MAKEIT: Integrate User Interaction Times in the Design
Process of Mobile Applications

Paul Holleis and Albrecht Schmidt

Pervasive Computing and User Interface Engineering
University of Duisburg-Essen, Germany
paul@hcilab.org, albrecht.schmidt@acm.org

Abstract. Besides key presses and text input, modern mobile devices support
advanced interactions like taking pictures, gesturing, reading NFC-tags, as well
as supporting physiological and environmental sensors. Implementing applica-
tions that benefit of this variety of interactions is still difficult. Support for de-
velopers and interaction designers remains basic and tools and frameworks are
rare. This paper presents a prototyping environment that allows quickly and
easily creating fully functional, high-fidelity prototypes deployable on the ac-
tual devices. With this work, we target the gap between paper prototyping and
integrated development environments. Additionally, new interaction techniques
can be significantly faster or slower to use than conventional mobile user inter-
faces. Hence it is essential to assess the impact of interface design decisions on
interaction time. Additionally, the presented tool supports implicit and explicit
user performance evaluations during all phases of prototyping. This approach
builds on the original as well as extensions of the Keystroke-Level Model
(KLM) which allows estimating interaction times in early phases of the devel-
opment with a simulated prototype. An underlying state graph structure enables
automatic checks of the application logic. This tool helps user interface design-
ers and developers to create efficient and consistent novel applications.

1 Introduction

Mobile phones have become a ubiquitous computing platform outnumbering desktop
computers. A large portion of current mobile phones offer means for third parties to
develop custom software for them. Most notably, there are JAVA ME, Symbian OS,
and the Windows Mobile platform. Modern phones provide rich ways for interaction,
reaching from colour screens, audio output, and keyboard input to gestures, cameras
and audio capture. Additionally, more and more such devices include sensors, e.g. for
acceleration (e.g. Samsung SGH-E760, Nokia 5500, iPhone). Interaction with physi-
cal objects using barcodes is a common feature in many phones and some devices can
read smart labels (e.g. the near field communication, NFC, reader in the Nokia 6131).
Furthermore, phones can be extended with external sensors connected via Bluetooth,
e.g., for GPS, step counting and ECG.

These basic technical capabilities enable developers and interaction designers to cre-
ate novel interactive experiences using mobile phones in domains such as data access
via physical artefacts, context-aware applications and mobile health applications.

J. Indulska et al. (Eds.): Pervasive 2008, LNCS 5013, pp. 56-74, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 57

Although APIs exist that allow accessing sensor values, it is often a challenge to create
sophisticated user interfaces that exploit all these capabilities. In comparison to conven-
tional interaction techniques, there is little established knowledge about how to build
compelling applications using these new means. Hence developments often rely on trial
and error which can be costly. In most cases, novel experiences require functional proto-
types to be built and evaluated. We believe that prototyping and tool support is essential
to make this process efficient. Development environments support the implementation
on source code level and to some extent the design of the interaction flow (e.g. the
NetBeans Visual Editor'). There is, however, a lack of tools that support prototyping
interactive mobile applications that make use of advanced interaction techniques using
internal and external sensors.

Often, the design process is based on paper prototypes after which the actual imple-
mentation is started. It is commonly agreed, however, that at least partially working
prototypes are essential to efficiently develop interactive applications and to convey and
assess new interaction concepts. Including users in this phase is very important for per-
vasive systems, as show several examples in a special issue on rapid prototyping in
IEEE Pervasive Computing [1].

We address the gap between low-fidelity paper prototyping and actual implementa-
tions. The MAKEIT framework (short for Mobile Applications Kit Embedding Interac-
tion Times) is used to create functional, high-fidelity prototypes for mobile devices
supporting advanced interaction techniques. In particular, we focus on the need to
easily create and change applications while at the same time providing assistance in
keeping projected end user interaction times low. We contribute:

e an integrated development environment for hi-fidelity prototyping of mobile
phone applications creating a code framework for the final implementation

e an underlying model based on state graphs validates parts of the application
logic and can detect flaws in the navigational structure and suggest alternatives

e an integrated model to estimate task completion times early in the design with-
out needing to deploy a prototype on the actual target hardware platform.

2 Creating Prototypes of Mobile Phone Applications

This section describes the architecture and interface of the development environment
that allows quickly and simply prototyping applications for mobile devices. A com-
mon screen based interaction process is reflected in the way the MAKEIT tool chain
helps designing applications. A state graph data structure represents the possible flow
of actions in a program. By creating such a state graph, the designer lays out the func-
tionalities supported by the application, the possible sequences of user actions and the
resulting visual behaviour of the mobile device.

Furthermore, the developer is able to adorn defined transitions between states with
additional non-functional parameters, such as KLM parameters. The framework then
offers the possibility to retrieve predictions of the interaction time of any possible (i.e.
defined) sequence of actions by a potential user. These predictions are based on a
modelled, deployed version of the application running on a real phone. The system is

! NetBeans IDE, Mobility Pack http://www.netbeans.org/kb/articles/mobility.html

58 P. Holleis and A. Schmidt

designed to support a variety of interaction techniques as listed below. Some common
ones are directly integrated, whereas others can be customized and easily added. For
some of those interactions, a detailed discussion can be found in the paper of Rukzio
et al. about physical mobile interactions [2].

e Media Capture. Capturing audio and video and storing or potentially analysing
it is used in many applications.

¢ Visual Markers. Using the camera in the phone, interactions based on markers
can be supported. This includes simple recognition of barcodes but also ad-
vanced augmented reality applications (e.g. Rohs [3]).

¢ Proximity. Based on proximity, actions can be triggered or application behaviour
changed. One example is scanning for Bluetooth devices, e.g. Nicolai et al. [4].

¢ Gestures. Accelerometers built into phones offer many opportunities for inter-
action based on movements and gestures.

e RFID/NFC. To capture the identity of a tagged object, RFID and NFC (near
field communication) provide easy means. To implement physical mobile inter-
actions the identifier can then be linked to further content.

e Location. Using GPS or cell IDs are widely used to get information about the
user’s location enabling location based interactive applications; see for example
the MediaScapes project by Hull et al. [5].

o External physiologic sensors. ECG, pulse rate and oxygen saturation are some
examples of sensors that can be used to create applications acting on and to
body signals (e.g. Nuria et al. in [6]).

