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Abstract—In the last decade, Wi-Fi based trajectory monitor-
ing has gathered high interest in the scientific and commercial
world, due to the increased usage of Wi-Fi capable mobile devices.
A lot of work can be found where monitor nodes are placed in
an area of interest capturing Wi-Fi signals from passing phones.
However, the deployment of such nodes is often inefficient,
expressed by a low ratio between monitored trajectories and
the amount of installed nodes. Hence, finding an optimal setting
of node positions is an essential and challenging task. In this
paper, a systematic solution for this variant of the NP-hard
art gallery problem is investigated. The idea is to set monitor
nodes only on places (hotspots), where most of the human paths
can be tracked. For the discovery of such hotspots, three novel
approaches are presented working on simulated user traces based
on an extended pathway mobility model, and a given plant layout.
The results of each approach are evaluated in terms of quality
for Wi-Fi based trajectory monitoring using different parameters
and settings. The evaluation indicates that the proposed methods
show different potentials and limitations. Overall, they return a
reliable setting of hotspots compared to a completely random
selection of an equal amount of node positions and, thus, they
serve as a systematic and sophisticated placement strategy.

Keywords—Hotspot Discovery; Node Placement; Art gallery;
Mobility Model; Trajectory Clustering

I. INTRODUCTION

The immense diffusion of modern mobile devices with
integrated sensors and several communication interfaces have
led to an increased usage of Wi-Fi as de facto wireless
communication standard. In many situations and locations of
daily life, e.g. at work, at home, in shopping malls or in other
public places, wireless networks are available, offering Internet
access and local services to people. In order to use these
services in an ubiquitous way, Wi-Fi enabled mobile devices
periodically scan their vicinity for known or free networks
and try to connect to them automatically. Such 802.11 active
scans leak unencrypted information to the surroundings, e.g
the device-specific MAC-address, and can easily be captured
by any Wi-Fi card set into monitor mode. A lot of work in
literature can be found where an infrastructure of several Wi-
Fi monitor nodes has been deployed into an area of interest
to gather crowd data [4], social relationships [3], or estimate
pedestrian flows [16], and track human trajectories [15].

However, the deployment strategy of such nodes is never
further explained. E.g., the authors in [4] express that 15
monitor nodes “were placed at strategic locations”, but it is

not discussed if the same or more mobile devices could have
been tracked with a smaller amount of nodes placed at other
locations. In other words, the ratio between the amount of
tracked devices and the number of used monitor nodes is not
investigated in terms of efficiency, and a random selection
of node positions does not return the best solution. Adequate
setup strategies and approaches for finding optimal positions
within a given scenario are still missing. Due to the fact, that
each additional monitor node leads to higher installation and
maintenance cost and causes more overhead in communication
and data analysis, such approaches would help to save money
by reducing the amount of required nodes without decreasing
the amount of trackable devices.

In this paper, we focus on this optimization problem
for a Wi-Fi based trajectory monitoring infrastructure within
large public buildings. Such an infrastructure captures Wi-
Fi signals from passing phones at various places in order
to reproduce the original trajectories, represented as a series
of coordinates, taken by the visitors of the building. For
this purpose, we simulate various visitors moving through
a bitmap representation of a floor plan on an underlying
extended pathway mobility model. Based on these simulations,
we try to find the best locations for the placement of monitor
nodes in a given building. In order to reach this goal, we
present and implement three approaches returning potential
node positions: A grid-based method, a density clustering
method using DBSCAN [8], and a trajectory clustering method
using the TRACLUS [14] algorithm. The positions returned by
these methods are evaluated in terms of quality for Wi-Fi based
trajectory monitoring and are compared against a completely
random selection of the same amount of nodes.

The goal is, that a maximum amount of human trajectories
can be tracked by a minimum amount of monitor nodes.
Intuitively, the best location for a monitor node is found
when it’s range covers those areas which are frequented by
a maximum amount of people. In a heatmap, these areas
would be represented as “very hot” and, hence, the best and
optimal positions for Wi-Fi monitors are called “hotspots” in
this context. The contributions of this paper can be summarized
as follows:

• A variant of the well-known art gallery problem is
presented

• An extension of the pathway mobility model [2] is in-
troduced in order to simulate visitors inside buildings

• Three novel approaches for finding the most fre-DOI: 10.1109/IntelliSys.2015.7361169 $33.00 c©2015 IEEE



quented areas are presented and evaluated on different
environments and for various input parameters

• An alternative method for the partitioning phase of the
TRACLUS algorithm is presented, resulting in a more
precise segmentation phase for human trajectories
within buildings and reducing the computational effort
for clustering, due to less segmentation points.

The paper is organized as follows: Section II gives a
brief overview of related work. Some preliminaries and the
problem statement are presented in Section III. Based on
these definitions, the methodology is described in Section
IV introducing the used models and three hotspot discovery
approaches. The evaluation of these approaches is presented
in Section V and, finally, Section VI concludes the paper and
gives hints on future work.

