series of Wi-Fi observations, we now
estimate the underlying trajectory by connecting the position



2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 04-07 October 2016, Madrid, Spain

Nexus 4 iPhone 4s Galaxy S4 Galaxy Note0

5

10

15

20

25

30

35

40

Di
st

an
ce

 E
rr

or
 (m

)

(a) Location Estimations

Nexus 4 iPhone 4s Galaxy S4 Galaxy Note0

5

10

15

20

25

30

35

40

Di
st

an
ce

 E
rr

or
 (m

)

(b) Trajectory Estimations

Fig. 4. Error distributions of our estimations to 124 ground truth locations
and 171 trajectories using 4 different smartphones.

fixes base on these observation. Note, that each position fix is
mapped to the state node graph by orthogonal projection, in
order to be comparable to the subsequent methods.

For evaluation, we calculate the distance errors between the
estimated trajectories and the corresponding paths by using the
discrete Fréchet Distance as a well-adopted distance measure
for trajectories. Figure 4b depicts the observed distance errors
based on 171 artificial paths and the Wi-Fi observations from
our 4 test devices. Again, it can be observed, that the different
smartphones show a marginal variance of the estimation results
obtaining a mean distance error of 18.52 meters for the Galaxy
Note, and about 20.00 meters for the others. The highest
median of 21.61 meters is observed for the Nexus while the
other test devices show a median of about 20.64 meters. The
interquartile ranges vary from 8.16 meters for the Galaxy Note
to 10.59 meters for the iPhone.

Based on these results, we cannot proof that a certain device
has a significant impact on our estimations. We assume, that
this is caused by the performed active scans, where probe
requests are sent out on most devices with a similar signal
power. In summary, these estimations show low accuracies
based on the Fréchet Distance to ground truth. Overall, we
observe a mean distance error of 19.98 meters with a standard
deviation of 6.42 meters on average for all path estimations
which is not suitable for indoor tracking systems. Therefore,
we now investigate how the proposed probabilistic approaches
improve our deterministic trajectory estimations.

C. Probabilistic Estimation Accuracy

For comparison, we take the same 171 artificial paths and
the Wi-Fi captures from the Nexus device. As distance metrics,
we consider both the discrete Fréchet Distance and the average
of pairwise Euclidean distances between our estimations and
ground truth locations. We investigate the accuracy of all
methods using the following initial parameters: the average
distance between hidden states is about 6 meters leading to
|S| = 57 state nodes within the building’s corridors. The
amount of particles for the SIR particle filter (PF), and our
sPF, is set to |P | = 16×|S|, being 912 particles, respectively.
Figure 5 depicts the results with confidence intervals base on
a confidence level of 0.95. It is observed, that PF achieves
the lowest accuracy on average for both distance metrics in
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Fig. 5. Comparison of estimation errors between all methods.
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(a) Varying the amount of particles
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(b) Varying the state node density

Fig. 6. Comparison of estimation errors of probabilistic methods.

comparison to the other approaches which have a restricted
solution space. This confirms our assumption, that room-level
accuracy is not achievable using passive Wi-Fi observations.
Hence, it is more suitable to focus on a restricted state graph
covering all possible user paths, rather than considering the
complete solution space for position fixes. The results also
indicate, that probabilistic methods based on an underling
state graph achieve higher accuracies than the deterministic
approach. We observe an improvement in terms of the Fréchet
Distance of 5.59 meters in case of Viterbi, and 7.93 meters in
case of sPF. Thus, the best estimation accuracy of 12.25 meters
with a standard deviation of 5.97 meters is provided by the
sPF followed by Viterbi achieving a mean Fréchet Distance
error of 14.55 meters and a standard deviation of 6.97 meters.
Considering the pairwise distance, we observe an improvement
of 1.19 meters for sPF and 1.11 meters for Viterbi.

Assuming, that the amount of particles |P | and the density
of deployed state nodes influence the estimation accuracy, we
now investigate these parameters. Hence, we firstly keep our
state nodes and vary |P | for both filters. Again, we consider
Fréchet and the average pairwise distance and double |P | from
1×|S| to 64×|S|. Note, that with |P | = 64×|S| and |S| = 57
the scalability is worse than in case of Viterbi.