The overall concept is similar to that of paper prototyping. Typical steps are to start
with a picture of a mobile phone with an empty screen and then to simulate pressing a
hotkey, prepare another picture and draw content into the screen. Next to allow the
user to touch an NFC tag and prepare another screen. This process is continued until
all important states have been prepared. This is exactly the way this tool works,
eliminating the difficulty of keeping track what picture belongs to what action.

2.1 Generating the Application Behaviour

One part of the user interface presented to the developer comprises an image of a
modern mobile phone featuring the standard set of keys and an empty display (see
Figure 1). The next iteration of the tool will feature skins for specific sets of mobile
devices with different screen sizes and button layouts. All keys can be pressed using
the mouse generating events to the framework running behind the visualisation. Next
to the phone are several buttons that can be used to simulate advanced interactions
with the phone. Examples include simple gestures, taking a picture or touching an
RFID tag. Since not all of those actions are supported by all phone models and new
types of interactions are added as we speak, this list of buttons is automatically gener-
ated from an XML properties file, which can easily be extended. Using the controls
provided by the mobile phone and the action buttons, the developer can implement
actions with a simple click. This triggers a dialog in which the interface designer or
developer can specify what the contents of the display will be after the specified ac-
tion has been executed. It can be a simple string or a URL/filename of a web page or

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 59

an image which is scaled to fit on the screen. Simple drawings can also be made in
place, which is especially useful for people working with graphic tablets.

By repeatedly linking actions to visual elements, a linear sequence of screens can
be created which represents the execution of a task in an application; however the
majority of applications are more complex requiring richer application logic. This
motivates the introduction of the state graph in the following section.

B KLMPhone EJ@]PE
[Initial Act] em Resp...
] Lo] e |
[— — L Non-
Distraction
[Generato Gode_| \ Pause... ET o (iasrer ‘ functional
Special Key Options _ parameters
] [[| - BAl
modeling
‘ Flip Phone | Slide Cam Lid T -
Key Options J
multi tap - e Complex Gest... .
I - smtecestre | lostmate [~ T Additional
oper] hd actions like
‘ Touch NFC | Take Picture ‘ > NFC Or ex-
ternal sensors
Speech Com...
~/
Load Select start state and hold CTRL to select end state.
Choose
OK to start Your
Pos
== ‘\\ Underlying
state graph
Choose
o fiod Thank You

Fig. 1. The keys in the simulated phone and additional interaction techniques can be chosen and
the content of its display is controlled by the system

2.1.1 The State Graph

To be able to have a representation of the application logic, we define a state graph
G = (S, A). The states of the application that is currently designed represent the set of
nodes S. There is an edge a € A between two nodes S; and S, if and only if an action
has been defined that lets the application switch from S; to S,. All edges are directed
from their source to their target node. An edge is also called a transition since it de-
scribes the transition from its source to its target state. One node can be the source or
target of several actions. However, the graph must fulfil the following constraints:

= Disambiguation Property: All actions (a;, a>, ..., a,) with the same state S as
source must be pairwise disjoint. This means that from one state there cannot be
transitions fired by the same action to two different states. Otherwise it would
not be clear which strategy should be employed to choose the transition that
should be used when the according action is executed. This also implies that be-
tween two states no two edges have the same action, eliminating redundancy.

60 P. Holleis and A. Schmidt

= Start State Property: There is a distinguished state called the start state Sy that
is a source node, i.e. not the target of any transition. This represents the state the
application is in right after it has been started.

= Reachability Property: For all states S, there must be a path p(Ss, S). A path
p(S,, Sp) is defined as a sequence of edges that connects S, with S, i.e. a path
p(S., Sp) exists, if and only if there is an n and edges (ay, a;, ..., a,) with
ag=(S,, So), a;=(Syp, Sp), ..., a, = (S,, Sp) and n e {0, 1, ...}. Thus, there is no
state that cannot be reached from the start state by a sequence of transitions. Note
that this is not the same as saying that every node must have an incoming edge
(just imagine 2 connected components that are not connected to each other).

An interesting aspect in the system is that these properties are ensured by construction
and thus cannot be violated. Thimbleby and Gow [7] describe several aspects that can
be derived from an underlying graph model. The diameter, e.g., represents the task
that needs the highest number of actions. The Reachability Property implies that there
is no unused state. Weaker properties like the reachability of one state from one or
more others (e.g. a standby mode) can be checked as described later. The graph can
also be used to check whether all actions can be undone and how costly this is.

Tuuch%sc |Z| Please enter a URL pointing to HTML text or a pi
RS H

=

Start Touch NFC

Fig. 2. When triggering the ‘Touch NFC’ action, a new state is generated and a transition from
the start state is added labeled with the action’s name

2.1.2 Building the State Graph
MAKEIT provides a visualisation of the set of possible states as well as the transitions
triggered by actions. A further part of the user interface presents the state graph de-
scribed above. Initially, this is only the start state showing an empty phone screen.
The moment an action is triggered, a new node is created in the state graph and an
edge is added between the current node and the new node. The edge is labeled with
the name of the action (Figure 2). A dialog prompts the developer for the content of
the new screen. The new node is automatically selected, indicated by coloured dots in
the corners of the rectangle representing the screen of the mobile phone. After speci-
fying the content of the new screen, the next action will continue the sequence and
generate another node. This can be used to quickly create a vertical prototype that
allows executing defined functionality in detail whereas not all functions that the
application will provide when finished are supported.

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 61

The creation of the state transitions is not restricted to a linear sequence. When a
node of the state graph is selected with the mouse, the defined contents will be up-
dated on the virtual phone’s screen and the application is brought into this state.
Demonstrating an action can then be done in whatever state the application has been
set to. This adds the possibility of leaving a state through different actions. One possi-
ble application is to implement different ways to reach the same goal, e.g., press a
key, make a gesture or touch a tag. Figure 3 shows the application that the key ‘8’ is
used to browse through a list and another one, ‘5’, to activate the selected item.