II. RELATED WORK

This paper is related to current research topics, such
as hotspot discovery, Wi-Fi based trajectory estimation, and
strategies for sensor placement. Thiagarajan et al. [17] analyze
collected data from Wi-Fi captures and estimate both human
trajectories and travel times in street networks. Road segments
with lots of traffic are named as hotspots which are discovered
when a remarkable high travel time is observed. Hoteit et
al. [11] also use the term of hotspots for the most crowded
regions in cellular networks. Based on data from mobile
phone activities, the authors estimate human trajectories using
different interpolation methods and discover hotspots with a
median error lower than 7%. Ahmed et al. [1] define hotspots
as a location with a user density higher than a predefined
threshold. Based on this definition, an approach is presented
returning all of the existing hotspots based on indoor tracking
data. In comparison to these works, we define hotspots as the
center of regions which are passed by a maximum amount
of people. This is similar to the hot route discovery problem,
trying to find the most frequently traveled routes [6], [19].

Several real word experiments can be found deploying a
certain amount of Wi-Fi monitor nodes in an area of interest
in order to estimate human trajectories [9], [15]. However,
adequate placement strategies are not discussed further and
approaches for finding the best node locations are still missing.
In general, finding optimal locations for sensor nodes is a big
challenge and a lot of research is done in this field. Different
strategies and techniques for node placement in wireless sensor
networks are presented in literature [18]. An optimization is
introduced by Krause et al. [12], [13], trying to find the k best
locations for sensor nodes in an area of interest where a finite
set of possible node locations exists. An optimized solution
for visual sensor placement is presented by Gonzalez [10], or
Bottino and Laurentini [5]. Both works present an algorithm
in order to solve a variation of the art gallery problem which
is similar to the problem statement of this paper. However, our
approach focuses on discovering hotspots for efficient Wi-Fi
based trajectory monitoring within buildings, and to the best
of our knowledge, this has not been investigated so far.

III. DEFINITIONS AND PROBLEM STATEMENT

The overall goal is to monitor a maximum amount of
human trajectories with a minimum amount of deployed nodes.

Obviously, this goal has two opposed properties: The mini-
mization of deployed nodes and the maximization of trackable
human paths. In order to reach this goal, the following defini-
tions are introduced before presenting the problem statement:

A trajectory t is a time-series of location records repre-
senting a human path Pi. In our context, Pi is represented
as a sequence of two-dimensional points p, denoted as Pi =
{p1, p2, ..., pn}. Inside a building, a person moves within
walkable regions along a spatial network of floors, rooms,
halls, etc.

According to [14], each trajectory t can be partitioned
at characteristic points, where the behavior of t changes
significantly. We only consider the direction of a person’s
movement for choosing characteristic points, due to the fact
that a person usually walks straight along shortest paths and
suddenly changes the walk direction on certain locations, e.g.
corners, doors, entries, etc, rather than walking completely
random. Hence, a characteristic point is defined as follows
in this context:

Definition 1 (Characteristic Point): A point p ∈ Pi is
marked as characteristic point cp ∈ Pi when the direction
vector νt changes at p with an angle α ≥ 4.

On the basis of such characteristic points, we define sub-
trajectories:

Definition 2 (Sub-trajectory): A sub-trajectory τ ⊆ t rep-
resents a partition of a trajectory t and is denoted as a line
segment between two successive characteristic points cpncpm
with n < m.

In order to monitor a complete trajectory as accurate as
possible, it becomes necessary to be able to track a maximum
amount of its sub-trajectories:

Definition 3 (Trackable Sub-trajectory): A sub-trajectory
τ is trackable, if there is at least one point p ∈ τ located
within the coverage range rm of at least one monitor node m,
formally desired as:

∃p ∈ τ.∃m ∈M : dist(p,m) ≤ rm (1)

where dist(p,m) is the Euclidean distance between the mon-
itor node m and one point p of the sub-trajectory τ .

In other words, a sub-trajectory can be detected by Wi-Fi
captures if it passes at least one monitor node’s coverage range.
As an example, Figure 1 shows trackable and non-trackable
sub-trajectories of a sample path from start S to destination
D. The last sub-trajectory before reaching D is not covered
by any Wi-Fi monitor’s range and, thus, it is not trackable.

Formally, the given optimization problem is closely related
to the well-known and NP-hard art gallery problem where
a minimum set of guards inside a polygonal art gallery
has to be found in order to observe the whole area. Some
modifications have to be made in order to respect the properties
of Wi-Fi monitors which can be seen as guards: Instead of
observing all line-of-sight points inside the polygonal area, a
Wi-Fi monitor’s range is limited, due to physical restrictions.
Furthermore, Wi-Fi monitor nodes listen to their surroundings,
rather than watching it and, thus, they can also track mobile
devices behind walls and other obstacles within their coverage
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Fig. 1. Example of trackable and non-trackable sub-trajectories

range. According to [10], and with respect to the proposed
modifications, the problem statement is defined as follows:

Definition 4 (Problem Statement): Given a polygonal lay-
out Γ ⊂ R2 and a set of human trajectories T . Find a minimum
set of monitor node (guard) locations G = {gm1 , gm2 , ..., gmn}
with coverage range rm1 , rm2 , ..., rmn inside of Γ, such that
a maximum set of sub-trajectories τ is trackable from at least
one point in G according to Definition 3.

