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Abstract—Wi-Fi fingerprinting is the most actively investigated
indoor positioning technique, yielding adequate positioning accu-
racy on existing wireless infrastructures. However, the positioning
process commonly requires active 802.11 scans where probe re-
quests are sent out. These frames can easily be captured and used
for tracking mobile devices without the users’ consent or even
awareness. In order to preserve the users’ privacy, a fully passive
positioning process for Wi-Fi fingerprinting is proposed in this
paper. With the presented approach, a mobile device passively
listens for beacon frames in monitor mode to determine a valid
RSSI fingerprint while not sending out any information. Our
passive method is evaluated against common active fingerprinting
in a real-world environment. The obtained results yield the
conclusion that the proposed approach performs even slightly
better in terms of accuracy and precision. Furthermore, less time
is needed for obtaining a position fix, while preserving the users’
privacy during the acquisition of position updates.

I. INTRODUCTION

The immense proliferation of modern mobile devices have
led to a widespread and ubiquitous usage of Wi-Fi. Due to
the vast number of deployed access points, Wi-Fi is currently
seen as one of the most promising techniques for indoor
positioning, as GPS is not operating inside buildings.

One of the most popular approaches in this context is Wi-Fi
fingerprinting, which has first been presented in the RADAR
system [1]]. It basically consists of two phases: In the offline
training phase the received signal strength indicators (RSSI) of
all access points (AP) in reach are measured at a certain grid
of reference points. The RSSI measurements and its locations
are stored into a fingerprint database, the so-called radio map.
In the online phase, a device performs an IEEE 802.11 active
scan determining the RSSI vector of all APs in reach at the
current location. This vector is compared to the radio map and
the most probable position estimation is returned.

Wi-Fi fingerprinting achieves adequate positioning results,
but suffers from an extensive training phase. Therefore, many
investigations have focused on reducing these efforts for
creating the radio map, e.g., [2], rather than on solving
privacy issues. Only few works exist presenting approaches
for privacy preservation in Wi-Fi fingerprinting, such as [3]]
or [4]. However, none of these works concentrate on the
commonly used IEEE 802.11 active scanning process itself,
where unencrypted management information is sent out. This

information can be easily captured, and used for target tracking
without the users’ awareness, as shown in [5].

We concentrate on this privacy problem, and present a mod-
ification to the online phase of common Wi-Fi fingerprinting.
The basic idea is to use only IEEE 802.11 passive scans in
order to determine the RSSI vector. Thus, a mobile device
just listens on the unsolicited beacon frames periodically sent
by any AP, rather than actively sending any frames itself.
Therefore, neither the provider of the radio map nor any third
party within range are able to track users’ movements.

Furthermore, we demonstrate that the accuracy and pre-
cision of our beacon based fingerprinting (bFP) is at least
as good as of common Wi-Fi fingerprinting with active
IEEE 802.11 scans, named aFP below. For this purpose,
we implement bFP with a deterministic and a probabilistic
approximation algorithm, using weighted kNN and Naive
Bayes classifier, respectively. Both techniques are widely used
in aFP systems [6]. The evaluation is based on various position
fixes on a mobile device using both aFP and bFP with our
office building’s existing Wi-Fi infrastructure. We evaluate the
system’s accuracy and precision and compare the results of
aFP and bFP. Furthermore, we compare bFP with the results
obtained at SMARTPOS [[7], a previous work on precise Wi-Fi
fingerprinting by our group.

Overall, this paper is structured as follows: Section [[I] gives
a brief overview of related work. In Section the technical
background and basic principles are introduced. Section
presents our evaluation, and finally, Section M concludes the
paper and gives hints on future work.

II. RELATED WORK

Privacy-preserving approaches are well studied in the field
of indoor positioning and wireless LANs. Jiang et al. [§]]
analyze the problem of location privacy in wireless infrastruc-
tures and introduce a protocol to protect the user’s location.
They already consider silent attackers capturing Wi-Fi packets
within communication range as the strongest attackers for
users’ privacy. Note, that our bFP protects the positioning
process against these silent sniffers.

Konstantinidis et al. [9] introduce a method for privacy-
preserving indoor positioning on mobile devices. The authors
propose an approach to protect users against location tracking
by the localization service. However, neither the scanning
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procedure nor any data sent from the mobile device, such as
current Wi-Fi fingerprints, are particularly protected.