Adding edges to nodes, i.e. transitions to states, is only limited by the number of
different actions allowed for the present state. Following the Disambiguation Property
(two edges with the same source node must have different associated actions), trans-
actions that already exist for a specific state cannot create a new edge. Instead, if such
an action occurs, the existing transition is fired and the system changes the current
state to the target of the edge. Such inputs from the user do not change the state graph.
In this way, any sequence of tasks that has already been designed can be walked
through and tested. This highly adds to the utility since people often go back to the
beginning to recap the task at hand.

@ Contaes | & contacs

 Messaging | Stuv |« [Fesssuing]
5 Catondar [5 Catendar

1 Music Player| 1 Music Player|

WK....:M:_

loading ...

h3

Fig. 3. Reducing the number of visible states by condensing several nodes

2.1.3 Merging States

One of the potential problems with state graphs is that the number of states can grow
rapidly. The maximum number of states succeeding a node is only bounded by the
number of different actions allowed for this node. However, in our analysis, we found
that most applications, besides dynamic screens that are much better implemented in
code anyway, do not need many screens. In addition, there are several possibilities to
reduce the number of states. One is to condense several nodes into a super-node, as is
often done to visualise and work with large hierarchical graphs (see Figure 3).

A visually as well as semantically clear approach is based on the observation that
applications often return to the same state after different sequences of interactions.
Situations in which this occurs afford the merging of equal states. In the case of the
visualisation chosen for this project, this means that it must be possible to combine
two nodes (shown in Figure 4). We define a merging operation merge(S;, S;) of two
nodes S; and S, in the same graph as follows:

62 P. Holleis and A. Schmidt

e for all nodes X such that an edge e(S;, X) exists, add an edge e’(S, X) and copy
the properties of e to e’; edges e(X, S;) is treated analogously

e delete S; (and all edges adjacent to S, i.e. edges that have S; as source or target
node) from the graph

The merge operation is defined and executed only if step 1 does not add an edge
which would conflict with the Disambiguation or the Root Node Property. By defini-
tion, the Reachability Property is not affected by any merge operation.

a PR e G contacts & @ contacts
__p| @ Messasing sty @[fegng] | © | | Messaging stuv 4 [Fessaging| @ Messaging Bty [Mezsaging]

5| Calondar 5 Catondar | iP5 catendar %5 Catondar —] 5, calondar % Catendar

1, Music Player] . MusicPlayer| " 2ahc 1 Music Player] 1. msicriayerde 2abc 75 music piayer]

aCallecs Callars H / 2 Callers aeGallca .

=

S o

Fig. 4. Merging two states by simply moving one node (empty) over another

Merging states can introduce cycles to the graph which theoretically drastically
complicates the automatic calculation of a visually pleasing and planar layout of the
state graph. However, in practice, the graphs seem to be fairly easy to layout since
most cycles are very short. By moving the nodes in the view, the graph can also be
manually adjusted anytime. More importantly, this feature is absolutely essential for
many situations like the aforementioned use of a list of items. Scrolling up and down
through a list repeatedly generates the same states.

The example in Figure 5 shows a list that can be scrolled by pressing number keys
2’ and ‘8’. The ‘5’ key selects the current item and switches to a state that handles
the selected option in the list. This selection method can easily be replaced by, e.g., a
gesture without inducing any other change in the graph. This example also illustrates
that a node can be the target of several edges as the according state can be reached in

"] & Contacts 4 Contacts
wl Messaging Btuv i [Messaging | Btuv wl Messaging
5| catondar L 7anc 6c_P] 5 catendar g Zanc__ ™ Zabc ™| 5 [Catendar | .

/1 Music Player| 11 Music Player] 1 Music Player]

loading ...

Fig. 5. Designing list scrolling. When an item is selected (key °5’), the same state is reached.
Coding will then be employed to show a dynamic screen.

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 63

several ways. It also keeps the number of states low by having only one state (‘load-
ing ...”) that is responsible for displaying a reaction to the selected option. One could
also split the node way that pressing the execution key will lead to a different state for
each menu entry. Any combination of the two approaches is also possible.

Another example for having several transitions to one state is an exit or error state.
Applications may have a dedicated exit state reachable from several points in time.
Anytime an error occurs, an error state can be reached which offers fallback solutions.
The approach can in general not be used, however, for a generic message state (pre-
senting, e.g. a message like “This action is not yet supported”) since in most cases the
application flow should return to the state that initially triggered the message. This
would contradict the Disambiguation Property.

We emphasise at this point that neither the state graph itself nor the tools to create
it claim or want to be a full-fledged visual programming language. The idea is to
leave the handling of difficult tasks to the places where it can be done best: the source
code of the mobile application. By omitting any data exchange between states, the
available design space is clearly defined.

The design space of the applications that can be created by using this mechanism
only is clearly limited. For example, information cannot directly be passed from one
state to the next, and it is not known which steps led to a certain state. Although fea-
tures like that could be added by using a richer data model, the simplicity of the chose
approach suffices to quickly start with and concretely test ideas and different interface
and interaction designs. In [8], we added touch sensors to the standard keypad of a
mobile phone. Using the MAKEIT framework, we were able to quickly develop and
test several variations of a contact list showing preview information when the selec-
tion button is touched or an image gallery with zooming by touching. The contact list
application with a list of four names, e.g., needs only 4x2 states.

Our approach is to separate components through a defined and communication
layer. We deliberately decided for this approach and not for plug-in components, as it
is more appropriate for distributed pervasive systems.