In order to solve this problem, monitor nodes should be de-
ployed at locations where most people pass by, and thus, where
the most sub-trajectories are trackable. As already mentioned,
these locations are called “hotspots”. The following section
introduces a methodology with three different approaches for
an automatic detection of such hotspots.

IV. METHODOLOGY

The algorithms presented in this section are based on
human trajectories created by simulated persons moving inside
buildings. For the building’s representation, a simple, and
metrical environment model is used.

A. Environment Model

The basis of our environment model is an image of a
typical plant layout, as shown in Figure 2(a). The image
is preprocessed and divided into walkable and non-walkable
regions. All other information shown in the original image,
such as doors, room numbers, signs, etc., are removed in this
step. Furthermore, the outdoor parts of the given plant layout
have to be marked as walkable or non-walkable, depending
on the requirements. The original image is then converted into
a binary image, and stored as a bitmap representation. This
leads to a very small image size and makes walkable and non-
walkable regions easily distinguishable, as shown in Figure
2(b).

White regions encoded with 1 are walkable, and black
regions encoded with 0 are non-walkable areas. Thus, people
are able to move in any direction and through any connected
areas of white pixels with respect to the coordinate system
of the given plant layout. As a last step, rooms, floors, and

(a) Original image (b) Bitmap of preprocessed image

Fig. 2. A bitmap of a typical plant layout used as environment model

entrances are labeled which is important for the mobility model
introduced in the sequel.

B. Mobility Model

For an adequate simulation of persons moving within the
proposed environment model, we present a modification of the
pathway mobility model taking the probability for choosing a
certain destination into account.

In few words, the pathway mobility model is based on the
frequently used random waypoint model, but it considers geo-
graphic constraints of the simulation field which usually exist
in real life environments, e.g. pedestrians cannot walk through
walls and are bounded to move along floors. In the pathway
mobility model, nodes are moving in a pseudo-random fashion
on predefined pathways. Every node is randomly placed at
the start of the simulation and chooses a destination in the
simulation field. It moves towards the desired destination on
the shortest path along the walkable space. After reaching the
destination, a node stays at this position for a certain period
of time and then again, a new destination is chosen randomly.
This is repeated until the simulation ends [2].

For our purpose, the pathway mobility model fits in the
sense, that visitors of a building usually chose a certain
destination d ∈ D and try to reach it on the shortest path,
while their movement is restricted to the walkable regions of
the building. When a person arrives at di, the next destination
di+1 is chosen which may be another room or, finally, the
way out. However, for a more realistic simulation of visitors
in public buildings, we present the following modifications and
extensions to the pathway mobility model:

• Each visitor v ∈ V of a certain building enters and
exits the building through an entrance door e ∈ E with
the probability Pv(e). This allows for a differentiation
of various entrance doors, e.g. main entrance and back
doors. Note, that a person does not have to enter and
exit the building through the same door.

• Instead of placing a person randomly into the building,
each visitor is located at an entrance door at the
beginning, expressed by start = e ∈ E.

• In realistic scenarios, a person doesn’t choose a des-
tination randomly. A destination is always connected
with an objective which is usually achieved in a certain
room r ∈ R, e.g. go to the lecture room in order
to participate at a lecture, or go to the cafeteria in
order to have lunch. Therefore, a destination within



Require: environment model
V:= number of Visitors
for (v = 1 : V ) do
D := number of Destinations
/*choose entrance e with probability Pv(e)*/
start = getEntranceDoor()
for (d = 1 : D) do

if (d == D) then
/*choose exit e with probability Pv(e)*/
d = getEntranceDoor();

else
/*choose destination d with probability Pv(d)*/
d = get next Destination();

end if
/*compute shortest path between start and d*/
path = compute dijkstra(start, d);
/*Store path for visitor v*/
savePathPerV isitor(path, v);
start = d;

end for
end for

Fig. 3. Simulation algorithm of the proposed mobility model

a building is usually a room, rather than a floor or
staircase. Thus, in our mobility model a destination is
defined as d→ roomx.

• Only the last destination dlast of a visitor must be an
exit door in order to leave the building: dlast → e,
and e is chosen with the probability Pv(e).

• Any destination is chosen by a visitor at a certain time
t with the probability Pv,t(d). This modulation allows
for a more realistic simulation of choosing destinations
with respect to the time, a decision is made. E.g.,
a lecture room is visited more before lessons, and
the cafeteria is visited more during lunch time. Some
rooms are chosen with a higher probability than others
at the same time, e.g, the main lecture room compared
to smaller ones.

The simulation algorithm for the proposed mobility model
is depicted in Figure 3. In summary, we create a certain
amount of visitors V and let them move on shortest paths
from start to the particular destination through a given building.
Each visitor chooses a number of destinations w.r.t the given
probabilities and leaves the building through an entrance door
as last destination.