Li et al. [4] propose a privacy-preserving Wi-Fi fingerprint
localization scheme protecting both the data privacy of the
localization service provider and the user’s location. For the
latter, they use the Paillier cryptosystem to realize an encrypted
transmission of online fingerprints from mobile devices to
the localization server. Thus, the measured RSSI vectors is
then protected against sniffer attacks, but the scanning process
is still active and can be captured by third persons within
communication range.

Gschwandtner and Schindhelm [3]] closely relate to our own
investigations. They achieve privacy-preserving Wi-Fi finger-
printing using enhanced Wi-Fi beacons. All required position-
ing information are added into the information elements of
beacon frames. Thus, the client is able to calculate its’ position
locally. It is also mentioned to listen on the enhanced beacon
frames only, rather than sending probe requests. However, the
mentioned idea is not further investigated, nor evaluated in a
real-world scenario. Hence, we fill in this gap, and present a
concrete implementation of a beacon based fingerprinting on a
mobile phone. Furthermore, we evaluate our approach against
common Wi-Fi fingerprinting methods in terms of position
accuracy and precision in a real-world environment. To our
knowledge, this has never been investigated before.

II1. BASIC PRINCIPLES

A. IEEE 802.11 network discovery

Wi-Fi is defined in IEEE 802.11 [10] introducing three
different frame types, such as control, data, and management
frames. We focus on the latter, due to the fact that these are
involved in the 802.11 network discovery procedure which can
be active or passive. When performing passive scans, a client
listens on beacon frames which are periodically transmitted
by APs over all operating channels. Thus, the client iterates
over all available channels and listens on each channel for a
maximum duration defined by the MaxChannelTime parame-
ter. Notice, that due to mismatching channels clients may miss
transmitted beacons using this procedure.

For a more efficient network discovery, most clients prefer
active scanning sending out probe requests iteratively for each
channel. These frames contain unencrypted device specific
information, e.g., MAC address, or destination’s network name
(SSID). All management frames can simply be captured by any
Wi-Fi card in monitor mode. Hence, information about pre-
ferred network SSIDs and the sender’s MAC-Address is easily
accessible for silent attackers. Furthermore, continuous active
scans in an area of interest, e.g., performed during common
Wi-Fi fingerprinting, can be used to track users’ trajectories
[11]. In summary, Wi-Fi active scans in conjunction with
indoor positioning systems lead to privacy issues. Therefore,
we investigate a purely passive Wi-Fi fingerprinting based on
using recorded beacon frames only.

B. Location Estimation

Location estimations based on a recent online RSSI vector
can be performed in a deterministic or probabilistic manner
[6]. Both variants are described for our bFP in the sequel.
Furthermore, we consider the users’ orientation for location
estimations using the built-in accelerometer and magnetometer
sensors, which are commonly integrated in mobile devices.
Online RSSI measurements can then be compared to more
specific database records according to the orientation. This is
common practice, due to the fact that the human body may
affect the location estimations [7]], [12].

1) Passive Fingerprint Creation: In common Wi-Fi finger-
printing systems, the creation of the radio map is usually based
on active scans. However, this procedure involves probes being
sent by the user’s device, which can ultimately lead to an
infringement of the user’s communication and location privacy.
Therefore, we deploy passive fingerprint creation as follows:
For a specific time interval At¢, the mobile device listens
for incoming beacon frames while iterating over the possible
radio channels, switching channels after another interval Aty,.
This channel hopping is necessary to capture signals from all
APs in reach operating on different channels. The fingerprint
vector v is filled with the mean RSSI values v; of each
AP seen. Different values of At impact both the duration of
determining v and the amount of information contained in a
single fingerprint, which may influence the position accuracy
as it is able to planish the impact of an observed RSSI outlier.
Hence, this parameter can be adapted to different use cases
depending on constraints concerning duration and accuracy of
a position fix. E.g., when a persons is moving, At should be
much smaller than for users sitting in their office.