BestPath || NextPath | PreviousPath || Best Path
Simple Gesture Dice
e Shows:

OKto Start
Go Shopping Go Shopping

Fig. 6. Two paths from the node ‘OK to Start’ on the left and the ‘Go Shopping’ node on the
right are highlighted

Enter
a
Number

5jkl

2.2 Analysing Tasks During Application Creation

One of the important aspects in designing applications is to see and understand if and
in what ways a task can be executed with the proposed design. During the design of
the flow of the application, i.e. the creation of the state graph, a path finding algorithm
can be employed. Selecting a start state Sg and an end state S,, an algorithm finds all

64 P. Holleis and A. Schmidt

possible paths p(Ss, S.). Remember that a path is defined as a sequence of directed
edges that connects one node with another. In this case, a path also may not contain a
node or edge more than once. This implies that a path cannot contain a cycle and that
the number and length of all paths is bounded by the number of nodes and edges in
the graph. Note that a path does not necessarily exist between two arbitrary nodes. On
the contrary, paths ending in the root node appear rarely and some nodes will even be
sinks, i.e. not the source of any edge in the graph, e.g. a dedicated exit state. Those
sinks can only be the target node of the last edge in a path, but no paths will start from
those. However, the Reachability Property of the graph dictates that there will always
be a path p(Ss, X) from the root node to any other node X in the graph.

In the graph visualisation, a path is shown by highlighting its edges as well as the
source and target nodes of these edges with thick lines (Figure 6). As said, there are
potentially several paths between the selected states which can all be browsed and
highlighted. Beside the mere sequences of actions leading to the desired state, the
paths can be used to provide an analysis of non-functional properties. This (and why
there appears a ‘Best Path’ button in Figure 6) is explained in the following sections.

2.2.1 Adding Non-functional Properties

Non-functional properties are all characteristics that are not directly concerned with
the semantics of an element. In the case of the transitions in the state graph, this
means attributes of an action like the time necessary to execute it, the effort needed,
the pleasure generated, or the privacy affected by it. In the following, we concentrate
on interaction time characteristics and build on knowledge about the Keystroke-Level
Model (KLM) introduced in the first sections of this paper.

We have already seen that by triggering actions defined in the state graph, a task
can be sequentially walked through and the state of the mobile phone is updated ac-
cordingly. To be able to additionally incorporate actions necessary to use the operator
model of KLM, this part is elaborated in the user interface. After a version of the
application has been defined using the state graph, the user can switch to simulation
mode. The user interface is then extended with several additional actions. These KLM
actions can also be easily configured and new elements can be added whenever new
types of interaction are added in future phones using a property file.

In simulation mode, the root node is automatically selected. All actions can then be
executed as defined in the state graph. Whenever an action is triggered that has no
according edge defined in the state graph, the action is ignored and a warning is is-
sued. Furthermore, the additional actions in this mode can be used at any time, in any
state, in any order. Most of these actions have been introduced in one form or the
other in the introductory section on the mobile phone KLM we developed. Table 1
gives a quick overview over the meaning of some of the standard operations, see [9].
The general idea of those operations is that additional information about how a task is
executed can be gathered and stored. The mentioned actions mostly concentrate on
interaction times. Additional options can be specified to calculate interaction times for
standard key presses (one thumb or two finger input, multi-tap or predictive methods
like T9, novice, average or expert typist).

As a simple example scenario, consider a poster that displays some products and
advertises a URL. The task is simply to browse to this given website. A designer

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 65

Table 1. Some non-functional operations supported in simulation mode

Initial Act (average, self initiated, ...) Time necessary to retrieve and look at the phone
Mental Preparation Time to mentally prepare for the next action
System Response The time the system needs for computations
Pause Interrupt for some amount of time

Actions done while being distracted are slowed down
on average by some factor

Time needed to move the phone between a state
looking at the screen and one close to the ear

Time needed to move the phone to a specific point
(e.g. to touch a tag there)

Distraction (slight, strong)

Move to Ear / Move to View

Point Somewhere (estimate, Fitts’ Law)

[Action Sequence

$-[=1h3
show page [rutti-tap
h3 [thurnn
Touch \‘ D expert
[y time =016
h3 i j Mental Preparation
OK to Start i Sfjﬁw Sikd] show page h3 Exit T [Citime= $_35

Picture ¢ [J Point Somewhere
y D estimate
[y time = 1.00

¢ 3 Touch MFC
[tirme = 0.00

9 7 System Response
Cywrc

[time = 2.58

show page

Sum of times: 5.09

Fig. 7. Left: Three different ways of specifying a URL: using an NFC tag entering the URL
with the keypad, and detecting a marker using the camera. Right: Actions for the NFC interac-
tion from the graph shown on the left.

thinks about implementing one or more of the following three options: enter the URL
by hand, take a picture of a marker on the poster or use the phone’s NFC capabilities
to retrieve the URL from a tag embedded in the poster. A simple state graph that is
generated in less than two minutes is shown in Figure 7, left. Since one exit state has
been attached to all three interaction methods, selecting the start and the end state will
list all three interaction paths.

As next step, the details for each path can be demonstrated. In simulation mode, a
separate window shows the action sequence of the currently highlighted path. Here,
from the start state, the hotkey ‘h3’ is pressed and the system prompts for the URL.
The act of touching an NFC tag requires four steps: a unit of mental preparation is set
to account for the time needed to prepare oneself for the interaction. In the rather
coarse modelling of the KLM, this also includes the vague focussing on the target tag
(action ‘Mental Preparation’). Next, the movement of the phone is done (action ‘Point
Somewhere’). After the actual reading of the tag (‘Touch NFC’), the system needs
some time to process that tag (‘System Response (NFC)’), see Figure 7, right.

66 P. Holleis and A. Schmidt

2.2.2 Analysing the Augmented Path

The times for the described actions in the example are: hotkey (0.16 seconds), mental
preparation (1.35), pointing (1.00), touching after pointing (0.00), system response
time (2.58). This results in a total interaction time of roughly 5 seconds. Those dem-
onstrated non-functional actions (mental preparation, pointing, touching, system re-
sponse) have now been added to the respective transitions in the graph and need not
be re-entered for future calculations of those transactions. The analysis of the other
two interaction techniques results in 9.9 seconds (for a short URL of 25 characters
such as those produced by TinyURL?) and roughly 6 seconds (for a visual marker).
Each path between start and end state can be associated with a usability measure like
the time the execution of this path would take in real life. The system can then find
the ‘Best Path’ which will be the interaction method that takes the least amount of
time. In this example, the algorithm would suggest the NFC interaction. It should be
noted at this point that several of the operations like reading NFC tags always result in
the same sequence of KLM operators. Those additional non-functional actions can
automatically be retrieved and saved. Missing steps, e.g., an anticipated period of
mental preparation, this can be easily added to the transition in question.