C. Hotspot Discovery Approaches

As already mentioned, hotspots in this context represent a
set of locations inside a given building where Wi-Fi monitor
nodes should be placed in order to track human trajectories
in an efficient way. On the basis of the proposed simulations,
three approaches are introduced in the sequel, allowing for a
systematic discovery of such hotspots.

1) Grid-Based: As a first step, the grid-based approach
creates a heatmap representation of the simulated trajectories.
Such a heatmap illustrates how often a certain location in
the building has been visited. Every time a person passes a

pixel coordinate of the bitmap, the corresponding heat value is
increased by one. For a better illustration, Figure 4 represents
such a heatmap of 1000 simulated persons each choosing five
destinations in a main building of a big university.

Fig. 4. Heatmap of 1000x5 simulated paths in a university building.

In the second step, a square grid with constant square width
ws is placed over the heatmap, and the pixel sum of each
square sΣ is stored together with the pixel coordinates of the
corresponding square center cs. This results in a list L →<
cs, sΣ > indicating the frequency of how often a square has
been visited by a person. The list entries cs and sΣ depend
on ws. In our case, this parameter is set as ws = mr ·

√
2

and, hence, a monitor node’s coverage radius mr serves as
the minimum bounding circle of a square. Thus, every pixel
coordinate inside the building can be observed, when monitor
nodes are only allowed to be placed at the square centers of
the grid.

As a last step, hotspots are determined out of all square
centers cs ∈ L. Formally, a square center cs is marked as
hotspot if sΣ ≥ ε·arg maxsΣ∈L{sΣ}, with 0 ≤ ε ≤ 1. In other
words, if the pixel sum of a square is greater than a certain
percentage ε of the most frequented square, the location of
its center is marked as hotspot. Obviously, the result depends
directly on ε which has to be chosen individually, according
to the given requirements.

Note, this simple approach only considers how often a
square is frequented by visitors, rather than respecting the
course of trajectories. Thus, essential points of human paths,
e.g. where significant direction changes occur, may not be
covered by any node if the pixel sum of the particular square
is low and, hence, important information for tracking human
movements is getting lost. In order to solve this problem, we
present the following approach focusing on direction changes
of human trajectories.

2) Density-Based: This approach is called density-based,
because it uses the DBSCAN algorithm [8] in order to perform
a density based clustering of characteristic points. Centers of
discovered clusters are then marked as hotspots. The algorithm
of this approach is shown in Figure 5.



Require: A set of trajectories T = {t1, t2, ..., ti}
Parameters: ε, minPts, and ε

/*Step 1: Find characteristic points/*
for all (ti ∈ T ) do
index = 1;
Add p1 ∈ ti to the set CPi of characteristic points;
len = 1;
v1 = createV ector(pindex, pindex+len);
while ((index+ 2 · len) ≤ length(ti)) do
v2 = createV ector(pindex+len, pindex+2·len);
if (vectorAngle(v1, v2) ≥ 1

3π) then
Add pindex+len to CPi;
v1 = v2;

end if
index++;

end while
Add last point of ti to CPi;
/*Use Douglas-Peucker to smooth CPi*/
SPi = performDouglasPeucker(CPi, ε);
Add SPi to result set R;

end for

/*Step 2: Get clusters of characteristic points*/
Cl = DBSCAN(R,minPts, ε);
return mean(cli ∈ Cl); /*Cluster centers*/

Fig. 5. Algorithm of density-based approach for hotspot discovery

As a first step, the characteristic points are determined
and extracted from the simulated trajectories. According to
Definition 1, a characteristic point is found when the direction
vector changes with α ≥ 4. As shown in Figure 5, we set
4 = 1

3π. Thus, points are marked as characteristic, if the
walk direction changes with at least 60◦. Intuitively, this is a
reasonable value for indoor scenarios where persons usually
change their walk direction rapidly with α ≈ 90◦, e.g. when
turning around a corner, or entering a room.

In our simulations, however, we also observe particular
direction changes of the trajectory with α ≈ 90◦ when a
person walks next to an obstacle or a wall. This is caused by
computing shortest paths on bitmaps where each white pixel
represents a possible location, and a simulated path can run
along a wall pixel per pixel, as it is shown in Figure 6. Due
to this fact, many characteristic points are extracted by our
algorithm which do not represent a real direction change of a
person, depicted as little circles in Figure 6(a). Hence, these
points should not be marked as characteristic and have to be
removed from the set of CPi. For this purpose, we use the line
simplification algorithm of Douglas-Peucker [7], and smooth
each trajectory of characteristic points CPi with a small ε
value. As an example, the results of this step are shown in
Figure 6(b) using ε = 7. The remaining characteristic points
SPi of each trajectory are added to the result set R.