2) Deterministic Approach: According to SMARTPOS [7]],
we consider both weighted and non-weighted kNN (k-nearest
neighbors) classifiers in signal space during the online phase.
Based on the Euclidean distance d; = dist(v, ;) between a
passively measured RSSI vector v and a specific record r; of
the fingerprint database, we determine the k£ nearest candidates
of possible user positions. Using non-weighted kNN classifier,
the centroid of these k positions is calculated and returned to
the user as current location. In addition, the weighted kNN
method multiplies an individual weight w; to each of the &
position candidates, with w; being calculated as:

-1

1

wi = | d; z_j 7 (1)
j=1

The current location estimate is then calculated as the sum
of weighted k position candidates. Note, that the authors of
SMARTPOS obtained better results using the weighted pro-
cedure. So, we also investigate both types of kNN classifiers

for our bFP and compare the results.

Whenever an online RSSI vector is compared, it is possible
that any two vectors differ in their lengths. Thus, one has
to find a consistent way of dealing with missing values.
Corresponding RSSI values can either simply be ignored
or be set to a predefined minimum value for missing data,



which should be lower than the minimal actually measurable
RSSI value [[7]. When ignoring matchless entries, important
information for accurate location estimations may be lost,
while negative effects caused by changes occurring in the setup
of access points may be kept low. On the other hand, a fixed
minimum value punishes comparisons between strong RSSI
and missing values, and favors comparisons between weak
RSSI and missing values. However, this is to be expected in
real-world scenarios where strong signals should be measured
again at the corresponding position, while weak signals may
be missed, due to strong fluctuations of radio signals within
buildings. Notice, that SMARTPOS shows better results when
ignoring missing values.

3) Probabilistic Approach: Following to SMARTPOS, a
naive Bayes classifier is used. Unlike before, this approach
returns a specific room number to the user. To this end,
room information has to be saved together with corresponding
RSSI vectors in the radio map during offline phase. More
specifically, our naive Bayes classifier is based on the Bayes
theorem and assigns the most probable class to a problem
instance represented by a feature vector. In our case, we
treat rooms as classes, and vectors of RSSI measurements as
problem instances and feed them to Bayes theorem:
P(|R) - P(R)

P(v)

calculating the posteriori probability P(R|v) of being in a
certain room R in the case fingerprint v is observed. The
probability P(R) is the prior probability which is based on our
knowledge of frequencies in the training set, and hence, it can
be easily estimated by counting the occurrence of each room.
P(v|R) is the likelihood function determining the probability
of observing v in case of being in room R, and P(v) is
called the evidence which can be calculated assuming a normal
distribution with mean p and the standard deviation o for each
one-dimensional parameter.

The naive Bayes classifier is simple to use, given the
fact that it always assumes conditional independent features.
Hence, we are allowed to express the probability of being in
a certain room R in case of observing fingerprint v consisting
of n access points’ (mean) RSSI values v; as follows:

P(R|v) = @)

1 n
P(R[vy, ...vn) = - P(R) [ ] P(vi|R) 3)
i=1

with evidence Z = P(v) treated as a constant in this case,
because the values of RSSI measurements are known. Due
to the fact that the value of Z does not change, and us
only being interested in the most probable room R; with
j €1,...,|R| using the maximum-a-posteriori (MAP) decision
rule, the naive Bayesian classifier can be directly derived from
Equation [3| and is expressed as follows:

R= arg};nax {P(R;) H P(vi|Rj)} )
j =1

J

Hence, applying an online measured RSSI vector of length n
to Equation E], the most probable room R; out of all labeled

rooms R is returned by the proposed naive Bayes classifier.
Note, that a similar probabilistic estimator is also used in
SMARTPOS, but is not described by the authors how they
treat missing values in this case.

Being linked by means of multiplication, however, observed
RSSI values that are lacking their counterpart in the radio map
for a certain room I2; would rigorously lead to zero-probability
of R;. In our case, this would lead to false classifications, due
to the fact that a room will consequently show the probability
of zero even if only one RSSI value is missing. In order
to solve this problem, a small sample correction is added to
all probability estimations guaranteeing that no probability is
ever set to zero. These corrections are called pseudocounts or
additive smoothing, which is commonly used with naive Bayes
classifiers in order to treat missing values. In our case, we use
Laplace smoothing for all of our measurements v; taken in
a certain room R; and smooth P(v;|R;) with a pseudocount
~v = 1. This is done according to the following Equation:

PlulRy) = oot n, £ 5)

|U|R_7‘ +7- (U)Rj

where count(v;)r; is the number of occurrences of the
measurement v; in room Rj, |v|g, is the amount of all
measurements made in room R, and (v)g; is the domain of
all measurements observed in room [z;. By using this Laplace
smoothing technique, we are able to consider all of our rooms
for classification even when our measurement data differ from
the corresponding entries in the radio map. Thus, Equation [
is still correct for the whole set of possible rooms and returns
the most probable room.