It is also important to see that the action sequence, augmented with interaction in-
formation, can not only be used to compare one sequence to another. We recently
used the mobile phone KLM to model different ways of interacting with physical
posters. A graphical widget/browser based phone application was tested against one
that used NFC tags embedded in the poster. Surprisingly, the model predicted that the
text input variant would be considerably faster (2 minutes instead of close to 3 min-
utes). We ran several tests with different users and found the model to remarkably
correct. Interestingly, all users had the false subjective impression that they had been
faster with the NFC version. A representation of the modelled sequence of actions is
extremely useful to find the parts of the interaction sequence that are responsible for
long interaction times. In the scenario under consideration, one of the problems iden-
tified was the time lost with checking the feedback of the phone after each single
reading of a tag. A proposed solution is that detailed feedback is only given after a
series of interactions. This can easily be changed in the state graph of the application
by removing the intermediate feedback states and adding a later feedback state.

2.3 Initial User Feedback

To get initial feedback on the prototyping and analysis process, we demonstrated the sys-
tem to and carried out interviews with 4 experts working in different areas of developing
and evaluating pervasive computing applications as well as a couple of students of a user
interface master’s class. We saw that the main user interface make people try to interact
with it at once. Even without initial explanations, they were capable of grasping the idea of
generating application logic on the fly. It became obvious that it was not clear that more
than linear sequences of actions could be created. After finding out that it is possible to
interact with the state graph itself, most people intuitively began to merge states by mov-
ing nodes. Actually demonstrating and building the KLLM model proved to be more diffi-
cult and indicated some necessary refinement in the user interface. All participants saw the

% TinyURL service, http://www.tinyurl.com

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 67

advantage that the interaction is graphical and that arbitrary screen content could be used.
Although the more programming oriented users initially asked for more complex visual
control structures, they also agreed that shifting complex things to the source code makes
sense. They valued the possibility to quickly create prototypes and provide the starting
point for more advanced applications without being hindered to implement whatever they
want. The environment helps people concentrate on what they can do best: designers can
create and test ideas and interaction sequences and developers focus on the coding. The
fact that screens could also be drawn in some separate graphics program was valued espe-
cially be the design oriented people since when creating paper prototypes, they often as-
semble images and text using their own tools.

3 Implementation

3.1 ElToolkit — General Underlying Toolkit Support

Implementing applications using many different programs, hardware and software
platforms, communication protocols, and programming languages is, in general, diffi-
cult. To counter that, we started the open source project EIToolkit’, a component-
based architecture in which each component is represented by a proxy-like object
called a ‘stub’. These stubs translate messages between a general communication area
to the specific protocol of the devices and back. Any component can then register to
listen to messages directly addressed to it or broadcast to all. This enables exchanging
components on the fly. The system also allows changing the protocol of the messages
on a per component basis. The toolkit currently supports a simple proprietary format
over UDP or TCP as well as OSC* and RTP’. The last two are widely used protocols
for audio and multimedia systems and streams. Several microcontroller platforms can
be connected through existing stubs as well as over a serial connection. Sample stubs
are available, e.g. for the media player Winamp or direct MIDI output.

Independently of the MAKEIT application, we integrated KLM semantics into an
ElToolkit module. It is practically platform-independent and can be used remotely.
Specific control messages choose the type of KLM like for mobile phones or those for
another set of controls. After that, queries are sent to the stub presenting information
of an action. For a key press of the “2abc” button on a mobile phone, a sample mes-
sage might contain the ID ‘KEY_NUM?2’ and parameters ‘1 thumb’, ‘expert’. The
KLM stub browses its known elements and, if available, sends an answer containing a
time value back to the sender of the query, e.g. the MAKEIT system.

3.2 Data Structure of the State Graph

For the implementation of the state graph and its visualisation, we adapted code from
the Gravisto graph visualisation toolkit®. The data structure provided by the toolkit
has been adopted without changes. Beside the basic features of graphs with nodes and

? Embedded Interaction Toolkit (EIToolkit) Project Page, http://www.eitoolkit.de
* Open Sound Control, OSC: http://www.cnmat.berkeley.edu/OpenSoundControl/
3 Real-time Transport Protocol, RTP: http://www.cs.columbia.edu/~hgs/rip/

® Gravisto, Graph Visualisation Toolkit, http://gravisto.fmi.uni-passau.de

68 P. Holleis and A. Schmidt

edges, it provides a mechanism to attach arbitrary data to any of the graph elements
(nodes and edges) present in a graph. This data is stored in the form of hierarchically
structured attributes of various primitive and composed types. This structure is ex-
tremely helpful when several pieces of data have to be managed by the graph. As will
be seen in a later section, the graph elements do not only have to store the states and
contents of the display, but also much information about the transitions between
states. Data about the type of action that triggered the transition as well as detailed
information about timing and other model parameters are saved with each edge.

The creation and manipulation tools of Gravisto were adopted to ensure the con-
cordance with the graph properties and to enable additional features like merging
states. Also, some visual features have been added to correctly display state images.
Gravisto also enables saving a generated state graph to file in a standard graph data
format called GraphML’ which is based on XML and supports custom attributes. A
saved state graph can then be loaded without data loss at any time and the connection
to the mobile phone visualisation in the user interface is immediately updated.

