
Gravisto: Graph Visualization Toolkit

Christian Bachmaier1, Franz J. Brandenburg1,
Michael Forster1, Paul Holleis2, and Marcus Raitner1

1 University of Passau, 94030 Passau, Germany
{bachmaier,brandenb,forster,raitner}@fmi.uni-passau.de

2 Ludwig Maximilian University Munich, 80333 Munich, Germany
paul.holleis@ifi.lmu.de

Abstract. Gravisto, the Graph Visualization Toolkit, is more than a
(Java-based) editor for graphs. It includes data structures, graph algo-
rithms, several layout algorithms, and a graph viewer component. As
a general toolkit for the visualization and automatic layout of graphs
it is extensible with plug-ins and is suited for the integration in other
Java-based applications.

Overview: Gravisto is a new approach towards an extensible graph visualiza-
tion toolkit. Entirely written in Java, Gravisto runs on all Java2 1.4 platforms,
including Linux, Solaris, MacOS X, and Microsoft Windows. Gravisto can be
obtained under the terms of the GNU General Public License (GPL) from [2].

Graph Data Structure

Adj. List Adj. Matrix

Editor

Plug-in Manager

Default
Plug-ins

User
Plug-ins

External
LibrariesListener Manager

Fig. 1. System architecture

Architecture: Gravisto consists of three layers;
see Fig.1. The basic layer contains the graph
data structures. The editor layer uses the basic
data structures and provides managers for easy
extension and customization. The top layer com-
prises all plug-ins, either delivered with Gravisto
or from third-parties.

As several components must be notified
about changes of the data structure, e. g., a view
component in a plug-in, Gravisto employs the
Observer Design Pattern: the Event Manager allows a component to register as
a special type of event handler, depending on the events it likes to receive.

Interfaces: Gravisto provides a powerful plug-in mechanism with a comfortable
plug-in manager. Most non-core functionality is realized as plug-in, including
algorithms, node and edge attributes, graphical user interface components, in-
put and output serializers, attribute inspectors, node and edge shapes, tools,
or complete views. The idea behind this paradigm is to facilitate extensions of
Gravisto; thus encouraging people to contribute to the project. Furthermore,
this concept allows easy customization of the editor for different application sce-
narios, e. g., a biologist, working with biochemical pathways, does not need most
functionality of the standard graph editor, but, for instance, the nodes and edges



Fig. 2. Gravisto’s editing view, its plug-in manager, and the Quoggles interface

must be linked to additional information in a data base; thus all unnecessary
plug-ins can be excluded and a custom plug-in for the data base connection may
be added. Of course, the toolkit includes all plug-ins for the basic functionality
and many more. Plug-ins for the widely used GML and GraphML file formats
allow data exchange with non-Java applications and other graph drawing tools.

Queries on Graphs: An innovative feature is Quoggles, [3], a plug-in implement-
ing an extensible, graphical query system for graph properties. The idea for
Quoggles arose from the 10th Graph Drawing Contest, 2002, Category C, [1].
The query itself is composed into a graph. The input to the query are the set
GE of all nodes and edges of the queried graph. For example, the query “GE →
GetGraphElements(nodes) → GetProperty(degree) → Arithmetic(avg)” cal-
culates the average degree of all nodes in the graph. The query shown in Fig. 2
sorts the nodes according to their degree.

References

[1] F. J. Brandenburg. Graph-drawing contest report. In M. T. Goodrich and S. G.
Kobourov, editors, Proc. Graph Drawing, GD 2002, volume 2528 of LNCS, pages
376–379. Springer, 2002.

[2] Gravisto. http://www.gravisto.org/. University of Passau.
[3] P. Holleis. Design and implementation of an extensible query system for graphs.

diploma thesis, University of Passau, 2004.