IV. EVALUATION

Our approach is evaluated using the existing wireless in-
frastructure in our institute’s office environment. The results
are compared to common active Wi-Fi fingerprinting in terms
of well-known performance criteria, which are also used by
SMARTPOS. We analyze the mean, minimum and maximum
positioning errors as well as the standard deviation using
different values of k. Furthermore, we investigate the impact
of different factors on the performance of our approach, i.e.,
consideration of the user’s orientation, usage of weighted
kNN, and how missing values are handled. Both deterministic
and probabilistic location estimations are confronted with the
results of active scanning. For comparability, we perform both
types of online scans using identical parameters.

A. Implementation and Setup

We use common active scans for recording the radio map,
as this step is not sensitive to users’ privacy. The active scans
are performed by an application on a Samsung Galaxy S2
(I9100) which is used as our test device. At each reference
point, we perform 20 active Wi-Fi scans for each of the four
main directions. A series of scans is always annotated with the
position of the corresponding reference point on the map and
the user’s orientation when the fingerprint was taken. For radio
map generation in the deterministic approach, each entry in the



(a) Reference points for the radio map (b) Locations of position fixes marked
marked as blue dots. as red dots.

Fig. 1. Schematic overview of our test setup.

fingerprint database represents the vector of the means of 20
consecutively measured RSSI values per reachable AP. For the
probabilistic approach, we determine the fingerprint as normal
distribution over the measurements of each AP and add the
corresponding room label information. Totally, we recorded
332 fingerprints on 83 reference points located within one
aisle of our building and its main corridor, as shown in Figure
[Ta] The distance between consecutive reference points is ever
lower than 1.5 meters.

For a fully privacy preserving approach, any active bidirec-
tional communication with a central location server has to be
avoided. Instead, the radio map can either be locally stored
on the user’s device or might be transmitted piece by piece
in the beacon frames’ optional information element section,
as successfully shown in [3]]. For our evaluation, however, we
skip this step and store the radio map directly on our mobile
test device.

In order to make management frames usable for passive
fingerprinting, the device’s Wi-Fi card has to be set into
monitor mode, which is not possible with all common phones.
Hence, we first rooted the phone installed a patch for the Wi-
Fi card using the Android application package of chonﬂ in
order to be able to use 802.11 monitor mode for recording
beacons. Notice, that when the Wi-Fi card is set into monitor
mode, the device is only listening and does not send out
any packages that could be captured by a malicious party or
infrastructure provider. This can hence be seen as the highest
possible level of protecting a users from Wi-Fi based location
tracking, while still being able to offer Wi-Fi based indoor
positioning and navigation.

In order to create passive fingerprints during the online
phase, the mobile device listens on incoming beacon frames
for a specific time interval At, switching between the most
commonly used Wi-Fi channels 1, 6, and 11 after Aty,. If not
explicitly stated otherwise, we set At to 3 seconds, and At to
1 second in our experiments. All necessary information, such
as hardware addresses of access points, and corresponding
RSSIs, is then extracted from the resulting dump file and a
fingerprint is constructed containing the mean values v; of the
observed RSSI values for each seen access point i.

Active fingerprints are created by using the same application
as for generating the radio map. One active scan required
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(a) Active scanning. (b) Passive scanning.

Fig. 2. Comparison of active versus passive Wi-Fi fingerprinting considering
missing values, weighted kNN, and user orientation.

about 4.5 seconds on average. Thus, our passive approach
with At = 3 needs less time to collect the data necessary for
formulating a position fix query. To allow for direct compar-
isons of the active and passive fingerprinting approaches, we
successively apply both methods during the online phase on
the same device at 19 randomly chosen locations, as indicated
in Figure [Ib] For determining the user’s orientation, we use
a digital compass derived from the smartphone’s accelerome-
ter and magnetometer sensor readings. Both the orientation
information and the observed fingerprint are compared fed
to the locally stored radio map using either deterministic or
probabilistic location estimation.