3.3 Code Generation and Extensibility

The whole semantics of the application is stored in the state graph. Nodes contain the
data for states and the contents of the screens. Edges represent actions from one state
to another and store information about non-functional parameters associated with
transitions. One framework component transforms the state graph into a MIDlet, i.e. a
Java program for the J2ME? virtual machine which can be compiled, moved to, and
run on many modern phones. The created application often needs to be complemented
with code changes, e.g. for dynamic screen contents. Thus, project files for the
NetBeans Mobility Pack are generated and the program can be extended, compiled
and downloaded to a phone and tested there. The manifold features of an integrated
development environment can thus be exploited, e.g., syntax highlighting, choosing
the target platform and debugging. Of course, this also eases making quick alterations
and additions to the code itself like implementing the dynamic content of a screen.

Basically, the state graph is implemented as a set of conditional statements. If an
event named a occurs in a state S, the state 7 is loaded if there is a transition (S, T)
labelled with the action a. This is (although not optimal) a common and easily under-
standable way to program such applications. In a mobile phone application, each
screen is represented by an object. We use a custom sub-class of the J2ME class Can-
vas to write code that can load and draw images as well as render text to the screen. It
is a low-level implementation of a screen and can also receive key events from the
phone’s keyboard (standard keys are treated differently from hotkeys).

Beside number/letter key presses and hotkeys, the current implementation of the
framework supports advanced interactions using external Bluetooth sensors/devices
as well as those supported by the PMIF framework described by Rukzio et al. in [10].
If interactions with NFC tags have been defined, for instance, code is generated that
waits for and acts on the reading of a tag. It is possible to add an ID to the edge repre-
senting this action. This transition then is fired only if the ID of the read tag is identi-
cal. However, for more complex data stored in the tag, the specification of the seman-

" GraphML, file format for graphs, http://graphml.graphdrawing.org
8 J2ME, Java Micro Edition Platform, http:/java.sun.com/javame/index.jsp

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 69

tics is done directly in the code following the principle that the visual design mode
should not be overloaded with functionality. The next iteration of the tool will also be
able to take into account differences in hardware and software access, e.g. which
libraries are used. Currently, the implementation supports S60 phones.

For any other actions — and this includes actions that the user has specified through
the properties file — stubs are generated that leave room for the developer to fill it with
the concrete code that implements the action. The code generation component uses
several template files that contain method stubs and code excerpts. If necessary, these
templates can be adapted and extended to work for new interaction techniques like
those presented in [8] mentioned before.

The 3 steps to add such touch functionality to the MAKEIT system are:

e add a new action to the transitions.xml file (“Touch”)

e add initialization code and specify templates for the code that will handle the
new events; specifying, e.g., “$btKeyOn$” will then automatically be replaced
by code found in a file “btKeyOn.template”

e add code that shall be executed in the template files, e.g. “btKeyOn.template”

4 Related Work

4.1 Rapid Prototyping Environments

The first of three categories of related works subsumes all kinds of rapid prototyping
and authoring frameworks, tools, or methods that can be used to quickly create proto-
types of applications to convey or test ideas. The NetBeans visual designer for mobile
device applications follows a state based approach as does our project. However, it is
restricted in three aspects. First, it is strictly based on the available components like
text boxes and lists and does not allow quickly adding free drawings and designs. It
also does not directly support advanced interaction methods like RFID tags and can-
not integrate non-functional properties like KLM parameters. Focusing on those pro-
jects that support in some way or the other mobile or embedded devices as well as
more advanced types of interaction (e.g. those requiring sensor input), some shall be
mentioned as representatives with no claim for completeness.

The ECT toolkit (Greenhalgh et al. [11]) provides a consistent shared data space
across distributed devices. Programming can be done using a visual paradigm. Another
recently introduced tool that follows a state-based paradigm is d.tools (Hartmann et al.
[12]), implemented as a plug-in of Eclipse. A blueprint of the device to be prototyped
can be drawn and widgets representing hardware buttons, sliders, displays, etc. are
placed on the drawing. In another editor, a state graph can be created that specifies into
which state the device should be transferred on a specific action (like a button press). To
our knowledge these projects do not use underlying models that can be exploited for
consistency checks or interaction time predictions. In contrast to MAKEIT which gener-
ates code that directly and independently runs on a phone, such approaches can suffer
from the fact that the prototype depends on the presence of a PC as common gateway
and data store. The same holds for several important and useful physical interaction
toolkits like the Phidgets [13] that provide readymade hardware UI building blocks for
low cost sensing and control implemented as independent components connected to a

70 P. Holleis and A. Schmidt

computer by USB. The Stanford iStuff toolkit [14] offers another set of elements like
buttons, microphones and speakers with a communication layer based on a publish-
subscribe mechanism. VoodoolO from Villar and Gellersen [15] combines a virtual
stage in Flash with a physical stage that allows arranging physical components and
material. Although we describe the capabilities tailored for mobile device prototyping,
the MAKEIT infrastructure can be extended with moderate effort to connect to these
powerful tools.

The Mediascapes project [16] belongs to a well known set of rapid authoring tools
for context-sensitive mobile applications. It focuses on enabling non-programmers to
design, implement and deploy applications running on mobile devices. Similar ap-
proaches have been made by, e.g. Sohn and Dey with iCap [17], a visual language
using if-then rules and relations between people, places and things to define an appli-
cation logic. The programming-by-example or demonstration paradigm has been
followed, e.g., by Topiary and DENIM. They allow specifying triggers of actions,
which are comparable to the actions used in the MAKEIT environment. Topiary [18]
concentrates on location-based applications where regions are drawn on a map and
action triggers are set. The DENIM project [19] shows similarities to the approach
presented here, letting the designer create transitions between states. The integration
of conditionals, i.e. actions that depend on the properties of a state is planned; this
would reduce the number of states visible at the same time as does the condensing of
states in MAKEIT. The system, however, requires the user to learn several types of
gestures, is designed for web page generation, is not open and easily extensible for
external components and does not integrate well with later steps in the application
development process. It will be interesting to see how a planned more powerful visual
programming language will influence the power and usability of the system.

4.2 User Models

To be able to formalise factors describing human users, models are being developed
that characterise users in one or more facets important the use of certain application.
There are a lot of approaches that differ in the level of abstraction and formalism,
granularity, precision, and target application areas and domains. A detailed discussion
of general aspects in user modelling in the area of ubiquitous computing can be found
in a special issue on User Modelling in ubiquitous Computing [20].