In the second step, R is given as input parameter to the
DBSCAN algorithm in order find density based clusters of
characteristic points. Note that results of DBSCAN depend
significantly on the required input parameters minPts and ε
determining the minimal number of points required to form
a dense region within an ε neighborhood radius. In our case,

(a) Before smoothing

(b) After using Douglas-Peucker

Fig. 6. Extracted characteristic points on simulated paths

this radius is set w.r.t. a monitor node’s coverage range as
upper bound: ε ≤ rm. Furthermore, we restrict minPts with
1 ≤ minPts ≤ |T |, so a cluster has to contain less or equal
points than the amount of given trajectories. A higher value for
minPts leads to very big clusters which are not practicable for
our purpose. The parameter minPts allows to react on distinct
situations or individual requirements for node placement: if
minPts = 1, the most clusters are detected, and lead to a
maximum amount of hotspots, and also to a higher probability
for tracking all visitors. For minPts = |T | less clusters (down
to one single cluster) are found leading to a minimum amount
of discovered hotspots, but also to a minimum number of
trackable trajectories.

Finally, the center of each cluster is computed as the
mean of all cluster points. The set of all center points
C = {Ccl1 , Ccl2 , ..., Cclm} is returned and represents the set
of discovered hotspots.

Considering the time complexity, the proposed algorithm
shows a linear complexity O(n) for the discovery of charac-
teristic points, where n is the number of points on a trajectory
ti. The complexity of Douglas-Peucker is O(n2) in worst
case, with n = |CPi| denoting the number of discovered
characteristic points of a trajectory ti. The complexity of
DBSCAN is also O(n), with n = |R| in this case.

In comparison to the grid-based method, this approach
considers the course of trajectories focusing on rapid direc-
tion changes. In the following section, an extension to this
method is presented, considering more characteristics of sub-
trajectories for a reliable tracking of human paths.

3) Trajectory-Based: The trajectory-based approach uses
the TRACLUS algorithm [14] in order to find representative
trajectories of clusters. Such clusters are formed through a
density-connected set of similar sub-trajectories. Due to the
usage of Dijkstra for shortest path routing, we only consider
characteristic points according to Definition 1 for the partition-
ing of trajectories. Hence, we use the presented algorithm for
finding characteristic points from the previous section, rather
than computing the MDL cost for each point of a line segment,
as described in [14]. The proposed modification is suitable
for our purpose resulting in a more precise and less complex
partitioning phase for human trajectories within buildings.



Furthermore, less segmentation points are returned reducing
the computational effort of TRACLUS’ grouping phase.

This phase performs a density-based clustering of line
segments using principles of DBSCAN. Again, two parameters
minLns and ε are required in order to build clusters of line
segments. A cluster is then formed by a density connected set
around core line segments which have a minimum amount
of lines minLns within their ε-neighborhood. Like before,
we define ε ≤ rm and 1 ≤ minLns ≤ |T |, so we focus
on clusters containing a minimum amount of minLns sub-
trajectories within a monitor’s coverage range. This is very
useful for our purpose, where monitor nodes should only be
placed in areas where many people pass by.

As a last step, the TRACLUS algorithm introduces a
method for constructing representative trajectories RT . For the
discovery of hotspots, we highly benefit from this step, because
each representative trajectory rti ∈ RT represents the charac-
teristic movement of all sub-trajectories of the corresponding
cluster cli. Important parts of human paths are described by
the representative trajectories and, hence, they are required to
be trackable according to Definition 3. A basic solution would
be to install one monitor node m for each rti ∈ RT such that
Equation 1 is satisfied. However, this solution would require
too many nodes, because some representative trajectories might
be close together and could be covered by one single node.
Hence, we use DBSCAN with ε = rm and minPts = 1 in
order to group start and endpoints of representative trajectories
which are located in a range of one monitor node. The centers
of returned clusters are marked as hotspots. Note that noisy
points of this step are not removed. They are rather considered
as hotspots, because these points represent particular start or
endpoints which are not in the vicinity to others and cannot
be clustered by DBSCAN.

V. EVALUATION

In this section, the presented approaches are evaluated in
different environments and for a various amount of simulated
paths. First of all, we investigate the effect of required input
parameters, e.g. ε, minPts, or minLns for each approach. Af-
terwards, the returned hotspots are evaluated against a random
selection of monitor node positions with respect to the amount
of trackable sub-trajectories.

A. Settings

Four plant layouts are used for evaluation, representing
different characteristics and probabilities for choosing a certain
destination:

1) The principle building of a university, where lecture
halls are selected with a higher probability according
to their capacity, and entrances are used on the basis
of their importance, e.g. the main entrance is used
with a higher probability than side entrances. The
corresponding plant layout is depicted in Figure 7(a)
representing the biggest environment of our evalua-
tion.

2) An office environment, where offices are visited with
the same probability and special rooms, e.g. confer-
ence room, cafeteria, toilette, etc., can be visited more

often depending on the scenario. The environment is
illustrated in Figure 7(b).

3) A town hall, where a lot of people are attended each
day. Thus, the probability of choosing the waiting
and public office is much higher than going to the
mayor’s office. Figure 7(c) depicts the town hall.

4) A hospital floor, with one operating room and several
dorms. Again, the main entrance is chosen with a
higher probability than both side entrances and the
dorms are selected according to the number of beds.
The hospital is illustrated in Figure 7(d).