B. Deterministic Location Estimation

For evaluation, we calculate the mean, minimum and max-
imum positioning error, as well as the standard deviation
considering all of the 19 active versus the 19 passive position
fixes while iterating over different values of k. Figure
indicates the results of this real-world experiment when both
the user’s orientation and missing RSSI values are considered
and a weighted kNN approach is used for deterministic loca-
tion estimation. The best results are obtained with k = 4,
showing a mean positioning error of 1.92 meters and a
standard deviation of 0.92 meters for passive scans, and 2.59
meters with a standard deviation of 1.68 meters in case of
common active scanning. Hence, these results indicate that
the passive approach performs more accurately within our test
set. Furthermore, and as expected, it can be observed that for
both scan types, the mean positioning error tends to increase
for higher values of k.

In order to investigate the impact of the used parameters,
we now successively compare the results obtained by ignoring
missing values, using non-weighted kNN, and completely
neglecting the user’s orientation. Eventually, the optimal pa-
rameter setting that results in the lowest average positioning
error will be determined and discussed. Figure |3| indicates
the results for active and passive fingerprinting, when missing
RSSI values are ignored, but relative weighting and orientation
are still considered for location estimation. It is clearly shown,
that missing values should be treated by applying a minimal
value, as described in Section Otherwise, as shown
in Figure 3| the obtained values show unfeasible positioning
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(a) Active, ignoring missing values.

Fig. 3. Comparison of active versus passive Wi-Fi fingerprinting using
weighted kNN, and users’ orientation, but ignoring missing values.

(b) Passive, ignoring missing values.
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(a) Active, with non-weighted kNN. (b) Passive, with non-weighted kNN.

Fig. 4. Comparison of active versus passive Wi-Fi fingerprinting using
weighted and non-weighted kNN.
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(a) Active, without orientation.

Fig. 5. Comparison of active versus passive Wi-Fi fingerprinting when
considering and ignoring the users’ orientation.

(b) Passive, without orientation.

results both for the active and the passive approach. In our
case, we observe a mean position error of over ten meters
for both scan types and k < 10. The standard deviation is
greater than 8 meters for active and greater than 6 meters for
passive scanning, which is not suitable. These observations are
contrary to SMARTPOS, where the authors decided to ignore
missing values in order to achieve slightly better positioning
results.

As next step, we use a non-weighted kNN while considering
the user’s orientation and treating missing RSSI values. Again,
the obtained results are shown in Figure [4| for both scan types.
It can be seen that the mean positioning error is a bit higher
for each value of k£ and for both approaches when using non-
weighted kNN instead of weighted kKNN. With k = 4, the mean
accuracy lies at 2.66 meters for active, and at 2.16 meters for
passive fingerprinting with a standard deviation of 1.2 meters

and 1.7 meters, respectively. Hence, our passive approach
returns more accurate position fixes even when a non-weighted
kNN location estimator is used. Overall, weighted kNN is
to be preferred for both scan types, which conforms to the
conclusions made in SMARTPOS.

As a last parameter, we investigate the impact of the user’s
orientation. Thus, we apply weighted-kNN, consider missing
values, but now ignore the orientation information for our
location estimation. Figure [5] shows the corresponding results
for active and passive fingerprinting. It can be observed that
the overall positioning error on average is slightly lower for
both scan types, especially for higher values of %k, and again
passive scanning results in a lower positioning error than the
common approach. For active scanning with k& = 4, the mean
accuracy is at 2.40 meters and a standard deviation of 1.52
meters is obtained. This is a tiny improvement of 0.19 meters
in terms of accuracy and 0.16 meters in terms of precision
for active fingerprinting. In case of our passive approach
with £ = 4, we observe a little degradation of 0.06 meters
for both accuracy and precision when ignoring the user’s
orientation instead of considering it. However, for £k = 6 a
mean positioning error of 1.88 meters and a standard deviation
of 0.99 meters is obtained, indicating a slightly improvement
of 0.04 meters. An interesting observation is that for higher
values of k, the mean accuracy remains constant when ig-
noring orientation while it is increasing when considering the
orientation information. The explanation is, that in case of
ignoring orientation, the RSSI vector of online measurements
is compared to the complete database, rather than compar-
ing only entries with corresponding orientation. Thus, more
similar fingerprints are available for k nearest neighbors, and
hence, an increasing k is less likely to negatively influence
the positioning result. However, when neglecting orientation
information, deterministic location estimation requires 4 times
more database comparisons, and thus, a position request takes
more time to be served.