In this paper, we concentrate on user models from the GOMS family. GOMS is
one of the first and most prominent of such models and has been introduced by Card,
Moran and Newell in 1980 [21, 22]. It defines goals which can be reached by using a
sequence of operators that identify unit actions; if there are several methods that can
be followed, selection rules are used to disambiguate them. Several extensions and
variants have been introduced to make the GOMS model more powerful. However,
even the simplest form has proved to be of much value when having to choose be-
tween several design alternatives (see, e.g., work by Hinckley [23] and John [24]).

The inventors of the GOMS model had a specific focus on modelling physical ac-
tions and concurrent or corresponding mental involvement. In the beginning, one of
its main uses has been to model tasks on desktop computers. The Keystroke-Level
Model (KLM) has then been introduced by Kieras [25] to aid in the development of
more precise interaction models in such environments. Its operators describe basic

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 71

actions like key presses, hand movements between keyboard and mouse, and system
response times. A number of projects have successfully validated KLM in many dif-
ferent application areas, for example [26, 27, 28]. In the last years, researchers have
also effectively adjusted, extended and updated the original KLM with new operators
or different values in order to apply it to different and novel interaction techniques.
Manes et al. [29], for example, use it for interactions with car navigation systems.
One work extending the original KLM for mobile devices is presented by Holleis et
al. in [9]. It adds new operators describing advanced mobile device interactions and
modifies some of them for the specific use in mobile phones. This includes standard
interactions with number keys and hotkeys as well as novel types of interaction like
gestures, visual marker recognition, and reading RFID/NFC tags.

Creating prototypes that allow assessing the usage performance is in general regarded
as too cost intensive, especially in the domain of mobile and ubiquitous user interfaces.
Providing tools that help to keep track of the expected task completion time is valuable
in the design process, as often it is hard to estimate such times. Of course, interaction
time is only one of the factors that distinguish one design from another. Still, it can be a
decisive aspect in making a justified choice. In situations where users have restricted
amounts of time (applications for mobile emergency services or programs used while
walking to a station), quick solutions can be a significant advantage. Models such as the
KLM make predictions about the time experienced users need to execute specific tasks
without any need for actual studies. Hence there is no need to create several functional
prototypes that have similar timing characteristics. One of the problems identified to
hinder the broad use of such models is the cost of learning and constructing correct
models. Creating such models can be very time consuming, error-prone, and different
people will come up with at least slightly different models. Tools like CogTool [30] (see
below) or MAKEIT are therefore needed to make the use of models more practical.

4.3 Prototyping Tools that Support Underlying Models

Prototyping tools that explicitly support underlying models or semantic checks are
hardly available. A range of applications exist that allow incorporating actual user
traces into the process of developing a UI prototype. SUEDE [31] and WebQuilt [32]
are such examples recording user test data for speech and web Uls, respectively. The
major difference to our system is that we do not rely on actual user data but use vali-
dated interaction models. This drastically reduces time and cost for reaching decisions
regarding projected user interaction times.

Gow and Thimbleby describe MAUI [33], an interface design tool based on a ma-
trix algebra model of interaction. Using finite state machines, he can formally state
interface properties using linear algebra. There is currently no support for interaction
time analyses or code generation for specific target platforms. A start in providing
tool support for developers to model applications is CogTool [30]. It uses storyboards
to design an application and then employs a cognitive modelling back-end to generate
interaction time predictions. In direct comparison with the MAKEIT environment, one
can see that the CogTool provides a visual tool to define advanced user models. In
contrast to that, MAKEIT focuses on providing support for the actual implementation
by generating source code incorporating non-functional parameters.

72 P. Holleis and A. Schmidt

S Summary and Future Work

We addressed the gap between low-fidelity paper prototyping and implementations of
mobile phone applications. The MAKEIT framework (Mobile Applications Kit Embed-
ding Interaction Times) presented in this paper is used to create functional, high-
fidelity prototypes for mobile devices supporting advanced types of interaction. In
particular, it focuses on the need to easily create prototypes and aid in evaluating and
deciding between different interaction designs. Integrated into MAKEIT is support for
a KM based task completion time analysis of the state graph of the application.

While the state graph eliminates the need to remember the order of paper prototype
material, the advantage of paper prototyping to quickly react to unforeseen events
during studies remains. The required time is slightly more than for paper prototyping
but surely lower than for doing any implementations. Using the state graph approach,
several types of errors like creating unreachable states can be avoided. In most design
processes, considerations like KLLM annotations do not play an important part. We
argue that integrating such aspects as early in the process as possible, several changes
can be avoided later. An open issue is that changes made to the generated code are not
reflected in the state graph and have to be repeated each time the code is regenerated.
NetBeans, e.g., solves this by only allowing the user to make minor changes in the
code at specific places. This, however, reduces the freedom of the developer.

Future work will further evaluate and improve the concept and user interface with a
larger user study and concentrate on simplifying the inclusion of standard controls
and widgets in the phone’s screen like text input fields and scroll lists. Approaches
like those seen in the upcoming Adobe Thermo project’ aim at exactly this direction
by automatically converting drawings of, e.g., a text area to a functional text box.

Acknowledgements

The authors would like to thank Prof. Dr. Franz J. Brandenburg and his research
group at the University of Passau, Germany, for developing and providing the Grav-
isto graph visualisation and editing software.

This work was funded by the DFG (’Deutsche Forschungsgemeinschaft’) in the
context of the research project Embedded Interaction (’Eingebettete Interaktion’).