On each of these environments, we perform 20 simulations
creating a small amount of 10 up to a higher amount of
200 persons choosing 5 destinations inside the corresponding
building. As a simplification, and, due to the fact that we
have no adequate Wi-Fi propagation model for each of the
environments, the coverage range of a monitor node is set to
rm = 25 meter which is a realistic value for indoor scenarios.

B. Grid-Based Approach

As described in Section IV-C1, a square center is marked
as hotspot, if the pixel sum of the square is greater or equal
than a certain factor ε of the most frequented square. For
evaluation, we vary ε from 0.00 to 1.00 for each environment.
Furthermore, we investigate the influence of the simulations
and create 10, 100, and 200 persons selecting 5 destinations
within each building. The results for the university building as
the largest environment are depicted in Figure 8(a). Obviously,
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Fig. 8. Effect of ε varying the amount of simulated persons at the university
environment

the amount of square centers which are marked as hotspots
increases with decreasing ε. For ε = 1.0, one hotspot is
returned denoting the most frequented square. On the opposite,
for ε = 0.0 every square center is marked as hotspot. It
is shown, that in case of less simulations, more squares are
marked as hotspots for the same ε value, particularly for
ε > 0.5. This is evident, because the pixel sums of squares
are not as different as in case of more simulations and, hence,
more square centers are marked as hotspots when decreasing
ε.

As next step, we evaluate how many sub-trajectories are
trackable according to Definition 3 when placing monitor
nodes at the discovered hotspots. More precisely, we consider
the length of these trackable sub-trajectories, rather than just
their amount. The length can be seen as a weight for each
trackable sub-trajectory, leading to the fact, that it is more



(a) University (b) Office (c) Town hall (d) Hospital

Fig. 7. Bitmap representations of plant layouts used as test environments for evaluation

important to track longer sub-trajectories. This is compre-
hensible for our purpose. In order to evaluate the length of
trackable sub-trajectories, the term of trackability is introduced
as follows:

Definition 5 (Trackability): The trackability is defined as
the ratio between the length of trackable sub-trajectories and
the total length of all trajectories in the used environment.

According to this definition, Figure 8(b) depicts the results
for the university environment w.r.t ε. It can be observed,
that the trackability is almost irrespective of the amount of
simulations for ε ≤ 0.7, where nearly the complete length
of sub-trajectories is trackable. For ε > 0.7 the trackability
is drastically decreasing in case of all simulations. Taking
the amount of hotspots into account, an acceptable trade-off
between a minimum amount of required nodes and a maximum
trackability is observed for ε ≈ 0.75 within these settings.

Similar results are obtained for the other environments,
depicted in Figure 9 when using 200 simulated persons. Due
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Fig. 9. Effect of ε using 200 persons selecting 5 destinations at the other
environments

to the fact, that these environments are much smaller, a lower
amount of nodes suffices to cover all sub-trajectories. While
the university environment requires about 18 nodes for the
high amount of simulations, only 3 to 4 nodes are needed
in the other buildings for a complete coverage of trajectories
setting ε ≤ 0.6. On the other hand, one single node placed
at one discovered hotspot already tracks more than 70% in
these buildings and, thus, additional discovered hotspots do not
increase the amount of trackable sub-trajectories as drastically
as in case of the university environment. However, for ε > 0.6
we also observe that the trackability decreases significantly.

C. Density-Based Approach

Due to the usage of DBSCAN for clustering characteristic
points, the results of this approach depend on the used input

parameters, such as ε and minPts. Previous tests for the
used buildings show that in case of ε = 1

4rm the found
clusters indicate an adequate size compared to a monitor node’s
coverage range. With ε = rm the clusters are too large, and
for smaller ε many clusters of a very small size with lots of
noise have been found.

Based on these findings, we set ε = 1
4rm and investigate the

effect of minPts on both the amount of discovered hotspots and
the corresponding trackability. According to the restrictions
made in Section IV-C2, we vary minPts from 1 to |T |. Like
for the previous approach, this is done for a low, middle,
and a higher amount of performed simulations. Figure 10
depicts the results for the university environment. For a better
comparability and illustration, minPts is normalized by the
maximum value |T |.
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Fig. 10. Effect of minPts varying the amount of simulated persons at the
university environment

As before, Figure 11(a) shows that a higher amount of sim-
ulations leads to a lower number of discovered hotspots for the
same value of minPts. This is due to the nature of DBSCAN.
More paths lead to more characteristic points which lead to
a higher density and, thus, to a higher probability for finding
less but larger density connected sets. Therefore, we receive
less clusters and, thus, less hotspots. Another observation is,
the higher the value of minPts, the lower the amount of found
clusters and of discovered hotspots, respectively.

As depicted in Figure 11(b), more than 65% of the total
trajectory length is trackable using more than 7 nodes with
minPts = |T |. This indicates an improvement to the previous
approach. However, in order to track the complete length of
sub-trajectories, more than 28 nodes are required, indicating a
worsening to the grid-based method.