As shown in Figure 6a, the accuracy of both filters (PF and
sPF) increases with more particles, which was expected. More
interesting, the Fréchet Distance error is always lower than
Viterbi in case of our sPF, and consistently higher in case of
PF. Furthermore, both distance errors (Frechet and pairwise)
decrease more slowly in case of sPF when augmenting the



2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 04-07 October 2016, Madrid, Spain

TABLE I
OVERVIEW OF ALL TRAJECTORY ESTIMATION RESULTS IN BEST CASE.

Used Method Det. Viterbi PF sPF
Av. dist. (Fréchet) 19.98 13.62 14.84 11.65
Std. dev. (Fréchet) 6.42 7.78 9.86 5.98
Av. dist. (Pairwise) 7.10 5.58 7.80 5.29
Std. dev. (Pairwise) 1.74 2.71 5.52 2.33
Parameters (|S|,|P |) n/a , n/a 368, n/a n/a , 3648 72, 3648

particle amount. These observations show, that the accuracy
of sPF is less sensitive to |P | than in case of PF. Even with
the smallest possible amount of particles our sPF achieves
adequate estimation results in comparison to the state-of-the
art approaches. In contrast, PF requires a much higher amount
(64 times) of particles to achieve a similar accuracy than
Viterbi, and thus, sPF shows a higher scalability for the same
accuracy level than PF, due to O(|P |).

We now investigate the impact of the state node density for
both Viterbi and sPF. Hence, we vary the average distance
between consecutive state nodes while keeping the amount of
particles constant at |P | = 456, which conforms to 8×|S| for
the previous state node setting. Again, Figure 6b depicts the
results considering the average distance errors. As expected,
the accuracy of Viterbi decreases with an increasing state node
distance, due to a smaller solution space for estimations. In
contrast, the state particle filter shows a minimum error at an
average state node distance of 5 meters, while the higher errors
are observed for very dense and sparse state node settings.
Thus, for smaller node distances, the particles’ movement
behaves more like in open space models, and for longer node
distances, particles move in a very restricted way which may
not represent real user traces. Hence, it is important to find an
adequate state node placement with an optimal density. For
this purpose, we use our heuristic, presented in Section III-C1
returning an average node distance of 6 meters which comes
close to the best parameter observed here.

As depicted in Figure 6b, Viterbi performs more accurate
than the sPF when the average state node distance is smaller
that 2.0 meters which obviously requires a higher amount of
deployed nodes (386 in our case). Take into account, the more
state nodes are deployed, the higher the time complexity of
the algorithm, and the lower its scalability. In contrast, the
complexity of sPF is not affected by a higher amount of sate
nodes, due to pre-calculation of distances and angles. Hence,
if more state nodes are deployed, more particles can be used
without loosing performance benefits in comparison to Vitebri.
Therefore, it is worth to take a final look at the best estimation
results for all of our approaches, depicted in Table I. The last
row shows the chosen parameter for the amount of state nodes
|S|, and the number of particles |P |, where n/a denotes that
the parameter has no influence on the corresponding method.

The observed Fréchet Distance errors indicate, that all
probabilistic methods help to increase the estimation accuracy
compared to the deterministic (Det.) approach. Overall, our
sPF achieves the highest accuracy with the lowest standard
deviation in best case, and hence, it seems more feasible for
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Fig. 7. Comparison of all methods in terms of precision and robustness.

Wi-Fi based indoor tracking. Based on the pairwise distance,
we also observe higher accuracies for Viterbi and sPF, while
the standard deviation for deterministic estimations is lower.

D. Further Performance Metrics

Beside the accuracy, as one of the most important predicate
for positioning systems, we now investigate further well-
adopted performance metrics, such as precision and robust-
ness. Generally, the precision is a measure of how consistently
the system works. It is often defined as the standard deviation
of the estimation error. However, Liu et al. [22] use the
cumulative distribution function (cdf) of the distance error
to measure a system’s precision. Hence, we determine the
cdf of our observed Fréchet distance errors for all methods
base on the best parameters (cf. Table I). Figure 7a reveals
the results. Obviously, all probabilistic approaches show a
considerably higher precision than our deterministic trajectory
estimations. As the cdf is described by percentiles, we state
an estimation precision of 90% within 20.12, 22.29, 23.91,
and 24.69 meters for sPF, PF, Viterbi, and the deterministic
approach, respectively. In summary, our sPF shows the highest
precision estimation on the conducted experiments.