References

1. Davies, N., Landay, J., Hudson, S., Schmidt, A.: Rapid Prototyping in Ubiquitous Computing.
IEEE Pervasive Computing 4(4), 15-17 (2005)

2. Rukzio, E., Leichtenstern, K., Callaghan, V., Holleis, P., Schmidt, A.: An Experimental Com-
parison of Physical Mobile Interaction Techniques: Touching, Pointing and Scanning. In: Dour-
ish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 87-104. Springer, Heidelberg
(2006)

3. Rohs, M.: Marker-Based Interaction Techniques for Camera-Phones. In: MU3I (2005)

® Adobe Thermo project, http://labs.adobe.com/wiki/index.php/Thermo

MAKEIT: Integrate User Interaction Times in the Design Process of Mobile Applications 73

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Nicolai, T., Kenn, H.: Towards Detecting Social Situations with Bluetooth. In: Adjunct Pro-
ceedings Ubicomp 2006 (2006)

Hull, R., Clayton, B., Melamed, T.: Rapid Authoring of Mediascapes. In: Davies, N., Mynatt,
E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 125-142. Springer, Heidelberg
(2004)

Nuria, O., Flores-Mangas, F.: MPTrain: A Mobile Music and Physiology Based Personal
Trainer. In: MobileHCI 2006 (2006)

Thimbleby, H., Gow, J.: Applying Graph Theory to Interaction Design. In: DSVIS 2007 (2007)
Holleis, P., Huhtala, J., Hakkil4, J.: Studying Applications for Touch-Enabled Mobile Phone
Keypads. In: TEI 2008, pp. 15-18 (2008)

Holleis, P., Otto, F., Hussmann, H., Schmidt, A.: Keystroke-level Model for Advanced Mobile
Phone Interaction. In: CHI 2007, pp. 1505-1514 (2007)

Rukzio, E., Wetzstein, S., Schmidt, A.: A Framework for Mobile Interactions with the Physical
World. In: WPMC 2005 (2005)

Greenhalgh, Izadi, H.J.S., Mathrick, J., Taylor, I.: ECT: A Toolkit to Support Rapid Construc-
tion of Ubicomp Environments. In: UbiSys 2004 (2004)

Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla, L., Burr, B., Robinson-Mosher, A., Gee,
J.: Reflective Physical Prototyping Through Integrated Design, Test, and Analysis. In: UIST
2006 (2006)

Greenberg, S., Fitchett, C.: Phidgets: Easy Development of Physical Interfaces Through Physi-
cal Widgets. In: UIST 2001, pp. 209-218 (2001)

Ballagas, R., Ringel, M., Stone, M., Borchers, J.: iStuff: a Physical User Interface Toolkit for
Ubiquitous Computing Environments. In: CHI 2003, pp. 537-544 (2003)

Villar, N., Gellersen, H.: A Malleable Control Structure for Softwired User Interfaces. In: TEI
2007 (2007)

Hull, R., Clayton, B., Melamed, T.: Rapid Authoring of Mediascapes. In: Davies, N., Mynatt,
E.D,, Siio, L. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 125-142. Springer, Heidelberg (2004)
Sohn, T., Dey, A.: iCAP: Rapid Prototyping of Context-Aware Applications. In: CHI 2004
(2004)

Li, Y., Hong, J., Landay, J.: Topiary: A Tool for Prototyping Location-Enhanced Applications.
In: UIST 2004 (2004)

Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An Informal Web Site Design Tool
Inspired by Observations of Practice. Human-Computer Int. 18(3), 259-324 (2003)

Jameson, A., Kriiger, A.: Preface to the Special Issue on User Modeling in Ubiquitous Comput-
ing. User Modeling and User-Adapted Interaction 15(3-4), 193—-195 (2005)

Card, S.K., Newell, A., Moran, T.P.: The Psychology of Human-Computer Interaction. Law-
rence Erlbaum Associates, Inc., Mahwah (1983)

Card, S.K., Moran, T.P., Newell, A.: The Keystroke-Level Model for User Performance Time
with Interactive Systems. Communications of the ACM 23(7), 396410 (1980)

Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agrawala, M., Cutrell, E.: The Spring-
board: Multiple Modes in one Spring-loaded Control. In: CHI 2006, pp. 181-190 (2006)

John, B.E., Vera, AH.: A GOMS Analysis of a Graphic Machine-paced, Highly Interactive
Task. In: CHI 1992, pp. 251-258 (1992)

Kieras, D.: Using the Keystroke-Level Model to Estimate Execution Times. The University of
Michigan, Unpublished Report (1993), http: //www.pitt.edu/~cmlewis/KSM.pdf
Biilter, O.: Keystroke Level Analysis of Email Message Organization. In: CHI 2000 (2000)

Teo, L., John, B.E.: Comparisons of Keystroke-Level Model Predictions to Observed Data. In:
Extended Abstracts CHI 2006, pp. 1421-1426 (2006)

74

28.

29.

30.

31.

32.

33.

34.

P. Holleis and A. Schmidt

Koester, H.H., Levine, S.P.: Validation of a Keystroke-Level Model for a Text Entry System
Used by People with Disabilities. In: Assets 1994, pp. 115-122 (1994)

Manes, D., Green, P., Hunter, D.: Prediction of Destination Entry and Retrieval Times Using
Keystroke-Level Models. UMTRI-96-37. University of Michigan (1996)

John, B.E., Salvucci, D.D.: Multi-Purpose Prototypes for Assessing User Interfaces in Pervasive
Computing Systems. IEEE Pervasive Computing 4(4), 27-34 (2005)

Klemmer, S.R., Sinha, A K., Chen, J., Landay, J.A., et al.: SUEDE: A Wizard of Oz Prototyp-
ing Tool for Speech User Interfaces. In: CHI Letters UIST 2000, vol. 2(2), pp. 1-10 (2000)
Hong, J.I, Heer, J., Waterson, S., Landay, J.A.: WebQuilt: A Proxy-based Approach to Remote
Web Usability Testing. ACM Trans. Inf. Syst. 19(3), 263-385 (2001)

Gow, J., Thimbleby, H.: MAUI: An Interface Design Tool Based On Matrix Algebra. In: CA-
DUI 2004, pp. 81-94 (2004)

Rekimoto, J., Schwesig, C.: PreSensell: Bi-directional Touch and Pressure Sensing Interactions
with Tactile Feedback. In: Extended Abstracts CHI 2006, pp. 1253—1258 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