In summary, we obtain the best results for both scan types
within our experiment when using weighted kNN, considering
missing values instead of ignoring them, but ignoring the
user’s orientation. These findings are contrary to SMARTPOS,
where the information of users’ orientation helped to increase
the positioning accuracy. In our case for passive fingerprinting,
the mean positioning error remains constantly below 2 meters,
the standard deviation below 1.1 meters for £ > 3. In
comparison, the best results for active scanning were achieved
with k = 8, showing an accuracy on average of 2.06 meters
and a standard deviation of 1.8 meters. Hence, with respect
to these results based on deterministic location estimation, we
conclude that our passive approach performs slightly better
than common active Wi-Fi fingerprinting within our test set.

C. Probabilistic Location Estimation

We apply the naive Bayes classifier as described in Section
to the same 19 position fixes of our online phase. In
order to use the classifier, we first partition our test environ-
ment into 19 different rooms and corridor segments. Each



TABLE I
CLASSIFICATION RESULTS FOR ACTIVE AND PASSIVE SCANNING
(CORRECT=GREEN, NEARBY=YELLOW, FALSE=RED)

Active Scanning | Passive Scanning
Real room -0 +0 o | +o
hall hall corU3 hall
corL.2 corL2 | corL2 corL.2
2002 2004 2004 toilets
corL1 2006 2006 corL1
corU2
2002 2002 toilets
2009 2009 2009
2008 2008 toilets
2006 2006
2003 corLl | corLl 2003 2003
2001 2001 2001 2003 2001
corL.2 2010 2010 2009 corL.2
corL1 2007 2007 g007
corU2 toilets corU2
2010 corL.2 corL.2
2010 g010 corL.2
2010
2004
corU3
Summary
correct 8 4 11 9
nearby 5 8 5 5
false 6 7 3 5

segment contains four to six reference points marked with
the corresponding room label. A room segment is classically
divided by its walls, except the segments mapped onto the
corridors of the building, which are quite long and are hence
further divided into several parts to allow for a fine-grained
positioning. Overall, we investigate the correctness of the
classification result for each position fix in three categories:
correct, nearby (direct neighbor of the actual room) and false.
As before, we evaluate the impact of user’s orientation by
considering (+0) and ignoring (-o) the orientation information
for both active and passive scans. The classification results for
the complete test set are depicted in Table[I]

The best results are obtained for both scan types when
the information about users’ orientation is ignored, which
confirms to SMARTPOS. When orientation is ignored, 42%
of all rooms are classified correctly and 31% are false results
using common active fingerprint. In comparison, when using
our bFP, 58% of all rooms are classified correctly with only
16% being misclassified. Based on these results, we conclude
that passive Wi-Fi fingerprinting performs more accurately for
both deterministic and probabilistic location estimations, and
furthermore, it is capable to completely preserve mobile users’
privacy during the whole positioning process.

V. CONCLUSION

In this paper, a privacy preserving Wi-Fi fingerprinting
approach was presented and evaluated. The proposed method
uses only passive Wi-Fi scans and a locally available radio
map. This ensures the highest level of privacy preservation,
due to the fact that no signals are sent out by the mobile
device. Thus, neither the location provider nor any third party

is able to track the device without the user’s awareness, which
is easily possible using common fingerprinting methods.

Several real-world experiments were conducted using the
existing Wi-Fi infrastructure of our office building for the sys-
tem’s evaluation. The obtained results lead to the conclusion
that our passive positioning system performs at least as good
as common active Wi-Fi fingerprinting approaches in terms of
accuracy and precision. One explanation for this observation
is that even quick passive scans are able to aggregate more
information about received signal strengths for calculating an
online fingerprint than common active scanning. This finding
is backed by the observation that the precision of our bFP even
increases when performing longer scanning periods.

In summary, the best results for both active and passive
fingerprinting were obtained using weighted kNN, treating
missing RSSI values, and ignoring the user’s orientation. With
these findings being contrary to some related investigations,
further experiments on bigger datasets at other environments
have to be conducted for future work in order to verify our
findings. Furthermore, we plan to extend our investigations on
other commonly used probabilistic location estimations, e.g.,
Kalman or particle filters. Finally, we want to further discuss
and prove the practicality of our proposed privacy preserving
positioning approach.
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