Figure 11 shows the results which are obtained for the
remaining environments using 200 simulated persons. It can
be observed, that the amount of hotspots remains almost stable
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Fig. 11. Effect of minPts using 200 persons selecting 5 destinations at the
other environments

for minPts > 0.6|T |, indicating that distinct clusters are found
within these environments. In case of the town hall, the two
discovered hotspots for minPts = |T | suffice for a nearly
complete tracking of all trajectories which is a good result.
In case of the hospital more than 75% can be tracked using
at least two nodes, and 94% with 5 nodes. However, for the
office environment, the discovered hotspots show an overall
impractical trackability, where only 84% of the total length of
sub-trajectories can be tracked using 2 nodes.

D. Trajectory-Based Approach

Node placement based on representative trajectories is a
very promising method, due to focusing on trajectories which
already represent the most significant pedestrian flows. How-
ever, the clustering results of TRACLUS are critical referred
to the required parameters ε and minLns. The ε-neighborhood
of a line segment is forming an ellipsoid, rather than a circle
as in case of DBSCAN when using points. Hence, we cannot
set ε = 1

4rm like in the previous approach and have to evaluate
the quality of discovered hotspots according to our constraints
made in Section IV-C3. Again, we vary both parameters with
1 ≤ ε ≤ rm and 1 ≤ minLns ≤ |T | and investigate
both, the amount of discovered hotspots and the corresponding
trackability for different simulations and environments. Our
investigations indicate, that for ε ≈ 1

8rm, and minLns ≤ 10
adequate clusters are found. For minLns > 10 more and more
line segments are declared as noise and important clusters
are destroyed. The effect of minLns for 10, 100, and 200
simulated persons choosing 5 destinations at the university
building with ε = 1

8rm is shown in Figure 12. In contrast
to the previous approaches, the amount of simulations highly
influence the results w.r.t minLns, as depicted in Figure12(a).
In case of 10x5 simulations, a maximum amount of 20 hotspots
is discovered with minLns = 3 leading to a nearly complete
coverage of all sub-trajectories. For minLns > 3 the amount of
discovered hotspots decreases, due to an increased number of
line segments which are marked as noise leading to destroyed
clusters. In contrast, more simulations augment the density of
trajectories and, hence, less but bigger clusters are found for
a small value of minLns. When increasing minLns, more but
smaller clusters are discovered leading to more representative
trajectories. The higher the amount of simulations, the higher
the density of start and endpoints of representative trajectories
and the more can be grouped by DBSCAN and represented by
one single hotspot, as observed for both dashed lines in Figure
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Fig. 12. Effect of minLns varying the amount of simulated persons at the
university environment

12. The best result (optimal trade-off between a minimum
amount of required nodes and a maximum trackability) for
100x5 simulations is obtained with minLns = 4 tracking
97.9% of the complete length of trajectories using 17 nodes.
In case of 200x5 simulations, 15 hotspots are discovered with
minLns = 6 tracking 98.3% in best case.

Again, the results for the other environments using 200x5
simulations with ε = 1

8rm are depicted in Figure 13. Like be-
fore, the amount of discovered hotspots increases with higher
values for minLns, as depicted in Figure 13(a). Obviously,
the effect of minLns is not as high as in case of a huge
environment, due to a higher density of trajectories in small
buildings. Only 3, 3, and 2 hotspots suffice to track 99.8%
(minLns = 2), 99.3% (minLns = 6), and 94.4% (minLns = 6)
at the office, town hall, and hospital, respectively. Again, these
results announce the best trade-off between a minimum amount
of required nodes and a maximum trackability.
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Fig. 13. Effect of minLns using 200 persons selecting 5 destinations at the
other environments

E. Tracking Quality

The goal is to evaluate the quality of efficient Wi-Fi based
monitoring with respect to the trackability when using the
discovered hotspots. For this purpose, we use the most naive
method and select randomly the same amount of nodes as we
get by the performed approach on the used environment. The
node positions are selected from the complete set of possible
positions which are all white pixels of the used plant layout
in our case. Note, that the optimal node placement is also
included in this set of possible positions. In order to reach
always the optimal solution, every possible k-node permutation



of all n possible positions have to be checked according to
the trackability which requires

(
n
k

)
operations. This is too

complex in case of huge bitmaps, though. Therefore, we use an
approximate solution. We repeat the selection of node positions
100,000 times and take the best result with respect to its
trackability. Beside the fact, that the selection is still random,
we assume that this method approximates the optimal solution
of node placement, due to the high amount of repetitions. Thus,
we take the result as a quality measure for the discovered
hotspots when using optimal input parameters.

Table I depicts the results for each environment using
the proposed approach with the denoted parameters on 200x5
simulated paths. In order to evaluate and compare the quality
of discovered hotspots, the last two rows show the trackability
using the stated amount of nodes at the discovered hotspots,
or at the best randomly selected positions. Considering the
trackability, it is shown that there is only a marginal differ-
ence of up to 0.137 between the best random selection of
positions and the discovered hotspots for each approach, and
for all environments. This indicates that the proposed methods
return a reliable setting of node positions for an efficient
Wi-Fi based monitoring system. However, the density-based
approach never returns a setting of hotspots showing a higher
or equal trackability than the corresponding random selection.
Therefore, we conclude that clustering of points representing
only the direction changes of human paths is not an optimal
placement strategy w.r.t the proposed quality measure, because
it never reaches the optimal solution within the given settings.
This is caused by the fact, that other characteristics, e.g. the
trajectories’ length, are not considered by this approach and,
hence, longer trajectories may not be covered by any node
leading to a decreased trackability.