Next, we investigate the robustness as a measure of how
well the system reacts on corrupt, or missing signals. For
passive Wi-Fi tracking, this metric is important, due to corrupt
RSS measures and the arbitrary nature of probe request bursts,
leading to frequent no-observations. For this purpose, we con-
sider the observations of the 50 longest generated paths, and
estimate the accuracy to ground truth for all proposed methods.
We repeat this step while increasing the amount of corrupt
measurements setting a certain percentage of observations to
-100 dBm, which is equal to “not-observed”. Figure 7b depicts
the mean Fréchet Distance errors of this experiment where up
to the half of our observations is being corrupted.

It can be seen, that the accuracy of all methods decreases
with increasing corrupt observations. However, for evaluation
of the system’s robustness, the degree of the accuracy decrease
has to be considered. It applies: the smaller the difference
of estimation errors for increased corrupt observations, the
higher the robustness. Hence, we observe that the deterministic
method obtains a poor robustness, especially when a small
percentage of observations, e.g. 1/5, is not valid which is very
common in case of passive Wi-Fi tracking. In contrast, the
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TABLE II
SUMMARY OF INVESTIGATED METHODS AND PERFORMANCE METRICS.

Used Method Det. Viterbi PF sPF
Mean Accuracy 19.98 13.62 14.84 11.65
Precision (90%) 24.69 23.91 22.29 20.12
Complexity Low High Moderate Moderate
Scalability Very Good Low Moderate Good
Robustness Poor Moderate Moderate Good

proposed state particle filter obtains the most constant results
with a small difference of 4.92 meters between the lowest
and the highest observed estimation error. This represents a
good robustness. In comparison, we observe 10.62 meters of
difference for Viterbi, and 11.93 meters for PF, which can be
seen as a moderate robustness.

In summary, Table II depicts the results for all of our
investigations according to Liu et al. Note, we have not
evaluated the cost metric, because Wi-Fi tracking do not
require any hardware modifications, and thus, it is of low-
cost when performed on existing infrastructures. Based on
these results, we conclude that our sPF performs best in
terms of accuracy, precision, and robustness. Furthermore, a
much smaller amount of particles is needed than in case of a
common SIR particle filter, rendering the sPF scalable for large
buildings. In comparison, a deterministic tracking method is
indeed of lower complexity, and thus, more scalable. However,
it has not achieved adequate results in terms of accuracy,
precision and robustness within our experiments, and hence,
we claim that probabilistic methods are generally required to
make Wi-Fi based tracking systems more feasible.

V. CONCLUSION

In this paper, we have addressed the problem of making Wi-
Fi based indoor tracking systems feasible. Based on arbitrary
probe request bursts from mobile devices we have performed
position fixes without the user’s awareness. It has been shown,
that such deterministic location estimates are highly inaccu-
rate, and it has been demonstrated how probabilistic methods
can help to improve the estimation accuracy, precision, and
robustness. We have investigated two common approaches,
i.e., Viterbi’s algorithm, and SIR particle filter, and we have
presented a novel state particle filter which has achieved the
best results on our experiments using real Wi-Fi captures.
Overall, it has proven useful to consider a restricted movement
model based on the building’s corridors, rather than taking all
possible user locations into account. In summary, our results
indicate that passive Wi-Fi tracking becomes more accurate,
scalable, and thus, feasible within indoor scenarios using the
state particle filter presented in this work.

The conducted experiments have to be repeated at com-
plexer scenarios and other settings for future work, in order to
confirm our conclusions. Beside this, we have already started
to evaluate the impact of the device usage where we investigate
typical usage patterns for mobile devices in real world settings.
First tests at our building have achieved good results in terms
of accuracy when using Viterbi and our state particle filter.

However, further experiments are required and corresponding
results will be given in detail in future work.
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