We overcome this problem using the trajectory-based ap-
proach which considers the complete course of important
sub-trajectories. With this method, we obtain the best results
compared to our quality measure. Besides from the town hall,
the trajectory-based approach always reaches a higher tracka-
bility than the corresponding best random selection and, thus,
node placement based on representative trajectories indicates
a sophisticated and quite optimal solution. According to these
results, Figure 14 illustrates the 15 discovered hotspots as little
circles within the university building. It is shown, that the
depicted hotspots apparently mark strategic places inside the
building, due to the fact, that each entrance door and every
edge of principle hallways are observed by at least on node.
This indicates a reasonable setting for Wi-Fi monitor nodes.
However, the required parameters, such as minLns, and ε of the
TRACLUS algorithm highly influence these results and, thus,
they have to be selected carefully w.r.t to the given settings as
it is shown in the previous section.

In contrast, the grid-based approach requires only one
certain threshold ε which allows to find an optimal trade-
off between a minimum amount of nodes and a maximal
trackability. As depicted in Table I, adequate results have
been found for 0.7 ≤ ε ≤ 0.83. Compared to the best
random selection, the grid-based approach performed better
in the hospital, equal in the town hall, but worse in the office,
and the university building. However, it still shows better
results than the density-based approach and requires less input
parameters. Therefore, this simple approach can be seen as

Fig. 14. Little circles denote the hotspots in the university building discovered
by the trajectory-based approach.

a first systematic method to find good places for monitor
nodes, but it cannot replace a more advanced solution like
the trajectory-based approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the need for an adequate
placement strategy of monitor nodes inside buildings for an
efficient Wi-Fi based trajectory monitoring system. In order to
find the best places for monitor nodes, which can be seen as
a variant of the well-studied and NP-hard art gallery problem,
three novel approaches for discovering hotspots have been pre-
sented. The proposed methods all work on bitmaps of typical
plant layouts and simulated trajectories generated according to
a modified pathway mobility model. While the first approach
only considers local information from a heatmap, the last two
perform density-based clustering on different characteristics of
trajectories.

The evaluation of the proposed approaches on different
environments and settings leads to the conclusion, that the pre-
sented methods allow for a systematic discovery of adequate
node positions compared to a completely random selection of
nodes. However, the density-based approach using DBSCAN
on characteristic points never reaches a trackability higher
than the proposed quality measure. In contrast, the grid-based
approach is very simple, shows better results, and requires less
input parameters. It can be seen as an easy and systematic
method to find quite adequate node positions, but it does not
always return the best solution for the tested environments
w.r.t our quality measure. As a more sophisticated solution,
the trajectory-based approach performs best and returns a quite
optimal solution for most environments. However, it is more
complex and requires more input parameters which have to be
determined carefully, due to their high influence on the results.

In summary, we conclude that the presented approaches
can reliably support the decision process for an adequate node
placement of monitor nodes within a certain building. The eval-
uation has shown, that even our most simple approach leads
to a better trackability using less monitors than an arbitrary



Environment University Office Town Hall Hospital
Approach Grid Density Trajectory Grid Density Trajectory Grid Density Trajectory Grid Density Trajectory

Parameters ε=0.73 ε 1
4 rm ε = 1

8 rm ε=0.83 ε = 1
4 rm ε = 1

8 rm ε=0.73 ε = 1
4 rm ε = 1

8 rm ε=0.70 ε = 1
4 rm ε = 1

8 rm
minPts=25 minLns=6 minPts=25 minLns=2 minPts=200 minLns=3 minPts=30 minLns=6

# Hotspots 13 15 15 4 2 3 3 2 3 3 5 2
Trackability
(Approach) 0.929 0.912 0.982 0.997 0.842 0.999 1.000 0.997 0.991 0.952 0.941 0.944

Trackability
(Random) 0.979 0.981 0.981 1.000 0.979 0.998 1.000 0.999 1.000 0.947 0.991 0.928

TABLE I. AMOUNT OF NODES WITH REACHED TRACKABILITY USING HOTSPOTS COMPARED TO THE BEST RANDOM SELECTION OF NODE POSITIONS

installation of nodes, as often performed in related work. In
principle, the findings of this paper are not only usable for Wi-
Fi monitor nodes. The proposed approaches are also adoptable
for any kind of wireless node placement, such as Bluetooth
beacons or other sensor nodes. However, we focus on Wi-Fi,
because we plan to realize a real world deployment of Wi-Fi
monitor nodes for pedestrian flow monitoring on the basis of
the discovered hotspots for future work. Furthermore, we plan
to find a suitable heuristic to determine the optimal parameters
for the clustering approaches in a given environment, and
we want to enhance our evaluation focusing on other quality
measures within bigger indoor environments.
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